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1 Introduction

Precision in calculations of cross sections for hard-scattering processes requires the inclusion
of higher-order QCD corrections. A particular class of these corrections arises from the
emission of soft gluons. These soft radiative corrections can be formally resummed [1–5]
to all orders in the strong coupling after taking Mellin moments or Laplace transforms of
the cross section and using its factorization properties, and the resummed cross section
can be used as a generator of fixed-order corrections. Soft-gluon resummation has been
successfully developed and applied to processes with massive final states, such as top-quark
pair production [3–8], because the cross section receives large contributions from soft-gluon
emission near partonic threshold due to the large mass. In all these processes, the soft-gluon
corrections are numerically dominant and account for the overwhelming majority of the
complete corrections at higher orders.

For processes with complex color flows, such as top production, one does not yet have all
the ingredients necessary to calculate the complete set of soft-gluon corrections at next-to-
next-to-next-to-leading order (N3LO). For processes with trivial color flow, and in particular
with colorless (e.g. electroweak) final states, the N3LO soft-gluon corrections are known in
fully inclusive kinematics [9–11]. However, complete N3LO soft-gluon contributions have not
yet been calculated for a partonic process in single-particle-inclusive (1PI) kinematics. In this
paper we provide explicit analytical results for the complete soft-gluon corrections through
N3LO for 1PI partonic processes with no color in the final state. As a concrete application,
we employ these results to compute higher-order QCD corrections for charged-Higgs pair
production in the Two-Higgs-Doublet Model (2HDM) using 1PI kinematics.

In this work we present the most precise predictions for quark-induced production of
H+H− at the LHC, that occurs through diagrams of Drell-Yan type, in the 2HDM by
computing the total cross section and the charged-Higgs rapidity distribution for this process
at approximate next-to-next-to-leading order (aNNLO) and approximate N3LO (aN3LO) in
QCD. Results at aNNLO are derived by adding the second-order soft-plus-virtual corrections
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to the full next-to-leading order (NLO) QCD calculation, while aN3LO results are obtained
by further adding the third-order soft-gluon corrections.

The 2HDM represents one of the simplest extensions of the Standard Model Higgs
sector, introducing an additional SU(2)L Higgs doublet. This model gives rise to a very
rich phenomenology due to its extended Higgs sector (for a review see [12] and references
therein). The model predicts the existence of three neutral scalar bosons (h, H, and A) and
a pair of charged Higgs bosons (H+ and H−).

The dominant production channel for the charged Higgs at the Large Hadron Col-
lider (LHC) is in association with a top quark p p→ tH−, for which soft-gluon corrections
were calculated in refs. [13–15], followed by the associated production with a W boson
p p → H+W− (see [16] for soft-gluon corrections), and pair production p p → H+H−. In
this work we focus on the last process, which can occur at leading order (LO) through
quark-antiquark annihilation (qq̄ → H+H−) [17–19] and gluon fusion (gg → H+H−) [20–
24]. In the case of light quarks in the initial state, the pair production of charged Higgs
bosons is of Drell-Yan type, with the exchange of a photon and a Z boson in the s-channel.
NLO QCD corrections for this channel have been computed in the 2HDM and the Minimal
Supersymmetric Standard Model (MSSM) in [17, 19]. In the case of bottom quarks in the
initial states, there are additional diagrams that account for the exchange of a neutral Higgs
boson in the s-channel and a top quark in the t-channel. The NLO QCD corrections to
bb̄ → H+H− have been computed in [18, 19]. The charged-Higgs pair production through
gluon fusion is a one-loop process already at LO and it has been computed in the 2HDM
and the MSSM in [20–24].

In models like the type II 2HDM, the quark-antiquark annihilation process qq̄ → H+H−

is the dominant channel for low values of tan β, which is the ratio of the vacuum expectation
values for the two doublets. On the other hand, for large values of tan β, the gg and bb̄

channels have cross sections which are enhanced by a tan4 β factor, and this can compensate
for the loop suppression or the small bottom-quark parton densities and can make these
channels dominant, as shown in [19]. However, recent studies showed that, for type II 2DHM
with softly broken Z2 symmetry, the size of cos(β − α) has to be lower than O(10−2) and
that low values of tan β are favored [25–28]. Therefore, the calculations presented in this
work are particularly relevant for those scenarios.

The paper is organized as follows. In section 2, we describe the soft-gluon resummation
formalism and provide explicit analytical results for the soft-gluon corrections through N3LO
in 1PI kinematics for processes with colorless final states. In section 3 we introduce the
Two-Higgs-Doublet model and apply the resummation formalism of section 2 to charged-
Higgs pair production. In section 4, we present numerical results for the total cross section
through aN3LO at LHC energies. In section 5, we present results for the charged-Higgs
rapidity distribution for two representative masses of the charged Higgs boson. We conclude
in section 6.

2 Soft-gluon corrections at N3LO in 1PI kinematics

In this section, we discuss the resummation formalism that we use for the calculation of
soft-gluon corrections in 1PI kinematics for partonic processes with colorless final states, e.g.
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with electroweak final-state particles, such as H+H− production. The origin of the soft-gluon
corrections is from the emission of soft (i.e. low-energy) gluons from the initial state partons,
which result in partial cancellations of infrared divergences between real-emission and virtual
diagrams close to partonic threshold. We derive the resummed cross section via Laplace
transforms, factorization, and renormalization-group evolution. We then provide explicit
analytical results for the soft-gluon corrections through N3LO.

