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ABSTRACT
Many observable properties of globular clusters (GCs) provide valuable insights for unveiling the hierarchical
assembly of their host galaxy. For the Milky Way (MW) in particular, GCs from different accreted satellite
galaxies show distinct chemical, spatial, kinematic, and age distributions. Here we examine such clustering
features for model GC populations in simulated galaxies, which are carefully selected to match various observa-
tional constraints of the MW assembly. We evaluate several widely used clustering, dimensionality reduction,
and supervised classification methods on these model GCs, using 10 properties that are observable in the MW.
We can categorize in-situ and ex-situ formed GCs with about 90% accuracy, based solely on their clustering
features in these 10 variables. The methods are also effective in distinguishing the last major merger in MW-
analogs with similar accuracy. Although challenging, we still find it possible to identify one, and only one,
additional smaller satellite. We develop a new technique to classify the progenitors of MW GCs by combining
several methods and weighting them by the validated accuracy. According to this technique, about 60% of GCs
belong to the in-situ group, 20% are associated with the Gaia-Sausage/Enceladus event, and 10% are associated
with the Sagittarius dwarf galaxy. The remaining 10% of GCs cannot be reliably associated with any single
accretion event.
Keywords: globular clusters: general – Galaxy: formation – Galaxy: evolution – galaxies: star clusters: general

1. INTRODUCTION
Recent observations have significantly deepened our under-

standing of the hierarchical assembly process of the Milky
Way (MW) galaxy. Pioneering analysis of the stellar abun-
dances and kinematics in the outer regions of the Galactic
bulge by Ibata et al. (1994) was the first to uncover evidence
of a merging event: the Sagittarius dwarf galaxy. Subsequent
kinematic studies of metal-poor stars in the solar neighbour-
hood (Helmi et al. 1999) identified debris streams of another
merger. These streams are now commonly referred to as the
Helmi streams. More recently, Deason et al. (2015) proposed
potential accretion of massive satellite galaxies based on an
analysis of the ratio of blue straggler stars to blue horizontal
branch stars in the Galactic halo.

The Gaia mission (Gaia Collaboration et al. 2016, 2018,
2023) has enabled comprehensive investigation of more so-
phisticated structures of the Galaxy in the 6-dimensional phase
space (see a review by Deason & Belokurov 2024). Using
Gaia data, Belokurov et al. (2018), Helmi et al. (2018), and
Deason et al. (2018) confirmed the merger with a massive
satellite through chemical and kinematic analyzes of both disk
and halo stars. In this work we refer to this satellite as the Gaia-
Sausage/Enceladus (GS/E). Additionally, the Gaia data played
an important role in identifying or substantiating smaller-scale
merger events. These include the Sequoia event (Myeong
et al. 2019), Thamnos structure (Koppelman et al. 2019), Ce-
tus Stream (Yuan et al. 2019, initially proposed by Newberg
et al. 2009), LMS-1/Wukong Stream (Yuan et al. 2020; Naidu
et al. 2020; Malhan et al. 2021), Pontus (Malhan et al. 2022),
and Antaeus (Oria et al. 2022; Ceccarelli et al. 2024).

All of these studies share the same assumption: stellar pop-
ulations from past mergers retain their original properties that
set them apart from both the in-situ population and from other
mergers. These properties include chemical, spatial, kine-
matic, and age information, and are inherited from their pro-
genitor galaxies. Therefore, to fully uncover the MW assem-
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bly history, it is critical to compile a comprehensive sample
of stellar tracers. This includes single stars, stellar streams,
and globular clusters (GCs). However, current samples of sin-
gle stars and stellar streams in the MW are incomplete. As a
result, one often relies on a subset of these objects, selected
preferentially based on existing knowledge of known mergers.
This approach leads to inefficiency and bias in the detection
of previously unknown mergers (Malhan et al. 2022).

GCs are compact objects with ages typically exceeding
10 Gyr. They serve as ideal tracers of ancient mergers, which
have largely dispersed their stellar components into the stellar
halos of central galaxies. The sample of MW GCs is relatively
more complete than that of single stars and streams, thanks
to their compactness and high luminosity. This motivates a
growing amount of research (e.g., Massari et al. 2019; Forbes
2020; Callingham et al. 2022; Malhan et al. 2022; Belokurov
& Kravtsov 2024) employing GCs to investigate the assembly
history of the MW. These studies have utilized diverse classi-
fication algorithms on different subsets of GC characteristics,
such as the age–metallicity space, integral of motion (IoM)
space, or orbital action space. They also relied on previously
established knowledge of galactic mergers, which vary across
studies. Consequently, while these studies have reached a gen-
eral agreement on distinguishing in-situ from ex-situ clusters,
the assignment of ex-situ GCs to specific progenitors remains
debated except for the most significant mergers. This uncer-
tainty arises from the reliance on different combinations of GC
characteristics, classification methods, and prior knowledge.

To validate these classifications requires knowing the cor-
rect label for each GC, which is impossible for MW GCs due to
the limitation of having only present-day observations. There-
fore, we must turn to galaxy formation simulations, where the
progenitor of every simulation particle is precisely known.
Unfortunately, directly modeling star cluster formation within
such simulations remains challenging. The efficiency of clus-
ter formation is regulated by the complicated and entangled
feedback processes (see, e.g., Li et al. 2018; Grudić et al. 2021;
Brown & Gnedin 2022). Running full cosmological simula-
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tions of realistic galactic environments to the present day is
extremely computationally expensive. If the simulations do
not proceed to the present day, their subgrid parameters re-
main poorly constrained as we cannot compare the properties
of model GCs with the observations. As a result, these simu-
lations may not accurately match the Galactic GC system.

Fortunately, there is an alternative approach to modeling GC
systems by post-processing existing simulation suites with an-
alytical GC formation and evolution models. These models
not only match observed GC properties more closely by cali-
brating model parameters but also generate substantially larger
samples of model GCs in a variety of galactic environments.
Thus, post-processing models are an ideal tool for creating
mock catalogs of GCs, which are crucial for the evaluation
of classification algorithms. Existing post-processing mod-
els include the MOdelling Star cluster population Assembly
In Cosmological Simulations (MOSAICS) model for cluster
formation and evolution (Kruijssen & Lamers 2008; Kruijssen
2009; Kruijssen et al. 2011), and the models developed by Re-
naud et al. (2017), Creasey et al. (2019), Phipps et al. (2020),
Halbesma et al. (2020), and Valenzuela et al. (2021).

Pfeffer et al. (2018) and Kruijssen et al. (2019a) conducted
the E-MOSAICS project by implementing the MOSAICS
model into the EAGLE simulations (Schaye et al. 2015; Crain
et al. 2015). This project matched various observational prop-
erties of young star clusters. Using the E-MOSAICS data, sub-
sequent studies by Kruijssen et al. (2019a), Pfeffer et al. (2020),
Reina-Campos et al. (2020), and Carlsten et al. (2021) stud-
ied the relationship between GC properties and the assembly
history of their host galaxies. More recently, Trujillo-Gomez
et al. (2023) developed a supervised classification framework
based on the E-MOSAICS data. This framework is capable of
distinguishing in-situ from ex-situ clusters with accuracy up
to 80–90%.

Another example of post-processing models is the earlier
versions of our model (Muratov & Gnedin 2010; Li & Gnedin
2014; Choksi et al. 2018; Choksi & Gnedin 2019a,b). These
versions take the halo merger tree as the only input and trigger
a cluster formation event upon detecting a major merger or fast
accretion. A sequence of scaling relations is then employed
to analytically calculate the mass and metallicity of individual
clusters. Additionally, the model accounts for the cluster mass
loss due to stellar evolution and tidal disruption during the
subsequent evolution. We extended the model starting with
Chen & Gnedin (2022, hereafter CG22) by introducing the
tagging technique to assign collisionless simulation particles
as GC tracer particles. This provides the spatial and kinematic
information about GC systems at present. Moreover, by track-
ing the tidal field along the trajectories of these GC particles,
our model now allows for more precise calculations of tidal
disruption. Our model successfully aligns with various ob-
served scaling relations of GC systems. These include the GC
effective radius–halo mass relation and the GC mass/number–
halo mass relation down to a halo mass 𝑀h ∼ 108 M⊙ (Chen
& Gnedin 2023).

Furthermore, by applying our model to simulated galaxies
carefully selected to match the assembly history of the MW, we
have generated a catalog of model GCs in MW-analog systems
(Chen & Gnedin 2024, hereafter CG24). This catalog provides
key observables such as the mass, metallicity, orbital actions,
circularity, galactocentric radius, pericenter/apocenter radii,
specific energy, and age. These variables cover most of the
properties traditionally utilized to trace the progenitors of GCs.
This catalog accurately reproduces important characteristics of

the Galactic GCs, including their mass function, metallicity
distribution, radial profile, and total velocity dispersion.

Using two Illustris TNG50-1 (Nelson et al. 2019; Pillepich
et al. 2019; Nelson et al. 2021, hereafter TNG50) galaxies
from the CG24 catalog and two galaxies from the Latte suite
of the FIRE-2 simulations (Wetzel et al. 2016), our goal in this
paper is to find the most informative properties for revealing
the host galaxy assembly. Additionally, we aim to evaluate the
optimal algorithm for identifying the progenitor galaxies of
GCs. We begin with splitting the model GCs into in-situ and
ex-situ groups. We then concentrate on the ex-situ clusters to
differentiate between GCs from different progenitor galaxies.
We examine five widely used unsupervised clustering meth-
ods, which are then enhanced by dimensionality reduction
and supervised classification techniques. After determining
the most relevant properties and the most effective algorithm,
we repeat the same process with MW GCs. This allows us to
identify the most significant assembly features of the Galaxy.

This paper is structured as follows. In §2 we provide a
brief overview of the GC formation model and introduce the
sample of model GC systems analyzed in this study. Next, in
§3 we explore various classification methods to distinguish in-
situ and ex-situ clusters. In §4 we identify individual merger
events, focusing on the ex-situ clusters. In §5 we apply the
methods from previous sections to classify the MW GCs. Our
discussion in §6 investigates the extent to which ex-situ clusters
preserve the kinematics of their progenitor hosts (§6.1), and
how the GC properties from a single merger can be used to
reconstruct significant characteristics of that progenitor (§6.2).
We also compare this work with a related study in §6.3. In
§7 we summarize our key findings. We provide a rigorous
definition of classification accuracy employed throughout this
work in Appendix A, where we also calculate the minimum
achievable accuracy. We discuss the maximum achievable
accuracy in Appendix B.

2. MODEL SAMPLE
In this work, we analyze GC systems within four simulated

galaxies. Two of them are taken from the TNG50 simulation,
while the other two are from the Latte suite of the FIRE-2
simulations. The GC systems are generated using the CG24
version of our model. This section provides a brief overview of
the model setup, the background simulations, and the specific
galaxy samples selected for our analysis.

2.1. Recap of the model
We do not repeat the full details of our model as these have

been extensively described and examined for galaxies of a
wide range of mass and assembly history in our prior works.
Instead, we briefly summarize the four key steps and introduce
the three free parameters of the model.

1. Cluster formation is triggered by rapid mass growth of
the host galaxy, quantified by the specific mass accretion
rate ¤𝑀h/𝑀h > 𝑝3. The threshold 𝑝3 is a model parameter
controlling the cluster formation frequency, with a typical
value ∼ 1 Gyr−1. When a cluster formation event is trig-
gered, we compute the total mass of newly formed clusters
using a sequence of scaling relations, including the stellar
mass–halo mass relation (Behroozi et al. 2013a), the gas
mass–stellar mass relation (Lilly et al. 2013; Genzel et al.
2015; Tacconi et al. 2018; Wang et al. 2022), and the linear
gas mass–cluster mass relation (Kravtsov & Gnedin 2005),
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Figure 1. Mass assembly histories of the four sample galaxies (black lines). The colored lines in each panel stand for the major satellites that bring at least 3 GCs
to the central galaxy, with solid circles marking the maximum masses. The lines are smoothed for visual clarity. The dashed vertical lines at 𝑡lookback = 11.4 Gyr
stand for the threshold of early mergers. We keep the same color and naming scheme throughout the paper when referring to these satellites.

𝑀tot = 1.8×10−4𝑝2𝑀gas. Here 𝑝2 is another model param-
eter controlling the cluster formation rate, with a typical
value ∼ 10 for clusters with initial mass > 104 M⊙ . We
also calculate cluster metallicity in this step using a galaxy
mass–metallicity relation calibrated to recent data from the
James Webb Space Telescope (see Appendix A in CG24).
We use a combination of Gaussian process and Gaussian
noise to model the scatter in these relations.

2. Cluster sampling determines the initial mass of individual
clusters. We sample the initial mass via a Schechter function
with an exponential cutoff at 107 M⊙ . We only consider
clusters with initial mass > 104 M⊙ because less massive
clusters are likely to be tidally disrupted in less than 1 Gyr.

3. Particle assignment selects collisionless simulation parti-
cles as “tracer” particles of individual clusters. We first
consider newly formed (age < 10 Myr) star particles within
3 kpc (approximately twice the effective radius of newly
formed stars at the epochs when GC formation is most ac-
tive) from the galactic center. If there are not enough such
particles, we turn to older star particles or dark matter par-
ticles near the galactic center. We only use these particles
to trace the positions and velocities of GCs, and calculate
all other physical properties analytically.

4. Cluster evolution takes into account two effects: stellar
evolution and tidal disruption. Stellar evolution is modeled
as an instantaneous 45% mass loss at formation following
Gieles & Gnedin (2023). Such an approximation is appro-
priate since the stellar evolution time scale is much shorter
than the typical lifetime of GCs (≳ 10 Gyr). We model the
tidal disruption rate as a power-law function with the initial
cluster mass, current mass, and the strength of tidal field
based on the eigenvalues of the tidal tensor. We compute
the tidal tensor numerically using the scheme in CG22. This
scheme evaluates the gravitational potential on a 3 × 3 × 3
cubic grid and computes the second order finite difference
to approximate the tidal tensor. We correct the systematic
bias of the approximation by multiplying the numerically-
derived tidal tensor by the third model parameter 𝜅 ≳ 1,
which controls the intensity of tidal disruption.

The numerical implementation of the model is pub-
licly available at https://github.com/ybillchen/GC_
formation_model under the BSD 3-Clause License, which
allows redistribution and modification of the source code with
moderate limitations.

