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Abstract—The objective of our research is to create efficient
methods and tools for the quick and thorough assessment of
emerging digital circuit devices, facilitating the adoption of
promising ones. In this work, we develop methods and tools
for hybrid technology that combines memristors with MOS
transistors and demonstrates their effectiveness. Although several
types of memristor-transistor logic have been proposed, 15 years
of research has created a small set of logic cells. We propose a
systematic method for generating new and efficient memristor-
transistor single-phase combinational logic cells. At the core
of our approach is a cell enumerator, which enables us to
explore a wide range of cell designs, including nonintuitive ones,
and a data-driven inductive learning method, which identifies
new properties of such cells and scales up our explorations.
In conjunction with other completely new tools, these create
a comprehensive and definitive library of logic cells. Our new
cells provide significant improvements or significantly distinct
Pareto-optimal alternatives for the few logic functions for which
prior research has created cells. Importantly, our methods
enable us to discover a previously unknown synergistic operation
between memristors and transistors that occurs for specific cell
topologies. We harness this synergy to develop a method for
adding memristors to low-area pass-transistor circuits such that
they produce strong output voltages and low power, including for
patterns that cause ratioed operation. We have also developed
a new memristor-transistor logic family, namely controlled-AND
(cAND)/controlled-OR (cOR), which includes many of the best
cells. We have also developed a constructive method for designing
such cells.

Index Terms—Data-driven inductive learning (IL), enumera-
tion, logic cells, memristors.

I. INTRODUCTION

T IS now widely believed that we are reaching the limits

of physical scaling of CMOS devices [1]. This has led
to the emergence of several promising devices, such as
memristors [2], [3], magnetic tunneling junctions [4], ferro-
electric field-effect transistors (FeFETSs) [5], tunnel field-effect
transistors (TFETs) [6], and others.

Wide adoption of a new device and technology requires
a rigorous evaluation. To conduct a rigorous evaluation, we
must identify logic and memory cells that can best utilize
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Fig. 1. Time-line of discoveries of new logic cells in MOS.

the strengths of the new devices. Past experience has shown
that this is challenging, especially when the new devices
are significantly different from the prevailing technologies. In
such cases, the most efficient cells are often very different,
nonintuitive, and hence typically take years to discover.

For example, consider the timeline of the discoveries of
basic logic cells during the first two decades of MOS shown
in Fig. 1. After the MOS device was made possible in
1960 [7], designers discovered the CMOS logic family in
1963 [8], the transmission gate (TG) in 1965 [9], and the JK
flipflop in 1966 [10]. However, 13 years elapsed between the
emergence of MOS devices and the discovery of TG-based D
flipflops, in 1973 [11] and 1974 [12]. These flipflops were very
nonintuitive designs at that time, since bipolar technologies
prevailed and the characteristics of MOS devices were not
well understood. Yet, these flip-flops are highly efficient in
MOS and replaced all other types of flip-flops soon after their
discovery.

Our research aims to create methods and tools that can speed
up the process of discovering the most efficient cells, even
those that are completely nonintuitive for new devices and
technologies. This will be followed by a thorough evaluation of
the new cell library. In this research work, we develop our new
methods and tools by targeting a technology that combines
memristors with MOS transistors.

The primary technical challenge is to search for cells,
including those with nonintuitive topologies, since uniquely
efficient memristor-transistor cells may be very different from
those for the prevailing technology, namely MOS. Second,
based on the track record of the devices widely used today
(MOS) and in the past (bipolar), we expect that for any
emerging device, only a tiny fraction of cell designs will be
efficient. Consequently, we anticipate that the likelihood of
discovering efficient cells through a random search approach
will be extremely low. Third, our goal is not only to discover
efficient cells but also to discover the properties that explain
their operation and efficiency, and use these properties to
develop constructive methods for the design of cells and
circuits.
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To address the above challenges, we develop an enumerative
approach for the creation of cells. To scale this approach to
cell sizes where desired cells can be found, we develop a data-
driven inductive learning (IL) method and unique tools to make
IL significantly more effective and efficient. We demonstrate
that our approach dramatically increases the number of dis-
covered cells over the past 15 years and significantly enhances
or complements the previous set of cells. It is important to
note that we identify key properties of memristor-transistor
cells, including a previously unknown synergistic operation
between memristors and transistors. This synergistic operation
is at the core of our best cells’ ability to provide surprisingly
low-area as well as nearly ideal output voltage and low power
consumption.

We first introduce the memristor-transistor logic style
used for developing our methods and tools. The proposed
data-driven exploration methods and tools are described in
Section III. The results of our exploration, especially our
library of new and efficient cells, a new logic family, its key
properties, and a new constructive method for its design are
presented in Section IV. Finally, Section V concludes the
article.

II. TARGET TECHNOLOGY AND PRIOR RESEARCH

Memristor [2], [13] is an emerging nonvolatile device that
can be used, by itself or with MOS transistors [14], to perform
logic operations. Memristor-MOS circuits can be efficient,
especially in terms of the layout area, since memristors can be
implemented at very low areas [14]. This two-terminal device
acts like a variable resistor, with minimum and maximum
resistance Rop and Rofr. In a voltage-controlled memristor [15],
the state of the device depends on the time integral of the
voltage difference across its terminals.

A. Memristor-Transistor Single-Phase Combinational Logic

There are two major styles for using memristors to
build logic circuits. The first style consists of multiphase
IMPLY [16] and MAGIC [17] implementations used for in-
memory computation in memristor crossbars. The input logic
values are stored as memristor states (e.g., Rofr as logic-0 and
Ron as logic-1) in one phase, and memristor states are used
to evaluate the output in the next phase. The crossbar also
requires MOS decoders, READ/WRITE circuitry, and logic to
control the execution of the logic operation.

In contrast, a memristor-resistor logic (MRL) [18] cell takes
logic inputs as voltages, computes outputs in a single-phase,
and produces output logic values as voltages. Also, an MRL
logic cell does not require any additional MOS circuitry for
decoding, reading/writing, or control. Importantly, MRL logic
is compatible with static MOS logic. Hence, we target MRL-
style logic for the development of our new methods and tools.

B. MRL Cells and Operation

MRL AND and OR [18] (Fig. 2) are the two basic MRL
cells that can be implemented by memristors. As we focus
on voltage-controlled memristors, the state of each memristor
in a cell depends on the direction of the voltage across the
memristor. For MRL AND as well as OR, when identical logic
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Fig. 2. Operation of (a) MRL AND, and (b) MRL OR cells.

values are applied to both inputs (both high or both low), the
resistance values of memristors remain unchanged, and the
output voltage is equal to the voltage applied to the inputs.
For an MRL AND with different logic values at its two inputs,
the resistance of the memristor with logic-0 input decreases,
i.e., becomes R,,, and the resistance of the memristor with
logic-1 input increases, i.e., becomes Roft. Since Roff >> Rons,
the output is evaluated as logic O for AND. The OR’s output
is 1 for such input values.

As a memristor is a passive device, an inverter (INV)
cannot be implemented using only memristors. However, by
combining memristors and MOS transistors, all types of
logic functions can be implemented in the MRL style. We
target such memristor-MOS MRL combinational cells in this
research and refer to these as mem-MOS MRL cells.

C. Prior Research in mem-MOS MRL

Mem-MOS MRL logic cells have been developed [19],
[20], [21], [22], [23], [24] to implement AND, OR, XOR,
and some other logic functions. As no systematic method had
emerged prior to our research, the pace of discoveries was
slow: 15 years of active research produced about two dozen
cells. In Sections IV-B and IV-C, we compare these cells with
the comprehensive and definitive library of cells generated by
our method.