We consider first leading-order partonic processes of the form

q(pa) + q̄(pb) → A(p1) + B(p2) , (2.1)

where q and q̄ are quarks and antiquarks in the protons, and A and B are a pair of
colorless particles, each of mass m (e.g. H+H−), with particle A the observed particle in
1PI kinematics. We will also discuss later the changes needed in the analytical expressions if
we instead have gluons in the initial state, i.e. processes gg → AB, or if the two final-state
particles have different masses, mA and mB . We define s = (pa + pb)2, t1 = (pa − p1)2 −m2,
u1 = (pb−p1)2−m2, as well as a partonic threshold variable s4 = s+t1 +u1 = (p2 +pg)2−m2,
with pg the momentum of an additional gluon in the final state. Near partonic threshold pg → 0
and, thus, s4 → 0. The soft-gluon corrections appear in the perturbative series as logarithms
of s4, i.e. [(lnk(s4/m

2))/s4]+, with 0 ≤ k ≤ 2n− 1 at nth order in the strong coupling, αs.
The resummation of soft-gluon corrections is a consequence of the factorization properties

of the (in general, differential) cross section under Laplace transforms in 1PI kinematics. We
first write the differential hadronic cross section, dσpp→AB , as a convolution of the differential
partonic cross section, dσ̂qq̄→AB , with the parton distribution functions (pdf), ϕq/p and ϕq̄/p, as

dσpp→AB =
∑
q,q̄

∫
dxa dxb ϕq/p(xa, µF )ϕq̄/p(xb, µF ) dσ̂qq̄→AB(s4, µF ) , (2.2)

where µF is the factorization scale, and xa, xb are momentum fractions of partons q, q̄,
respectively, in the colliding protons. We also define the hadron-level variables S = (Pa +Pb)2,
T1 = (Pa − p1)2 −m2, U1 = (Pb − p1)2 −m2, where Pa and Pb denote the momenta of the
colliding protons, and S4 = S + T1 + U1. Since pa = xaPa and pb = xbPb, we have the
relations s = xaxbS, t1 = xaT1, u1 = xbU1, and

S4
S

= s4
s

− (1 − xa)u1
s

− (1 − xb)
t1
s
. (2.3)

We then consider the parton-parton cross section dσqq̄→AB, which is of the same form
as eq. (2.2) but with incoming partons instead of hadrons [3–5],

dσqq̄→AB(S4) =
∫
dxa dxb ϕq/q(xa)ϕq̄/q̄(xb) dσ̂qq̄→AB(s4) , (2.4)

and we define its Laplace transform as

dσ̃qq̄→AB(N) =
∫ S

0

dS4
S

e−NS4/S dσqq̄→AB(S4) . (2.5)

Using the expression for S4/S in eq. (2.3), we can rewrite the Laplace transform, eq. (2.5),
of the parton-parton cross section in eq. (2.4) as

dσ̃qq̄→AB(N)=
∫ 1

0
dxae

−Na(1−xa)ϕq/q(xa)
∫ 1

0
dxbe

−Nb(1−xb)ϕq̄/q̄(xb)
∫ s

0

ds4
s
e−Ns4/sdσ̂qq̄→AB(s4)

=ϕ̃q/q(Na)ϕ̃q̄/q̄(Nb)d˜̂σqq̄→AB(N), (2.6)

where Na = N(−u1/s) and Nb = N(−t1/s).
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Next, we introduce a refactorization of the cross section via new functions Hqq̄→AB,
Sqq̄→AB, ψq/q, ψq̄/q̄ [3–5]. The hard function Hqq̄→AB is purely short-distance and infrared
safe while the soft function Sqq̄→AB describes the emission of noncollinear soft gluons. The
coupling of the soft gluons to the partons in the hard-scattering process is described by
eikonal (Wilson) lines, i.e. ordered exponentials of the gauge field. The functions ψq/q and
ψq̄/q̄ differ from the pdf ϕq/q and ϕq̄/q̄, and they describe collinear emission from the incoming
partons [1, 3–5]. The refactorized form of the cross section [5, 29] is then

dσqq̄→AB =
∫
dwa dwb dwS ψq/q(wa)ψq̄/q̄(wb)

×Hqq̄→AB Sqq̄→AB

(
wS

√
s

µF

)
δ

(
S4
S

− wS + wa
u1
s

+ wb
t1
s

)
(2.7)

where the w’s are dimensionless weights, with wa and wb for ψq/q and ψq̄/q̄, respectively,
and wS for Sqq̄→AB. The argument in the delta function of eq. (2.7) arises from rewriting
eq. (2.3) in terms of the new weights [5], as

S4
S

= wS − wa
u1
s

− wb
t1
s
. (2.8)

After taking a Laplace transform of eq. (2.7), we have

dσ̃qq̄→AB(N) =
∫ 1

0
dwa e

−Nawa ψq/q(wa)
∫ 1

0
dwb e

−Nbwb ψq̄/q̄(wb)

× Hqq̄→AB

∫ 1

0
dws e

−Nws Sqq̄→AB

(
ws

√
s

µF

)

= ψ̃q/q(Na) ψ̃q̄/q̄(Nb) Hqq̄→AB S̃qq̄→AB

( √
s

NµF

)
. (2.9)

All N -dependence has now been absorbed into the functions ψ̃q/q, ψ̃q̄/q̄, and S̃.
Comparing eqs. (2.6) and (2.9), we get an expression for the hard-scattering partonic

cross section in Laplace transform space,

d˜̂σqq̄→AB(N) =
ψ̃q/q(Na) ψ̃q̄/q̄(Nb)
ϕ̃q/q(Na) ϕ̃q̄/q̄(Nb)

Hqq̄→AB S̃qq̄→AB

( √
s

NµF

)
. (2.10)

The resummed differential cross section in Laplace-transform space is derived from the
renormalization-group evolution of ψ̃q/q/ϕ̃q/q, ψ̃q̄/q̄/ϕ̃q̄/q̄, and S̃qq̄→AB in eq. (2.10), and it
is given by the expression [1–5]

d˜̂σres
qq̄→AB(N) = exp[Eq(Na)+Eq̄(Nb)] exp

[
2
∫ √

s

µF

dµ

µ

(
γq/q (Na,αs(µ))+γq̄/q̄ (Nb,αs(µ))

)]
×Hqq̄→AB

(
αs
(√
s
))
S̃qq̄→AB

(
αs
(√
s/N

))
. (2.11)

In the first exponential of eq. (2.11), we have

Eq(Na) =
∫ 1

0
dz
zNa−1 − 1

1 − z

{∫ (1−z)2

1

dλ

λ
Aq (αs(λs)) +Dq

[
αs((1 − z)2s)

]}
, (2.12)
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with an analogous expression for Eq̄(Nb) [1]. The first integrand in eq. (2.12) has the
perturbative expansion Aq = (αs/π)A(1)

q + (αs/π)2A
(2)
q + (αs/π)3A

(3)
q + · · · . The first term

in this expansion is A(1)
q = CF [1], where CF = (N2

c − 1)/(2Nc) and Nc = 3 is the number
of colors. The second term, A(2)

q , is given by [2, 30]

