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Abstract

This paper introduces a novel neuro-symbolic

architecture for relation classification (RC) that

combines rule-based methods with contempo-

rary deep learning techniques. This approach

capitalizes on the strengths of both paradigms:

the adaptability of rule-based systems and the

generalization power of neural networks. Our

architecture consists of two components: a

declarative rule-based model for transparent

classification and a neural component to en-

hance rule generalizability through semantic

text matching. Notably, our semantic matcher

is trained in an unsupervised domain-agnostic

way, solely with synthetic data. Further, these

components are loosely coupled, allowing for

rule modifications without retraining the se-

mantic matcher. In our evaluation, we focused

on two few-shot relation classification datasets:

Few-Shot TACRED and a Few-Shot version of

NYT29. We show that our proposed method

outperforms previous state-of-the-art models

in three out of four settings, despite not see-

ing any human-annotated training data. Fur-

ther, we show that our approach remains mod-

ular and pliable, i.e., the corresponding rules

can be locally modified to improve the over-

all model. Human interventions to the rules

for the TACRED relation org:parents boost

the performance on that relation by as much as

26% relative improvement, without negatively

impacting the other relations, and without re-

training the semantic matching component.
1

1 Introduction

After the “deep learning tsunami” (Manning, 2015),

neural approaches for information extraction (IE)

consistently pushed the boundaries of the state of

the art (Yang et al., 2016; Zhang et al., 2017; Guo

et al., 2019; Yamada et al., 2020; Zhong and Chen,

2020). However, all these directions come at a cost:

1
Code available at https://github.com/clulab/

releases/tree/master/naacl2024-softrules

Rule [ne=per]+ <nsubj founded >dobj [ne=org]+

Sentence 1 Bill Gates founded Microsoft

Sentence 2 Bill Gates is the founder of Microsoft

Sentence 3 John moved to New York City

Figure 1: An example of the type of rules we use in our
proposed method, together with three sentences. The rule
captures the org:founder relation with a syntactic pattern
anchored by the predicate founded that has a person named
entity as its subject and an organization as the direct object. By
itself, the rule matches the first sentence, but it does not match
the other two. When coupled with our semantic matching
component, the rule matches the first two sentences.

(i) low explainability (Danilevsky et al., 2021) and

(ii) fragility (Sculley et al., 2015).

Explainability is critical in many domains such

as healthcare, law, and finance (Adadi and Berrada,

2018; Goodman and Flaxman, 2016; Tjoa and

Guan, 2019). While there have been efforts to incor-

porate explainability into neural methods (Ribeiro

et al., 2016; Lundberg and Lee, 2017; Tang and

Surdeanu, 2023, inter alia), most explanations are

local and post-hoc, which has two important draw-

backs. First, such explanations are not guaranteed

to be faithful (Jacovi and Goldberg, 2020). Second,

they are not actionable. That is, it is not immedi-

ately possible to modify the underlying model us-

ing insights from the explanations without risking

introducing new, unforeseen behavior. In contrast,

rule-based
2

methods are explainable and pliable,
3

but lack the generalization power of current deep

learning systems (Tang and Surdeanu, 2023).

In this paper, we propose a novel neuro-symbolic

architecture for relation classification (RC) that pre-

serves the advantages of both directions, i.e., the

generalization of neural methods and the pliabil-

ity of rule-based approaches with a modular ap-

2
We refer to syntactic and surface patterns as rules, such

as, [ne=per]+ <nsubj founded >dobj [ne=org]+.
3
Term introduced by Dayne Freitag in the panel discussion

at the PaN-DL workshop (Chiticariu et al., 2022) to indicate
that rules can be modified to improve the corresponding local
behavior while minimizing the impact on the rest of the model.
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proach, containing two components: a declarative

rule-based model and a neural component. The

first module implements relation classification with

a set of explainable rules. The second increases the

generalizability of rules by semantically matching

them over text. Figure 1 shows an example of how

the two components interact.

Our specific contributions are:

(1) We propose a modular neuro-symbolic archi-

tecture for relation classification that combines the

advantages of symbolic and neural models. The

symbolic rule-based component utilizes syntactic

or surface rules automatically derived from exam-

ple sentences, formulated as the shortest syntac-

tic paths between two entities within a sentence.

The neural model, which semantically matches

these rules over text, is trained without any human-

annotated data. This training involves a unique

process: sentences are randomly selected from a

large corpus, and rules are automatically generated

between random entities in these sentences. The

model is then trained in a contrastive manner to

assign a high score to the original (rule, sentence)

pair (or a paraphrase of the sentence) and a low

score otherwise. The semantic matcher is then

combined with the original rule-based model in

a two-stage sieve architecture that prioritizes the

higher-precision component.

(2) We obtain state-of-the-art performance on three

out of four settings in two challenging few-shot RC

datasets –Few-Shot TACRED (Zhang et al., 2017;

Sabo et al., 2021) and a few-shot version of the

NYT29 dataset (Riedel et al., 2010; Takanobu et al.,

2019; Alam et al., 2024), without using the back-

ground training dataset. For example, on TACRED

we observe an improvement of over 12 F1 points

over previous state-of-the-art neural-based super-

vised methods; our overall results on TACRED are

24.19 for 1-shot and 39.38 for 5-shot, despite never

training the model on any annotated examples from

this dataset. Further, the resulting model is rela-

tively small, with approximately 350M parameters.

(3) We show that our approach is pliable through

a user study in which two domain experts manu-

ally improved the rules for the org:parents rela-

tion in TACRED. Without retraining the semantic-

matching neural component, the performance for

this relation increases in all settings for both ex-

perts, without impacting negatively the perfor-

mance for the other relations. To our knowledge,

this is the first work that shows that pliability can

be preserved in neural directions for IE.

2 Related Work

We overview the three main directions that influ-

enced this work –rule-based approaches, bootstrap-

ping or other seed-based approaches, and explain-

able deep learning methods– as well as differences

between the proposed work and prompting/in-

context learning.