Moreover, only a handful of fundamental principles underly-
ing the previous cells have been recognized. In Sections IV-D
and IV-E, we derive new properties and constructive methods
for the design of the best cells in our definitive mem-MOS
MRL library.

III. DATA-DRIVEN EXPLORATION OF LOGIC CELLS

The objective of this research is to identify the definitive
set of mem-MOS MRL cells, i.e., cells that combine mem-
ristors and MOS transistors, provide single-phase operation,
are compatible with static MOS logic, have low areas, and
provide high performance. Further, in this study, we focus on
cells that implement combinational logic functions and are
acyclic.

To identify the definitive set of cells, it is necessary to
explore all possible cell structures. This includes completely
new and nonintuitive structures that go well beyond incre-
mental modifications of MOS cells (e.g., complementary and
pass-transistor logic), mem-only MRL cells, and combinations.

A. Initial Explorations and the Emergence of Our Method

We started our exploration with a naive method: We could
enumerate the exhaustive set of, i.e., all possible, netlists of
cells with k or fewer devices. We could then simulate each cell,
and select the cells that are acyclic, implement combinational
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logic functions, and have low area and good performance, in
terms of output voltage, delay, and power.

1) Key Challenge: We knew that this naive version would
not be scalable to higher values of k. We also knew that this
was in direct opposition to the following sage advice:

“Invention consists in avoiding the constructing of
useless contraptions and in constructing the useful
combinations which are in infinite minority.”
-Henri Poincare

Indeed, our naive enumerator generated extremely large
numbers of cells and could only be used for 1-to-3 device
cells, i.e., for k < 3 (see Table II). After simulations and a
quick review of randomly selected cells, we confirmed that
most of the cells created were undesirable. Despite this, our
naive enumerator provided the starting point for us to develop
our new method for the discovery of new logic cells, i.e., a
method for “constructing the useful combinations which are
in infinite minority.”

We first focus on completely new aspects of our method,
namely data-driven IL and our new tools to support this IL
method.

For now, assume that we have our naive cell enumera-
tor (exhaustive) and a circuit-level, i.e., SPICE-like, circuit
simulator. The simulator is used to characterize each cell by
computing the logic function (F) it implements along with its
delay (D), power (P), and voltage degradation (V) relative
to ideal output voltages. It is also used to classify the cells
into undesirable (und) and potentially desirable (pd). Also,
all the created cells and their simulation results are stored in
a database. Finally, Our database, along with an extensible
toolkit, supports all types of queries, including an extensible
set of graph queries on the netlists of cells.

2) Emergence of Data-Driven Inductive Learning: Our
first challenge for moving past our naive method was to
develop an approach for “avoiding the constructing of useless
contraptions.” IL emerged as the natural approach when we
started reviewing a handful of randomly selected cells, most
of which were found to be undesirable via simulations. During
the review of each cell, we noted the feature that made a
specific cell undesirable. For example, in a few cells, one
device was disconnected from others. In one cell we reviewed,
an nMOS transistor’s gate was driven by GND. In another cell
reviewed, the two diffusion terminals of a pMOS transistor
were connected to Vyg and GND. In yet another cell, the cell’s
output was driven by a single memristor, and so on.

For each of the above example cells, we were able to
show that the specific device we had noted could indeed be
removed from the cell without affecting its functionality. As
we removed this device, the resulting cell would have one
less device and would already be in the set we generated.
Therefore, we labeled this cell with k-device as undesirable.
We could also subsequently update our enumerator to avoid
the generation of this cell.

Our review of undesirable cells raised questions like: Is a
device with this topological feature removable only in this
specific cell? Or, is it removable in every cell that we have
created for k = 1 to 3?7 Is it also removable in every cell
with a larger value of k, which we have not even created yet?
Does this topological feature imply other related features that
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Fig. 3. Overview of our method and tools for systematically exploring logic
cells. The key modules are the enumerator, simulator, and data-driven IL.
Each is supported by an extensible set of tools distributed throughout (all
boxes and text in blue). The enumerator is supported by tools to avoid many
undesirable cells and is complemented by post-enumeration filters. Also, the
simulator is complemented by tools such as low-complexity analyzers, and
IL is supported by tools for cell selection, HERS, and so on. On the right
side, we show our two foundational and extensible toolkits, namely database
search and graph toolkit.

= Select and review
= Identify features

= Formulate hypothesis
= Derive deductive proofs

we have not observed in the small sample of cells we have
reviewed?

A positive response to any of these questions would expand
the scope of our review for each cell, since it would enable
us to not only eliminate the specific cell we reviewed but also
a large number of other cells that are undesirable for the
same reason. Every one of these questions requires inductive
reasoning, where one starts with a specific example and
derives a general principle.

3) Method for Data-Driven Inductive Learning: As we
started using inductive reasoning, we added steps to derive the
following /L method, which heavily relies on data, namely our
cells and simulation results.

1) Select and review one or more cells and identify whether

they have some undesirable or desirable characteristics.

2) Identify features that may potentially be making these
cells undesirable or desirable.

3) Via inductive reasoning, formulate a hypothesis that
captures the potentially general cause of desirability or
undesirability.

4) Develop a deductive proof for each hypothesis to derive
a property.

Fig. 3 provides an overview of our method and tools. IL can
identify negative properties and positive properties. Negative
properties enable us to avoid or eliminate undesirable cells,
while positive properties help us identify or create pd cells.
Our IL first focused on negative properties (e.g., all the
above examples) before identifying positive properties. Also,
most of the early properties we identified were fopological
properties, i.e., were related to the topology of the cell’s netlist
graph. However, as described ahead, later in our research, we
identified powerful general properties.

4) Early Examples of Inductive Learning: For our early
observations, IL was easy and effective. For the above
examples, we were able to rapidly carry out considerable
generalizations. For instance, by applying IL, the specific
undesirable feature of having both channel terminals of an
nMOS device connected to Vy; and GND can be generalized
to cover all three types of devices, namely nMOS, pMOS,
and memristor, with both channel terminals connected to
any combination of Vjy, GND, or inputs. (To simplify our
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presentation, we use the term channel terminal for the source
and drain of MOS transistors as well as the p and n terminals
of memristors. Further, we use the term channel for the source-
to-drain path via any MOS device as well as for the p-to-n path
via any memristor.) We were also able to develop hypotheses
that these topological features would cause any cell of any
size to be undesirable. We derived deductive proofs for these
hypotheses to identify a wide range of negative topological
properties summarized in Section III-C.

5) Using the Properties Identified by Inductive Learning:
The early identified negative topological properties were local,
meaning they pertained to the combinations of inputs, such
as Vgg and GND, which should not be assigned to device
terminals. It is easy to modify our enumerator to avoid
generating cells with undesirable device configurations.

For example, our naive enumerator first enumerates all
possible sets of k devices. (e.g., for k = 2: 2 nMOS, 2 pMOS,
2 mem, 1 nMOS + 1 pMOS, 1 nMOS + 1 mem, and 1
pMOS + 1 mem.) Once we have all possible sets, we then
proceed to create all possible ways in which these devices
can be connected to form a circuit. Finally, it enumerates all
possible ways in which we can assign inputs, e.g., X and Y,
and special signals, namely V;; and GND. It is easy to modify
the last step to avoid assigning to the terminals of any device
the combinations of inputs and special signal values already
proven as undesirable by negative topological properties. Thus,
each such property, derived from a review of a handful of
undesirable cells, dramatically reduced the complexity of our
enumerator and the number of cells it generates.