A(2)
q = CFCA

(67
36 − ζ2

2

)
− 5

18CFnf , (2.13)

where CA = Nc and nf is the number of light-quark flavors (in the next section we will set
nf = 5 for H+H− production). Finally, the third term, A(3)

q , is given by [31]

A(3)
q = CFC

2
A

(245
96 − 67

36ζ2 + 11
24ζ3 + 11

8 ζ4

)
+ C2

Fnf

(
−55

96 + ζ3
2

)
+ CFCAnf

(
−209

432 + 5
18ζ2 −

7
12ζ3

)
− CF

n2
f

108 . (2.14)

Here and below ζ2 = π2/6, ζ3 = 1.202056903 · · · , ζ4 = π4/90, and ζ5 = 1.036927755 · · · . The
corresponding expressions for processes with gluons in the initial state (i.e. gg → AB) are
given at these perturbative orders by A

(n)
g = (CA/CF )A(n)

q , where n = 1, 2, 3.
The second integrand in eq. (2.12) can be expanded as Dq = (αs/π)D(1)

q + (αs/π)2D
(2)
q +

(αs/π)3D
(3)
q + · · · . In Feynman gauge, the one-loop term D

(1)
q = 0, while at two loops [32]

D(2)
q = CFCA

(
−101

54 + 11
6 ζ2 + 7

4ζ3

)
+ CFnf

( 7
27 − ζ2

3

)
, (2.15)

and at three loops [9]

D(3)
q = CFC

2
A

(
−297029

46656 + 6139
648 ζ2 + 2509

216 ζ3 −
187
48 ζ4 −

11
12ζ2ζ3 − 3ζ5

)
+ CFCAnf

(31313
23328 − 1837

648 ζ2 −
155
72 ζ3 + 23

24ζ4

)
+ C2

Fnf

(1711
1728 − ζ2

4 − 19
36ζ3 −

ζ4
4

)
+ CFn

2
f

(
− 29

729 + 5
27ζ2 + 5

54ζ3

)
. (2.16)

The corresponding expressions for processes with gluons in the initial state are given at these
perturbative orders by D

(n)
g = (CA/CF )D(n)

q , where n = 1, 2, 3.
In the second exponent of eq. (2.11), the quantity γq/q is the moment-space anomalous

dimension of the MS density ϕq/q [33–37] which can be expressed as γq/q(N) = −Aq ln Ñ +γq,
and similarly for γq̄/q̄. The parton anomalous dimension can be expanded as γq = (αs/π)γ(1)

q +
(αs/π)2γ

(2)
q + · · · with γ

(1)
q = 3CF /4 and

γ(2)
q = C2

F

( 3
32 − 3

4ζ2 + 3
2ζ3

)
+ CFCA

(17
96 + 11

12ζ2 −
3
4ζ3

)
− CFnf

( 1
48 + ζ2

6

)
. (2.17)

For gluons, we have γ(1)
g = β0/4, where β0 = 11CA/3 − 2nf/3 is the coefficient of the first

term in the perturbative expansion of the β function [38, 39], and

γ(2)
g = C2

A

(2
3 + 3

4ζ3

)
− nf

(
CF

8 + CA

6

)
. (2.18)
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By expanding eq. (2.11) to fixed order and inverting back to momentum space, we can
calculate the soft-gluon corrections completely through N3LO. The Born differential cross
section at partonic level can be written as

d2σ̂
(0)
qq̄→AB

dt1 du1
= FB

qq̄→AB δ(s4) , (2.19)

where the specific form of FB
qq̄→AB depends on the process (see the next section for H+H− pro-

duction). If we perturbatively expand Hqq̄→AB = H
(0)
qq̄→AB+(αs/π)H(1)

qq̄→AB+(αs/π)2H
(2)
qq̄→AB+

· · · , and Sqq̄→AB = S
(0)
qq̄→AB +(αs/π)S(1)

qq̄→AB +(αs/π)2S
(2)
qq̄→AB + · · · , then we have FB

qq̄→AB =
H

(0)
qq̄→AB S

(0)
qq̄→AB.

The NLO soft-plus-virtual corrections are given by

d2σ̂
(1)
qq̄→AB

dt1 du1
= FB

qq̄→AB

αs(µR)
π

{c3 D1(s4) + c2 D0(s4) + c1 δ(s4)} (2.20)

where µR is the renormalization scale and

Dk(s4) =
[

lnk(s4/m
2)

s4

]
+
. (2.21)

The coefficients of the D1(s4) and D0(s4) terms in eq. (2.20) are, respectively,

c3 = 4CF and c2 = −2CF ln
(
t1u1
m4

)
− 2CF ln

(
µ2

F

s

)
. (2.22)

The coefficient of the δ(s4) term is

c1 = CF ln2
(−t1
m2

)
+ CF ln2

(−u1
m2

)
+
[
CF ln

(
t1u1
m4

)
− 2γ(1)

q

]
ln
(
µ2

F

s

)
+ V1 , (2.23)

where V1 =
(
H

(1)
qq̄→AB S

(0)
qq̄→AB +H

(0)
qq̄→AB S

(1)
qq̄→AB

)
/FB

qq̄→AB is the contribution from the one-
loop virtual corrections. For Drell-Yan type processes with quark-antiquark annihilation,
such as H+H− production, V1 is given by the expression V1 = 2CF (−2 + ζ2) [40–42]. For
gluon-initiated processes, we replace CF by CA in eqs. (2.22) and (2.23), and we use the
corresponding V1 (for example, see [43, 44] for the NLO virtual corrections for gg → H).
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The NNLO soft-plus-virtual corrections are given by

d2σ̂
(2)
qq̄→AB

dt1 du1

= FB
qq̄→AB

α2
s(µR)
π2

{1
2c

2
3 D3(s4) +

[3
2c3c2 −

β0
4 c3

]
D2(s4)

+
[
c3c1 + c2

2 − ζ2c
2
3 −

β0
2 c2 − β0CF ln

(
µ2

F

µ2
R

)
+ 4A(2)

q

]
D1(s4)

+
[
c2c1 − ζ2c3c2 + ζ3c

2
3 + β0

4 c2 ln
(
µ2

R

s

)