2.1 Rule-based Approaches

Rule-based methods were a popular direction for in-

formation extraction (IE) before the deep learning

era. In the seminal work of Hearst (1992), the au-

thor proposed a method to learn pairs of words satis-

fying the hyponymy relation, starting from a simple

hand-written rule. In Riloff (1993), the author in-

troduced AutoSlog, a system capable of learning do-

main specific relations starting from hand-written

patterns. The system was subsequently improved

in Riloff (1996a) using statistical techniques. Some

approaches towards automatically learning the pat-

terns include (Riloff and Jones, 1999; Riloff and

Wiebe, 2003; Gupta and Manning, 2014; Vacareanu

et al., 2022a); the typical direction is to employ a

bootstrapping algorithm, repeatedly alternating be-

tween generating rules and generating extractions

with the current rules. Such approaches provided

the desired explainability and pliability, but, in ret-

rospect, lacked the generalization capabilities of

deep learning methods.

2.2 Explainable Deep Learning

Deep learning models have been the preferred ap-

proach for the vast majority of NLP tasks includ-

ing information extraction (IE) in the past years

(Hochreiter and Schmidhuber, 1997; Sutskever

et al., 2014; Vaswani et al., 2017; Devlin et al.,

2018). However, this expressivity came at a cost:

numerous articles reported on the fragility of the

neural networks (Szegedy et al., 2014; Ilyas et al.,

2019; McCoy et al., 2019), and that neural net-

works can reinforce biases in the data (Bolukbasi

et al., 2016; Brunet et al., 2019; Mehrabi et al.,

2021). As such, having an explainable system is

desirable, as long as it does not come at a high

cost with respect to performance. The popular

approaches to explaining neural networks are ei-

ther: (i) feature importance, or (ii) surrogate mod-

els (Danilevsky et al., 2021).
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Techniques based on feature importance aim to

highlight the feature responsible for a given predic-

tion. For example, Sundararajan et al. (2017) uses

integrated gradients to assign an importance score

to each feature. Other techniques use the attention

mechanism as an explanation of the model’s pre-

diction (Bahdanau et al., 2015; Xu et al., 2015).

Such techniques show that a feature is important,

but do not show how it is being used in the model.

Moreover, techniques such as interpreting atten-

tion scores have been shown to be particularly brit-

tle. For example, Jain and Wallace (2019) has

shown that many seemingly different attention pat-

terns can allow for the same end prediction, which

raises the question of explanation fidelity. Other

improved attention interpretation methods include

Kobayashi et al. (2020), which suggest taking the

norm of the vectors into consideration as well.

Techniques based on surrogate models train a

(typically) smaller and more interpretable model to

explain the original one. For example, Ribeiro et al.

(2016) train a linear classifier around the point that

is to be explained. Lundberg and Lee (2017) uses

SHAP values as a unified measure of feature impor-

tance. SHAP values are Shapley values (Shapley,

1988) of a conditional expectation function of the

original model. The key issue with surrogate mod-

els is their potential lack of fidelity with respect to

the original model (Danilevsky et al., 2021).

Zhou et al. (2020) proposed an approach in the

same space to ours, i.e., they also train a semantic

(or “soft”) rule matcher (SRM). However, there are

multiple critical differences from our work. First,

the SRM is used only to augment the training data

for a “traditional” opaque deep learning RC model,

which is the actual output of the training process.

In our approach, the SRM is a critical component

of the model used during inference. Second, their

SRM module was developed only for surface rules

consisting of word constraints, and it is unclear

how to expand it to more general patterns.
4

In

contrast, the rules we use in our proposed method

are closer to real-world application, i.e., they con-

tain syntactic dependency constraints and semantic

entity constraints. Furthermore, their proposed ap-

proach requires an initial set of labeled data, while

we operate solely in a zero-shot fashion.

All in all, while both (i) feature importance and

(ii) surrogate models can provide insights into how

4
For example, their model cannot accommodate more ex-

pressive rules that use syntax such as [ne=per]+ <nsubj

founded >dobj [ne=org]+.

and why the deep learning model makes a cer-

tain prediction, they do not provide any systematic

mechanism to make interventions to these systems.

2.3 Seed-Based And Bootstrapping Methods

Bootstrapping (Riloff, 1996b; Lin and Pantel,

2001), is another approach that can be applied to re-

lation extraction. Mausam et al. (2012) constructed

a bootstrapping set by starting from a dataset of

over 110,000 high-confidence seeds and expand-

ing it through the distant supervision hypothesis

and heuristics. Tang and Surdeanu (2023) learn

a relation classifier and an explanation classifier

jointly, mitigating the tension between the two by

bootstrapping from a small set of seeds.

Another approach is that of using a knowledge

base and casting the problem as matrix factoriza-

tion (Riedel et al., 2013; Nimishakavi et al., 2016).

In our work, we do not use the distant supervi-

sion approach or any seeds. Instead, we show that

a general rule matcher can be learned by just train-

ing it on zero-shot rules generated between random

entities in a given sentence, without any need of a

seed dataset or a knowledge base.

2.4 Prompting and In-context Learning

Lastly, we note that, despite superficial similarities,

our work is considerably different from prompting

and in-context learning (Brown et al., 2020; Schick

and Schütze, 2020). Unlike prompts, our rules are

an integral part of the model, both explicitly and

through the rule representations learned by our se-

mantic rule matching component. Further, rules

offer a higher degree of expressiveness compared

to raw text. Rules allow humans to unambiguously

compress abstract concepts (e.g., by incorporating

syntax and semantics) towards a specific goal. In

contrast, with prompting and in-context learning,

the level of generalization and abstraction is uncer-

tain (Lu et al., 2021).

These advantages make our method obtain state-

of-the-art (SOTA) performance as well as more con-

trollable/pliable behavior (§4). Further, in-context

learning tends to perform well only with large lan-

guage models. In contrast, our neural component

uses a much smaller language model containing

approximately 350M parameters.