In addition, we describe ahead how we identify negative
general properties which are more powerful than the negative
topological properties. To utilize their benefits, we filter (i.e.,
remove) any cells deemed undesirable by a general property
from the set of cells generated by the above enumerator (more
ahead).

Hence, by incorporating the negative properties for avoid-
ance or filtering of cells, we updated our naive enumerator
and created an implicitly exhaustive enumerator, i.e., an enu-
merator that generates all possible cells except the undesirable
ones. Due to the effectiveness of the negative properties we
identified via data-driven IL, we created dramatically smaller
numbers of cells. Thus, it enables us to scale our study to cells
with more devices, i.e., for higher values of k.

In summary, our data-driven IL method dramatically
reduced the number of undesirable cells generated, allowed
us to scale up our exploration, and enabled the discoveries
we describe ahead. Thus, our approach and tools achieve
the key goal suggested by Poncaire: “constructing the useful
combinations which are in infinite minority.”

B. Completely New Tools to Facilitate Data-Driven
Inductive Learning

As above, a review of a small number of randomly selected
cells readily provided hypotheses and these hypotheses were
easy to prove. Although highly effective, this engineering
approach tends to yield diminishing returns, as is often the
case with most such approaches. In particular, as we increase
k, the number of cells that we can potentially review increases
exponentially. Also, in an undesirable cell, the numbers of
potential features and hypotheses that capture the general
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cause of the cell being undesirable grow rapidly with k.
This led us to ask: Can we build tools to enable more
comprehensive IL?

We have developed novel tools to enhance IL while
reducing manual effort. These tools include features for cell
selection, identification of general causes of observed unde-
sirable/desirable outcomes, hypothesis creation, and more.
Due to space limit, we present only our most powerful, and
completely new, method and tool which enables feature and
hypothesis exploration, refinement, and selection (HERS).

1) Background (Extensible Toolkit): We have built all our
key tools around a database and an extensible library of graph
functions. The database holds the cell netlists, the information
created by the simulators (logic function (F), delay (D), power
(P), and voltage degradation (§V)), labels and categories for
each cell, relations between pairs of cells, and so on.

To enable rapid implementation of HERS for a wide range
of hypotheses and post-enumeration filters for general proper-
ties, we have developed a toolkit that includes basic functions,
especially for graph operations on cells. Key types of functions
check whether a cell’s netlist graph has a given topological
property, check whether two netlists are isomorphic, and so
on. Importantly, the toolkit is extensible. For example, we have
already added more complex functions for modifying cells,
e.g., for modifying a cell C; by removing a specific device
d;, either by simply removing d; or by short-circuiting its two
channel terminals before removing the device.

2) HERS: Our new approach automates major inductive
reasoning tasks, such as feature identification and hypothesis
creation, thereby improving the effectiveness of data-driven
IL. As mentioned above, the number of potential features
and hypotheses can grow exponentially with cell size. In
existing practice, the exploration of each hypothesis requires
considerable manual analysis, hence only a handful of the most
promising hypotheses can be explored. HERS differs from
traditional approaches by introducing data-driven tools that
explore various hypotheses, identify the most promising ones,
offer guidance for refining these hypotheses, and generate
insights that simplify the process of deductive proofs.

The underlying principle of HERS is that the correctness of
a hypothesis for all cells we have generated is a necessary (but
not sufficient) condition for the hypothesis to be correct for all
cells, including large cells that we have not even generated.
Through implicitly exhaustive enumeration, we have generated
all cells that have k < 5 devices, except for the ones that
we have proven to be undesirable. If our hypothesis holds for
every cell in our database, then we can have a high level of
confidence (but no guarantee) that the hypothesis is true for
all values of k. Therefore, it is worthwhile to make the effort
to develop a deductive proof.

We utilize the above principle as follows. First, we select
and review some cells to identify a large number of potential
features and hypotheses. We describe each hypothesis in
terms of the topological features of the cell and the property
that the device/cell is expected to satisfy. Second, we use
our extensible graph toolkit to formulate every one of our
hypotheses as a sequence of queries. Third, we use this
sequence of queries on our database of cells to identify every
cell that has the features specified in our hypothesis and to
check whether the cell has the specified property. For each
hypothesis, this sequence of queries either reports that every
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Algorithm 1: Exploring Example Hypothesis Using Our
New Tool HERS

Data: Query the database to identify all cells where only a memristor
drives the output, say C;, and note the logic function
implemented by the cell, say as F;

for each C; and F; do

Short-circuit channel terminals of output memristor and remove
the memristor from C; to obtain Cl-’ ;
Query the database to identify the logic function implemented by
Ci’ , say F' l’,
if F}! = F; then
output Cj;
return(false);
end
end
return(true);

cell in the database satisfies the hypothesis, or returns one
or more counterexamples of cells that do not satisfy the
hypothesis.

Consider an example hypothesis: if the output of a cell is
driven only by a single device which is a memristor (feature),
then that memristor is redundant (hypothesis) and can be
removed from the cell without changing the logic function the
cell implements. HERS enables us to formulate this hypothesis
into a compound query using our toolkit (see Algorithm 1):
query the cell database to identify every cell C; with the
feature, i.e, the cell’s output is driven only by a memristor;
for every C; that satisfies above, modify C; by removing the
memristor that drives the output to create a reduced version
of the cell, C}; query the database to search for cell C; and
return the logic function it implements; and compare the logic
functions implemented by C; and C?.

For the above example hypothesis, the query reported that
our hypothesis is satisfied by every cell in our database (and
returned true). In contrast, for some other example hypothesis,
that is not true for all cells in our database, the query would
print one counterexample, i.e., a cell that does not satisfy
the hypothesis, and return false. (Algorithm 1 can be easily
modified to print all counter-examples.)

In the former case, we conclude that the hypothesis is
strong, and we proceed to develop a deductive proof for the
hypothesis. In the latter case, we review the counterexamples
to determine whether to modify or abandon the hypothesis,
i.e., we either undertake hypothesis refinement or hypothesis
abandonment. If we decide to refine, the counterexamples
provide guidance for hypothesis refinement and insights for
our subsequent deductive proof. If we decide to abandon,
HERS helps us by avoiding the considerable effort that would
have been wasted on a search for a futile proof.

HERS has dramatically improved the effectiveness of our
IL. As summarized in Table I, it has enabled the identification
of our most impactful positive properties, namely the identifi-
cation of generator graphs and our derivation of the sufficient
topological conditions for the controlled-AND/controlled-OR
(cAND/cOR) logic family which includes many of the best
cells identified by this research. (More on these ahead.)

C. Results-1: Key Properties Identified via Inductive
Learning

1) Negative Local Topological Properties and Their Use:
In Section III-A, we presented some examples of negative

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

(b)

X X
Y Y
X
y XOY Y +z Z(XHY)
(a)

Fig. 4. (a) XOR cell proposed in [19]. (b) This cell is nonprimitive as it can
be constructed using two smaller cells from our library, and its logic function
is identical to the composition of the logic functions of the two smaller cells.

topological properties we identified via straightforward IL.
We have identified a much larger set of properties ranging
from intuitive — e.g., many types of device redundancy, inter-
changeability of MOS device source-drain, interchangeability
of input names, etc. — to less intuitive — e.g., redundancy of
only a memristor driving the cell output, the undesirability of
memristors in series, and so on. As most of these properties are
local, we easily updated our enumerator to use these properties
to avoid large numbers of cell netlists that are proven to be
undesirable.

2) General Properties and Their Use: As we identified the
above topological properties, we observed that sets of these
shared a type of impact. For example, a set of properties
caused one or more devices in a cell to be proven redundant.
That is, any device in a cell that satisfied any one of these
properties could be removed from the cell without affecting
the logic function the cell implements. [In many (but not all)
cases, the cell’s performance metrics would also not change
appreciably.] This observation enabled further IL to derive the
general property that we call reducibility.