2.2. Illustris TNG50 simulations
The model galaxies in the TNG50 simulation are detailed

in CG24. We have calibrated the best model parameters to be
(𝑝2, 𝑝3, 𝜅) = (14, 0.5 Gyr−1, 1.5). The two selected galaxies,
523889 and 5193111, are specifically chosen for their simi-
larity to the Milky Way in terms of virial mass, circular ve-
locity, and key assembly characteristics. We repeat the model
on these two galaxies with different random seeds to select
the realizations that most accurately reflect the observed total
mass, mass function, metallicity distribution, radial profile,
and velocity dispersion of the MW GC system.

In Fig. 1, we present the mass assembly histories of the
galaxies 523889 and 519311. These galaxies experienced
major mergers similar to the GS/E at 𝑡lookback ≈ 8 − 10 Gyr,
followed by a period of quiescent mass growth. Additionally,
we plot the mass histories of important satellite galaxies that
contributed at least three GCs surviving to the present day.
For convenience, we adopt a naming convention similar to
that commonly used for planetary systems: the central galaxy
ID followed by a lowercase letter starting with b. For example,
523889-b denotes the most massive satellite of 523889.

2.3. FIRE-2 simulations
In addition to the TNG50 simulations, we apply our model

to the Latte simulation suite of the FIRE-2 public data release2

(Wetzel et al. 2023). The FIRE-2 cosmological zoom-in sim-
ulations are part of the Feedback In Realistic Environments
(FIRE) project, generated using the gizmo code (Hopkins
2015) and the FIRE-2 physics model (Hopkins et al. 2018).

The Latte suite is a set of zoom-in simulations of isolated
galaxies similar to the MW. The mass resolution is 3.5 ×
104 M⊙ for DM particles and 7.07 × 103 M⊙ for stellar and
gas particles initially. Such high mass resolution enables the
simulation to effectively resolve structures within a scale of
≈ 25 pc in the central galaxy (Wetzel et al. 2016).

The Latte suite uses the following cosmological parameters:
Ωm = 0.272, Ωb = 0.0455, ΩΛ = 0.728, ℎ = 0.702, 𝜎8 =
0.807, and 𝑛𝑠 = 0.961. Each simulation outputs 601 snapshots
from 𝑧 = 99 to the present day, with a typical time interval
≈ 20 Myr.

The halo catalogs are generated using the rockstar halo
finder (Behroozi et al. 2013b) on dark matter particles. As
a result, the halo mass provided in these catalogs represents

1 The galaxy IDs are SubfindID in the TNG50 subfind catalog.
2 Available at https://flathub.flatironinstitute.org/fire.
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Figure 2. Cumulative distribution functions of cluster mass (left), metallicity (middle), and radius (right). We show the observed value of the MW GCs as black
lines. Only clusters with 𝑀 > 104 M⊙ are taken into account.

only the dark matter mass. To obtain the total halo mass, we
multiply this value by the correction factor (1 − 𝑓b)−1, where
𝑓b ≡ Ωb/Ωm is the cosmological baryon fraction. Based
on the halo catalogs, the merger trees are generated with the
consistent tree code (Behroozi et al. 2013c).

The publicly available data include the complete merger tree
and halo catalogs across 601 output epochs, along with a subset
of 39 full particle snapshots that begin at 𝑧 = 10. The asyn-
chronous output frequencies between the merger tree and the
particle snapshots require specific adaptations to our model.
These modifications are outlined in the next subsection.

We select two of the simulated Latte galaxies, m12i and
m12w. These galaxies resemble the MW with a virial mass
≈ 1012 M⊙ . For comparison with the TNG50 galaxies, we
also plot the mass assembly histories of the FIRE-2 galaxies
and their satellite galaxies in Fig. 1. Notably, the FIRE-2
galaxies reproduce the key characteristics of the MW. They
also accumulated the majority of their mass early, with a GS/E-
like merger at 𝑡lookback = 5 − 10 Gyr.

2.3.1. Model adaptions to FIRE-2

Given that the cluster formation step depends solely on the
merger tree, while the particle assignment step requires both
the merger tree and particle outputs, we must execute these two
steps asynchronously and synchronize the outcomes at “full”
snapshots, where both the merger tree and particle outputs are
available.

If a cluster formed at a full snapshot, we employ the same
methodology as in CG22 to select GC tracer particles. Oth-
erwise, we track the merger tree to locate the host galaxy’s
descendant in the next full snapshot and then choose colli-
sionless particles from this snapshot to represent the cluster.
Similarly to the approach in CG22, we select stellar particles
within 3 kpc from the galactic center, formed between 𝑡form
and 𝑡form + Δ𝑡, where 𝑡form is the cluster’s formation lookback
time (not the full snapshot’s lookback time), and Δ𝑡 is initially
set to 10 Myr. If this criterion yields insufficient number of
stellar particles, we expand Δ𝑡 to the time interval between the
adjacent snapshots. However, this method is not always effi-
cient due to the typical time interval of the FIRE-2 simulation
being only 20 Myr. In the rare cases (≲ 10%) where there are
still not enough stellar particles, we use dark matter particles
near the galactic center as GC tracers.

We test the effectiveness of this synchronization approach
by adding 20 more snapshots at 𝑧 ≳ 1 for the m12i simulation
in addition to the original 39 publicly available full snapshots.
This shortens the time interval during the peak period of GC
formation from up to 1 Gyr to around 200 Myr. The latter is
similar to that in TNG50. However, the resulting GC system

show no systematic difference to the original 39 outputs, sug-
gesting that such an approach is robust to different numbers
of synchronization points. Therefore, we use only the original
39 public snapshots for the other Latte galaxy, m12w.

In addition, we improve the calculation of tidal tensor for the
Latte suite. As suggested by CG22 (see §2.2.3 and Appendix A
therein), the optimal grid size for numerically computing the
tidal tensor should be ≳ 3 times larger than the typical spatial
resolution where most GCs reside. Accordingly, we choose
a grid size of 100 pc for the Latte suite, reduced from the
300 pc used in the TNG50 simulations. This adjustment takes
advantage of the finer spatial resolution in the Latte suite ≈
25 pc.

We emphasize that the optimal model parameters for the
Latte suite simulations are not necessarily the same as those
used for TNG50 because of the distinct output frequencies of
the two simulation suites. Therefore we re-calibrate the model
following the same process as in CG24. After that, we repeat
the model 128 times to select the realization that most closely
match the observational constraints of the MW GC system.

The optimal parameters for the Latte suite are (𝑝2, 𝑝3, 𝜅) =
(7, 1 Gyr−1, 1.5). Compared to the best values for TNG50,
the 𝑝2 value is lower due to the higher output frequency of
the Latte simulations, by a factor of six. Moreover, the more
frequent outputs not only resolve more galaxy assembly events
but also record tiny and sometimes spurious mass changes of
the host galaxy. In other words, both “signal” and “noise” are
magnified. Consequently, we need a higher trigger threshold
𝑝3 to filter out the noise. We publicly release the two best MW-
analogs from FIRE-2 at https://github.com/ognedin/
gc_model_mw, where we have also released the two TNG
analogs from CG24.

With such parameters, we show the cumulative cluster mass
function, metallicity distribution, and radial profile of the five
simulated galaxies in Fig. 2. Most distributions can match
observed distributions of the MW GCs, indicating that these
simulated GC systems are close analogs to the MW system.

3. CLASSIFICATION OF IN-SITU VS. EX-SITU
CLUSTERS

In this section, we employ classification methods to distin-
guish in-situ from ex-situ formed clusters, taking into account
a range of observable properties. Our analysis incorporates
ten properties spanning the chemical, spatial, kinematic, and
age aspects: metallicity [Fe/H], orbital actions 𝐽𝑟 , 𝐽𝜙 3, and
𝐽𝑧 , circularity 𝜀, galactocentric radius 𝑟, pericenter/apocenter
radii 𝑟peri and 𝑟apo, specific energy 𝐸 , and age. For properties

3 In our case, 𝐽𝜙 = 𝐿𝑧 , the specific angular momentum along 𝑧-axis.

https://github.com/ognedin/gc_model_mw
https://github.com/ognedin/gc_model_mw
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Figure 3. Median (left) and minimum/maximum (right) classification accuracy of the four sample galaxies against the number of observable variables. For each
method, we first identify the best configuration of variables producing the highest median accuracy over the four galaxies. Starting from that configuration, we
sequentially remove/add one variable each time to obtain the configurations producing the highest accuracy with fewer/more number of variables.

spanning many orders of magnitudes we use the logarithmic
values: log 𝐽𝑟 , log 𝐽𝑧 , log 𝑟, log 𝑟peri, log 𝑟apo. For visual clar-
ity, we omit the subscript “10” in 10-based logarithms and use
“ln” for natural logarithms throughout the paper. A detailed
description of how these properties are computed can be found
in CG24.

We define the clusters that formed within the central galaxy
as in-situ, whereas those originated from satellites and ac-
creted through mergers are referred to as ex-situ. However,
this distinction is less clear during the early stages of galaxy
assembly. During this period, star clusters formed in mas-
sive “satellites”, such as 519311-c and m12i-d, might have
properties similar to in-situ clusters, as these satellites were
potentially more massive than the central galaxy at the time of
their GC formation, see Fig. 1. Consequently, differentiating
such GCs accreted early from the strictly in-situ population
may not be meaningful.

We observe that these early satellites typically reached their
maximum mass more than 12 Gyr ago and were mostly dis-
solved at 𝑡lookback ≳ 11.4 Gyr. Based on this, we refer to the
clusters accreted more than 11.4 Gyr ago as early-accreted. In
the following analysis, we generally combine the in-situ and
early-accreted populations, except in §6.1 and §6.2 where we
investigate the properties of individual mergers.

In the remainder of this section, we evaluate three classi-
fication procedures: 1) unsupervised clustering methods, 2)
combining dimensionality reduction with unsupervised clus-
tering methods, and 3) combining unsupervised clustering
methods with supervised classification methods. We conduct
the evaluation by comparing each classification with the true
labels provided by the model. The primary goal is to identify
the most effective observables and classification methods that
can accurately identify the in-situ and ex-situ origins of GCs.

3.1. Direct clustering
We have tested five widely used unsupervised clustering

methods. These algorithms are implemented through the
scikit-learn package (Pedregosa et al. 2011)4.

• K-means categorizes data points into K distinct groups5.
This method minimizes the dispersion of data points within

4 Detailed descriptions of all methods can be found at https://
scikit-learn.org/stable/modules/clustering.

5 We use the term “group” instead of the commonly used “cluster” to avoid
confusion with “star cluster”.

each group. Finding the global optimal classification is
computationally challenging. Therefore, we employ the
scikit-learn implementation of K-means, which uses an
iterative algorithm to find local minima. The initial setup for
this algorithm is determined using the K-means++ method
(Arthur & Vassilvitskii 2007), which helps select effective
starting state for the clustering process.

• Gaussian Mixture Model (GMM) assumes that the data
points are drawn from a finite number of Gaussian distri-
butions. The implementation of GMM in scikit-learn
utilizes a expectation-maximization algorithm to accurately
fit multi-dimensional data. The likelihood of a GMM with
𝑁g components is defined as:

L =

𝑛∏
𝑖=1

𝑁g∑︁
𝑗=1

𝜏𝑖 𝑗 lnN(𝒙𝑖 |𝝁 𝑗 ,𝚺 𝑗 ). (1)

Here, 𝒙𝑖 represents the 𝑖-th data point, while N denotes the
Gaussian function, characterized by its mean vector 𝝁 𝑗 and
covariance matrix 𝚺 𝑗 , both in 𝑁 dimensions. The term 𝜏𝑖 𝑗
denotes the probability of the 𝑖-th data point belonging to
the 𝑗-th Gaussian component. In our implementation, each
component has its own covariance matrix. We initialize the
GMM with K-means clustering and iterate up to 100 times
until the model converges.

• Agglomerative Clustering constructs a hierarchy of groups
in a bottom-up approach. Initially, each data point is con-
sidered as an individual group. These groups then merge to
form larger groups recursively until there is a single group
containing all data points. The scikit-learn package of-
fers four merging strategies. Ward minimizes the variance
within the merging groups. The average, maximum, and
single strategies merge groups based on the lowest aver-
age, maximum, or minimum distance between members of
the groups, respectively. We find that Ward performs the
best among the four strategies.

• Balanced Iterative Reducing and Clustering using Hi-
erarchies (BIRCH) is a hierarchical clustering method in
a top-down manner. It begins by constructing a clustering
feature (CF) tree from the input data, where each data point
is treated as a multi-dimensional vector. The CF for a set
has three attributes: the number of elements in the set, the
linear sum of all vectors, and the square sum of all vectors.

https://scikit-learn.org/stable/modules/clustering
https://scikit-learn.org/stable/modules/clustering
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Table 1
Configurations of variables producing the highest accuracy for each

classification method and number of dimensions (input variables). We list
only the top two sequences from Agglomerative Clustering and BIRCH
methods. We obtain these sequences by sequentially remove/add one

variable each time based on the best configuration (highlighted in boldface)
of each method, imposing lower thresholds for minimum accuracy. We do
not show the cases with more than six variables as the accuracy decreases

with more inputs.

Dim. Best configuration Method Median acc.
2 𝑟apo, 𝐽𝑟 Agglom. 81.4%
3 𝑟apo, 𝐽𝑟 , [Fe/H] Agglom. 85.3%

𝑟 , 𝐸, [Fe/H] BIRCH 81.5%
4 𝑟apo, 𝐽𝑟 , [Fe/H], 𝑟 Agglom. 82.9%

𝑟 , 𝐸, [Fe/H], 𝜀 BIRCH 81.5%
5 𝑟apo, 𝐽𝑟 , [Fe/H], 𝑟 , 𝜀 Agglom. 85.0%

𝑟 , 𝐸, [Fe/H], 𝜀, 𝐽𝜙 BIRCH 89.4%
6 𝑟apo, 𝐽𝑟 , [Fe/H], 𝑟 , 𝜀, age Agglom. 88.9%

𝑟 , 𝐸, [Fe/H], 𝜀, 𝐽𝜙 , 𝐽𝑟 BIRCH 86.4%

A CF tree node has several sub-clusters, each associated
with a CF. A new data point is added to the root of the
tree by merging with the sub-cluster that has the smallest
radius after merging. If the sub-cluster has child nodes, this
merging process continues recursively down the tree. How-
ever, if the radius of the sub-cluster exceeds a threshold,
and the number of sub-clusters is greater than a branching
factor, the node divides. We find that radius threshold = 0.2
yields the highest classification accuracy. We adopt branch-
ing factor = 50 following the default values suggested by
scikit-learn.