3 Proposed Method

We propose a hybrid model that combines the

advantages of rule-based and neural approaches.
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in Figure 3. We use the SRM to encode the rules

and the sentences in the current batch. Then, we

compute the cosine similarity between every rule

and every sentence. Our training objective is then

to maximize the similarity scores of matching pairs,

found along the diagonal of this matrix. Simulta-

neously, we minimize the scores of non-matching

pairs, which constitute the off-diagonal elements.

We include examples of sentences, rules, and their

resulting similarities in Appendix A.

4 Experiments

4.1 Experimental Setup

We evaluate our proposed method on Few-Shot

TACRED (Sabo et al., 2021), a few-shot variant of

the TACRED dataset (Zhang et al., 2017) and on

a few-shot variant of the NYT29 dataset (Riedel

et al., 2010; Takanobu et al., 2019; Alam et al.,

2024). In few-shot settings, the training and testing

relation labels are disjoint. We have access to a

background training set for tuning the model, but

we emphasize that our proposed method does not

use it. Each test sentence is accompanied by 1

(1-shot) or 5 (5-shot) support sentences.
8

We use RoBERTa-large (Liu et al., 2019) for our

semantic matching component. Similar to CLIP

(Radford et al., 2021), we use one model for en-

coding the rule and one model for encoding the

sentence. We generate rules from the support sen-

tences in each dataset. We use CoreNLP (Manning

et al., 2014) to obtain the underlying syntactic struc-

ture for rule construction.

At prediction time, we use the proposed method

in three ablative configurations: (1) Simply apply

the resulting rules in a binary matching fashion,

i.e., no SRM (Hard-matching Rules); (2) Use the

semantic rule matching module to compute a simi-

larity score between each rule and each sentence,

interpreting a similarity above a threshold t as a

match
9

(Soft-matching Rules); (3) A combination

of (1) and (2), where we first attempt to apply the

rules in a typical binary match/no match way (i.e.,

“hard” matching), and if no rule matches we fall

back to the semantic rule matching component (i.e.

“soft” matching). We call this approach Hybrid.

8
We provide additional details of the two datasets we use in

Appendix J and details on the hyperparameters and hardware
in Appendix F.

9
We tune the threshold on the development partition of

each dataset; we do not train on any data from the datasets.

4.2 Baselines

We compare our proposed approach with one

strong unsupervised baseline and several state-of-

the-art supervised approaches from previous work.

Unsupervised Baseline: Similar to the base-

line introduced in (Vacareanu et al., 2022b), this

baseline utilizes entity types from query and sup-

port sentences for classification, defaulting to

no_relation if no matching types are found.

Sentence-Pair: Employs a transformer-based

model to classify concatenated query and support

sentences (Gao et al., 2019). We reimplemented

this baseline using sentence transformers (Reimers

and Gurevych, 2019).

MNAV (Sabo et al., 2021): A transformer-based

relation classifier is trained on a background set

to align vector representations for sentences with

identical relations, including multiple vectors for

the no_relation class. During testing, it calcu-

lates similarity scores between the test sentence

and both the no_relation vectors and support

sentence vectors for each relation. For multiple

support sentences of the same relation, it uses an

averaged vector representation. The final predic-

tion corresponds to the relation with the highest

similarity score.

OdinSynth (Vacareanu et al., 2022b): Utilizes

transformer-based rule synthesis from support sen-

tences, predicting the relation with the most rule

matches, or no_relation if there are none.

4.3 Main Results

We present our main results in Tables 1 and 2 for

the standard 1-shot and 5-shot settings on the two

datasets. Additionally, we differentiate between

methods using background training datasets from

the ones that do not (i.e., are Zero-Shot).
10 , 11

We concentrate our discussion on comparing

between contemporary rule-based methods (Odin-

Synth) and strong neural-based methods (MNAV).

We draw the following observations. First, com-

pared to MNAV, the state-of-the-art neural-based

method on Few-Shot TACRED, our proposed ap-

proach outperforms it in three out of the four set-

tings investigated. For example, in the 1-shot case

10
By zero-shot we mean methods that do not use human-

annotated examples for training.
11

An early iteration of the proposed method was included
in (Alam et al., 2024). The results in this work are higher due
to minor changes in the surface rules. In particular, in this
work we represent lexical information using directly the string,
where in the previous one we used a more verbose rule syntax
such as word=string.
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Model 5-way 1-shot 5-way 5-shot Uses Bacgkround Data

P R F1 P R F1

Unsupervised Baseline 5.70 ± 0.10 91.02 ± 0.65 10.73 ± 0.18 5.65 ± 0.11 95.56 ± 0.70 10.67 ± 0.20 No

Sentence-Pair (not fine-tuned) 3.9 ± 0.21 5.21 ± 0.31 4.45 ± 0.24 2.76 ± 0.16 8.79 ± 0.58 4.2 ± 0.25 No

Sentence-Pair (fine-tuned) 6.89 ± 0.33 28.56 ± 1.67 11.10 ± 0.55 14.94 ± 0.26 24.03 ± 0.32 18.42 ± 0.16 Yes

MNAV (reported) - - 12.39 ± 1.01 - - 30.04 ± 1.92 Yes

MNAV (re-run by us) 15.11 ± 0.46 8.47 ± 0.31 10.85 ± 0.29 24.48 ± 1.02 32.00 ± 1.07 27.73 ± 0.94 Yes

Odinsynth 23.48 ± 1.46 11.46 ± 1.02 15.40 ± 1.21 29.77 ± 0.83 20.34 ± 0.53 24.16 ± 0.44 No

Hard-matching Rules (ours) 51.35 ± 6.53 2.94 ± 0.48 5.56 ± 0.90 45.94 ± 5.31 10.81 ± 1.23 17.50 ± 1.98 No

Soft-matching Rules (ours) 37.22 ± 1.04 18.21 ± 0.62 24.45 ± 0.72 47.73 ± 2.23 35.52 ± 1.88 40.71 ± 1.83 No

Hybrid (ours) 35.91 ± 0.97 18.24 ± 0.62 24.19 ± 0.73 42.77 ± 1.88 36.53 ± 1.83 39.38 ± 1.57 No