In this manner, IL from sets of negative topological prop-
erties we had already identified enabled us to identify several
negative general properties: reducibility, degeneracy, isomor-
phism, nonprimitivity, and noncombinationality. Similarly, IL
from other already identified sets of specific local properties
enabled the identification of the positive general property of
duality.

A cell is reducible if one or more devices in the cell can
be removed without affecting the logic function implemented
by the cell. When removing a device from the netlist, we can
either simply remove the device, or we can remove the device
and replace the removed device’s channel with a wire.

A cell is degenerate if it has p inputs but implements a logic
function of g variables where g < p. Two cells are isomorphic,
if they have identical structures, once we consider device-level
symmetries, e.g., the interchangeability of the two diffusion
regions of MOS devices, or after permuting the names of cell
inputs and/or the names of internal nodes in the cell’s netlist.

A cell is nonprimitive if its netlist graph can be viewed as
a composition of two or more smaller cells. This can occur
when the cell has multiple disconnected components. This
can also occur if: parts of the cell’s netlist graph are smaller
cells; and the logic function implemented by the given cell
is a composition of the logic functions implemented by the
smaller cells. For example, the XOR shown in Fig. 4 [19]
is a nonprimitive cell since it is comprised of a memristor-
only MRL AND and one of the cells we generated which
implements Z'(X + Y).

A cell is noncombinational if it does not implement a
combinational logic function. This includes any cell whose
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TABLE I
SUMMARY OF KEY PROPERTIES IDENTIFIED VIA IL. OUR NEW METHOD AND TooL, HERS, HAS HELPED WITH THE IDENTIFICATION
OF EVERY TOPOLOGICAL PROPERTY (AS INDICATED BY ")

Topological properties

General properties

Negative | Interchangeability of MOS channel terminals and signal names;’ | Reducibility; isomorphism; degeneracy; non-primitivity;
Device redundancy';', etc. (see Section III-C) non-combinationality (see Section III-C)

Positive Generator graphs’ (see Figure 5); Duality (see Section III-C)
Sufficient conditions for new logic family cAND/cOR"

output is tri-state for one or more input patterns. Finally,
duality is defined between a pair of cells, say C; and C;, where
the structure and the logic function implemented by C; can be
derived by applying specific sets of transformations to those
of C;. For mem-MOS MRL, the set of circuit transformations
is: reverse the p-n direction of every memristor; replace
every nMOS transistor by a pMOS and vice versa; and
replace every Vz; by GND and vice versa. The corresponding
transformation of the logic function requires AND and OR to
be interchanged in the logic expression. For example, if the
original cell implements X + YZ', then the cell obtained via
duality transformation implements X(Y + Z’), i.e., XY + XZ'.

General properties are extremely useful for cell explorations
in any technology, especially as post-enumeration filters in the
early stages of the study of new technology.

Post-Enumeration Filters Based on General Properties:
Each of the above negative general properties can be used to
develop filters to identify undesirable cells in a given set of
cells. For example, we can use our toolkit of graph functions
and database to filter, i.e., to remove, all reducible cells created
by the enumerator, as shown in Algorithm 2.

We have developed a set of such filters based on the above
general properties and used these to eliminate extremely large
fractions of cells generated by naive enumerators. Even when
we move beyond a naive enumerator, filters continue to be
valuable since it is difficult to identify topological properties
that can avoid every undesirable cell which satisfies one of
these general negative properties.

Also, ahead we use duality to reduce the number of cells
we need to study to identify positive properties.

3) Positive Topological Properties and Their Use: We used
our naive enumerator for k = 2 and k = 3, identified negative
properties, and used these to modify our enumerator to avoid
the generation of large numbers of provably undesirable cells.

Generator Graphs: When we reviewed a few of the remain-
ing cells for k = 2, we observed that all the cells we reviewed
shared the general graph structure shown in Fig. 5(b), where
the graph is obtained by replacing each device in the cell with
a graph edge to denote the device’s channel. Based on this
observation, we formulated a hypothesis: all the pd cells for
k = 2 share this graph structure. We used HERS, implemented
using our extensible toolkit, to show that all pd cells for k = 2
indeed map to only one generator graph shown in Fig. 5(b).
Further, for k = 3, all pd cells map to the two generator graphs
shown in Fig. 5(c) and (d). (More ahead on deductive proofs.)

IL to Derive Larger Generator Graphs: We applied IL
across the graphs for different values of k, to create all possible
generator graphs for k = 4 to 6. For k = 4, we identified the
four generator graphs shown in Fig. 5(e)—(h); for k = 5 and 6,
we identified 10 and 17 generator graphs (not shown in the
figure).

Algorithm 2: Post-Enumeration Filter for Reducibility

Data: Query the database to identify all cells, say C;, and note the
logic function implemented by the cell, say as F;
for each C; and F; do
reducible = false;
for each dj in C; do
Remove d.i from C; to obtain Cf’o;
Query the database to identify the logic function implemented
,0 J.0.
by Ci ,say Fi'O5
if F == F; then
| reducible = true;
end
Short-circuit channel terminals of d; and remove d; from C;
to obtain Cé’s;
Query the database to identify the logic function implemented
VAR IS,
by Ci , say F s
if F/" == F; then
‘ reducible = true;

end
end
if reducible == true then
| label C; as undesirable;
end
end

Vaa
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Fig. 5. Complete set of generator graphs for k < 4. The graph(s) for k =2
and k = 3 are derived from the results of exhaustive enumeration, while those
for k = 4 and k = 5 (ten graphs, not shown here), are derived via IL. (a) A
sample cell, (b) generator graph for k = 2, (c)-(d) generator graph for k = 3,
(e)-(h) generator graph for k = 4.

(€9) (h)

Collectively, these generator graphs are the most useful
instance of positive topological properties to date. As we show
ahead, the latest version of our enumerator avoids extremely
large numbers of undesirable cells by limiting to the circuit
netlists created using these graphs.

We derived deductive proofs for the genesis of these graphs.
As the formal proofs are complex, we summarize the key
properties that underlie our proofs.

Property: A cell where the gate of any transistor is driven
by either of its diffusion regions (channel terminals), either
directly or transitively via some subcircuit, is undesirable.

Property: Every transistor gate must be the cell’s input.

Property: The output node of the cell must be driven by
channels of at least two devices.
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In summary, we only need to consider cells where: 1) the
gate input of every transistor is connected to a primary input,
called a g-input of the cell (we are considering primitive cells
with independent gate inputs). 2) The memristor-transistor
network has an acyclic structure (from inputs to the output)
that we call a channel-connected component, as shown in the
generator graphs. 3) The inputs shown on the left side of the
graphs in Fig. 5 are called channel inputs, c-inputs.

D. Our Key Methods, Tools, and General Properties

Fig. 3 shows our key methods and tools. We have already
described our extensible toolkit and HERS above.

1) Cell Analyzers and Fast Simulator: Using our toolkit,
we have developed tools for analysis and fast simulation for
the initial characterization of our cells. These tools do not
require specific transistor sizes.

Each of our analysis tools checks a cell’s netlist graph for
a specific negative topological property that renders the cell
degenerate, nonprimitive, or noncombinational, especially tri-
state. Thus, these tools eliminate large fractions of cells at
extremely low complexities.