• Spectral Clustering starts by computing the Laplacian ma-
trix L ≡ D − A, where A is the affinity matrix and D is a
diagonal matrix, 𝐷𝑖𝑖 ≡

∑
𝑗 𝐴𝑖 𝑗 . The affinity matrix effec-

tively describes the “similarity” between data points. As
suggested by scikit-learn, we calculate the affinity matrix
using the radial basis function (RBF) kernel. Then, we
determine the eigenvectors of L and construct a new ma-
trix comprising the smallest eigenvectors. The number of
eigenvectors is a free parameter. We find that the optimal
number is 2, which equals the number of groups in our case.
Each row in the new matrix defines the feature of a graph
node. To cluster these features, we then employ an existing
clustering method. For this purpose, we use the K-means
method, a widely used approach for Spectral Clustering and
the default option in scikit-learn.

Many of the clustering methods rely on the definition of the
distance between data points. In our analysis, we adopt the
Euclidean distance (𝐿2-distance) following the default setting
in scikit-learn. Our tests indicate that other distance metrics,
ranging from Manhattan distance (𝐿1) to Chebyshev distance
(𝐿∞), generally yield worse results compared to the Euclidean
distance. Additionally, the concept of distance is influenced
by the unit/scale of each variable. Given that different vari-
ables have various units that are not directly comparable, we
standardize the data to ensure a zero mean and unit variance:
𝑥 → 𝑥′ ≡ (𝑥 − 𝑥)/𝜎. This linear transformation equalizes the
range across all variables.

Furthermore, some of these methods have many free param-
eters. However, the default parameters suggested by scikit-
learn usually yield results that are comparable to or better

than other parameter choices. Thus, we adhere to these de-
fault values unless specifically mentioned.

Although these clustering methods are in principle able to
work in multi-dimensional spaces, they often encounter diffi-
culties when applied to high-dimensional data. This is primar-
ily due to the sparsity of data and the equalization of distances
(Aggarwal et al. 2001). This challenge is commonly referred
to as the curse of dimensionality (see a review by Domingos
2012), referring to various problems that arise when analyzing
data in high-dimensional spaces, which often do not occur in
lower dimensions.

To understand and overcome the curse of dimensionality,
we conduct an analysis using subsets of the 10 variables. To
identify which subsets of the 10 produce the most reliable and
insightful classification between in-situ and ex-situ clusters,
we carry out a comprehensive examination of all possible
combinations of these variables. Given the 10 GC properties
to consider, there are (210 − 1) = 1023 unique configurations
in total.

We set the number of groups 𝑁g to 2, corresponding to the
in-situ and ex-situ populations of GCs. The clustering algo-
rithms only divide the data into two groups, without specifying
which one is in-situ or ex-situ. To correctly categorize these
groups, we start by randomly assigning one group as in-situ
and the other as ex-situ, and then compute the accuracy of
such an assignment. The classification accuracy is defined
as the proportion of clusters correctly assigned to their actual
groups. Subsequently, we switch the labels of the two groups
and calculate the accuracy again. The assignment with the
higher accuracy is selected as the final classification. Using
this methodology, the classification accuracy is guaranteed to
be at least 50%. In Appendix A, we rigorously prove this
inequality in a more general case.

For each classification method, we scan the 1023 configura-
tions to obtain the best one with the highest median accuracy
over the four model galaxies. We define the median value as
the mean of the median two galaxies if there are even num-
ber of galaxies. For most methods, the best configuration has
3 − 6 variables. Including more variables does not always
improve the performance, as stated by the curse of dimension-
ality. Starting from the best configuration, we sequentially
remove/add one variable each time to get the configurations
yielding the highest accuracy with fewer/more number of in-
put variables. This process produces a consistent sequence of
variables with ranked significance. In the left panel of Fig. 3,
we show the median accuracy among the four sample galax-
ies for this sequence as a function of the number of variables.
The highest median accuracy of Agglomerative Clustering and
BIRCH is around 89%. As demonstrated later in Appendix B,
such a performance is close to the theoretical upper bound of
a statistically significant accuracy ≈ 90%.

Apart from producing high median accuracy, a robust con-
figuration should avoid the unwanted scenario where the
method performs well for some galaxies but yields substan-
tially poorer accuracy for the remaining ones. To assess the
robustness of the best configurations, we plot in the right panel
of Fig. 3 the maximum and minimum accuracy over the sample
galaxies for the same sequence of variables. Some configura-
tions yield significantly low minimum accuracy close to 50%,
corresponding to a failed classification. To avoid these cases,
we additionally impose a lower threshold for the minimum
accuracy. We then repeat the same selection of best configura-
tions but requiring the accuracy for any of the sample galaxies
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Figure 4. Classification results of in-situ vs. ex-situ presented in the [Fe/H]–𝐽𝑟 space for the four sample galaxies. The configuration is [Fe/H], 𝐽𝜙 , 𝜀, 𝑟 , and
𝐸 using BIRCH. The colors of filled dots represent the true labels, while those of the open circles stand for the predicted progenitors.

to exceed 70%. Still, we find that the best configurations for
Agglomerative Clustering and BIRCH produce median accu-
racy ≈ 89%, as presented in Tab. 1. Particularly, the BIRCH
method achieves the highest median accuracy at 89.4% with
five variables: 𝑟, 𝐸, [Fe/H], 𝜀, 𝐽𝜙 . In Fig. 4, we illustrate
the classification in the [Fe/H]–𝐽𝑟 space for the four sample
galaxies using this configuration. Among them, the highest
accuracy exceeds 90% for 523889, while the lowest accuracy
still exceeds 80% for 519311. However, most other configura-
tions fail to achieve a higher accuracy for this galaxy, suggest-
ing a notable variation in the efficiency of identifying in-situ
vs. ex-situ GCs across different galaxies. In Appendix B,
we quantitatively demonstrate such a galaxy-to-galaxy varia-
tion by calculating the maximum achievable accuracy for the
four galaxies. We notice that the in-situ clusters misclassi-
fied as ex-situ by this classification are more metal-rich than
the general ex-situ population. Additionally, these clusters are
dynamically hotter than the remaining in-situ GCs, character-
ized by higher 𝐽𝑟 . These characteristics closely correspond to
the “Splash” stellar population identified by Belokurov et al.
(2020). The “Splash” is believed to have originated in the
MW’s protodisk and was likely heated by the GS/E merger,
resulting in kinematics that resemble those of the ex-situ group.
The impact of such early significant mergers will be further
studied in §6.1.

Next, we sequentially remove/add variables to obtain a se-
quence of best configurations with fewer/more number of input
variables. In this step, we release the lower threshold to 60% to
allow more qualified configurations. We present this sequence
in Tab. 1 up to six variables for Agglomerative Clustering and
BIRCH. It is unnecessary to go beyond this number as the
performance decreases with more variables. In Fig. 5, we plot
the median, maximum, and minimum accuracy over the four
sample galaxies for the sequence of variables selected for each
method.

We notice that [Fe/H] is an important property for catego-
rizing in-situ and ex-situ GCs as it has high rankings in both
sequences for the two best methods, Agglomerative Clustering
and BIRCH. 𝐽𝑟 and 𝑟 are other significant variable. However,
since the two variables have strong correlation, having them
together does not significantly increase the amount of informa-
tion and has limited improvement in performance. Therefore,
both methods only put high ranking to one of them but lower
ranking to another. The circularity parameter 𝜀 is also impor-
tant for both methods but with lower rankings. In contrast,
𝐽𝑧 and 𝑟peri appear to be not important for identifying in-situ

Table 2
Configurations of properties producing the highest accuracy using the hybrid
approach combining dimensionality reduction and clustering methods. The
first and second blocks show the PCA and t-SNE dimensionality reduction

methods, respectively. For each method, we present the top two best
configurations and clustering methods with the highest median accuracy

among the four sample galaxies, with minimum accuracy exceeding 70%.

Dim. reduction Best configuration Method Median acc.
PCA (5 → 3) age, 𝑟peri, 𝑟apo, 𝐽𝑟 , 𝜀 Agglom. 89.4%

age, 𝐸, 𝐽𝜙 , 𝐽𝑟 , [Fe/H] BIRCH 88.1%
t-SNE (5 → 2) 𝐸, 𝑟apo, 𝐽𝑟 , [Fe/H], 𝜀 GMM 87.5%

𝐸, 𝐽𝑟 , [Fe/H], 𝑟apo, 𝜀 BIRCH 86.9%

from ex-situ GCs.

3.2. Dimensionality reduction
Since the curse of dimensionality greatly limits the perfor-

mance of classification methods in high-dimensional spaces,
we also implement a two-step process that incorporates a di-
mensionality reduction step before classification to overcome
such a limitation and to learn valuable information from more
input variables. Dimensionality reduction projects the orig-
inal data into lower-dimensional sub-spaces. The projected
coordinates are either linear or non-linear combinations of the
original variables. The primary goal of dimensionality re-
duction is to identify the most significant combinations that
preserve the most information of the original data.

We employ here two dimensionality reduction methods.

• Principal Component Analysis (PCA) is a linear method
for dimensionality reduction. It aims to maximize vari-
ance within lower-dimensional sub-space. To achieve this
aim, PCA identifies and selects the first few eigenvectors of
the covariance matrix for the original data. These eigen-
vectors are then used as the coordinates for the lower-
dimensional sub-space. This approach effectively captures
the most significant linear combinations in the original high-
dimensional data.

• t-Distributed Stochastic Neighbor Embedding (t-SNE)
is a non-linear dimensionality reduction technique devel-
oped by van der Maaten & Hinton (2008). This method
begins by computing the affinity matrix in the original high-
dimensional space using a Gaussian kernel. The bandwidth
of this kernel is adaptive based on the density of data points,
such that the Shannon entropy equals the log2 of a threshold
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Figure 5. As Fig. 3, but we enforce the minimum accuracy of the four galaxies to exceed 70% when selecting the optimal variable configuration. For the
sub-optimal configurations with fewer/more inputs, we release the threshold to 60% to allow more qualified configurations. If no configuration meets such a
criterion, we skip this number of variables.

parameter called perplexity. By construction, perplexity is
constrained not to exceed the number of data points and is
commonly set higher for more data. In our analysis, per-
plexity = 50 is found the most effective. On the other hand,
the affinity in the lower-dimensional sub-space is calculated
using a Student t-distribution with one degree of freedom.
The method then maps the high-dimensional data to lower-
dimensional sub-space while minimizing the Kullback &
Leibler (1951) divergence between the two sets of affini-
ties. For our work, we use the t-SNE implementation by the
scikit-learn package.
To assess this two-step procedure, we apply the two di-

mensionality reduction methods to all variable configurations,
subsequently reducing them to an 𝑀-D sub-space. For the pur-
pose of identifying in-situ and ex-situ GC populations, PCA
is found to be the most effective at 𝑀 = 3, yielding a highest
median accuracy of 89.4%. On the other hand, t-SNE shows
optimal performance at 𝑀 = 2, with a median accuracy of
87.5%. The top two best configurations for these two meth-
ods are listed in Tab. 2. Compared to the direct clustering
approach, both PCA and t-SNE do not improve the highest
median accuracy of the best clustering methods.

Starting from the best configurations, we following the same
process in §3.1 to get the consistent sequence of variables for
each method. We plot the median accuracy of such a sequence
over the four sample galaxies in Fig. 6. Compared with Fig. 5,
while dimensionality reduction methods do not enhance the
performance of the best clustering methods, they significantly
boost the effectiveness of other less optimal clustering ap-
proaches like GMM and Spectral Clustering, narrowing the
performance gap between various methods. This is likely
because the dimensionality reduction methods regulate the in-
put data into a sub-space where clustering features are more
pronounced. This enables different clustering methods to pro-
duce more coherent results, as well as enhance their overall
performance.

3.3. Supervised classification
To address the curse of dimensionality, another effective

strategy is to employ supervised classification methods. These
methods train a classifier in multi-dimensional space using a
set of training data. To obtain a reliable training set, we
first apply a probabilistic clustering method to estimate the
probability of each data point belonging to either the in-situ or
ex-situ category. This step is conducted in lower-dimensional

spaces to improve efficiency. We then select unambiguous data
points to form the training set, where an unambiguous data
point has a probability greater than 90% of being either in-situ
or ex-situ. The supervised classifier is trained to recognize the
distribution of these clearly-defined training data within the
full 10D space. We then predict the classifications for all data
points.

We have explored various thresholds for determining unam-
biguous data. A lower threshold of 50% fails to accurately
label training data near the boundary between groups, while a
higher threshold of 99% leads to insufficient number of data
points in the training set, failing to capture the defining char-
acteristics of the two populations. Both scenarios reduce the
classification accuracy compared to our selected threshold of
90%.

The two-step classification procedure requires the unsuper-
vised method to be predictive in estimating the probability of
data points. Among all the unsupervised methods we have
considered, only GMM has the ability of probabilistic pre-
diction. Consequently, we choose GMM as the first step of
the procedure. For the second step of supervised classifica-
tion, we consider the following popular and well-established
methods. These supervised classification algorithms are also
implemented in the scikit-learn package.

• Support Vector Classification (SVC) focuses on identify-
ing hyperplanes in multi-dimensional space to divide data
into distinct regions. The hyperplane maximizes the sepa-
ration between the two regions it divides. This separation
is defined as the distance between the hyperplane and the
nearest training data point (i.e., support vector) on either
side of the hyperplane. SVC ensures that the hyperplane
not only separates the regions effectively but also provides
the greatest possible distinction between them.

• K-Nearest Neighbors (K-NN) Classification builds the
classifier based on a given training set. The core princi-
ple of K-NN is to classify new data points by identifying
which group has the majority among its K closest neigh-
bors in the training set. The parameter K, representing the
number of neighbors to consider, is adjustable and plays a
crucial role in the classification process. A smaller K often
leads to overfitting, while a larger K tends to underfit the
data. In our study, we examine various values of K from 1
to 10 to determine the optimal choice. In most case, K = 5
yields the best classification accuracy.
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Figure 6. As the left panel of Fig. 5, but with PCA (𝑀 = 3, left) and t-SNE (𝑀 = 2, right) dimensionality reduction before applying the clustering methods.