Table 1: The results for the 5-way 1-shot and 5-way 5-shot settings on the test partition of the Few-Shot TACRED

dataset. We split the table into 4 blocks as follows: (1) a strong unsupervised baseline where the classification is

performed based on the types of the entities, (2) state-of-the-art neural methods, (3) rule synthesis using transformer

networks, and (4) our proposed method. Our proposed method outperforms previous state-of-the-art methods on

both 1-shot and 5-shot splits.

of Few-Shot TACRED, our proposed method im-

proves upon MNAV by over 12 F1 points (approx-

imately 100% relative improvement), despite not

being trained with any human-annotated data or

with any TACRED-specific data. We remark that

MNAV outperforms our proposed approach in the

1-shot case on few-shot NYT29. NYT29 was an-

notated using distant supervision, which often re-

sults in shallow, context-free patterns. Our anal-

ysis indicates that MNAV, due to its training ap-

proach, may be effectively capturing these sim-

ple entity patterns. For example, for a sentence

such as “Barack Obama was born in Honolulu .”,

we hypothesize that MNAV might superficially

link (Barack Obama, Honolulu) to the relation

“born in”, irrespective of the context. Conse-

quently, MNAV could mistakenly assign the same

relation to a contextually different sentence like

“Barack Obama went to high school in Honolulu”,

where the entities remain the same but the relation

differs. We manually checked the top ten most

popular entities from the support sentences and

from the test sentences and observed that all have

corresponding Wikipedia pages (i.e., they are very

frequent), further supporting our hypothesis.

Second, our hybrid method largely surpasses

Odinsynth, the leading rule-based approach on

Few-Shot TACRED, in both 1-shot and 5-shot sce-

narios. This validates the hypothesis that combin-

ing a neural network with traditional rule-based ap-

proaches outperforms rule-only methods. The im-

proved performance of our method does not sacri-

fice precision; it significantly surpasses Odinsynth

in both precision and recall. This conclusion also

applies to the few-shot variant of NYT29.

All in all, our proposed method obtains state-

of-the-art performance despite not being trained

on any of the human-annotated examples from the

respective training datasets.

4.4 Results on the Full Testing Partition

We show the results of our proposed method on

the complete test partition of the original TACRED

dataset in Table 3. We compare against the method

of Sainz et al. (2021), which casts the relation clas-

sification task as an entailment problem, resulting

in a zero-shot relation classifier. We observe that

our proposed method is either close in performance

or outperforming the method proposed by Sainz

et al. (2021). The results showcase that rules, when

paired with neural networks, are competitive with

purely neural network approaches, maintaining the

high precision of the former and the high expres-

sivity of the latter. Interestingly, the hybrid model

has stable performance with or without threshold

tuning.

4.5 Ablation Analysis

Next, we analyze the contributions of each key

component in our proposed method. We show the

results of the ablation study in Table 4. The three

components that we analyze are:

(i) The pre-processing of our training dataset,

where we filter out duplicates and sub-sample very

frequent rules and entities.

(ii) The data augmentation, where we randomly re-

place the entities in the rule and in the sentence with

synonyms. For example, a rule such as [ne=per]+

<nsubj founded >nmod_in [ne=org]+ be-

comes [ne=human]+ <nsubj founded >nmod_in

[ne=company]+. Similar augmentation are per-

formed to sentences as well, where the named
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Model 5-way 1-shot 5-way 5-shot Uses Background Data

P R F1 P R F1

Unsupervised Baseline 11.60 ± 0.18 40.34 ± 0.54 18.03 ± 0.26 11.70 ± 0.25 40.65 ± 0.45 18.17 ± 0.34 No

Sentence-Pair (not fine-tuned) 10.61 ± 0.32 12.39 ± 0.41 11.43 ± 0.35 15.81 ± 0.94 5.41 ± 0.25 8.06 ± 0.39 No

Sentence-Pair (fine-tuned) 38.09 ± 2.42 7.4 ± 0.42 12.4 ± 0.71 36.48 ± 1.37 16.02 ± 0.41 22.26 ± 0.62 Yes

MNAV 25.08 ± 0.73 34.37 ± 0.87 29.00 ± 0.80 33.24 ± 1.06 15.47 ± 0.38 21.12 ± 0.55 Yes

OdinSynth 30.07 ± 0.93 9.42 ± 0.31 14.34 ± 0.46 21.61 ± 0.61 17.98 ± 0.45 19.63 ± 0.51 No

Hard-matching Rules (ours) 77.47 ± 1.53 1.53 ± 0.13 3.01 ± 0.25 80.49 ± 1.73 3.40 ± 0.12 6.52 ± 0.23 No

Soft-matching Rules (ours) 20.80 ± 0.38 12.27 ± 0.39 15.44 ± 0.40 24.50 ± 0.83 16.67 ± 0.49 19.84 ± 0.59 No

Hybrid (ours) 22.23 ± 0.47 13.45 ± 0.38 16.76 ± 0.41 27.29 ± 0.77 19.52 ± 0.49 22.76 ± 0.56 No

Table 2: The results for the 5-way 1-shot and 5-way 5-shot settings on the test partition of the Few-Shot NYT29

dataset. We split the table into 4 blocks as follows: (1) a strong unsupervised baseline where the classification is

performed based on the types of the entities, (2) state-of-the-art neural methods, (3) rule synthesis using transformer

networks, and (4) our proposed method. Our proposed method obtains the best performance in the 5-shot case,

outperforming neural-based methods trained on the background training data.

P R F1

Sainz et al. (2021) 58.5 53.1 55.6

Soft-Matching Rules (Ours) 70.2 39.0 50.1

Hybrid (Ours) 70.5 45.3 55.1

Sainz et al. (2021) 32.8 75.5 45.7

Soft Matching Rules (ours) 59.4 37.9 46.3

Hybrid (ours) 63.4 49.6 55.7

Table 3: Results on the full testing partition of TACRED.