− β0
2 CF ln2

(−t1
m2

)
− β0

2 CF ln2
(−u1
m2

)
− 2A(2)

q ln
(
t1u1
m4

)
+ 2D(2)

q

+ β0
4 CF ln2

(
µ2

F

s

)
− 2A(2)

q ln
(
µ2

F

s

)]
D0(s4)

+
[
V2 + 1

2
(
c2

1 − V 2
1

)
− ζ2

2 c
2
2 + ζ3c3c2 + β0

6 CF

(
ln3
(−t1
m2

)
+ ln3

(−u1
m2

))
+
(
β0
4 CF +A(2)

q

)(
ln2
(−t1
m2

)
+ ln2

(−u1
m2

))
+ β0

4 c1 ln
(
µ2

R

s

)
− 2γ(2)

q ln
(
µ2

F

s

)

+A(2)
q ln

(
t1u1
m4

)
ln
(
µ2

F

s

)
+ β0

8

(
2γ(1)

q − CF ln
(
t1u1
m4

))
ln2
(
µ2

F

s

)]
δ(s4)

}
(2.24)

where V2 =
(
H

(2)
qq̄→AB S

(0)
qq̄→AB +H

(0)
qq̄→AB S

(2)
qq̄→AB +H

(1)
qq̄→AB S

(1)
qq̄→AB

)
/FB

qq̄→AB is the contri-
bution from the virtual two-loop corrections. For Drell-Yan type processes with quark-
antiquark annihilation, such as H+H− production, V2 is given by the expression [45]

V2 = C2
F

(
511
64 − 35

8 ζ2 −
15
4 ζ3 + ζ2

2
10

)
+ CFCA

(
−1535

192 + 37
9 ζ2 + 7

4ζ3 −
3
20ζ

2
2

)
+ CFnf

(127
96 − 7

9ζ2 + ζ3
2

)
. (2.25)

For processes gg → AB, we replace in eq. (2.24) all explicit appearances of CF by CA, and
we also use the corresponding expressions for Ag, Dg, γg, c3, c2, and c1 as detailed above,
as well as the appropriate expressions for V1 and V2 (for example, see [46] for the NNLO
virtual corrections for gg → H).
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The N3LO soft-gluon corrections are given by

d2σ̂
(3)
qq̄→AB

dt1 du1

= FB
qq̄→AB

α3
s(µR)
π3

{1
8c

3
3 D5(s4) +

[5
8c

2
3c2 −

5
24c

2
3β0

]
D4(s4)

+
[
c3c

2
2 + 1

2c
2
3c1 − ζ2c

3
3 + β2

0
12 c3 −

5
6β0c3c2 − β0CF c3 ln

(
µ2

F

µ2
R

)
+ 4c3A

(2)
q

]
D3(s4)

+
[3

2c3c2c1 + 1
2c

3
2 − 3ζ2c

2
3c2 + 5

2ζ3c
3
3 −

β0
4 c3c1 + 9

8β0ζ2c
2
3

+ (3c2 − β0)
(
−β0

4 c2 −
β0
2 CF ln

(
µ2

F

µ2
R

)
+ 2A(2)

q

)
− CF

β1
4 − 3

2c3X1

]
D2(s4)

+
[1

2c3c
2
1 + c2

2c1 − ζ2c
2
3c1 −

5
2ζ2c3c

2
2 + 5ζ3c

2
3c2 + 5

4ζ
2
2c

3
3 −

15
4 ζ4c

3
3

− β2
0

4 ζ2c3 −
5
3β0ζ3c

2
3 + β0ζ2c3c2 + (2c1 − 5ζ2c3)

(
−β0

4 c2 −
β0
2 CF ln

(
µ2

F

µ2
R

)
+ 2A(2)

q

)

+ (β0 − 2c2)X1 + c3X0 + 4A(3)
q + CF

β2
0

4 ln2
(
µ2

F

µ2
R

)
− 2β0A

(2)
q ln

(
µ2

F

µ2
R

)

+ CF
β1
4 ln

(
µ2

R

s

)
+ CF

β1
4 ln

(
t1u1
m4

)]
D1(s4)

+
[1

2c2c
2
1 + 3ζ5c

3
3 −

15
4 ζ4c

2
3c2 − 2ζ2ζ3c

3
3 + ζ3c

2
3c1 + 2ζ3c3c

2
2 + 5

4ζ
2
2c

2
3c2 − ζ2c3c2c1 −

ζ2
2 c

3
2

+ β0
12c3

(
15ζ4c3 − 8ζ3c2 − 6ζ2

2c3 + 3ζ2c1
)

+ (4ζ3c3 − 3ζ2c2)
(
−β0

4 c2 −
β0
2 CF ln

(
µ2

F

µ2
R

)
+ 2A(2)

q

)

+ (ζ2c3 − c1)X1 + c2X0 −
β2

0
4 CF

(
ln2
(−t1
m2

)
+ ln2

(−u1
m2

))
ln
(
µ2

R

s

)

+ β2
0

16 c2 ln2
(
µ2

R

s

)
+ β2

0
8 CF ln

(
µ2

F

s

)
ln2
(
µ2

R

s

)

− β1
8 CF

(
ln2
(−t1
m2

)
+ ln2

(−u1
m2

))
+ Y0

}
D0(s4) (2.26)

where

X1 = β0
4 ζ2c3 −

β0
4 c2 ln

(
µ2

R

s

)
+ β0

2 CF ln2
(−t1
m2

)
+ β0

2 CF ln2
(−u1
m2

)

+ 2A(2)
q ln

(
t1u1
m4

)
− 2D(2)

q − β0
4 CF ln2

(
µ2

F

s

)
+ 2A(2)

q ln
(
µ2

F

s

)
, (2.27)
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X0 = V2 −
1
2V

2
1 − 1

4ζ
2
2c

2
3 + 3

4ζ4c
2
3 + β0

4 c1 ln
(
µ2

R

s

)
+ β0

6 ζ3c3 −
β0
4 ζ2c2 −

β0
2 ζ2CF ln

(
µ2

F

µ2
R

)

+ 2A(2)
q ζ2 − 2γ(2)

q ln
(
µ2

F

s

)
+ β0

8

[
2γ(1)

q − CF ln
(
t1u1
m4

)]
ln2
(
µ2

F

s

)