• Gaussian Process Classification (GPC) is a probabilistic
approach that uses Gaussian process models for classifica-
tion. It places a Gaussian process prior to a latent func-
tion, which is then converted to a classification probability
∈ [0, 1] using a logistic function. GPC classifies new data
points based on their similarity to the training set via a ker-
nel function. In this work, we use the RBF kernel, follow-
ing default setting in scikit-learn. The hyper-parameters
of the kernel are optimized during fitting. We also evalu-
ate alternative kernels such as the Matérn and the rational
quadratic kernels. They do not demonstrate significantly
different results compared to the RBF kernel.

However, the supervised classification methods do not sur-
pass the accuracy achieved by direct clustering methods. The
highest accuracy is 81.9% obtained by SVC, with input vari-
ables of [Fe/H], 𝐽𝑟 , 𝐽𝜙 , 𝐽𝑧 , 𝑟, and 𝐸 . This accuracy is 8%
lower than the best performance achieved using direct clus-
tering methods (Tab. 1) and the dimensionality reduction ap-
proach (Tab. 2).

Moreover, if we place an additional dimensionality reduc-
tion step prior to GMM, similarly to §3.2, the results still do
not improve. The under-performance of this approach is likely
because 1) the training set derived from GMM is too small to
adequately sample the entire property space; 2) the proba-
bilistic labels by GMM are not entirely accurate, leading to
potential errors in the subsequent classification step.

4. IDENTIFY PROGENITOR GALAXIES
In this section, we focus on the ex-situ component, which is

comprised of groups of GCs accreted from past mergers. Our
goal is to evaluate classification methods on model galaxies
to distinguish ex-situ GCs from distinct progenitor galaxies,
which is the key topic in galactic archaeology.

We consider only progenitor galaxies contributing a min-
imum of three surviving GCs. This threshold is crucial as
the multi-dimensional distribution becomes under-sampled
for progenitors contributing less GCs. Under this criterion,
we identify four, four (plus one early-accreted), two (plus
one early-accreted), and four major progenitors for the model
galaxies 523889, 519311, m12i, and m12w, respectively.
These identified mergers represent key characteristics in the
galaxy assembly histories and are significant for shaping the
present-day properties of GC systems.

The ideal classification procedure should predict the correct
number of mergers and accurately label GCs to their progen-
itors. However, this task is challenging particularly due to

the various numbers of GCs each merger contributed. In the
case of the MW and its model analogs, major mergers, such
as the GS/E, are known to contribute ∼ 30 GCs (Massari et al.
2019). In contrast, smaller mergers contribute only a few.
The GCs from the major mergers act as the noisy background
when identifying smaller mergers, contaminating the GC dis-
tribution of the latter in the multi-dimensional property space.
This limits clustering methods that rely on the density of data
points or linkage distances. Such methods, which are effective
in identifying dominant mergers, may not be as effective in
distinguishing smaller ones.

To study the number of mergers that can be accurately iden-
tified, we explore a range of clustering groups from 𝑁g = 2
to 5 in the following subsections. We interpret the 𝑁g groups
as the top 𝑁g − 1 most significant mergers, with an additional
group representing the remaining ex-situ clusters. We also
employ quantitative methods such as the information criterion
and cross-validation techniques to objectively determine the
number of groups that best represent the ex-situ GC popula-
tion.

4.1. Two groups
First, we set the number of groups 𝑁g to 2. Under this

configuration, one group represents the most dominant merger
event, which is the GS/E-analog (b). The other group stands
for all remaining ex-situ GCs. Algorithmically, this task is
similar to §3, but applied to ex-situ clusters only.

To evaluate the classification results, we calculate the pro-
portion of GCs in the two groups that are correctly labeled.
Similarly to §3, we initially calculate the accuracy of assigning
one group to the most dominant merger and the other to the
remaining ex-situ GCs. Next, we switch the roles of the two
groups and re-assess the accuracy. The assignment with more
correctly labeled GCs is considered the correct one. By this
definition, the accuracy is always at least 50%.

In practice, errors in categorizing in-situ and ex-situ popu-
lations, as assessed in §3, can influence the accuracy of sub-
sequent steps of identifying specific progenitors. However, to
independently evaluate the effectiveness of progenitor identi-
fication for ex-situ GCs, we proceed with an assumption that
the exact labels of in-situ GCs are known. By isolating this
step from the initial categorization of in-situ vs. ex-situ, we
ensure that our analysis is robust to prior biases and is tailored
to optimize the efficiency for this particular purpose.

Next, we apply the aforementioned classification methods
to the ex-situ GCs. For the direct clustering approach, we list
the best property configurations for each dimension in Tab. 3.
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Table 3
As Tab. 1, but for the purpose of identifying GS/E and other ex-situ clusters.

Dim. Best configuration Method Median acc.
2 age, 𝐽𝑧 Agglom. 84.1%

[Fe/H], age BIRCH 75.4%
3 age, 𝐽𝑧 , [Fe/H] Agglom. 81.3%

[Fe/H], age, 𝐽𝜙 BIRCH 83.1%
4 age, 𝐽𝑧 , [Fe/H], 𝐽𝜙 Agglom. 83.1%

[Fe/H], age, 𝐽𝜙 , 𝐽𝑧 BIRCH 83.1%
5 age, 𝐽𝑧 , [Fe/H], 𝐽𝜙 , 𝑟apo Agglom. 83.1%

[Fe/H], age, 𝐽𝜙 , 𝐽𝑧 , 𝑟apo BIRCH 83.1%
6 age, 𝐽𝑧 , [Fe/H], 𝐽𝜙 , 𝑟apo, 𝜀 Agglom. 82.8%

[Fe/H], age, 𝐽𝜙 , 𝐽𝑧 , 𝑟apo, 𝜀 BIRCH 82.8%
7 age, 𝐽𝑧 , [Fe/H], 𝐽𝜙 , 𝑟apo, 𝜀, 𝐸 Agglom. 90.6%

[Fe/H], age, 𝐽𝜙 , 𝐽𝑧 , 𝑟apo, 𝜀, 𝐸 BIRCH 90.6%

We also employ the same 70% threshold for the minimum ac-
curacy to ensure the robustness of categorization. The highest
accuracy is 90.6% using Agglomerative Clustering or BIRCH.
Different from the task of identifying in-situ vs. ex-situ clus-
ters, we need one or two more variables to distinguish the more
subtle differences between GCs originating from various pro-
genitors.

In the top row of Fig. 7, we display the classification results
for 𝑁g = 2 in the [Fe/H]–𝐽𝑟 space. The galaxy-to-galaxy
variation in distributions of the GS/E-analog vs. other ex-situ
GCs is pronounced due to the distinct assembly histories of
different galaxies. For instance, in the case of m12i, the GS/E-
analog and other ex-situ GCs largely overlap in the [Fe/H]–𝐽𝑟
space alone, while the two groups are more separable in other
model galaxies. Such a variance again emphasizes the need of
more variables to accurately identify progenitors of GCs for
all model galaxies.

We also explore both the dimensionality reduction and su-
pervised classification approaches introduced in §3.2 and §3.3.
However, these methods do not enhance the performance com-
pared to the direct clustering methods. Therefore, we do not
delve deeper into these approaches.

4.2. Three and more groups
Now, we expand our analysis to include 𝑁g = 3 groups,

corresponding to the most dominant merger, the second most
massive merger (c for 523889, m12i, and m12w; and d for
513911, where 513911-c is early-accreted), and all other ex-
situ clusters. In this three-group scenario, the lowest possible
accuracy is 1/3, indicating a completely random classification.
We provide a rigorous proof of this inequality in Appendix A.

For 𝑁g = 3, we find no configuration that yields a min-
imum accuracy exceeding 70%, regardless of the clustering
methods used. After we relax this constraint to 65%, sev-
eral configurations emerge. The most effective configuration
is [Fe/H], 𝜀, 𝑟apo, 𝐸, and age with Agglomerative Clustering.
The accuracy is 72.0% for 523889, 67.0% for 519311, 73.6%
for m12i, and 74.1% for m12w. Although this approach suc-
cessfully identify the most dominant merger, as in the 𝑁g = 2
case, it tends to mis-classify the GCs from the second largest
merger, as shown in the middle row of Fig. 7. It assigns ei-
ther more GCs (523889) or less GCs (m12i) to the second
largest merger. Also, the third group is poorly constructed for
galaxies like 519311 and m12w.

The mis-classification is likely due to the dominance of the
GS/E-analog over others. In each of the sample galaxies,
the most significant merger contributes more than half of the
ex-situ GC population. Such large mergers tend to create
a dense and noisy region in the multi-dimensional property
space, concealing the useful clustering features to identify the
remainder groups.

In response to such a challenge, we explore an alternative
approach to classify the ex-situ population into three groups.
This approach involves two recursive steps. The first step is
identical to §4.1, where we divide the ex-situ population into
two groups, representing the GS/E and the rest of the ex-situ
GCs. Secondly, we remove the GCs assigned to the GS/E
from the input data. We then further divide the remaining
ex-situ GCs into two new groups, standing for the second
largest merger and the other GCs. Since we have evaluated
the first step in the previous subsection, here we proceed with
the assumption that the exact labels for the GS/E GCs are
already known. This allows us to study the performance of the
second step independently from prior classification. That is
to say, we assume a 100% accuracy for the first step and thus
overestimate the joint accuracy in the following analysis.

For this approach, we find an optimal configuration using
[Fe/H], 𝐽𝑟 , 𝐽𝑧 , 𝑟peri, and 𝐸 with K-means clustering. This con-
figuration achieves an accuracy of 81.6% for 523889, 72.0%
for 519311, 84.2% for m12i, and 81.8% for m12w. The clas-
sification results are displayed in the lower row of Fig. 7.

Compared to the direct approach of splitting into three
groups, this recursive method more accurately identifies GCs
from the second largest merger. However, it is important to
note that this does not necessarily indicate that this method
outperforms the direct method, because of the potential con-
tamination by GCs from the most dominant merger. Indeed,
if we use the best configuration from §4.1 as the first step to
exclude the most massive merger, the median accuracy falls
below 70%.

Again, the dimensionality reduction and supervised clas-
sification approaches do not improve the accuracy of direct
clustering methods. We do not discuss them in this subsec-
tion.

Additionally, we do not present the results with 𝑁g = 4 and
higher because neither the direct approach nor the recursive
approach yields valid classifications in these cases. These
secondary mergers typically contribute far fewer GCs than the
most dominant ones, being insufficient to form a distinct core
in the multi-dimensional property space that stands out from
the background of dominant mergers. Any clustering method
that relies on the density or linkage distance tends to fail in
these cases.

Furthermore, the assembly histories of MW-like galaxies
show that most mergers occurred at around the same time or
earlier the GS/E (see Fig. 1; these galaxies experienced no ma-
jor mergers after the GS/E by construction). The GS/E-analog
can significantly perturb the orbits of previously accreted ex-
situ GCs, making them less distinguishable in the property
space. We provide an in-depth analysis on the impact of major
mergers in §6.1.

We quantitatively study the optimal number of groups that
represents the ex-situ population using the Bayesian Informa-
tion Criterion (BIC). The GMM is particularly suited for this
analysis, as it employs a likelihood-maximization method to fit
Gaussian components, where the BIC can be unambiguously
defined as:

BIC ≡ −2 lnLmax + 𝑘 ln 𝑛
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Figure 7. Classification results for progenitors of ex-situ GCs, with 𝑁g = 2 (top row) and 3 (middle row) for all ex-situ clusters, and 𝑁g = 2 for ex-situ clusters
excluding the most dominant merger (bottom row). Although we visualize the results in the [Fe/H]–𝐽𝑟 space, the classification is performed with more variables.
We use age, 𝐽𝑧 , [Fe/H], 𝐽𝜙 , 𝑟apo, 𝜀, and 𝐸 with Agglomerative Clustering for the top row, [Fe/H], 𝜀, 𝑟apo, 𝐸, and age with Agglomerative Clustering for the
middle row, and [Fe/H], 𝐽𝑟 , 𝐽𝑧 , 𝑟peri, and 𝐸 with K-means for the bottom row. The colors of filled dots represent the true labels, while those of the open circles
stand for the predicted progenitors. For reference, we also show the clusters from the most dominant merger as faint blue dots in the bottom row.

where Lmax is the maximized likelihood given by Eq. (1), 𝑛
is the number of data points, and 𝑘 is the number of model
parameters. In the case of 𝑁g-component GMM,

𝑘 = 𝑁g𝑁 (𝑁 + 1)/2 + 𝑁g𝑁 + (𝑁g − 1)
in which 𝑁 is the number of input variables. The first term
counts the independent elements in the covariance matrix, the
second term represents the number of mean values, and the
last term is the number of independent weights.

The BIC is useful for model selection. A lower BIC value
generally indicates better model, considering both the fit to
data and the number of parameters. In general, greater number
of groups increases the likelihood, therefore reducing the first
terms of BIC. However, the second term puts penalty on the
number of parameters, preventing 𝑁g from growing out of

control.
In Fig. 8 we plot the median BIC for various configurations

of variables with 𝑁g = 1− 5. We analyze the configura-
tions from 1D to 5D separately. We do not plot the BIC
for higher dimensions, where the curse of dimensionality be-
comes important. We find that the BIC reaches its minimum
at 𝑁g = 1 − 3. Greater numbers of groups are not favored as
they do not significantly improve the model’s ability to fit the
data while adding a large amount of parameters.

In addition to directly using the BIC, we also employ cross-
validation to assess the optimal number of groups. The pri-
mary aim of cross-validation is to prevent overfitting, which
can occur when a model has too many parameters. The cross-
validation process splits the data into a training set and a vali-
dation set. The model parameters are fitted using the training
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Figure 8. Bayesian information criterion for GMM as a function of number
of groups 𝑁g. The black curve (left axis) represents BIC on the full data,
while the red curve (right axis) is for the validation sets using five-fold cross-
validation. For each row, we fix the number of input variables and compute
the median BIC of all property configurations on the four galaxies. We show
the two BIC versions separately on two axes because they span distinct ranges.
A lower BIC indicates better fit to the data.

set, while the model’s performance is evaluated using the vali-
dation set. For the GMM specifically, we calculate the BIC for
the validation set based on the model trained with the training
set.