We compare our proposed approach and that of Sainz

et al. (2021), which casts the relation classification prob-

lem as an NLI problem. We split the results into two

blocks. Top: the threshold was tuned on 1% of the de-

velopment partition; Bottom: the threshold was set to

0.5 without tuning.

entity in the marker (Zhou and Chen, 2021) is

changed with its synonyms.

(iii) The inclusion of paraphrases. For example, a

sentence such as Bill Gates founded Microsoft can

be automatically paraphrased into Bill Gates is the

founder of Microsoft using an LLM without losing

any semantic information.

The analysis in Table 4 indicates that all three

components contribute to the final performance, to

varying degrees. First, our findings suggest that

the data pre-processing contributes the most to the

final performance, suggesting that the quality and

structure of the input data play a crucial role in

preparing the model to accurately handle the com-

plexities of relation classification tasks. Second,

the decline observed in the “No paraphrases” set-

ting suggests that the inclusion of paraphrases en-

courages the model to learn less obvious semantic

variations. Third, the rule and sentence augmenta-

tion appear to have the lowest impact. We argue

that this is because both datasets that we use, the

few-shot variants of TACRED and NYT29, con-

tain the same common named entities, such as

person and organization. These entities were

seen during training, due to their prevalence. We

hypothesize that this augmentation shines when the

named entities used in the rules are not seen during

training. We leave this exploration to future work.

We include the corresponding results on Few-Shot

NYT29 in Appendix H.

4.6 Are Soft Matching Rules still Pliable?

One key advantage of rules is that they are pliable

(see Footnote 3) and modular. This means that a

domain expert is able to modify the model effec-

tively without risking introducing unknown and

undesirable behavior (Sculley et al., 2015).

We analyze the degree to which interventions

on the resulting rules can improve the final per-

formance. We choose the relation org:parents

from the development set, as it is a relation rela-

tively well represented in the dataset and one where

our model obtains a lower F1 score. We design

the following experiment: two experts have access

to the syntactic rules associated with the support

sentences from the development partition of the

Few-Shot TACRED. They have up to two hours to

improve the rule set and the following operations:

ADD Rule: Adds a new rule, available to every

episode. This operation simulates the practical

example where practitioners aim to incorporate new

knowledge to the model for use during inference.

DELETE Rule: For a given support sentence with

the relation org:parents in a given episode, the

model will not have access to the rule generated on

that support sentence.

MODIFY Rule: This operation modifies a given

rule. This modification will only be visible in the
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5-way 1-shot 5-way 5-shots
P R F1 P R F1

Model Type Ablation

Hybrid Original 55.67 ± 3.75 32.19 ± 1.26 40.78 ± 1.99 55.04 ± 1.47 50.93 ± 1.94 52.90 ± 1.67
No Paraphrases 42.88 ± 3.70 27.53 ± 1.38 33.52 ± 2.10 43.84 ± 2.14 51.28 ± 2.63 47.25 ± 2.21

No data pre-processing 43.00 ± 3.21 22.38 ± 1.82 29.43 ± 2.25 48.16 ± 2.09 44.44 ± 2.89 46.22 ± 2.49
No Rule/Sentence Augmentation 49.13 ± 3.55 32.77 ± 1.37 39.31 ± 2.11 47.63 ± 1.85 53.36 ± 2.16 50.33 ± 1.96

SoftRules Original 56.81 ± 3.94 31.70 ± 1.43 40.68 ± 2.17 58.94 ± 1.79 49.60 ± 2.08 53.87 ± 1.96
No Paraphrases 43.39 ± 3.96 27.10 ± 1.53 33.35 ± 2.29 45.93 ± 2.18 50.59 ± 2.88 48.14 ± 2.40

No data pre-processing 43.50 ± 3.77 21.92 ± 2.06 29.14 ± 2.62 51.20 ± 1.85 43.15 ± 2.72 46.83 ± 2.37
No Rule/Sentence Augmentation 49.95 ± 3.71 32.34 ± 1.54 39.25 ± 2.27 50.14 ± 1.94 51.98 ± 2.42 51.04 ± 2.16

Table 4: Ablation results for the 5-way 1-shot and 5-way 5-shot on TACRED’s few-shot development partition.

Each ablation condition is tested independently, with only one modification applied compared to the Original model.

episodes for which this particular rule appears.

We show examples of the operations and statis-

tics in Appendix E. We show our results in Ta-

ble 5. We detail two sets of results, showcasing

the adaptability and effectiveness of our proposed

method in relation classification. The first set is

based on expert rule modifications without altering

the classification threshold. The second set, in con-

trast, involves an increase in the threshold specifi-

cally for the org:parents rules, motivated by the

greater average similarity seen with more general

rules (created by the human annotators) compared

to the lower alignment of highly specific rules

(generated automatically from support sentences).

For instance, rules synthesized from support sen-

tences often yield highly specific constructs, such

as [ne=org]+ <nmod_from taken >conj_and

operating >nmod_under brandname >compound

[ne=org]+. Such rules typically align poorly with

the majority of sentences, attracting lower similar-

ity scores. In contrast, the introduction of more gen-

eral rules, e.g.: [ne=org]+ >appos subsidiary

>nmod_of [ne=org]+, enhances rule-to-sentence

similarity. This observed increase in average simi-

larity was not accounted for with the original, un-

changed classification threshold. To address this,

we conducted a second set of experiments where

the threshold was selectively increased by 0.1, but

only for the org:parents relation.

We observe a consistent performance increase

across both expert interventions and both thresh-

old scenarios. With the classification threshold

held constant, expert modifications led to an im-

provement of approximately 4 F1 points, a relative

increase of about 25%. When the threshold for the

org:parents relation was raised, the performance

gains were even more pronounced, exceeding 15

F1 points and representing a relative increase of

around 100%. Notably, these enhancements did not

Model Original threshold Stricter threshold

Original 15.57 ± 1.39 15.57 ± 1.39

Expert 1 19.42 ± 0.65 31.78 ± 2.18
Expert 2 19.77 ± 1.08 34.03 ± 1.91

Table 5: F1 scores for the org:parents relation after

two domain experts individually modified the corre-

sponding rules. We compare scores before and after

these changes, in two settings: (i) same threshold, (ii)

stricter threshold.

adversely affect the performance on other relations.