+A(2)
q ln

(
t1u1
m4

)
ln
(
µ2

F

s

)
+ β0

6 CF ln3
(−t1
m2

)
+ β0

6 CF ln3
(−u1
m2

)
+
(
CF

β0
4 +A(2)

q

)[
ln2
(−t1
m2

)
+ ln2

(−u1
m2

)]
, (2.28)

and

Y0 = −CF
β2

0
24

[
ln3
(
µ2

F

µ2
R

)
+ ln3

(
µ2

R

s

)]
+ 1

16
(
CFβ1 + 8β0A

(2)
q

) [
ln2
(
µ2

F

µ2
R

)
− ln2

(
µ2

R

s

)]

−
(
A(2)

q β0 + CF
β1
8

)
ln
(
t1u1
m4

)
ln
(
µ2

R

s

)
+D(2)

q β0 ln
(
µ2

R

s

)
− 2A(3)

q ln
(
µ2

F

s

)
+ 2D(3)

q

− CF

6 β2
0

[
ln3
(−t1
m2

)
+ ln3

(−u1
m2

)]
− β0

4
(
CFβ0 + 4A(2)

q

) [
ln2
(−t1
m2

)
+ ln2

(−u1
m2

)]
+
(
β0D

(2)
q − 2A(3)

q

)
ln
(
t1u1
m4

)
(2.29)

with β1 = 34C2
A/3 − 2CFnf − 10CAnf/3 [47–49] the coefficient of the second term in

the perturbative expansion of the β function. For processes gg → AB, we replace in
eqs. (2.26), (2.27), (2.28), and (2.29) all explicit appearances of CF by CA, and we use the
corresponding expressions for Ag, Dg, γg, c3, c2, and c1 as detailed above, as well as the
appropriate expressions for V1 and V2.

Finally, we consider the more general case where the observed particle A has mass mA,
which is different from the mass mB of the other final-state particle B. In that case, we
simply replace m by mA everywhere it appears explicitly in eqs. (2.21) through (2.29), and we
also redefine and use t1 = t−m2

B and u1 = u−m2
B everywhere. With these simple changes

all the expressions above can be used for the more general case of unequal masses.
It is worth emphasizing that the expressions for the higher-order soft-gluon corrections

presented in this section are universal and can be applied to any electroweak production
process that occurs through quark-antiquark annihilation or gluon-gluon fusion. The only
process-dependent parts are encoded into the virtual correction terms V1 and V2, which
depend on the specific process. For example, explicit expressions of those terms for various
electroweak processes can be found in [11].

3 Charged Higgs pair production in the 2HDM

In this section we discuss the production of a charged Higgs pair via quark-antiquark
annihilation in the 2HDM that occurs through diagrams of Drell-Yan type. For concreteness,
we consider a CP-conserving type II 2HDM with a softly-broken Z2 symmetry defined by the
transformations Φ1 → Φ1 and Φ2 → −Φ2, where Φ1 and Φ2 are the two Higgs doublets. In
this model, the Higgs doublet Φ1 is responsible for the Yukawa interactions that generate
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Figure 1. LO Feynman diagrams for quark-induced H+H− production at the LHC.

masses for the down-type quarks and charged leptons, while Φ2 is responsible for the Yukawa
interactions that generate masses for the up-type quarks. The Higgs potential is given by:

V2HDM = m2
1|Φ1|2 +m2

2|Φ2|2 −m2
12(Φ†

1Φ2 + Φ†
2Φ1) + λ1

2 |Φ1|4 + λ2
2 |Φ2|4

+λ3|Φ1|2|Φ2|2 + λ4|Φ†
1Φ2|2 + λ5

2 [(Φ†
1Φ2)2 + (Φ†

2Φ1)2] , (3.1)

where all the masses (m1, m2, m12) and quartic couplings (λ1, λ2, λ3, λ4, λ5) are taken to
be real in order to avoid CP violation. After electroweak symmetry breaking, this model
predicts the existence of three neutral scalar fields (two CP-even states h and H, and a
CP-odd state A) and a pair of charged Higgs bosons H±. The eight parameters of the
scalar Higgs potential in eq. (3.1) are usually rewritten in terms of more physical ones: a
common choice is to consider the electroweak vacuum expectation value υ = 246 GeV, the
four Higgs masses mh, mH , mA, mH+ , the tangent tan β, the cosine cos(β − α), and the
discrete symmetry soft-breaking term m12 (for more details see section III of [50]). For this
particular model, recent studies [25–28] showed that the size of cos(β − α) has to be lower
than O(10−2) and that low values of tan β are favored.

As already mentioned, charged-Higgs pair production is a process that can occur through
quark-antiquark annihilation and gluon-fusion channels. In this work we consider only quark-
induced production which is the dominant production mechanism at low tan β values [19].
Leading-order Feynman diagrams for quark-induced production are shown in figure 1. In
the case of light quarks in the initial state, we have diagrams of Drell-Yan type where the
production of a pair of charged Higgs bosons occurs through the exchange of a photon and a
Z boson in the s-channel (left diagram of figure 1). In the case of bottom quarks, in addition
to Drell-Yan type diagrams, the production of charged Higgs bosons also occurs through
the exchange of the CP-even neutral Higgs bosons (h,H) in the s-channel (middle diagram
of figure 1) and the top-quark in the t-channel (right diagram of figure 1). These extra
diagrams might interfere with Drell-Yan type ones and introduce some dependence on the
scalar potential parameters tan β, cos(β − α) and m2

12.
In this work, we consider only Drell-Yan type production of a pair of charged Higgs

bosons in the 5-flavor scheme where we include also a massless bottom quark in the initial
state. In this way, our H+H− production process depends only on the mass of the final-state
charged Higgs and is independent of the other 2HDM scalar potential parameters, like tan β,
cos(β − α), and m2

12. In considering the total contribution of both light and heavy quarks
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in the initial state, we are neglecting some bottom-quark contributions (middle and right
diagrams of figure 1), which might give a sizable contribution, depending on the specific
values of the Higgs potential parameters. However, for small values of tan β favored by recent
fits, i.e. 2 < tan β < 4, these contributions are of the order of 2-3% at LO and NLO, as
also shown in [19], which are smaller than the aNNLO corrections for the Drell-Yan type
processes and within the theoretical uncertainty of our calculation obtained from scale and
pdf variation. We would like to emphasize that the goal of this section is to provide the
most precise prediction for processes that occur through Drell-Yan type diagrams, which for
light quarks represent their complete contribution. Providing the total bb̄ contribution, which
depends on the values of several Higgs potential parameters, is beyond the scope of this paper.