We adopt a five-fold cross-validation approach, where we
divide the data into five sets. Each set takes turns to serve as
the validation set, while the remaining four are combined as
the training set. We present the mean values of the five rounds
of calculations in Fig. 8, where the BIC of the training sets
increases monotonically with 𝑁g. Such an increasing trend
suggests that the problem of overfitting becomes more severe
with a larger number of groups. In the case of identifying
progenitors of ex-situ GCs, the overfitting often leads to mis-
classification. Therefore, using too many parameters not only
leads to inefficient modeling (as suggested by BIC) but also
causes problematic representation of the entire data set (as
suggested by cross-validation).

5. APPLICATION TO THE MILKY WAY GLOBULAR
CLUSTERS

In this section, we employ the classification methods we
have evaluated earlier to the real Galactic GCs. Before delv-
ing deep into the classification process, we first introduce the
observational data we adopt for the MW GCs. The 3D posi-
tions and 3D velocities of the MW GCs are from the fourth

edition of the Hilker et al. (2019) catalog6, which contains
more than 160 Galactic GCs. Utilizing this catalog, we calcu-
late 𝐽𝑟 , 𝐽𝜙 , 𝐽𝑧 , 𝜀, 𝑟 , 𝑟peri, 𝑟apo, and 𝐸 . These calculations are
performed using the agama software (Vasiliev 2019), assum-
ing an analytical MW potential from Belokurov et al. (2023).
This potential model resembles the three-component model
MWPotential2014 by Bovy (2015). However, it increases
the virial mass of the Navarro-Frenk-White halo component
to 1012 M⊙ , in agreement with the latest measurement of the
MW’s halo mass derived from stellar streams (Ibata et al.
2023). Additionally, the concentration parameter is adjusted
to 19.5 to match the circular velocity at the Solar radius. How-
ever, different choices of the potential model only slightly alter
the classification results as long as the model is consistent with
the observational constraints.

The metallicities of the MW GCs are from the 2010 edition
of the catalog by Harris (1996)7. This catalog provides metal-
licity measurements for 152 Galactic GCs. We cross match
this catalog with the Hilker et al. (2019) catalog, resulting in a
set of 150 clusters. Two clusters in the Harris (1996) catalog,
BH 176 and GLIMPSE02, do not appear in the Hilker et al.
(2019) catalog.

Unfortunately, a large number of MW GCs lack reliable
age measurements. Due to this limitation, we decided not to
include age as an input in our analysis here.

Throughout this section, we compare our classification re-
sults with Massari et al. (2019) and Belokurov & Kravtsov
(2024). Massari et al. (2019) classified the progenitors of
151 Galactic GCs, in which 146 are included in our sample.
They considered mainly the kinematics of GCs, including the
apocenter radius, maximum height above the disk, orbital cir-
cularity, specific angular momentum along and perpendicular
to the rotational axis, and specific energy. Instead of using un-
supervised clustering techniques, their classification is based
largely on prior knowledge of the progenitor galaxy proper-
ties. For instance, their criteria to identify in-situ clusters are
based on a selected GC sample on the in-situ branch of the
age–metallicity relation. Their classification is presented as
rectangular regions in these property spaces. If a GC is located
in the overlapping region of two rectangles, they refer to this
GC as a tentative candidate of both progenitors. We refer to a
GC “unambiguous” if these authors assigned the GC to only
one unique progenitor.

Belokurov & Kravtsov (2024) classified in-situ vs. ex-situ
origins for 165 Galactic GCs with measured kinematics us-
ing the same Hilker et al. (2019) catalogue as in our work.
They also applied the same gravitational potential to compute
the energy of GCs. Therefore, we can directly compare our
classification results with theirs in the IoM space, where these
authors used an empirical boundary to separate the in-situ and
ex-situ populations, see their Eq. (1). This boundary was care-
fully selected to isolate in-situ and accreted field stars within
the range of metallicities where their classification is robust.
Although the two GC populations have distinct distributions
in other parameter spaces, such as the [Mg/Fe]–[Al/Fe] and
age–metallicity planes, the boundary in the 𝐸 − 𝐿𝑧 space pro-
vides a more clear separation between the two populations.
They showed that using machine learning methods cannot
substantially improve the classification accuracy in the 𝐸 − 𝐿𝑧

space.
We follow the same pipeline used in our previous analysis

6 https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
7 https://physics.mcmaster.ca/˜harris/mwgc.dat

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
https://physics.mcmaster.ca/~harris/mwgc.dat
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to classify the MW GCs. That is, first we categorize GCs
into in-situ and ex-situ groups and then identify progenitors
of ex-situ GCs. Given that direct clustering methods (§3.1)
generally perform comparably or better to the dimensionality
reduction approach (§3.2) and the hybrid methods combining
clustering and supervised classification (§3.3), we concentrate
solely on direct clustering methods in this section.

We use a novel Bayesian approach to combine results from
various clustering methods. Each configuration of GC prop-
erties, associated with a specific clustering method, forms a
unique “classifier”. There are 5 × (29 − 1) = 2555 classi-
fiers, excluding the age variable. To ensure the reliability of
the combined results, we only consider classifiers with a mini-
mum accuracy greater than 78%. However, we have tested that
setting a different threshold from 50% to 80 % only influences
the assignment of 3 GCs. This threshold is selected just to en-
sure the number of valid classifiers 𝑁c is around 10−100. Too
few classifiers leads to under-representation, while too many
classifiers may bias the classification due to the large number
of correlated classifiers, as discussed later.

We combine the classification results using Bayes’ theorem,

𝑃post (𝑧𝑖 = 𝑗) =
𝑃prior (𝑧𝑖 = 𝑗)∏𝑁c

𝑘=1 𝑃(𝑘 |𝑧𝑖 = 𝑗)
𝑃marginal

(2)

where 𝑧𝑖 ∈ {in-situ, ex-situ} stands for the origin of the 𝑖-th
data point, and 𝑃prior is the prior probability which is assumed
to be 0.5. The denominator

𝑃marginal ≡𝑃prior (𝑧𝑖 = 𝑗)
𝑁c∏
𝑘=1

𝑃(𝑘 |𝑧𝑖 = 𝑗)

+𝑃prior (𝑧𝑖 ≠ 𝑗)
𝑁c∏
𝑘=1

𝑃(𝑘 |𝑧𝑖 ≠ 𝑗)

denotes the marginal probability. The products stand for the
conditional probability of 𝑖-th data point being classified in-
situ/ex-situ by all classifiers 𝑘 = 1, 2, · · · , 𝑁c, if it is indeed
in-situ/ex-situ. We assume the independence of classifiers
so that the joint probability equals the product of individual
conditional probabilities, which is given by

𝑃(𝑘 |𝑧𝑖 = 𝑗) =
{
𝑃𝑘 , if 𝑧𝑘

𝑖
= 𝑗

1 − 𝑃𝑘 , if 𝑧𝑘
𝑖
≠ 𝑗

in which 𝑧𝑘
𝑖

is the classification result of the 𝑖-th data point
by the 𝑘-th classifier, and 𝑃𝑘 is the accuracy of the classifier.
To label the groups as either in-situ or ex-situ, we define the
group with greater mean metallicity and mean circularity, and
lower mean energy as in-situ.

Note that when the accuracy of a classifier 𝑃𝑘 = 0.5, it
can be factored out from both the numerator and denominator
of Eq. (2). Therefore, classifiers with an accuracy of 0.5 do
not contribute to the calculation of posterior accuracy. This
is consistent with our definition of accuracy, which is greater
than or equal to 0.5 by construction (see Appendix A for the
case of 𝑁g = 2).

We use the posterior probability derived from the Bayesian
framework to define in-situ vs. ex-situ origins. Specifically,
clusters with the posterior probability 𝑃post (𝑧𝑖 = in-situ) > 0.5
are classified as in-situ. The remaining clusters are categorized
as ex-situ.

We illustrate the classification result in Fig. 9. There are
94 out of the 150 Galactic GCs being classified as in-situ.

The majority of the in-situ clusters are located in the high-
metallicity and low-𝐽𝑟 region of the [Fe/H]–𝐽𝑟 space and the
low-energy and positive-𝐿𝑧 region of the IoM space. There
are around 10 in-situ clusters located in relatively high-energy
region with 𝐸 > 1.5 × 105 km2 s−2. However, these clusters
are still distinguishable from the ex-situ GCs since they are
on circular and prograde orbits with 𝐿𝑧 close to the maximum
value.

It is notable that the posterior probability only depends
weakly on the prior 𝑃prior in our analysis. We find 1% <
𝑃prior < 99% doesn’t change the posterior classification of
in-situ vs. ex-situ clusters. For most selections of 𝑃prior, the
posterior probability is extremely close to either 0 or 1 with
offset even less than 1%, supporting the robustness of the
classification results.

As mentioned before, there would be more than 100 valid
classifiers if we reduce the accuracy threshold to a lower value
of 75%. While an increase in the number of classifiers makes
the analysis more comprehensive, having too many classifiers
may overestimate the confidence level of the results. This
is because a large group of correlated classifiers violates the
assumption of independence. When many classifiers are cor-
related, the effective number of independent classifiers be-
comes overestimated, leading to over-confidence in the pos-
terior probabilities. Nevertheless, despite this potential issue,
the actual results using a threshold of either 78% or 75% are
very similar, with a difference of only one GC.

For comparison with Belokurov & Kravtsov (2024), we in-
clude their boundary in the IoM spaces on Fig. 9. Based on
whether a GC has a lower or higher energy than this boundary,
they classified GCs as either in-situ or ex-situ, respectively.
Our classification results largely align with theirs, and only
three ex-situ clusters in this work (NGC 6205, 7078, and 7099)
were assigned as in-situ by these authors. These three clusters
are located near the boundary in nearly all nine variables we
considered, while being slightly more clustered towards the
ex-situ group in our analysis. The alignment with Belokurov
& Kravtsov (2024) supports their conclusion that the boundary
in the IoM space provides reliable classification. For the case
of the MW we cannot significantly improve the separation by
adding 8 more observables. However, this does not indicate
that the other observables are useless. We need all the observ-
ables to accurately detect the clustering features and to define
the hyperplane separating the in-situ and ex-situ clusters. Our
result shows that this hyperplane is near-perpendicular to the
IoM space, where we can simplify the separation into a line.

Moreover, all in-situ GCs by Massari et al. (2019), except
for one (NGC 7078), are also classified as in-situ in this work.
Notably, the group they referred to as the “low-energy group” is
now entirely classified as in-situ, in agreement with Belokurov
& Kravtsov (2024), who found that this group has no distinct
clustering characteristics in the IoM space or the [Mg/Fe]–
[Al/Fe] plane. Here, we extend the conclusion to all nine
variables, as our clustering methods do not detect distinct
clustering signatures for the “low-energy group” across all nine
GC properties we considered. Conversely, the “high-energy
group” identified by Massari et al. (2019) is now classified as
ex-situ in our analysis.

Next, we focus on the ex-situ clusters and split them into
two groups. One group stands for the GS/E and the other for
the remaining clusters. We use a Bayesian approach adopt-
ing classifiers’ accuracy evaluated from §4.1. The group with
lower energy is labeled GS/E. We lower the accuracy threshold
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Figure 9. Classification results for the Galactic GCs in the [Fe/H]–𝐽𝑟 space (left column) and IoM space (right column). The results are combined from various
classifiers using a Bayesian approach, as detailed in the text. All panels show the in-situ population as red squares. This population is the same for all rows
because our classification of in-situ vs. ex-situ GCs is robust. The top row shows the 𝑁g = 2 classification of all ex-situ GCs without prior knowledge, i.e., purely
unsupervised clustering. We mark the group associated with GS/E as blue triangles. For comparison, we also show the GCs unambiguously assigned to the
Sagittarius dwarf (cyan), Helmi streams (green), and Sequoia galaxy (magenta) by Massari et al. (2019, M19) as open circles. In the middle row, we incorporate
prior knowledge by excluding the classifiers that put more than 1 unambiguous GC from any of the three progenitors to GS/E. Based on this classification, we
again split the remaining GCs into two groups (bottom row). We highlight the group corresponding to the Sagittarius dwarf as cyan triangles. For reference,
we plot the circular angular momentum 𝐿circ in the IoM space as the dashed curves. We also show the classification boundary by Belokurov & Kravtsov (2024,
BK23) in the IoM space as the solid curve for comparison.
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Table 4
Predicted progenitors for 150 MW GCs analyzed in this work (middle columns) and Massari et al. (2019, M19, right columns). “L-E” and “H-E” are the

low-energy and high-energy groups, respectively; “Sag” stands for the Sagittarius dwarf; “Helmi” for the Helmi streams; and “Seq” for the Sequoia galaxy.
A plain ASCII version is available at https://umich.edu/˜ognedin/mw_gc_classification.txt.