5 Conclusion

We introduced a novel neuro-symbolic approach

for relation extraction that combines the better gen-

eralization of neural networks with the explainabil-

ity and pliability of rules. Our method first attempts

to match the rule in a typical binary match/no match

way. When a rule does not match, our approach

then semantically matches it over text using a se-

mantic matching component, which is contrastively

trained without any human-annotated training data,

akin to an LLM for rules.

We evaluated our model on two challenging few-

shot datasets: Few-Shot TACRED (Sabo et al.,

2021) and a few-shot variant of NYT29 (Alam

et al., 2024). We showed that our method achieves

strong performance, outperforming state-of-the-art

supervised methods in three out of the four settings

we investigated. Moreover, we empirically vali-

dated that our proposed method retains the pliabil-

ity of rule-based methods, i.e., where humans can

refine the underlying classification rules to notice-

ably increase the final performance. Notably, the

resulting model is relatively small, i.e., it consists

of an encoder of approximately 350M parameters,

which makes it considerably more efficient than a

decoder-based LLM.
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Limitations

We evaluate our proposed approach only for the

English language, where high-quality syntactic

parsers are available, and relation classification,

where most relations to be learned can be well cov-

ered by syntactic patterns. Nevertheless, thanks

to efforts such as Universal Dependencies (Nivre

et al., 2020), high-quality parsing data is available

to a large number of languages.

In general, rules seem to perform best for closed-

world scenarios common to information extraction

tasks. It is not immediately obvious how well rules

(even with the proposed “soft” match) would port to

more open-ended tasks such as question answering.

Ethics Statement

Our approach uses pre-trained language models

as the backbone of our soft matching component.

Therefore this work shares many of the same eth-

ical issues such as social biases or perpetuating

stereotypes (Weidinger et al., 2021). Our work at-

tempts to improve upon these by using a sieve archi-

tecture, where the first step is to apply the rule as in

a typical rule-based model. This step is completely

transparent to the practitioner, as they can add, mod-

ify, or delete rules. In the second step, we use a

transformer-based model to semantically match the

rules with sentences where an exact match is not

possible. Our pliability experiment showed that our

approach retains the benefits of typical rule-based

models, as the experts are able to intervene on the

rules, and, thus, correct any potential biases that

may exist. However, we acknowledge that more

work is necessary to better understand the trans-

parency of the semantic-matching component. In

our work, the rule acquisition strategy was applied

over patterns that hold between two entities, where

both appear as contiguous spans of text. We did

not explore how our rule acquisition strategy could

be expanded to handle more complex semantic re-

lationships, such as n-ary relations, discontinuous

entities, or overlapping entities.
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A Qualitative Examples

We provide qualitative examples for the behavior

of our proposed semantic rule matcher (SRM) in

Table 6.

We split the examples into 7 distinct blocks to

facilitate the highlight of different behaviors.

(1) In the first block we highlight how the SRM is

able to overlook superficial differences (i.e. daugh-

ter in text, son in rule) and assign a high similarity

score. We want to emphasize that a traditional rule-

based engine will not be able to match the rule on

the given sentence.

(2) Similar to block (1), the SRM is capable of

understanding that graduated from is similar to got

his degree from.

(3, 4) We use these blocks to highlight to give a

similarity reference for the behavior we want to

highlight next. Here, the SRM assigns a high score,

as expected. We want to highlight that this rule, in

this form, is generic enough to match relations such

as neighborhood of, city in country, among

others.

(5, 6, 7, 8) In these blocks we highlight a behav-

ior that is present in the resulting model, despite

never being trained for it. Here, we replace the

typical named entities with their most fine-grained

version: lexicalized entities. The underlying idea

is to overcome the lack of expressiveness from the

NER model and provide an additional source of

signal, from the underlying entities. In block (5)

we replace the location entity types with Wyn-

wood and Miami.
12

We want to highlight that this

rule correctly obtains a higher similarity with the

sentence in block (5) than with the sentence in

block (6), where the entities in the sentence are

Athens and Greece. We remark that the underly-

ing relation in (5) is, in the most specific form,

neighborhood of, while in (6) it is city in coun-

try. Similarly, we provide the alternative rule and

the corresponding similarities in blocks (7, 8). We

emphasize that the SRM component has not been

explicitly trained for this behavior. We leverage this

behavior during evaluation for the cases where both

entity types were identical (e.g., [ne=location]+

<appos [ne=location]+)

B Entity Types in the Training Dataset

We used the following entity type pairs

when constructing our dataset consisting of

rule and sentence pairs: [(ORGANIZATION,

ORGANIZATION), (ORGANIZATION, PERSON),

(ORGANIZATION, COUNTRY), (ORGANIZATION,

CITY), (ORGANIZATION, STATE_OR_PROVINCE),

(ORGANIZATION, IDEOLOGY), (ORGANIZATION,

LOCATION), (ORGANIZATION, URL),

(ORGANIZATION, EMAIL), (PERSON,

ORGANIZATION), (PERSON, CAUSE_OF_DEATH),

(PERSON, NATIONALITY), (PERSON, COUNTRY),

(PERSON, LOCATION), (PERSON, CITY),

(PERSON, STATE_OR_PROVINCE), (PERSON,

IDEOLOGY), (PERSON, CRIMINAL_CHARGE),

12
Wynwood is a neighborhood in Miami.
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1
Sentence

Sofia Coppola , daughter of Francis Ford Coppola , is one of the

few to succeed in doing so : her film” Lost in Translation” won her a screenplay Oscar