Therefore, the quantity FB
qq̄→AB entering in the Born differential cross section in eq. (2.19)

computed using Drell-Yan type diagrams is given by

FB
uū→H+H− = 1

16πs2
α2π2m4

Z

27m4
W

t1 u1 +m2
H+(t1 + u1)

(m2
W −m2

Z)2(m2
Z − s)2s2

×
[
128m8

W + 17m4
Zs

2 − 32m6
W (8m2

Z + s) − 4m2
Wm2

Zs(20m2
Z + 7s)

+ 4m4
W (32m4

Z + 28m2
Zs+ 5s2)

]
(3.2)

for up-type quarks, while for down-type quarks we have

FB
dd̄→H+H− = 1

16πs2
α2π2m4

Z

27m4
W

t1 u1 +m2
H+(t1 + u1)

(m2
W −m2

Z)2(m2
Z − s)2s2

×
[
32m8

W + 5m4
Zs

2 + 16m6
W (−4m2

Z + s) − 8m2
Wm2

Zs(m2
Z + 2s)

+ 4m4
W (8m4

Z − 2m2
Zs+ 5s2)

]
. (3.3)

These expressions are used in eq. (2.19) to compute the Born cross section, and in eqs. (2.20),
(2.24), and (2.26) to derive the higher-order soft-gluon corrections through N3LO.

4 Total cross sections for H+H− production at the LHC

In this section we present results for the total cross section of charged-Higgs pair production
via quark-antiquark annihilation qq̄ → H+H− at the LHC, for two center-of-mass energies,
namely 13 TeV and 13.6 TeV. As already discussed in the previous section, this cross section
depends only on mH+ and is independent of the other Higgs potential parameters. In our
calculation we work in the 5-flavor scheme and we include the bottom quark in the initial
state, which is taken to be massless. Lower bounds on the mass of the charged Higgs of
the order of 570-800 GeV have been obtained in ref. [51]. In light of these constraints, the
charged-Higgs mass is taken here to vary between 500 and 1500 GeV. Lower values of mH+

are excluded, while higher values, although allowed, are not considered because they give
very small cross sections. The complete LO and NLO QCD results are calculated using
MadGraph5_aMC@NLO [52] and an ad hoc UFO model for the CP-conserving type II 2HDM,
which can be found at [53]. We take mW = 80.377 GeV, mZ = 91.1876 GeV, and α−1 = 127.9.
We use the same MSHT20 aN3LO pdf set [54] for computing results at every perturbative
order, in order to show how each order in the series contributes to the aN3LO cross section.
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Figure 2. The total cross sections at LO, NLO, aNNLO, and aN3LO for qq̄ → H+H− production
in pp collisions at 13 TeV energy with µF = µR = mH+ using MSHT20 aN3LO pdf. The inset plot
displays the NLO/LO, aNNLO/LO, and aN3LO/LO K-factors.

For the total cross section, the central results are obtained by setting the factorization
and renormalization scales both equal to mH+ . Scale uncertainties are obtained by varying
independently µR and µF between mH+/2 and 2mH+ , and pdf uncertainties are also computed.
The cross sections at aNNLO are computed by adding the second-order soft-plus-virtual
QCD corrections to the complete NLO result. The third-order soft-gluon corrections are
further added to derive the result at aN3LO.

In figure 2 and figure 3 we show the total cross section for H+H− production at the LHC
with 13 TeV and 13.6 TeV energy, respectively. These plots show the central value, obtained
with µ = mH+ (where µ = µR = µF ), of the LO, NLO, aNNLO, and aN3LO cross sections
as a function of the mass of the charged Higgs boson. The inset plots display the K-factors
of the higher-order cross sections relative to the LO result. At each perturbative order, we
find that the K-factors slowly increase with increasing charged-Higgs mass. For instance, at
both 13 TeV and 13.6 TeV, the NLO K-factor varies from 1.15 for mH+ = 500 GeV to 1.20 for
mH+ = 1500 GeV. The NNLO soft-plus-virtual corrections provide an additional 5% to 6%
increase, and the N3LO soft-gluon corrections give a further 0.5% to 0.6% increase. Thus,
the aN3LO K-factor varies from 1.21 for mH+ = 500 GeV to 1.26 for mH+ = 1500 GeV.

In table 1 and table 2 we present some numerical values for the total cross section
of H+H− production in proton-proton collisions, with a center-of-mass energy of 13 TeV
and 13.6 TeV, respectively. These cross sections are shown for select charged-Higgs masses,
namely 600, 800, 1000, and 1200 GeV. They are calculated at LO, NLO, aNNLO, and aN3LO
and they are shown together with scale and pdf uncertainties. We want to stress that the
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Figure 3. The total cross sections at LO, NLO, aNNLO, and aN3LO for qq̄ → H+H− production in
pp collisions at 13.6 TeV energy with µF = µR = mH+ using MSHT20 aN3LO pdf. The inset plot
displays the NLO/LO, aNNLO/LO, and aN3LO/LO K-factors.

pp→ H+H− cross section via quark-antiquark annihilation at 13 TeV
mH+ (GeV) σ LO (fb) σ NLO (fb) σ aNNLO (fb) σ aN3LO (fb)

600 0.188+0.016
−0.014

+0.006
−0.006 0.216+0.005

−0.006
+0.007
−0.007 0.227+0.003

−0.001
+0.007
−0.007 0.228+0.003

−0.002
+0.007
−0.007

800 0.0393+0.0040
−0.0034

+0.0017
−0.0015 0.0454+0.0011

−0.0013
+0.0019
−0.0018 0.0476+0.0004

−0.0002
+0.0020
−0.0019 0.0478+0.0006

−0.0002
+0.0020
−0.0019

1000 0.00988+0.00114
−0.00096

+0.00052
−0.00049 0.01155+0.00030

−0.00038
+0.00060
−0.00057 0.01207+0.00008

−0.00010
+0.00063
−0.00060 0.01212+0.00009

−0.00003
+0.00063
−0.00060

1200 0.00279+0.00035
−0.00030

+0.00019
−0.00018 0.00329+0.00009

−0.00012
+0.00022
−0.00021 0.00344+0.00002

−0.00004
+0.00023
−0.00022 0.00345+0.00001

−0.00001
+0.00023
−0.00022

Table 1. The total cross section for pp → H+H− via quark-antiquark annihilation at LO, NLO,
aNNLO, and aN3LO at the LHC with