Cluster This work M19 Cluster This work M19 Cluster This work M19
1636-283 in-situ in-situ Pal 11 in-situ in-situ NGC 2808 GS/E GS/E
BH 261 in-situ in-situ Ter 1 in-situ in-situ NGC 288 GS/E GS/E
Djor 2 in-situ in-situ Ter 2 in-situ in-situ NGC 362 GS/E GS/E
HP 1 in-situ in-situ Ter 3 in-situ in-situ NGC 4147 GS/E GS/E

IC 1276 in-situ in-situ Ter 4 in-situ in-situ NGC 5286 GS/E GS/E
Lynga 7 in-situ in-situ Ter 5 in-situ in-situ NGC 6205 GS/E GS/E

NGC 104 in-situ in-situ Ter 6 in-situ in-situ NGC 6229 GS/E GS/E
NGC 4372 in-situ in-situ Ter 9 in-situ in-situ NGC 6341 GS/E GS/E
NGC 5927 in-situ in-situ Ter 12 in-situ in-situ NGC 6779 GS/E GS/E
NGC 6171 in-situ in-situ NGC 5946 in-situ L-E NGC 6864 GS/E GS/E
NGC 6218 in-situ in-situ NGC 5986 in-situ L-E NGC 7089 GS/E GS/E
NGC 6266 in-situ in-situ NGC 6093 in-situ L-E NGC 7099 GS/E GS/E
NGC 6293 in-situ in-situ NGC 6121 in-situ L-E NGC 7492 GS/E GS/E
NGC 6304 in-situ in-situ NGC 6139 in-situ L-E Pal 2 GS/E GS/E?
NGC 6316 in-situ in-situ NGC 6144 in-situ L-E NGC 5634 GS/E Helmi/GS/E
NGC 6325 in-situ in-situ NGC 6254 in-situ L-E NGC 5904 GS/E Helmi/GS/E
NGC 6342 in-situ in-situ NGC 6256 in-situ L-E NGC 6981 GS/E Helmi
NGC 6352 in-situ in-situ NGC 6273 in-situ L-E NGC 7078 GS/E in-situ
NGC 6355 in-situ in-situ NGC 6287 in-situ L-E NGC 6426 GS/E H-E
NGC 6356 in-situ in-situ NGC 6333 in-situ L-E NGC 6584 GS/E H-E
NGC 6362 in-situ in-situ NGC 6401 in-situ L-E Arp 2 Sag Sag
NGC 6366 in-situ in-situ NGC 6402 in-situ L-E NGC 2419 Sag Sag
NGC 6380 in-situ in-situ NGC 6441 in-situ L-E NGC 6715 Sag Sag
NGC 6388 in-situ in-situ NGC 6453 in-situ L-E Pal 12 Sag Sag
NGC 6397 in-situ in-situ NGC 6517 in-situ L-E Ter 7 Sag Sag
NGC 6440 in-situ in-situ NGC 6541 in-situ L-E Ter 8 Sag Sag
NGC 6496 in-situ in-situ NGC 6544 in-situ L-E Whiting 1 Sag Sag
NGC 6522 in-situ in-situ NGC 6681 in-situ L-E AM 1 Sag H-E
NGC 6528 in-situ in-situ NGC 6712 in-situ L-E Eridanus Sag H-E
NGC 6539 in-situ in-situ NGC 6809 in-situ L-E Pal 3 Sag H-E
NGC 6540 in-situ in-situ Pal 6 in-situ L-E Pal 4 Sag H-E
NGC 6553 in-situ in-situ Ton 2 in-situ L-E Pyxis Sag H-E
NGC 6558 in-situ in-situ NGC 6535 in-situ L-E/Seq AM 4 Sag -
NGC 6569 in-situ in-situ Djor 1 in-situ GS/E NGC 5694 other H-E
NGC 6624 in-situ in-situ NGC 4833 in-situ GS/E NGC 6934 other H-E
NGC 6626 in-situ in-situ NGC 5897 in-situ GS/E Pal 14 other H-E
NGC 6637 in-situ in-situ NGC 6235 in-situ GS/E NGC 5824 other Sag
NGC 6638 in-situ in-situ NGC 6284 in-situ GS/E Pal 15 other GS/E?
NGC 6642 in-situ in-situ Ter 10 in-situ GS/E NGC 6101 other Seq/GS/E
NGC 6652 in-situ in-situ NGC 5139 in-situ GS/E/Seq NGC 3201 other Seq/GS/E
NGC 6656 in-situ in-situ E 3 in-situ Helmi? IC 4499 other Seq
NGC 6717 in-situ in-situ 2MASS-GC02 in-situ - NGC 5466 other Seq
NGC 6723 in-situ in-situ Liller 1 in-situ - NGC 7006 other Seq
NGC 6749 in-situ in-situ UKS 1 in-situ - Pal 13 other Seq
NGC 6752 in-situ in-situ ESO-SC06 GS/E GS/E NGC 4590 other Helmi
NGC 6760 in-situ in-situ IC 1257 GS/E GS/E NGC 5024 other Helmi
NGC 6838 in-situ in-situ NGC 1261 GS/E GS/E NGC 5053 other Helmi

Pal 1 in-situ in-situ NGC 1851 GS/E GS/E NGC 5272 other Helmi
Pal 8 in-situ in-situ NGC 1904 GS/E GS/E Pal 5 other Helmi?
Pal 10 in-situ in-situ NGC 2298 GS/E GS/E Rup 106 other Helmi?

https://umich.edu/~ognedin/mw_gc_classification.txt
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from 78% to 69% to obtain a sufficient number of valid clas-
sifiers since the accuracy of identifying the GS/E population
is generally lower. We show this classification in the top row
of Fig. 9.

Our classification associates 37 ex-situ GCs to the GS/E
merger. These GCs are in the low-energy region and have
lower 𝐽𝑟 but similar metallicity to other ex-situ GCs. This
is mostly consistent with observations, except for the Helmi
streams and the Sequoia galaxy. For example, Massari et al.
(2019) unambiguously assigned five GCs to the Helmi streams
and four to the Sequoia galaxy. However, seven of them are
categorized to the GS/E in our classification, indicating that
these GCs have indistinguishable clustering features to the
GCs from the GS/E.

We state that “unambiguous GCs” refer to GCs assigned to a
single progenitor by Massari et al. (2019). It is not necessarily
true that such assignments are absolutely correct. However,
in order to align more closely with the prior knowledge and
produce classification more consistent with generally agreed
results, we further refine our approach by excluding classifiers
that assign more than one GC from any one of the unambiguous
groups (Sagittarius, Helmi, and Sequoia) by Massari et al.
(2019). The updated classification, shown in the middle row
of Fig. 9, associates 26 GCs with the GS/E. Compared to
the previous “no prior” classification, only one unambiguous
cluster that was assigned to the Helmi streams by Massari et al.
(2019), NGC 6981, is still in the GS/E group. NGC 6981 was
also associated with the “Kraken” merger by Kruijssen et al.
(2019b). This uncertainty suggests that more data beyond
the variables we used are needed to accurately determine this
cluster’s progenitor.

Interestingly, only two clusters in the “high-energy group”
by Massari et al. (2019) are associated with the GS/E in this
work, while the rest are linked to other progenitor galaxies,
supporting their interpretation that the “high-energy group”
consists of clusters accreted from various low-mass progeni-
tors.

Finally, we aim to identify the second most massive merger
from the ex-situ GCs excluding the GS/E. Direct classification
into three groups (𝑁g = 3 case in §4.2) does not yield any result
that can be self-consistently explained by prior knowledge.
We thus do not present results from this approach. We also
do not proceed to identify more mergers since none of the
classifiers show convincing performance for more than three
groups (§4.2). Since the classification of GS/E is refined with
prior knowledge and is more likely to be correct, we proceed
with the recursive approach in §4.2 to split remaining GCs
into two groups, hoping that the error of classifying GS/E is
less influential.

Using the Bayesian method with an accuracy threshold of
68%, we find that one of the groups resembles the Sagittarius
dwarf. This group consists of 13 GCs, located in the high-
energy and 𝐿𝑧 ≳ 0 region in the IoM space. Remarkably, seven
of the eight GCs unambiguously assigned to the Sagittarius
dwarf by Massari et al. (2019) fall into this group. The one
exception is NGC 5824, which was also not among the six
most definite Sagittarius GCs suggested by these authors. The
exception is consistent with Bellazzini et al. (2020), where
NGC 5824 fails to meet all three selection criteria by these
authors. No GC from other unambiguous progenitors falls into
this group. We detail the classification results for individual
GCs in Tab. 4, along with the comparison with Massari et al.
(2019).

6. DISCUSSION
6.1. Evolution of orbital parameters

The idea of identifying progenitor galaxies using GC prop-
erties is built upon the assumption that GCs preserve intrin-
sic properties they inherited from their original host galaxies.
These properties are presumed to be distinct enough from
those of GCs of other populations. In this subsection, we in-
vestigate the validity of this assumption, exploring how galaxy
mergers influence the distribution of GC orbital properties.

We use galaxy 519311 as a case study. This galaxy has
a notable number of significant mergers (five in total, con-
sidering the early-accreted one) and has been well studied in
previous works (e.g. Chandra et al. 2023). The insights and
conclusions from this case study apply to other galaxies as
well. This investigation helps us understand the degree to
which GCs maintain their original characteristics during key
galaxy assembly events.

We study the distribution of GCs of 519311 in various
property spaces to understand how their properties evolved
over time. In Fig. 10 we present the evolution of GC distri-
butions in the IoM (𝐿𝑧–𝐸), normalized IoM (𝜀–𝑒), and action
(𝐽𝑟–𝐽𝑧) spaces. When computing the energy and actions at a
past epoch, we define the orientation of the galaxy disk based
on the angular momentum of all stellar particles in the galaxy
at that time. Note that this orientation was not static. It has
rotated by approximately 60 degrees over time, as detailed in
Chandra et al. (2023). For clarity, in every panel we show the
same GCs that survived to the present.

We focus specifically on four important epochs: 1) before
the merger with the early-accreted galaxy 519311-c, 2) after
the merger with c, 3) before the merger with the most domi-
nant satellite 519311-b, and 4) after the merger with b. We
discuss in detail these two significant mergers in the following
subsections.

6.1.1. Impact of the early-accreted galaxy

The satellite galaxy 519311-c is an ancient galaxy that
merged with the central galaxy more than 11.4 billion years
ago. It quickly dissolved within 1 Gyr after the infall. As
shown in Fig. 1, 519311-c was once a galaxy of comparable
mass to the central galaxy. Therefore, the merger was quite
violent allowing a significant fraction of the merging GCs to
penetrate the low-energy region near the galactic center. These
GCs also tend to have lower 𝐽𝑟 and 𝐽𝑧 as they migrated to inner
orbits within the central galaxy.

The merger not only affected the GCs from 519311-c itself
but also had a notable impact on the in-situ clusters. The
normalized energy of the in-situ clusters increased from 𝑒 ≈
−0.7 to −0.6 as a result of the merger. The normalized energy
of the in-situ clusters remained relatively stable for the next
11 Gyr after the merger with 519311-c.

The merger with the early-accreted satellite strongly influ-
enced the distributions of both merging and in-situ GCs. Con-
sequently, the two GC populations were significantly mixed in
all three spaces we examined. Such extensive mixing makes
it challenging to differentiate these GCs based solely on their
kinematics. Furthermore, both the GCs from the satellite and
the old in-situ population (age > 11.4 Gyr) have comparable
metallicities. This is because the host galaxies of both popu-
lations had similar mass at the time of GC formation. In our
model a cluster’s metallicity is determined by the formation
time and the mass of its host galaxy, see Eq. (6) in CG24.

Consequently, it is challenging to distinguish ancient merg-
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ers with galaxies of comparable masses to the central from
the in-situ component. Moreover, the concept of a “main-
progenitor galaxy” is less clear during the early stages of
galaxy formation. Many “satellites” during this period were
almost as massive as the main progenitor, leading to a “bottom-
up” assembly where small galaxies combined to form larger
structures. Given these considerations, we choose not to dif-
ferentiate between the early-accreted GCs and the in-situ ones
as mentioned in §3.

6.1.2. Impact of the most dominant merger

The merger between 519311 and 519311-b is a key event
in this galaxy’s assembly history. This merger resembles the
GS/E merger in several aspects. It began around 𝑡lookback =
8 Gyr and continued for 2 − 3 Gyr until the satellite fully
dissolved. The orbit was almost radial, and the mass ratio was
close to unity.

Although the merger ratio is high, the GCs from b did not
penetrate the low-energy region near the galactic center as
deeply as those from 519311-c. This is likely because 1)
the merger with b lasted much longer than the merger with
c, resulting in a less violent process compared to the intense
merger with c; and 2) the central galaxy already developed a
deeper gravitational potential well at the time of merger with
b, preventing the merging GCs from b from reaching the inner
orbits of low energy.

However, GCs from b still reached lower-energy regions
than other mergers with d, e, and f. These smaller satellites
were accreted and dissolved before b (but still after c). We
notice that the GCs of these less dominant mergers had more
clustered and distinct distributions in the IoM space and action
space prior to the accretion of b. However, the subsequent
merger with b broadened the distribution of actions of these
GCs and caused significant overlap.

To understand how much the merger with b made the GCs
from d, e, and f less distinct from the rest of the GCs, we
need to quantify the distinction of satellite GC populations
before and after the merger. This can be measured using the
KL divergence between the GCs from a given satellite and all
other GCs. The KL divergence (Kullback & Leibler 1951)
is a statistical measure quantifying the distance between two
probability density functions (PDFs), say, 𝑝 and 𝑞. It is defined
as:

𝐷KL (𝑝∥𝑞) ≡
∫ ∞

−∞
𝑝(𝑥) ln

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥. (3)

If 𝑝 and 𝑞 are identical, we have 𝐷KL = 0, indicating that the
two PDFs are indistinguishable. The greater the KL diver-
gence, the easier it is to separate the two PDFs. For reference,
the KL divergence between two 1D univariate Gaussian dis-
tributions with the difference of the means equal 2 standard
deviations is 𝐷KL = 2. These two distributions have an overlap
fraction of 32%, which can serve as an estimate of expected
classification error. The divergence 𝐷KL = 5 corresponds to
a displacement =

√
10 standard deviations, with an overlap

fraction of 11%.
We set 𝑝 as the PDF of GCs from a given progenitor, and

𝑞 as the PDF of all other GCs, including the in-situ ones. To
calculate the probability distribution from discrete data points,
we apply the Gaussian kernel density estimation (KDE) tech-
nique. In the IoM space, we set the bandwidth of the kernel to
be Δ𝐿𝑧 = 0.4× 103 kpc km s−1 and Δ𝐸 = 0.15× 105 km2 s−2.
These values are selected to approximate the average separa-
tion between GCs in the 𝐿𝑧 and 𝐸 directions, respectively.

Similarly, we set bandwidth to be Δ𝜀 = 0.12, Δ𝑒 = 0.06, and
Δ log 𝐽𝑟 = Δ log 𝐽𝑧 = 0.3 dex for the normalized IoM space
and action space. We plot the contours enclosing 75% of the
total number of GCs for each progenitor in Fig. 10. Then, we
numerically approximate the KL divergence utilizing impor-
tance sampling:

𝐷KL (𝑝∥𝑞) ≈
1
𝑛

∑︁
𝑥∈𝑋

𝑝(𝑥)
𝑟 (𝑥) ln

𝑝(𝑥)
𝑞(𝑥)

where 𝑋 is a set of 𝑛 points sampled from distribution 𝑟 . To
simplify this for our case, we take 𝑋 to be the GCs from the
progenitor, which by construction follow the distribution 𝑝.
Thus, the expression becomes

𝐷KL(𝑝∥𝑞) ≈
1
𝑛

∑︁
𝑥∈𝑋

ln
𝑝(𝑥)
𝑞(𝑥) .