Rule [ne=person]+ >appos son >nmod_of [ne=person]+

Similarity 0.83

2
Sentence John got his degree from Oxford .

Rule [ne=person]+ graduated from [ne=organization]+

Similarity 0.82

3
Sentence John moved to SoHo , Manhattan .

Rule [ne=location]+ <appos [ne=location]+

Similarity 0.68

4
Sentence John moved to Athens , Greece .

Rule [ne=location]+ <appos [ne=location]+

Similarity 0.69

5
Sentence John moved to SoHo , Manhattan .

Rule [ne=Wynwood]+ <appos [ne=Miami]+

Similarity 0.29

6
Sentence John moved to Athens , Greece .

Rule [ne=Wynwood]+ <appos [ne=Miami]+

Similarity 0.21

7
Sentence John moved to SoHo , Manhattan .

Rule [ne=Berlin]+ <appos [ne=Germany]+

Similarity 0.24

8
Sentence John moved to Athens , Greece .

Rule [ne=Berlin]+ <appos [ne=Germany]+

Similarity 0.37

Table 6: Qualitative examples of our semantic rule matcher, split into 7 blocks to highlight different behaviors.
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(PERSON, RELIGION), (PERSON, EMAIL),

(PERSON, MONEY), (TITLE, PERSON),

(CITY, ORGANIZATION), (CITY,

STATE_OR_PROVINCE), (PERSON, PERSON),

(PERSON, TITLE), (PERSON, NUMBER),

(COUNTRY, ORGANIZATION), (ORGANIZATION,

COUNTRY), (NATIONALITY, PERSON),

(PERSON, DATE), (COUNTRY, PERSON),

(CITY, PERSON), (STATE_OR_PROVINCE,

PERSON), (ORGANIZATION, DATE), (NUMBER,

PERSON), (DATE, PERSON), (ORGANIZATION,

NUMBER), (CAUSE_OF_DEATH, PERSON), (DATE,

ORGANIZATION), (LOCATION, ORGANIZATION)].

C Entity Types Synonyms

In the training phase of the proposed Semantic Rule

Matcher, we randomly replaced the entity types in

the rules and in the sentences with synonyms, to

encourage generalization beyond superficial clues

from the entity types. We present the synonyms we

used in Table 7.

D Paraphrasing Prompt

We show the prompt we used to generate para-

phrases below. We dynamically set the number of

paraphrases to generate based on the text length,

ranging from 2 to 5. The intuition is that short

sentences admit a lower number of paraphrases.

We only keep the paraphrases where the entities

of interest are preserved. Additionally, if the en-

tities of interest appear more than one time in the

paraphrase, we discard the resulting paraphrase.

Following this process, we keep over 80% of the

paraphrases that are generated.

Please generate a number of {how

many} paraphrases for the following

sentence. Please ensure the meaning

and the message stays the same and

these two entities are preserved in your

generations: "{entity 1}", "{entity 2}".

Please be concise.

“‘

{text}

“‘

1.

E Pliability Experiment

We show the number of operations employed by

each Expert in Table 8.

We provide examples of each operation below.

(i) ADD: This operation adds a new rule which

will be available to every episode. This simulates

the practical example where practitioners aim to

incorporate new knowledge to the model to be used

at inference time.

For example, one annotator added the following

rule [ne=org]+ >appos subsidiary >nmod_of

[ne=org]+. This rule will match sentences like:

“Google, a subsidiary of Alphabet, announced a

new acquisition.”.

(ii) MODIFY: This operation modifies a given

rule. This modification will only be visible in

the episodes for which this particular rule appears.

This simulates the scenario where the resulting rule

has slight inaccuracies.

For example, one annotator changed from

[ne=org]+ <nsubj said >ccomp buy

>nmod_for [ne=org]+ to [ne=org]+ <nsubj

said >ccomp buy >dobj [ne=org]+. This

changed rule will match sentences like: “Google

said it will buy YouTube.”.

(iii) DELETE: This operation removes the given

rule, such that the model will not have access to it.

This simulates the scenario where the resulting rule

is too noisy to be useful.

For example, one annotator removed the follow-

ing rule: [ne=org]+ <nsubj sought >conj_but

opted >nmod_for batteries >nmod_from

[ne=org]+

F Hyperparameters

We experiment with multiple settings where we

vary the learning rate, the projection dimensions,

and the weight decay. This search involved under

20 runs. We show our hyperparameters in Table 9.

We use the development partition of Few-Shot TA-

CRED for early stopping.

We ran all our experiments on a system with

A100 80 GB GPUs. We used approximately 3 days

worth of a single A100 GPU time.

G Rule Augmentation

In the following, we detail how a rule augmentation

looks like. We augment rules by replacing the orig-

inal entities with their synonyms. Our motivation

for this is to encourage the rule matcher to look

beyond lexical similarities and to judge, instead,

the semantic similarity of the two entities (i.e., per

should be close to human and different from com-

pany). We ablate this choice in Table 3, empirically
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Entity Synonyms

organization org, company, firm, corporation, enterprise

date a specific date

person per, human, human being, individual

number digits

title designation, formal designation

duration time period

misc miscellaneous

country nation, state, territory

location place, area, geographic area, loc

cause_of_death date of demise, cause of death, death cause, mortal cause

city municipality, town, populated urban area

nationality citizenship

ordinal ranking

state_or_province region, territorial division within a country

percent percentage

money currency

set collection, group of items

ideology doctrine, system of ideas and ideals

criminal_charge accusation, formal allegation

time period, time period

religion belief, faith, spiritual belief, worshipper

url web address

email electronic mail

handle username, personal identifier

Table 7: Entity type synonyms used to augment the rules and sentences.
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Operations

ADD MODIFY DELETE

Expert 1 12 6 16

Expert 2 12 3 28

Table 8: The number of operations performed by each

expert during the intervention experiment.

Rule Encoder LR 3e-5

Sentence Encoder LR 1e-5

Projections LR 1e-4

Logit Scale LR 3e-4

Train Batch Size 512

Gradient Clip Val 5.0

Dropout 0.1

Projection Dims 384

Weight Decay 0.001

Table 9: The hyperparameters we used for training the

Semantic Rule Matcher.

finding that this brings the largest improvement

(i.e., an increase of over 11 F1 points, from 28.91

to 40.50). We included an example in Table 10.