√
S = 13 TeV and MSHT20 aN3LO pdf. The central results

are for µF = µR = mH+ and are shown together with scale and pdf uncertainties.

pp→ H+H− cross section via quark-antiquark annihilation at 13.6 TeV
mH+ (GeV) σ LO (fb) σ NLO (fb) σ aNNLO (fb) σ aN3LO (fb)

600 0.215+0.017
−0.015

+0.007
−0.007 0.247+0.006

−0.006
+0.008
−0.007 0.259+0.003

−0.002
+0.008
−0.008 0.260+0.004

−0.002
+0.008
−0.008

800 0.0463+0.0046
−0.0039

+0.0018
−0.0017 0.0534+0.0012

−0.0016
+0.0021
−0.0020 0.0559+0.0005

−0.0003
+0.0022
−0.0021 0.0562+0.0007

−0.0003
+0.0022
−0.0021

1000 0.0120+0.0014
−0.0011

+0.0006
−0.0006 0.0140+0.0004

−0.0005
+0.0007
−0.0007 0.0146+0.0001

−0.0001
+0.0007
−0.0007 0.0147+0.0001

−0.0001
+0.0007
−0.0007

1200 0.00350+0.00043
−0.00036

+0.00023
−0.00022 0.00413+0.00011

−0.00015
+0.00026
−0.00025 0.00431+0.00003

−0.00004
+0.00027
−0.00026 0.00432+0.00002

−0.00001
+0.00027
−0.00026

Table 2. The total cross section for pp → H+H− via quark-antiquark annihilation at LO, NLO,
aNNLO, and aN3LO at the LHC with

√
S = 13.6 TeV and MSHT20 aN3LO pdf. The central results

are for µF = µR = mH+ and are shown together with scale and pdf uncertainties.
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soft-gluon corrections are numerically dominant. The result derived with only NLO soft-gluon
corrections differs from the exact NLO cross section by only around one percent or less for
the masses and energies considered here. Furthermore, the aNNLO result would change
by only 2 per mille if we did not include the δ(s4) terms (i.e. the virtual corrections) at
NNLO; the soft-gluon corrections are numerically by far the dominant contribution to the
higher-order QCD corrections.

As shown in table 1 for the results at 13 TeV energy, the scale uncertainty at LO is
large and is reduced significantly at NLO. The higher-order soft-plus-virtual corrections at
NNLO decrease the uncertainty even more. Finally, the addition of the N3LO soft-gluon
corrections further decreases this uncertainty for larger charged-Higgs masses but not for
smaller ones. The pdf uncertainty varies from about ±3% for a mass of 600 GeV to ±7% for
a 1200 GeV mass, at each perturbative order. The results in table 2 at 13.6 TeV energy show
similar behavior for the scale uncertainty at different perturbative orders. Also in this case,
the pdf uncertainty varies at each perturbative order from about ±3% for mH+ = 600 GeV
to ±6% for mH+ = 1200 GeV.

Regarding pdf uncertainties, we can see that, for both center-of-mass energies, they
increase with increasing mass of the charged Higgs boson. Moreover, they become bigger than
the scale ones already at NLO and therefore, starting at that order, they should be considered
the dominant source of theoretical uncertainty. As argued in [54], with the use of aN3LO pdf,
the factorisation scale variation is already contained within the predicted pdf uncertainties.

It is also interesting to study the relative contributions of the different logarithmic
powers to the higher-order corrections. As an example, we consider a charged-Higgs mass
of 600 GeV and an energy of 13.6 TeV. Setting µF = µR = mH+ and using the notation
of eq. (2.21), the NNLO corrections from the D3 terms alone are 0.0134 fb, from the D3
terms plus the D2 terms they are 0.0189 fb, from D3 + D2 + D1 they are 0.0150 fb, and
from D3 + D2 + D1 + D0 they are 0.0118 fb. By further adding the NNLO δ(s4) terms, we
get the final NNLO soft-plus-virtual correction of 0.0123 fb. Thus, we see that the virtual
contribution to the NNLO soft-plus-virtual corrections is small, and the soft-gluon corrections
alone are dominant. We also see that the leading-logarithmic contribution (i.e. from D3)
alone is quite close to the complete soft-plus-virtual contribution at NNLO.

For the N3LO soft-gluon contributions, again with a 600 GeV charged-Higgs mass at
13.6 TeV energy, we find a contribution of 0.00993 fb from the D5 terms alone, 0.0176 fb from
D5 + D4, 0.0155 fb from D5 + D4 + D3, 0.00898 fb from D5 + D4 + D3 + D2, 0.00200 from
D5 + D4 + D3 + D2 + D1, and finally 0.00133 fb from D5 + D4 + D3 + D2 + D1 + D0 which is
the total N3LO soft-gluon correction. Thus, at N3LO, the leading-logarithmic contribution
(i.e. from D5) is very different from the complete soft-gluon correction, in contrast to what
we found above for the NNLO corrections. We also see that the N3LO soft-gluon corrections
are an order of magnitude smaller than those at NNLO.

As mentioned in the previous section, for small values of tan β, the additional contributions
from bb̄→ H+H− are rather small and less than the aNNLO corrections of the Drell-Yan type
qq̄ → H+H− diagrams. One can calculate these bb̄ contributions at NLO for any choice of the
Higgs-potential parameters, and then add them to our aN3LO result for the Drell-Yan type qq̄
contributions. For example, for tan β = 3, mH+ = 600 GeV, mH = 400 GeV, cos(β − α) = 0,
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Figure 4. The rapidity distribution of the H+ with a mass of 600 GeV at LO, NLO, aNNLO, and
aN3LO for qq̄ → H+H− production in pp collisions at 13.6 TeV energy with µF = µR = mH+ using
MSHT20 aN3LO pdf. The inset plot displays the NLO/LO, aNNLO/LO, and aN3LO/LO K-factors.

and m12 = 0 GeV, the missing bb̄ contribution at 13 TeV energy is 0.0035 fb. Looking at
the first line of table 1, we see that this is much smaller than the aNNLO corrections of
0.011 fb for qq̄ as well as the total uncertainty of the overall qq̄ cross section. Adding the bb̄
contribution to the aN3LO qq̄ cross section gives a total of 0.232 fb. Clearly, in this case it is
not necessary to calculate the aNNLO and aN3LO corrections for the bb̄ contribution since
they would be much smaller than the precision of the numbers displayed.