Before the merger with 519311-b, the KL divergence val-
ues for d, e, and f in the IoM space were 5.1, 4.1, and 5.4,
respectively. Given the reference values for the Gaussian dis-
tributions, that should be sufficient to classify the satellite GCs
with an accuracy ≳ 90%. After the merger, these values de-
creased to 2.8, 3.5, and 2.9. That is a significant change that
makes the classification more difficult. We observe similar
trends in the normalized IoM space, with KL divergence de-
creasing from 4.7 to 3.3 (d), 3.3 to 2.3 (e), and 5.1 to 1.8 (f);
and in the action space: 2.2 to 1.1 (d), 2.3 to 1.5 (e), and 2.4
to 1.8 (f). These numbers quantitatively demonstrate how the
GS/E-like merger disturbed the GC distributions from previ-
ous satellites, making them less distinguishable. The impact
of the merger was significant due to its mass and the reorien-
tation of the galactic disk by about 60 degrees, which altered
the computation of orbital actions, especially the orientation-
sensitive 𝐿𝑧 .

After the merger with 519311-b, the IoM and action distri-
butions for GCs from all progenitors remained relatively stable
over the next 6 Gyr, up to the present. The KL divergence for
d, e, and f showed little change, with some even increased
slightly up to 30%. This stability suggests that energy and
actions are reliable tracers of the progenitor’s properties in the
absence of major disruptive merger events. This conclusion
is valid in the last 10 Gyr of the MW assembly history, which
is relatively quiescent. However, the significant perturbations
by GS/E had a significant effect on the kinematics of GCs
accreted before the merger, making them less distinguishable.
This disruptive merger also explains the difficulty in identify-
ing smaller progenitor galaxies beyond GS/E, as discussed in
§4.2. A real-world example of such progenitors influenced by
the GS/E is the Sequoia event, which likely merged with the
Galaxy around the same time as or prior to the GS/E (Myeong
et al. 2019; Forbes 2020; Valenzuela et al. 2023). Conversely,
the Sagittarius dwarf galaxy merged later, preventing its GC
kinematics from being perturbed by the GS/E. Consequently,
independent studies have consistently classified the GCs from
Sagittarius as a distinct high-energy group with prograde mo-
tion in the IoM space.

6.2. Merger properties revealed by GCs
This section investigates how well GCs reveal the merger

characteristics of their progenitor galaxies. We analyze five
key features: the infall time 𝑡infall when the progenitor reached
its maximum mass, the dissolution time 𝑡dissolve when the halo
finder no longer identifies this galaxy, the merger duration
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Figure 10. Evolution of GCs that survive to the present day in galaxy 519311 in the IoM space (𝐿𝑧–𝐸, top row), normalized IoM space (𝜀–𝑒, middle row),
and action space (𝐽𝑟–𝐽𝑧 , bottom row). The contours enclose 75% of GC number (after Gaussian KDE smoothing) in each progenitor. From left to right, the 5
columns refer to the epochs 1) before the merger with 519311-c, 2) after the merger with c, 3) before the merger with 519311-b, 4) after the merger with b, and
5) at present. We emphasize the merging 519311-c and b GCs as thicker contours in the relevant panels.

𝑡dur ≡ 𝑡infall − 𝑡dissolve, the progenitor mass at infall 𝑀 infall
h , and

the ratio of 𝑀 infall
h to the central galaxy mass at infall. In Fig. 11

we show the Pearson correlation coefficients 𝑟 between these
merger characteristics and important GC features, including
the total number 𝑁GC and mass 𝑀GC of surviving clusters,
and the mean and standard deviation of the other properties
considered in this work.

We note strong correlations (𝑟 > 0.8) between the current
radius and apocenter/pericenter radii of GCs. For clarity, we
only analyze the current radius in this section. The apocen-
ter/pericenter radii follow similar trend as the radius.

The following subsections discuss the best indicators of
these five merger characteristics, focusing on those with
strongest correlation or anti-correlation.

6.2.1. Infall mass

The total mass of the GC system has the strongest correlation
with the mass of their progenitor galaxy at infall. This relation-
ship is remarkably linear, 𝑀GC ≈ 3 × 10−5𝑀 infall

h . Even more
surprising, it is described by the same equation as the well-
established relation for present-day galaxies in a very wide
range of mass 𝑀h = 108 − 1014 M⊙ (Harris et al. 2015; Forbes
et al. 2018): 𝑀GC = 3× 10−5𝑀h. We show this linear relation
in Fig. 12. We also show the best-fitting power-law relation

from Chen & Gnedin (2023), which is similar: 𝑀GC ∝ 𝑀0.93
h .

Here we find that the linear relation extends to the merged
progenitor galaxies and their surviving GC populations. This
result provides a unique proxy of the maximum mass of satel-
lite galaxies at infall based on the mass of their accreted GC
population.

The prediction that the 𝑀GC–𝑀 infall
h relation of the pro-

genitor galaxies follows the same scaling as 𝑀GC–𝑀h of the
surviving galaxies is remarkable. Our model provides two
key insights to understand this. First, our model links the ini-
tial mass of a cluster population 𝑀 init

GC to the gas mass of the
progenitor galaxy. At high redshift, when majority of satel-
lite GCs form, the gas mass is nearly proportional to the total
halo mass. If each population maintains the linear 𝑀GC–𝑀h
relation, the sum of all GC populations will also obey the
same linear relation. Therefore, the sum of initial masses of
GCs in a given progenitor galaxy would be proportional to
the galaxy mass at the epoch when GC formation stops. In
our model, this happens when the progenitor mass no longer
increases by a substantial amount, see §2.1. This epoch usu-
ally corresponds to the infall onto the central galaxy. Thus
we expect 𝑀 init

GC ∝ 𝑀 infall
h . Fig. 12 shows indeed that satellite

galaxies obey such a linear relation, with the normalization
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Figure 11. Pearson correlation map between properties of progenitor galaxies and the surviving GC populations. Important pairs with the correlation coefficient
|𝑟 | > 0.8 are highlighted with white circles.

𝑀 init
GC ≈ 5× 10−4𝑀 infall

h . Individual progenitors of course have
significant scatter around the mean relation, as a result of the
different mass assembly histories leading to the same 𝑀 infall

h .
This “initial” GC mass is not an actual mass of a GC system
at any epoch because clusters continuously lose mass due to
stellar evolution and tidal disruption. The evolution is very
significant: by the present time, that initial mass is reduced by
a factor of 10−20.

Second, as suggested by detailed galaxy formation simula-
tions discussed in Meng & Gnedin (2022), the average rate
of tidal disruption experienced by ex-situ clusters before their
progenitor dissolution is similar to that experienced by in-situ
clusters. Therefore, we may expect comparable reduction of
in-situ and ex-situ 𝑀GC before infall. After infall, the ex-
situ clusters are typically located at larger distances from the
central galaxy than their in-situ counterparts and experience
weaker tidal fields. Nevertheless, Meng & Gnedin (2022) find
that at least at 𝑧 > 1.5, the ex-situ disruption rate is lower only
by a factor 1.5 − 2. Such a difference is small compared to
the 0.4 dex scatter of the 𝑀GC–𝑀h relation (Chen & Gnedin
2023). In addition, individual GCs in satellite progenitors typ-
ically have lower mass and disrupt faster than more massive
in-situ clusters for a given strength of the tidal field (see §2.2.2
in CG24). The two effects go in the opposite directions and
largely cancel each other. Therefore, the dynamical disrup-
tion of the in-situ and ex-situ GCs is similar and preserves the
linearity of the 𝑀GC–𝑀 infall

h relation.

6.2.2. Merger ratio

The merger ratio, defined as the mass ratio between a pro-
genitor galaxy and the central galaxy at infall, also shows a
positive correlation with the total mass of globular clusters,
although with a lower correlation coefficient. This is likely a
consequence of the 𝑀GC–𝑀 infall

h correlation, with the variation
in the central galaxy mass increasing the scatter.

We also notice that the merger ratio correlates with the stan-
dard deviation of the orbital energy. This correlation is ob-
served not just for 𝐸 but also for most kinematic variables, with
the exception of 𝐽𝜙 . This is because 1) more massive progen-
itor galaxies tend to have a greater intrinsic dispersion in the
kinematics, and 2) more massive mergers have a more disrup-
tive effect compared to minor ones. They can more effectively
disturb the distribution of GCs across the multi-dimensional
kinematic space, leading to an increased dispersion in these
properties.

6.2.3. Infall time

The infall time of a progenitor galaxy is closely linked to
the age of its GC population. As the formation of GCs in
these progenitor galaxies was shut down after 𝑡infall, all these
clusters must have 𝑡infall < age < 𝑡universe. Therefore, the
mean age increases with 𝑡infall while the standard deviation𝜎age
decreases with 𝑡infall. On the other hand, the infall time does
not show significant correlation with the other GC properties.

In practice, the age measurement for Galactic GCs typically
has errors ≳ 1 Gyr, which is insufficient to resolve the infall
order of the progenitor galaxies, especially since all satellites
were likely accreted over a period ∼ a few Gyr, as shown in
Fig. 1. However, since calculating the age dispersion requires
only relative ages, it is potentially a more reliable indicator of
𝑡infall than the average age which requires determination of the
absolute ages.

6.2.4. Dissolution time and merger duration

The dissolution time 𝑡dissolve approximates when satellite
GCs were migrated into the central galaxy. This variable has
a notable anti-correlation with the mean of log 𝑟 and log 𝐽𝑟
because the central galaxy was less massive if the progenitor
galaxy dissolved earlier, resulting in a shallower gravitational
potential. Those GCs could more easily acquire inner low-
energy orbits, leading to lower 𝑟 and 𝐽𝑟 .

The merger duration 𝑡dur, defined as 𝑡infall − 𝑡dissolve, is nega-
tively correlated with 𝑡dissolve due to the narrower range of 𝑡infall
(see Fig. 1). This means that 𝑡dur also carries the opposite cor-
relations of 𝑡dissolve with the other GC properties, including
mean log 𝑟 and log 𝐽𝑟 .

6.3. Comparison with Trujillo-Gomez et al. (2023)
The recent study by Trujillo-Gomez et al. (2023) has a sim-

ilar motivation to ours. These authors employed a supervised
artificial neural network classifier, trained on around 700 sim-
ulated galaxies of various mass from the E-MOSAICS project.
The classifier categorizes each GC as in-situ or ex-situ using
only extragalactic observables. By evaluating their method on
a test set of around 200 galaxies, they achieved an accuracy
≲ 90% for the unambiguously identified clusters.

Their classifier utilizes a range of input variables from three
categories, 1) galaxy properties: total stellar mass, effective
radius, mean iron abundance, mean oxygen-to-iron ratio, stel-
lar velocity dispersion; 2) GC system properties: total number
of clusters, cluster velocity dispersion; and 3) properties of in-
dividual GCs: iron abundance, oxygen-to-iron ratio, projected
galactocentric radius, line-of-sight velocity, projected rotation
velocity, projected angular momentum. Some of these vari-
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progenitor galaxies is shown by filled symbols (color scheme as in Fig. 1). A
linear relation 𝑀GC = 3 × 10−5𝑀 infall
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GC = 5× 10−4𝑀 infall
h . For comparison,

we plot the combined mass of all surviving GCs in the central galaxy against
its present-day mass 𝑀h as the dark gray symbols. In addition, we show
the observed 𝑀GC–𝑀h relations from Harris et al. (2017, solid circles with
errorbars) and Forbes et al. (2018, open circles). These data can be fitted
by the power-law function 𝑀GC ∝ 𝑀0.93

h from Chen & Gnedin (2023), with
intrinsic scatter shown as the shaded band.

ables are measured in different units and count as multiple
entries.

The authors also calculated permutation importance, i.e.,
how much the classification result is affected by randomly
shuffling one of the input variables, to assess the impact of
each variable on the classification outcome. They found the
metallicity (iron abundance and oxygen-to-iron ratio) to be the
most important GC property for their purpose. This agrees
with our findings, where the metallicity appears as a critical
variable in the best configurations for identifying in-situ vs.
ex-situ GCs (see Tables 1 and 2).

Our work differs from Trujillo-Gomez et al. (2023) as we
specifically focus on MW-analog galaxies and aim to classify
not only the in-situ vs. ex-situ but also the progenitors of
ex-situ clusters. We therefore analyze a selected sample of
simulated galaxies matching various observational constraints
on the MW. We also take advantage of the available 3D posi-
tions and 3D velocities of MW GCs. This allows us to compute
more kinematic characteristics in addition to the extragalactic
observables. Therefore, although seemingly similar, the moti-
vation and the application areas of the two works are different.

The inclusion of more kinematic characteristics in our anal-
ysis directly improves the classification accuracy. Although
Trujillo-Gomez et al. (2023) reported an accuracy of around
90% for the unambiguously classified GCs, a significant num-
ber of other clusters remain unclassified. They considered a
GC to be unambiguously classified if its probability of being
either in-situ or ex-situ exceeds a threshold of 𝑃thresh = 0.79.
This leads to about 40% of the clusters left as ambiguous.
By lowering 𝑃thresh to 0.5, where all clusters are classified as

either in-situ or ex-situ (the same as our definition), their accu-
racy drops to around 80%. In comparison, our best algorithms
achieve ≈ 90% accuracy in categorizing every GC as either
in-situ or ex-situ formed (§3).

In summary, although the classifier developed by Trujillo-
Gomez et al. (2023) shares some similarities with our work,
the two studies are driven by different motivations. The over-
lap between the two lies in the classification of in-situ vs.
ex-situ GCs specifically for the MW. Our work has better per-
formance in this area because our algorithms are assessed on
a carefully selected sample of galaxies that closely match the
MW, ensuring that our results are specifically optimized to
the characteristics of the MW. Moreover, we incorporate more
kinematic characteristics of GCs derived from the 6D phase
space. These inputs prove to be important in identifying in-situ
and ex-situ GCs.

7. SUMMARY
In this work, we evaluate five unsupervised clustering meth-

ods, two dimensionality reduction methods, and three super-
vised classification methods on their ability to classify the
progenitors of GCs in the MW-analog systems. We perform
the test on four simulated galaxies carefully selected to match
the mass assembly history of the MW (Fig. 1). Two of them are
TNG50 galaxies, and the other two are from the Latte suite of
the FIRE-2 simulations. We generate realistic GC systems for
these galaxies using a cluster formation and evolution model
by CG24 (§2). The model outputs 10 important properties of
GCs, including spatial, kinematic, and age information, that
are all observable in the MW system.