Our fast simulator generalizes the switch-level simulation
algorithms for MOS [25], [26] for mem-MOS MRL cells, by
adding technology-specific values, namely tri-state, weak 0/1,
and ratioed, in addition to logic-0/1, and adding specialized
algorithms for key tasks. At low complexity, this simulator
eliminates large fractions of undesirable cells, especially most
tri-state cells. It also computes the truth table entries for
most input patterns, and the higher complexity simulation is
required only for the small fraction of input patterns that cause
ratioed voltage at the output.

2) Customized Spectre Simulator: For the characterization
of cells, we use a Cadence Spectre simulator. We use CMOS
65 nm technology for transistors and the VTEAM model for
memristors [15], [27] with Ry = 1 K, Ror = 100 K,
Von = —0.05 V, and Vo = 0.05 V. We selected the VTEAM
model as it combines sufficient accuracy with low simulation
time [15]. Also, we use Vs = 1.2 V and GND = 0 V. Further,
while our enumerator does not assign device sizes, our default
transistor sizes are: nMOS with minimum length and width,
and pMOS with minimum length and 2x the minimum width.
Also, every logic cell is simulated with a capacitive load at
its output, namely a CMOS INV with the above default W/L
values.

In our first mode, we use this simulator to characterize the
truth table of each cell. As mentioned above, we only use
this simulator for input patterns for which the fast simulator
has determined that the output value is ratioed. If the output
voltage is between 0.4 and 0.8 V, we eliminate the cell;
otherwise, depending on the voltage, we assign it logic-0/1.

In the second mode, for all the remaining cells, we use
the Spectre simulator to characterize the power (P), voltage
deviation from the ideal voltage (6V), and delay (D). During
this process, we simulate all possible two-pattern sequences.
This mode has higher complexity but is used only for the
relatively small number of cells that are not eliminated near
the end of our study.

Power (P): From the above simulations, we compute the
average of the power values over all possible patterns. Each
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Fig. 6. Our implicitly exhaustive cell enumeration method: (a) Example
generator graph, (b) one of the general netlists obtained at the end of stage-1,
and (c) one of the final cell netlists obtained at the end of stage-2.

pattern is applied for 10 ns and the reported average power
includes both dynamic and static power within this duration.

Output Voltage Deviation (§V): For each pattern, we com-
pute the absolute value of the voltage deviation relative to the
corresponding ideal voltage, namely, 0 V for logic-0 and Vg,
for logic-1, compute the worst-case across all patterns.

Delay (D): We compute the worst-case among the propa-
gation delay values across all two-pattern sequences.

Finally, for any cell that has a ratioed output for one or more
input patterns, we study whether the cell is stable. A ratioed
cell is deemed stable if, for every pattern, the logic value at
its output remains unchanged when we sweep all transistor
widths over a range that spans 1x to 32x of the above default
widths, while the lengths remain at the minimum. In most of
our studies, we focus on stable cells.

3) Implicitly Exhaustive Cell Enumerators: By harnessing
all the negative topological properties summarized above and
the positive properties embodied in the generator graphs
(Fig. 5), we have developed a highly optimized implicitly
exhaustive enumerator for mem-MOS MRL cells. Our latest
enumerator works in three stages.

Stage-1 (Create General Netlists): In the first stage, for each
generator graph, we enumerate every possible combination of
device type and polarity for each edge in the graph. Hence,
for each edge, we enumerate a memristor and a MOS channel.
In terms of polarity, for a memristor, we enumerate both
directions (p-n and n-p), for a transistor we enumerate both
types (nMOS and pMOS). We consider graph isomorphism
during device assignment to avoid the creation of (many, but
not all; more ahead) isomorphic netlists. We call each netlist
generated at this stage a general netlist.

Each general netlist has two types of inputs: 1) g-inputs
and 2) c-inputs, where each g-input drives the gate of a
transistor, and each c-input drives a channel input, i.e., one of
the terminals of a memristor (p or n) or one of the diffusion
terminals of a MOS transistor. At this stage, for each general
netlist, we assign each input a distinct input label: to the
ith c-input we assign the label «; and to the jth g-input we
assign the label B;. Fig. 6(b) shows one example general netlist
created for the generator graph shown in Fig. 6(a). Finally,
we use the above combination of fast and customized Spectre
simulators to compute the truth table for every general netlist.

Stage-2 (Assign Primary Input Names): In this stage, for
each general netlist, we enumerate versions with all possible
primary input assignments to create a set of final cell netlists.
Specifically, we enumerate all possible assignments of actual
primary input names, e.g., X, Y, and so on, to the above-
mentioned general input labels, namely «;’s and B;’s. During
this, we consider the facts that multiple general input labels
can be assigned the same primary input and that some (or all)
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TABLE II
CELLS GENERATED BY OUR ENUMERATOR AND OTHER TOOLS

No. No. of No. No. of No. of No. of No. of
of cells of gen- circuit cells final
de- gener- | gene- eral netlists | after re- cells
vices | ated by | rator | netlists moving after
(k) naive | graphs with tristate, post-
enu- inde- non- enum-
merator pen- boolean, eration
dent and de- filtering

inputs generate

cells
2 2,216 1 10 179 20 16
3 | 905,467 2 56 3,828 572 173
4 - 4 487 120,759 19,392 4,522
5 - 10 4,778 | 5,181,368 | 771,355 134,449

of the c-inputs may also be assigned special signals, namely
Va4qa or GND, in addition to primary inputs. Fig. 6(c) shows
one example primary input name assignment.

As we assign primary input names, we use the general
netlist’s truth table to compute the truth table for the final cell
and discard degenerate and noncombinational cells, including
tri-state cells.

Stage-3 (Use General Property Filters): Our above two
stages avoid/eliminate all degenerate, nonprimitive, and
noncombinational cells. In the third stage, we use a post-
enumeration filter to avoid isomorphism and types of
reducibility that occur frequently, including memristors in
series or parallel, transistors in series/parallel whose g-inputs
are assigned the same primary input name, and some com-
monly occurring types of logically equivalent cells.

E. Results-2: Effectiveness of Our Enumerator and Other
Tools

Table II demonstrates the effectiveness of our above IL,
HERS, enumerator, and other tools. It also shows the number
of cells created by our naive enumerator for k < 3. For k = 3,
the naive enumerator creates 905467 cells. In contrast, our
above enumerator starts with two generator graphs and creates
56 general netlists and 3828 circuit netlists. The number of
circuit netlists that have Boolean outputs is 572. After using
post-enumeration filters, it finally provides 173 mem-MOS
MRL cells for our study.

Importantly, the naive enumerator does not even work for
k > 3 due to its exponential complexity. Yet we identify four
and ten generator graphs for k = 4 and k = 5, respectively.
Starting with these, our new enumerator finally provides 4522
and 134449 mem-MOS MRL cells for these cases. The set of
all cells reported in the last column of this table is the starting
point of our study described next and results in discoveries
that dramatically expand the last 15 years of research results.

IV. EXPERIMENTAL RESULTS: THE LIBRARY OF
UNIQUELY EFFICIENT CELLS AND NEW LOGIC FAMILIES

We first identify the robust and uniquely efficient cells
among the cells we have generated, to create our library
of mem-MOS MRL cells. We introduce our library by first
comparing the mem-MOS MRL cells proposed by prior
research with the set of Pareto-optimal cells in our library,
and demonstrating the benefits of our new cells. We then
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summarize how our library is a definitive library for circuit
designers interested in mem-MOS MRL logic.

Subsequently, we use our data-driven IL method and tools
to identify positive properties of our best cells. Importantly,
we have discovered a new way in which memristors and
MOS devices can work together to create low-area cells with
excellent performance. We also identify one new logic family
and develop a method to design high-performance cells with
any number of devices.