H Ablation Study (extended)

We complement the ablation study from Table 4,

which was done on Few-Shot TACRED with an

ablation study over the few-shot variant of NYT29.

We show our results in Table 11. We remark that

the same conclusions hold on both datasets.

I Paraphrase Quality

In the following, we analyze the quality of the

paraphrases generated by the large language model.

Specifically, we used ChatGPT together with the

prompt described in Appendix D. We conducted a

manual analysis of over 50 randomly sampled sen-

tences. We observed that all paraphrases correctly

preserved the underlying relation. We will release

this dataset. We added two examples in Table 12.

J Dataset Details

We provide additional details on the two datasets

we used: Few-Shot TACRED (Sabo et al., 2021)

and Few-Shot NYT29 (Alam et al., 2024).

TACRED has 42 classes (41 relations, 1

no_relation class) distributed across 100,000

examples. The class no_relation has the most

number of examples, accounting for approximately

80% of the total data. The number of examples

per relation follows an exponential distribution,

ranging from approximately 4000 for the relation

per:title to 33 for the relation org:dissolved.

NYT29 has 29 relations, distributed across

90,000 examples. This dataset does not have a

strict no_relation class. The number of exam-

ples per relation follows an exponential distribu-

tion, ranging from approximately 32,000 for the re-

lation /location/location/contains to 10 for

/business/company_advisor/companies_advised.

There is no strict overlap between any relations

from TACRED and NYT29 either from the dev

partition or from the test partition. Nevertheless,

we remark that there are similar relations. For ex-

ample, the relation per:city_of_death appears

in the test partition of few-shot TACRED and

/people/deceased_person/place_of_death

appears in the test partition of few-shot NYT29.

K Per-Relation Performance

We present per-relation performance metrics for

the Few-Shot TACRED dataset, with results for

K = 1 in Table 13 and for K = 5 in Table 14.
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Original Rule [ne=per]+ <nsubj founder >nmod_of [ne=org]+

Modified Rule [ne=human]+ <nsubj founder >nmod_of [ne=company]+

Table 10: Illustration of rule augmentation by substituting entity types: converting per to human and org to company.

5-way 1-shot 5-way 5-shots
P R F1 P R F1

Model Type Ablation

Hybrid Original 9.40 ± 0.55 31.48 ± 1.50 14.48 ± 0.77 10.47 ± 0.56 72.38 ± 1.99 18.29 ± 0.91
No Paraphrases 8.59 ± 0.77 25.16 ± 1.89 12.80 ± 1.08 9.53 ± 0.53 61.77 ± 2.16 16.51 ± 0.86

No data pre-processing 7.29 ± 0.53 15.20 ± 1.22 9.85 ± 0.73 9.29 ± 0.60 38.79 ± 1.74 14.99 ± 0.90
No Rule/Sentence Augmentation 11.10 ± 0.60 26.38 ± 1.60 15.62 ± 0.78 12.49 ± 0.77 60.31 ± 1.97 20.70 ± 1.16

SoftRules Original 9.40 ± 0.55 31.48 ± 1.50 14.48 ± 0.77 10.47 ± 0.56 72.38 ± 1.99 18.30 ± 0.91
No Paraphrases 8.59 ± 0.77 25.16 ± 1.89 12.80 ± 1.08 9.53 ± 0.53 61.77 ± 2.16 16.52 ± 0.87

No data pre-processing 7.29 ± 0.53 15.20 ± 1.22 9.85 ± 0.73 9.30 ± 0.61 38.79 ± 1.74 15.01 ± 0.91
No Rule/Sentence Augmentation 11.10 ± 0.60 26.38 ± 1.60 15.62 ± 0.78 12.50 ± 0.77 60.31 ± 1.97 20.71 ± 1.17

Table 11: Ablation results on the 5-way 1-shot and 5-way 5-shot on the development partition of the few-shot

NYT29 dataset. Each ablation condition is tested independently, with only one modification applied compared to

the Original model.

Original One year I served as research assistant to Wendell Bennett , a brilliant young

anthropologist and the next year was the research assistant to Tom McCormick

, an excellent , but inarticulate statistician

Paraphrase After assisting anthropologist Wendell Bennett , I worked as a research assistant

to Tom McCormick , a talented statistician who was not very articulate .

Original In April 1915 , Sir John Nixon took command of British forces in Iraq and

received orders to draw up plans for an advance on Baghdad .

Paraphrase In April 1915 , Sir John Nixon was assigned to lead the British military in Iraq

and was instructed to make plans for an assault on Baghdad .

Table 12: Two examples of paraphrases. We underline the entities involved.
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Relation P R F1

org:country_of_headquarters 45.13 ± 8.54 10.32 ± 1.97 16.80 ± 3.17

org:founded 42.52 ± 4.66 43.04 ± 8.39 42.41 ± 4.95

org:parents 21.37 ± 8.58 9.53 ± 2.63 13.14 ± 4.12

per:age 72.17 ± 3.54 52.82 ± 2.29 60.97 ± 2.37

per:alternate_names 3.45 ± 3.28 1.39 ± 1.29 1.98 ± 1.85

per:stateorprovince_of_death 62.32 ± 10.28 72.04 ± 3.49 66.43 ± 5.70

Table 13: Per-relation scores achieved by our Hybrid

method on the development partition of the Few-Shot

TACRED dataset for K = 1.

Relation P R F1

org:country_of_headquarters 57.38 ± 10.44 21.13 ± 5.18 30.81 ± 6.85

org:founded 51.72 ± 8.34 70.69 ± 6.87 59.57 ± 7.37

org:parents 24.62 ± 4.63 19.08 ± 5.76 21.39 ± 5.15

per:age 71.32 ± 1.26 78.47 ± 2.72 74.72 ± 1.85

per:alternate_names 9.29 ± 3.11 9.24 ± 4.54 9.21 ± 3.81

per:stateorprovince_of_death 64.45 ± 7.59 92.30 ± 0.87 75.71 ± 5.21

Table 14: Per-relation scores achieved by our Hybrid

method on the development partition of the Few-Shot

TACRED dataset for K = 1.
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