We begin with dividing model GCs into in-situ and ex-situ
groups (§3). For this purpose, we find that 𝑟, 𝐸, [Fe/H], 𝜀,
and 𝐽𝜙 = 𝐿𝑧 are the most important variables (Fig. 4), while
𝐽𝑧 and 𝑟peri are not of particular significance. For the five clus-
tering methods, Agglomerative Clustering and BIRCH show
best performance, whereas GMM and Spectral Clustering can-
not yield acceptable classification results for all four sample
galaxies. The curse of dimensionality becomes notable for the
direct clustering methods with more than six input variables
(Fig. 5), where adding more data does not improve the clas-
sification accuracy. We address this problem by introducing
an additional dimensionality reduction step before clustering
(Fig. 6). However, the dimensionality reduction step does
not further improve the performance of direct clustering. We
also examine a hybrid approach incorporating unsupervised
and supervised methods. Such an approach demonstrates no
improvement over the other approaches.

Next, we concentrate on the ex-situ clusters to distinguish
GCs from different progenitor satellite galaxies. To iden-
tify the last major merger (GS/E-analog), we cluster the
ex-situ population into two groups representing the GS/E-
analog and the other GCs (§4.1). This task can be well
handled (accuracy ≳ 90%) using seven GC properties:
age, 𝐽𝑧 , [Fe/H], 𝐽𝜙 , 𝑟apo, 𝜀, and 𝐸 (top row of Fig. 7). Com-
pared to the case of identifying in-situ and ex-situ GCs, two
more inputs are needed to distinguish the subtly different dis-
tributions of the two groups in the multi-dimensional space.
In this case, Agglomerative Clustering and BIRCH are still the
most successful clustering methods.

We proceed to identify the second most dominant merger by
clustering the ex-situ population into three groups, standing for
the GS/E-analog, the second most dominant merger, and the
other GCs (§4.2). However, no variable configuration yields a
minimum accuracy> 70% by directly splitting the ex-situ GCs



Galaxy assembly revealed by globular clusters 21

into three groups (middle row of Fig. 7). If we assume that the
GS/E-analog can be perfectly labeled and sub-divide only the
remaining ex-situ GCs into two groups, we can achieve higher
accuracy with a minimum > 70% (bottom row of Fig. 7).
Separating the ex-situ population into even more groups is
unfeasible. By computing the BIC utilizing a cross-validation
technique, we quantitatively show that the overfitting problem
becomes severe with more groups (Fig. 8).

After evaluating the accuracy of different algorithms on var-
ious configurations of GC properties, we apply our results to
the Galactic GCs via a Bayesian approach (§5). We robustly
assign 94 of 150 MW GCs with measured metallicities and
kinematics to the in-situ group. This number agrees closely
with the result of Belokurov & Kravtsov (2024), who effec-
tively merged the “low-energy group” identified by Massari
et al. (2019) to the in-situ population. Most of the informa-
tion required for this classification is contained in the 𝐸 − 𝐿𝑧

space. We then identify the GS/E merger from the ex-situ
group, taking into account prior information summarized by
Massari et al. (2019). This results in ≈ 30 GCs associated to
the GS/E. We assign only two clusters from the “high-energy
group” to the GS/E, and classify the rest of them are as ex-situ
GCs from other mergers, consistent with the claim by Massari
et al. (2019). Finally, we focus on the remaining GCs and iden-
tify a relatively clustered group which is closely linked to the
Sagittarius dwarf galaxy. We present the final classification
results in Fig. 9 and Tab. 4.

We also investigate the evolution of the distributions of GCs
in the IoM space and action space (§6.1 and Fig. 10). GCs
from the early-accreted merger more than 11.4 Gyr ago tend
to have indistinguishable properties from the true in-situ ones,
because the central galaxy was not massive enough to prevent
the similarly massive satellite from penetrating the inner re-
gion and heating up the kinematics of in-situ GCs. We also
find the GS/E-like merger was disruptive enough to perturb the
kinematics of the previously accreted GCs. These GCs used
to form distinct cores in the IoM and action spaces, but got less
distinguishable after the dominant merger. After the last ma-
jor merger, all the kinematic variables remain approximately
conserved.

To uncover possible connections between the properties of
the accreted satellites and their surviving GC populations, we
compute the Pearson correlation coefficients between pairs of
important parameters (§6.2 and Fig. 11). We find that the max-
imum mass of the satellite progenitor at infall follows a linear
relation with the total mass of its surviving GCs (Fig. 12).
Remarkably, this relation is the same as the previously known
𝑀GC–𝑀h relation for the surviving galaxies at 𝑧 = 0 (Harris
et al. 2015; Forbes et al. 2018). We also find that the merger
mass ratio correlates with the energy dispersion of GCs, the in-
fall time correlates with the mean age and anti-correlates with
the age dispersion, the dissolution time of the satellite anti-
correlates with the mean of log 𝑟 and log 𝐽𝑟 , and the merger
duration correlates with these two parameters.

We compare our work with Trujillo-Gomez et al. (2023),
who developed a supervised classifier for in-situ vs. ex-situ
clusters using the E-MOSAICS simulation (§6.3). Our work
outperforms their accuracy in the area of identifying in-situ
and ex-situ GCs for MW-analogs because we evaluate our
algorithms on the galaxy sample carefully selected to match
the MW, and we take into account more kinematic variables
that are measurable for the MW GCs.

Finally, we make the source code, raw data, and key results
available in public repositories. The source code for the GC

formation model can be accessed at https://github.com/
ybillchen/GC_formation_model. The model catalog of
GCs is published at https://github.com/ognedin/gc_
model_mw. Additionally, the ASCII version of Tab. 4 summa-
rizing our classification of MW GCs is accessible at https:
//umich.edu/˜ognedin/mw_gc_classification.txt.
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APPENDIX

A. MINIMUM ACHIEVABLE ACCURACY
In this section, we present a rigorous definition of the classification accuracy and derive a mathematical lower limit of accuracy.

Considering the case of classifying the data set into 𝑁g groups, we name them the 1, 2, · · · , 𝑁g-th classified group. By construction,
the number of true groups equals 𝑁g: in the case of in-situ vs. ex-situ classification, there are 2 classified groups and 2 true
groups; in the case of classifying progenitors of ex-situ clusters, we label 𝑁g − 1 true mergers and combine the remaining as an
additional group standing for the other mergers. We label the true groups as the 1, 2, · · · , 𝑁g-th true group. We count the number
of data points in 𝑖-th true group being assigned in the 𝑗-th classified group as 𝑁𝑖 𝑗 , forming an 𝑁g × 𝑁g matrix. For clarity, we
always use the Latin symbol “𝑖” to refer to the row index and “ 𝑗” for the column index.

Next, we aim at finding a mapping from the classified groups to the true groups. We require the mapping to be both one-to-one
and onto. This means that every classified group maps to a unique true group; and every true group inversely maps to a unique
classified group. All mappings form a permutation group 𝑆𝑁g .
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correctly classified data points, which is defined as

𝑁𝜎 ≡
𝑁g∑︁
𝑗=1

𝑁𝑖 𝑗

��
𝑖=𝜎 ( 𝑗 ) .

We refer to the best mapping as 𝜎0. We define the accuracy of the classification as the number of correctly classified data using
𝜎0 divided by the total number of data points,

accuracy ≡
𝑁𝜎0∑𝑁g

𝑖=1
∑𝑁g

𝑗=1 𝑁𝑖 𝑗

.

Now, we derive the lowest reachable value for the accuracy. It is convenient to re-index the rows of the matrix via 𝜎0:

𝜎0 (1) → 1, 𝜎0 (2) → 2, · · · , 𝜎0 (𝑁g) → 𝑁g.

That is, we pick the 𝜎0 (1)-th row of 𝑁𝑖 𝑗 as the first row of the new matrix, the 𝜎0 (2)-th row as the second row of the new matrix,
and so on until the 𝜎0 (𝑁g)-th old row as the 𝑁g-th row of the new matrix. This yields a new matrix 𝑁 ′

𝑙 𝑗
, with rows permuted

from 𝑁𝑖 𝑗 . Here we use “𝑙” as the row index for the new matrix; we keep “ 𝑗” as the column index because the columns are
preserved after the re-indexing. We emphasize that the re-indexing just gives each true group a “new name”, instead of changing
the classification results. By construction, we have

𝑁 ′
𝑙 𝑗 = 𝑁𝑖 𝑗

��
𝑖=𝜎0 (𝑙) and 𝑁𝑖 𝑗 = 𝑁 ′

𝑙 𝑗

���
𝑙=𝜎−1

0 (𝑖)
.

Based on this, we can easily derive that
𝑁 ′

𝜎′ = 𝑁𝜎 (A1)

where 𝜎′ ≡ 𝜎−1
0 · 𝜎 (for example, 𝜎′

0 ≡ 𝜎−1
0 · 𝜎0 = 𝐼). These relations are valid for all indices 𝑙 and mappings 𝜎. Therefore, the

accuracy becomes

accuracy =

𝑁 ′
𝜎′

0∑𝑁g
𝑙=1

∑𝑁g
𝑗=1 𝑁

′
𝑙 𝑗

. (A2)

Let us consider a series of mappings {𝜎′
𝑘
} defined as

𝜎′
𝑘 ( 𝑗) ≡

{
𝑗 + 𝑘, if 𝑗 + 𝑘 ≤ 𝑁g
𝑗 + 𝑘 − 𝑁g, if 𝑗 + 𝑘 > 𝑁g

That is, 𝜎′
𝑘
( 𝑗) shifts the index 𝑗 by 𝑘 with a periodic boundary condition. Note that 𝜎′

0 is naturally included in this series as the
case of 𝑘 = 0. We can prove that

𝑁g−1∑︁
𝑘=0

𝑁 ′
𝜎′

𝑘
≡

𝑁g−1∑︁
𝑘=0

𝑁g∑︁
𝑗=1

𝑁 ′
𝑙 𝑗

���
𝑙=𝜎′

𝑘
( 𝑗 )

=

𝑁g∑︁
𝑗=1

𝑁g−1∑︁
𝑘=0

𝑁 ′
𝑙 𝑗

���
𝑙=𝜎′

𝑘
( 𝑗 )

=

𝑁g∑︁
𝑗=1

©­«
𝑁g− 𝑗∑︁
𝑘=0

𝑁 ′
𝑙 𝑗

���
𝑙= 𝑗+𝑘

+
𝑁g−1∑︁

𝑘=𝑁g− 𝑗+1
𝑁 ′
𝑙 𝑗

���
𝑙= 𝑗+𝑘−𝑁g

ª®¬ =
𝑁g∑︁
𝑗=1

©­«
𝑁g∑︁
𝑙= 𝑗

𝑁 ′
𝑙 𝑗 +

𝑗−1∑︁
𝑙=1

𝑁 ′
𝑙 𝑗

ª®¬
=

𝑁g∑︁
𝑗=1

𝑁g∑︁
𝑙=1

𝑁 ′
𝑙 𝑗 =

𝑁g∑︁
𝑙=1

𝑁g∑︁
𝑗=1

𝑁 ′
𝑙 𝑗 .

The last equality of the equation equals the denominator of Eq. (A2), i.e., the total number of data points. Using Eq. (A1) and the
definition of 𝜎0, we obtain 𝑁 ′

𝜎′
𝑘

≤ 𝑁 ′
𝜎′

0
for all 𝑘 . Plugging this inequality and the equation above into Eq. (A2), we get

accuracy =

𝑁 ′
𝜎′

0∑𝑁g−1
𝑘=0 𝑁 ′

𝜎′
𝑘

≥
𝑁 ′

𝜎′
0∑𝑁g−1

𝑘=0 𝑁 ′
𝜎′

0

=
1
𝑁g

. (A3)

So far we have proved that the accuracy is always greater than or equal to 1/𝑁g. The equality can be reached if all 𝑁 ′
𝑆′
𝑘

are the
same, corresponding to completely random classification. Thus, any classification with accuracy close to this value should be
regarded as ineffective.
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Figure 13. Probability density distribution of supervised classification accuracy for the validation sets. We employ a cross-validation with 80% test set and 20%
validation set, and repeat 500 times to obtain the statistics. The density distribution is approximated via a Gaussian KDE with bandwidth = 0.02. We calculate
the accuracy separately for each sample galaxy, shown in different rows. The vertical lines stand for the mean values of the corresponding PDFs.

B. MAXIMUM ACHIEVABLE ACCURACY
Although the classification accuracy by definition (Appendix A) can reach 100% in ideal cases, achieving a perfect accuracy

may not be feasible due to the intrinsic mixing of distributions in the multi-dimensional data space. To address this, we conduct a
cross-validation examination utilizing supervised classification methods to determine a more realistic and statistically significant
upper bound of accuracy. We take the in-situ vs. ex-situ case as a case study to derive the maximum achievable accuracy.

To estimate the maximum achievable accuracy, we employ a cross-validation technique similar to the approach in §4.2. This
process splits the data into a training set and a validation set. We train a supervised classifier on the training set and evaluate
the classification accuracy on the validation set. We allocate 80% of the data to the training set and the remaining 20% to the
validation set. This ensures that the training set is large enough for the classifier to learn adequate information. We repeat the
training and validation process 500 times to fully sample the accuracy distribution on the validation sets.

In Fig. 13, we plot the accuracy distribution on validation sets for our four sample galaxies. We obtain the distribution using
three different supervised classification methods detailed in §3.3. The distribution depends weakly on the choices of method,
indicating that the limiting factor is indeed the intrinsic mixing of the data, not the specific classification technique. Hence, these
accuracy values represent the maximum achievable accuracy.

For the four galaxies in our study, the maximum achievable accuracy ranges from 87% to 95%, with a median around 90%.
Any categorization using the same 10 input variables is unlikely to significantly exceed these values without overfitting the data.
Our best accuracy values in §3 are very close to these upper bounds, suggesting that we are approaching the theoretical maximum
with the 10 variables. We also note a galaxy-to-galaxy variation, where m12i exhibits a maximum achievable accuracy greater
than 93%, while that for 519311 is around 87%. This agrees with our findings in §3, where 519311 often shows lower accuracy.
This indicates that the extent of phase mixing within the 10D property space differs among galaxies.

This paper was built using the Open Journal of Astrophysics LATEX template. The OJA is a journal which provides fast and easy
peer review for new papers in the astro-ph section of the arXiv, making the reviewing process simpler for authors and referees
alike. Learn more at http://astro.theoj.org.
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