A. Metrics and Methods for Selecting Robust and Efficient
Cells

1) Performance Metrics: We focus on four metrics: 1)
area (A); 2) power (P); 3) deviation from the ideal output
voltage (§V); and 4) delay (D).

Memristors are considerably smaller than transistors [14],
hence some previous studies have completely ignored the
memristor area. However, to distinguish between two cells
with the same number of transistors but different numbers
of memristors, we assign a nonzero weight to the area of
each memristor. We designate the area of each memristor as
0.1, relative to 1 for the area of each transistor. We have
already described above how we compute the values of the
other three metrics. In our studies, we use the values of these
metrics for each cell for the default transistor sizes presented
in Section III-D.

2) Methods for Identifying Uniquely Efficient Cells: We
categorize the cells based on the logic functions they imple-
ment, as cells that implement the same logic are directly
comparable.

Baseline Robustness (Cells With Low 8V and P): Our
exploration of mem-MOS MRL cells has identified a large
number of low-cost cells with very low 6V values and
relatively low power, namely 6V < 0.1 V and P < 5 uW.
Low 4V is correlated with better noise margin and lower short-
circuit power. Hence, we mainly focus on cells that satisfy
these constraints.

Baseline Robustness (Stable Cells): In most of our studies,
we focus on cells that are stable, i.e., on cells that implement
the same logic function over the wide range of transistor
sizes provided in Section III-D. Such cells provide the same
desirable property as a ratioless cell, namely the flexibility to
size transistors to optimize other metrics, e.g., power or delay.

A Library for a Range of Users (Pareto-Optimal Cells):
Subject to the above quantitative and qualitative robustness
requirements (low §V-and-P and stable), we create a library
that includes cells which a wide range of users would find
optimal. It is important to remove only the cells that are
inefficient for every possible user priority. This is captured
by the notion of Pareto-optimality: For each logic function,
we compare every pair of cells C; and C; that implement the
function. If C; is inferior or equal to C; in every one of the four
metrics, while being inferior in at least one metric, then C;
is marked as dominated. At the end of pair-wise comparisons
across all cells that implement the function, the cells that are
not marked as dominated constitute the set of Pareto-optimal
cells. Each cell in this set excels in at least one metric, making
it desirable for users to prioritize among A, D, P, or §V.
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Selecting Cells to Study (n-Best Cells): In contrast to Pareto-
optimality, here we focus on the cells that are all-rounders: by
identifying n cells whose four metric values — A, P, §V, and
D — are all within 100e percent of their minimum values.

Let S denote the set of all robust cells that implement a
given logic function. Also, let C; denote a cell in the set S.
Across all the cells in the set S, first, we identify the minimum
to maximum range for each of the four metric values. That is,
across all cells in S, for A we identify

Arange () = [Amin(5), Amax (S)].

Similarly, we identify the ranges for P, §V, and D.

Then, for a given value of a parameter €, we identify all cells
C; € S that simultaneously satisfy the following conditions for
all four metrics:

A(C)) < Anin(S) + €[Amax(S) — Amin(S)], and

D(C;) = Diyin(S) + €[Dmax(S) — Dmin(9)].

That is, we select a cell if every one of its four metric values
is within 100¢ percent of the best value (i.e., minimum) for the
corresponding metric across all the cells, where the percentage
is taken over the range between the maximum and minimum
value of the metric.

Finally, we compute the minimum value of ¢ such that
exactly n cells in set S satisfy the above conditions. This
identifies the n-best all-rounder cells for that function, and we
designate the corresponding value of € as €,. In particular,
we study the best cell for every logic function and the
corresponding €;. We also study the 5-best cells and 5.

B. Results-3: Our Cells and Comparison With Prior
Research

Over 15 years of prior research has created a relatively small
number of mem-MOS MRL logic cells [18], [19], [20], [21],
[22], [23], [24]. Here, we compare the prior cells with the
cells we have created.

Previous studies have manually explored existing cells and
logic families to design new cells for specific logic functions,
deriving inspiration from a range of sources. The key question
that motivated our research is: Are there efficient cell designs
that are so far from existing cells and logic families that
they may have been missed by such explorations? This has
prompted us to create an exhaustive set of cells with < 5
devices, except those that are certainly not desirable, to ensure
that we do not miss any nonintuitive design that may be
uniquely efficient.

Hence, the goal of these comparisons is to answer the
following types of questions: Do there exist new cells that
are significantly superior to the prior cells created via manual
explorations? Alternatively, do there exist new cells that
are Pareto-optimal and provide sufficiently different tradeoffs
relative to the prior cells?

As mentioned earlier, for each logic function, we compare
prior cells with the cells we have created, in terms of A, P,
8V, and D.

In [19], a mem-MOS MRL template has been proposed by:
1) starting with a MOS pass-transistor MUX and 2) using
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Fig. 7. Cells implementing the function X + Z'Y. (a) C4: a prior cell [19],
(b) Cs: a new Pareto optimal cell, (c) Cg: another new Pareto optimal cell
which improves all metrics over the prior cell, and (d) corresponding metric
values.
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Fig. 8. Cells implementing two-input XOR. (a) C7: a prior cell [19], (b) Cg:
a prior cell [20], (¢) Cy: a prior cell [22], (d) Co: a new Pareto optimal cell,
(e) Cq1: a new Pareto optimal cell, and (f) corresponding metric values.

mem-only MRL AND/OR gates to drive some/all of the three
inputs of this MUX. This template can be used to create mem-
MOS MRL cells for eight different logic functions of two and
three input variables. Our method creates every one of the
prior cells that are primitive. Importantly, our method creates
additional new cells that significantly improve the values of
some/all metrics over the corresponding prior cells.

The prior cell C4 shown in Fig. 7 is an example of the above
template that implements the function X +Z'Y. Two new cells
Cs and Cg generated by our method also implement the same
function. In this case, our method generates the prior cells as
well. Our new cell Cg improves all four performance metrics
over the prior cell Cy4, lower P (0.72x), lower §V (0.28x),
and lower D (0.75x).

Fig. 8 shows several XOR implementations, three prior cells,
C7 [19], Cg [20], and Cy [22], and two new cells, Cj9 and
C11. Our method does not generate these prior cells, since all
are nonprimitive. We ignore the prior cell Cg, since it does not
work for the device parameters we use (its §V is 480 mV).
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TABLE III
How OUR CELLS IMPROVE UPON LOGIC CELLS PROPOSED BY PRIOR RESEARCH

[ Function [ Prior cells [ New cells | Improvements provided by new cells ]
XY Cy, Cy Cs New Pareto cell, Cs: higher P (2.2x) and lower D (0.47x) compared to C1;
lower 6V (0.17x) and higher D (1.6x) compared to C2
X+ZY Cy Cs, Cs New optimal cell Cg: lower P (0.72x), §V (0.28x), D (0.75%) and A
(Fig. 7) (Fig. 7)
XY +XY C7-Co C1o, C11 New Pareto cell, C1o:
(Fig. 8) (Fig. 8) lower 6V (0.04x), but higher P (2.3x) and D (2.3x) compared to C7;
Lower V' (0.13x), but higher P (2x) and D (1.3x) compared to Cy;
New Pareto cell, C11:
Lower V' (0.36x) and similar D, but higher P (3.38x) compared to C7;
Similar §V and lower D (0.62x), but higher P (4.5x) compared to Cy;
XY’Z Cia, Ci3 Cha New Pareto cell: lower P (0.4x) and lower D (0.4x) compared to C12;
Lower P (0.25x) and similar 6V compared to C3
TABLE IV
OUR DEFINITIVE LIBRARY OF MEM-MOS MRL CELLS
# # functions # cells # cells with # cells also # cells # cells also # functions
inputs implemented generated 0V < 0.1v | with P <5uW also stable pareto-optimal implemented
in Pareto set
2 8 42,805 17,186 14,963 14,963 565 8
3 55 69,721 12,131 9,974 9,974 853 40
4 391 38,793 3,016 2,288 2,288 584 106
5 755 8,628 304 255 255 168 90
6 341 943 0 0 0 0 0

Our new cells provide significantly different new Pareto
alternatives for the prior cells. The new cell Cyg significantly
improves 8§V compared to prior cells but at the cost of higher
P and D. Relative to Cg, Cip lowers §V to 0.13x, while our
other new cell C;; lowers D to 0.61x.