5 Charged-Higgs rapidity distributions

As the formalism presented in section 2 indicates, soft-gluon resummation is derived not only
for total cross sections but also for differential distributions. In this section we present results
for the charged-Higgs rapidity distribution in H+H− production at the LHC with 13.6 TeV
center-of-mass energy, for two specific charged-Higgs masses, namely mH+ = 600 GeV and
mH+ = 800 GeV. Again, we use MadGraph5_aMC@NLO [52] for the complete NLO results
to which we add the second-order soft-plus-virtual corrections to derive aNNLO distributions.
The third-order soft-gluon corrections are also added in order to derive results at aN3LO.

In figure 4, we plot the central (µ = mH+) results at LO, NLO, aNNLO, and aN3LO for
the H+ rapidity distribution in H+H− production at 13.6 TeV LHC energy with MSHT20
aN3LO pdf, for mH+ equal to 600 GeV. The K-factors relative to the LO results are shown in
the inset plot. The enhancement from the aNNLO soft-plus-virtual corrections is significant
while the aN3LO soft-gluon contribution is smaller than 1% in the rapidity range shown in

– 15 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

H
+
 rapidity

0

0.01

0.02

0.03

d
σ

 /d
Y

 (
fb

)
aN

3
LO

aNNLO
NLO
LO

p p -> H
+
 H

-
       H

+
 rapidity distribution        √S=13.6 TeV  

MSHT20 aN
3
LO pdf            µ=m

H
+=800 GeV

-2 -1 0 1 2
1

1.1

1.2

1.3

1.4
K-factors over LO

Figure 5. The rapidity distribution of the H+ with a mass of 800 GeV at LO, NLO, aNNLO, and
aN3LO for qq̄ → H+H− production in pp collisions at 13.6 TeV energy with µF = µR = mH+ using
MSHT20 aN3LO pdf. The inset plot displays the NLO/LO, aNNLO/LO, and aN3LO/LO K-factors.

the figure, similar to the total cross section case. We see that the K-factors are relatively flat
for central values of the charged-Higgs rapidity, but they begin to grow for rapidities larger
than 1. We also note that the distribution becomes very small for rapidity values above 2.

Regarding the theoretical uncertainties from scale variation, we note that they are
essentially the same as those for the total cross section in the rapidity range plotted, and
only become bigger at very large rapidities, where the numerical value of the distribution
is very small. As for the total cross section, the higher-order corrections reduce the scale
dependence. The pdf uncertainties are also similar to those of the total cross section, around
3%, in the rapidity range shown in the plot, but they increase at larger rapidities.

In figure 5, we plot the central (µ = mH+) results at LO, NLO, aNNLO, and aN3LO for
the H+ rapidity distribution in H+H− production at 13.6 TeV LHC energy with MSHT20
aN3LO pdf, for mH+ = 800 GeV. Although the numerical values for the distribution are
much smaller than those found with the smaller mass in figure 4, the K-factors relative to
the LO results in the inset plot show a similar pattern, i.e. they are relatively flat for central
values of the charged-Higgs rapidity but begin to grow for rapidities larger than 1. Also,
the theoretical uncertainties from scale variation are again essentially the same as those for
the total cross section in the rapidity range plotted, and only become bigger at very large
rapidities, where the distribution is negligible. Finally, the pdf uncertainties are also similar
to those of the total cross section for an 800 GeV mass, around 4%, in the rapidity range
shown in the plot, but they increase at larger rapidities.
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6 Conclusions

In this paper we have presented the first calculation of the complete soft-gluon corrections in
the production of colorless final states through N3LO in single-particle-inclusive kinematics.
We have derived the detailed analytical expressions for these corrections and, as a concrete
application, we have used our results to study higher-order QCD corrections for the production
of a charged Higgs pair (H+H− production) at the LHC via quark-antiquark annihilation
in the 2HDM. This calculation is particularly relevant for type II 2HDM, where the value
of tan β is constrained by experiments to be small and the quark-antiquark annihilation
production mechanism is indeed the dominant channel for such small values of tan β.

We have computed cross sections at aNNLO by adding the second-order soft-plus-virtual
QCD corrections to the complete NLO result, and at aN3LO by further adding the third-order
soft-gluon corrections. Our results show that the NLO corrections increase the LO cross
section by 15% to 20% for charged-Higgs masses in the range from 500 to 1500 GeV, with
the exact numbers depending on the collision energy and the charged-Higgs mass, while the
NNLO soft-plus-virtual corrections provide an additional 5% to 6% increase. The N3LO
soft-gluon corrections provide a further increase of 0.5% to 0.6%. In general, the soft-gluon
corrections are by far the dominant contribution to the higher-order QCD corrections. For
instance, the exact NLO cross section differs by only around one percent or less from the
one with NLO soft-gluon corrections alone, and the aNNLO result would change by only 2
per mille if we did not include the virtual corrections at NNLO. For the total cross section,
we find that the theoretical uncertainties from scale variation get substantially reduced by
going to higher orders.

We have also computed aNNLO and aN3LO charged-Higgs rapidity distributions at the
LHC with 13.6 TeV center-of-mass energy, for two representative masses, namely mH+ =
600 GeV and mH+ = 800 GeV. We found that the enhancement from the aNNLO soft-plus-
virtual corrections is significant while the aN3LO soft-gluon contribution is smaller, similar
to the total cross section case. The K-factors are relatively flat for central values of the
charged-Higgs rapidity, but begin to grow for rapidities larger than one. The theoretical
uncertainties from scale variation and from the pdf are basically the same as those of the total
cross section for rapidities less than two, where the rapidity distribution is not negligible.

Finally, we want to emphasize that this work opens the way for using soft-gluon corrections
through N3LO in single-particle-inclusive kinematics to calculate more precise predictions of
production rates of colorless final states in hadron-hadron collisions, both in the Standard
Model and beyond.
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