Table III shows a summary of our above comparisons. It
also summarizes a comparison of three cells implementing the
logic function XY’ (a prior cell Cy [22], an MRL cell [18] (>,
and one of our new cells C3) and three cells implementing
the function XY’Z (a prior cell Cy [22], an MRL implemen-
tation [18] C13, and one of our new Pareto optimal cells C14).

Our method has produced cells that either significantly
improve all metrics over the cells reported by prior research,
replacing them entirely, or adding new cells to the set of
Pareto-optimal cells. These new cells significantly alter the
tradeoffs by improving one or more metrics while trading off
other metrics.

Hence, these comparisons clearly show that while prior
research has indeed identified a few very good cells, the scope
of manual explorations and design is limited. This clearly
shows the benefits of our methods and tools, namely their
ability to discover significantly better cells and hence enable
a much more meaningful evaluation of a new technology.

Notably, our new cells provide significant improvements or
significantly different tradeoffs, even though we compare our
primitive cells with k < 5 devices with all the prior cells,
including many nonprimitive and/or cells with k > 6 devices.

C. Results-4: Our Cell Library Versus Prior Research

Table IV summarizes the numbers of unique, robust, and
pd cells. Column-3 shows the number of cells created by the
latest version of our enumerator. Column-2 shows the number
of logic functions for which our enumerator has created cells.

We apply our two quantitative criteria for robustness,
namely 6V < 0.1 V and P < 5 uW, to select cells, and the
numbers of selected cells are shown in Columns-4 and 5. Then
we apply our qualitative criterion for robustness, namely cell
stability, to select cells. The resulting numbers of cells are
shown in Column-6. We also use our approach to select only
the Pareto-optimal cells and show the numbers of cells in our
library in Column-7. Our library includes cells for the number
of logic functions displayed in the last column.

Two important observations about the above steps. When
we apply our two quantitative robustness criteria (§V < 0.1 V
and P < 5 uW), we eliminate rapidly increasing fractions
of cells as we move from two-input cells to six-input cells.
This is because a cell with a limited number of devices that
implements a logic function with a large number of inputs is
likely to be not robust. Hence, our focus on robustness reduces
the number of logic functions for which our library includes
cells (compare Columns-2 and 8). Also, when we select only
the stable cells we do not eliminate any cell that meets both
our quantitative criteria for robustness, namely §V < 0.1 V
and P <5 uW. We will explain this ahead.

1) Definitive Library of Cells: The cells and logic functions
summarized in Columns 7 and 8 of Table IV constitute a
definitive library of mem-MOS MRL cells. The term definitive
captures the fact that these cells collectively constitute a set
that guarantees Pareto-optimality relative to the set of all
possible mem-MOS MRL cells which are robust. Simply, if
a cell is not in this library, then it cannot be implemented
as a primitive mem-MOS MRL cell, or is not robust, or has
performance metrics that are dominated by one of the other
cells in our library.

In quantitative terms, 15 years of prior research has created a
couple of dozen cells. Our method and tools have dramatically
expanded the library of mem-MOR MRL cells to provide a
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TABLE V
SUMMARY OF THE 5-BEST CELLS FOR TWO-INPUT LOGIC FUNCTIONS (ASTERISKS IDENTIFY THE TYPES OF THE BEST CELLS).

Logic function Total # of | €1 €5 The types of the 5-best cells
cells with
low del V
and low P
(* denotes the type of the best cell)
cAND/cOR and | Pseudo-MOS MRL Other
derivatives and derivatives
XY’ 4637 | 0.08 0.08 | 5* 0 0 0
X+Y 3239 | 0.04 || 0.26 | 2 0 3% 0
X+Y’ 4416 | 0.06 || 0.13 | 5* 0 0 0
XY 3261 | 0.04 || 0.08 | O 0 5% 0
(X+Y) 642 | 0.10 || 0.20 | 2 3% 0 0
(XY) 637 | 020 || 0.22 | O 5% 0 0
XeY 180 | 0.17 0.32 | 3* 0 0 2
(X o Y)’ 180 | 0.12 || 0.22 | 4* 0 0 1

choice of 2070 cells, counting only the cells that are robust
and Pareto-optimal. Hence, most of our cells are the first
known implementations of the corresponding logic functions.
Also, our research has dramatically expanded the set of logic
functions for which robust mem-MOS MRL cells are now
known.

2) Best mem-MOS MRL Cells: We now select the best cells
and apply our IL method to derive their properties and develop
a constructive method for their design.

We have already presented above our method for iden-
tifying, for each logic function, the n-best cells and the
corresponding €, values. Here, we use this n-best method with
n = 1 to identify the best cell and compute the value of €.
We also use it with n = 5 and identify the 5-best cells and
€5. Table V shows the key characteristics of the best and the
5-best cells for each logic function. The €] value, for a logic
function, shows how close the best all-rounder cell for the
function comes to achieving the minimum value of every one
of the four metrics, simultaneously.

Interestingly, for every one of the logic functions of two
variables, an all-rounder cell exists whose performance is
within a small range — between 1.04x and 1.20x — of the
minimum values for all four metrics, simultaneously. The
value of € is especially low for X + Y and XY, followed by
X + Y’ and XY’'. Hence, there exists at least one all-rounder
cell that is very close to being globally optimal.

Having identified the best and 5-best cells, we select these
for review and apply our IL method.

3) General Structures of the 5-Best Cells: IL starting with
a review of the 5-best cells enabled us to identify the general
structures of these cells shown in Fig. 9. Each one of these
structures constitutes a mem-MOS MRL logic style and is
described next.

First, mem-only MRL cells (column labeled MRL in
Table V) can only implement noninverting functions. For two-
input logic functions, this limits such cells to AND and
OR. For three-input functions, these are also useful for other
inversion-free AND-ORs and OR-ANDs. Our study shows
that, for many of these logic functions, even when compared
to the set of all-possible mem-MOS MRL cells, mem-only
MRL cells, shown in Fig. 9(a), are the best.

Second, due to their high areas, CMOS cells do not appear
in the set of 5-best designs. However, our review of 5-
best cells for NAND (XY)" and NOR (X + Y)’, showed that

ouT
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o Network
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Fig. 9. Transformation from CMOS cell to controlled AND (cAND) cell:
the general structure of (a) memristor AND cell, (b) CMOS cell, (c) mem-
MOS MRL version of pseudo nMOS cell, where the pull-up of the CMOS
cell is replaced by a load memristor, and (d) cAND cell. «; and g; are c- and
g-inputs of the cell and will be replaced by input variables such as X and Y.
c-inputs may also be replaced by GND or V4.

the use of memristors along with MOS devices enables a
mem-MOS version of pseudo-MOS: the general structure for
NAND is shown in Fig. 9(c); NOR has the dual structure.
The specific NAND and NOR cells are shown in Fig. 10(c)
and (d). The NAND can be viewed as the pull-down network
of the corresponding CMOS cell, combined with a single
memristor serving as the pull-up. In this cell, the memristor
M3 is logically redundant but it reduces the cell’s delay and
makes it one of the 5-best cells. Such mem-MOS versions
of pseudo-MOS have significantly lower areas (about 0.5x)
compared to the corresponding CMOS cells. Despite this, for
two-input functions, such pseudo-MOS designs are the best
only for NAND and NOR, i.e., the two-input functions for which
a single CMOS cell implementation exists. For three-input
logic functions, such cells are the best only for NAND, NOR,
and OR-AND-INV functions.

Third, for all other two-input logic functions, the 5-best
cells all share the general structure shown in Fig. 9(d), or the
structure of its dual. Fig. 10(a) and (b) show the implemen-
tations of X + Y’ and XY’. (We have discussed XOR earlier.)
Fig. 10(e) shown the performance metrics for the four cells
above. The input—output waveforms for cell Ci;5 (OUT1) are
shown in Fig. 11 and illustrate what is typical of our best
cells: low delays and low §V values, despite much lower areas
compared to CMOS.
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Fig. 10. One of the five-best cells implementing the function. (a) Ci5: X+Y/,
(b) C16: XY’ function, (c) Cj7: two-input NAND, (d) Cjg: two-input NOR,
and (e) corresponding metric values.
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Fig. 11. Timing diagram for the input—output signal of the cell C;
implementing the function X + Y’.

Hence, our review of 5-best cells enabled us to identify new
types of mem-MOS MRL cells which we call cAND and cOR.
Finally, the cells mentioned in the column labeled “Other”
in Table V are cascaded combinations of two cells of the
above three types (All types of cascaded structure are not
logically viable [28]). Interestingly, cAND/cOR are also key
components of these cells, especially for most of the three-
input logic functions.

Hence, one of the most important discoveries enabled by
our research is the identification of a new cell type in mem-
MOS MRL: namely the cAND, and its dual, cOR. Detailed
analysis of such cells is presented next.

D. Results-5: Synergistic Operation of Memristors and MOS

Our cAND and cOR cells universally provide low §V.
This is surprising given their structures. In this section, we
investigate the causes of this and discover that memristors and
MOS devices operate synergistically, and this is the key to the
performance of these cells.

Almost every cAND and cOR cell uses MOS transistors
in configurations where paths from one or more c-inputs to
the output pass via transistor channels. From MOS device

3001
M;
X=1 ¢
=] =
[] o =]
e z=1 | ¢ <)
2 M, L [5
=} 2 <)
Y=1 N 3
(a) (b)

Fig. 12.  (a) cAND cell with two-channel inputs with memristor states for
ZYX = 110. (b) Same cell for ZYX = 111. In this case, memristor states
are determined by the previous pattern. However, the states do not affect
the output voltage, since both inputs are identical. (c) cAND cell with three
channel inputs with memristor states for ZYUVW = 11110.

characteristics we know that, in such a pass-transistor con-
figuration, while a logic-0 (0) passes perfectly via an nMOS
transistor, a logic-1 (1) is degraded from Vg, to a voltage less
than Vpp — V4, which is called weak-1 (wl). A pMOS in a
similar configuration passes weak-0 (w0). At a cell output wl
corresponds to 8V > Vy,, which is much higher than the §V
for all cAND/cOR, as well as for most of our Pareto cells.

Hence, we faced the question: How do all cAND cells use
only nMOS transistors in the pass-transistor configuration,
and still avoid weak values and achieve dramatically lower
8V values? Also, many cAND cells have paths from multiple
c-inputs that pass via nMOS devices in the pass-transistor
configuration and converge at the output. Hence, the question:
How do cAND cells provide low 8V for patterns where the
MOS devices in the mem-MOS paths have a ratioed operation?

We used IL to answer these questions and discovered key
positive properties. Consider the cell shown in Fig. 12(a)
and (b). This cell has two c-inputs, X and Y, and one g-input,
Z. The path from X to the output is a mem-only path with
memristor M, while that from Y is a mem-MOS path with
memristor M> in series with nMOS transistor N3. These figures
show this cell for input patterns where the mem-MOS path is
active, i.e., N3 is on, and its c-input, Y, is trying to pass a
logic-1 via the nMOS device’s channel. Hence, the question
is: Why do we not get a weak value, wl, at the output?

First, for pattern ZYX = 110, nMOS N3 is on and both
input—output paths are active. Due to X = 0 and ¥ = 1,
memristors M; and M, achieve the resistance values shown in
Fig. 12(a). nMOS N3, in series with M», tries to pass 1 via the
mem-MOS path and would have produced a w1 at the output.
However, for this pattern, mem M; in the mem-only path is
passing 0 and is in the low resistance state (Rop). In contrast,
mem M, in the mem-nMOS path is in a high resistance state
(Rofr). Hence, the mem-only path overrides the wl from the
mem-nMOS path and drives the output to 0. Hence, wl is
avoided by the mem-only path overriding wl to produce 0.
Very low 8V is achieved at the output due to the high R to
Ron ratio.

Next, for pattern ZYX = 111, nMOS N3, in series with M»,
passes wl via the mem-MOS path. At the same time, mem
M in the mem-only path supplements this by also passing 1.
Hence, w1 is avoided by the mem-only path supplementing wl
to produce 1. Again, this achieves §V close to Ov.

Consider another cell shown in Fig. 12(c), which shows the
states of the memristors for the pattern ZYUVW = 11110,
which causes a ratioed operation between the mem-MOS path
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with mem M3 in series with nMOS Ns trying to pass a 0; the
mem-MOS path with mem M in series with nMOS Ny trying
to pass a wl; and the mem-only path with M) trying to pass
1. Each of the memristors in the paths passing a 1 is in the
high resistance state (Roff), while the memristor in the path
passing a 0 is in low resistance state (Ron). Hence, the path
passing 0 decisively overrides the other two paths and drives
0 at the output, thus avoiding high 6V that could have been
caused either due to MOS-MOS ratioed operation, or due to
nMOS passing a wl, or both.

Our review of the above example cAND cells, and a
few others, enabled us to discover a synergistic operation
between memristors and MOS devices in cAND cells. In these
cells, if a pattern tries to pass wl via nMOS device(s) or
degrade the output voltage via MOS-MOS ratioed operation,
the memristors switch states to avoid voltage degradation,
either by overriding the weak value, or by supplementing the
weak value, or by decisively resolving the ratioed operation.

E. Results-6: A Constructive Method to Create cAND/cOR
Cells

In this section, we present a method to construct our new
family of mem-MOS MRL cells, namely cAND. cOR can be
derived using duality (see Section III-C).

1) Topology of cAND: We have outlined the general struc-
ture of a cAND cell in Fig. 9(d). Now we present the
requirements we impose on its topology, as well as the
variations we allow. Then we present key properties satisfied
by any cAND that meets the above requirements.

Requirement 1 (cAND): The block labeled nMOS Network
in Fig. 9(d) is any channel-connected configuration (CCC) of
nMOS devices, All the gate inputs are driven by g-inputs of
the cell, labeled B;. On the right side of this network, all the
channels are combined into a single port that is connected to
the cell output. The channels of the nMOS network on the left
side are combined into one or more ports.

Requirement 2 (cAND): Each of the port(s) on the left side
of the nMOS Network is driven either by one c-input via a
memristor with the polarity shown in the figure, or by two or
more c-inputs via a memristor AND.

Requirement 3 (cAND): Finally, the memristor-only network
at the top either has one c-input that drives the output via one
memristor with the polarity shown in the figure, or has two or
more c-inputs that drive the output via a memristor AND.

Requirement 4 (¢cAND): Each g-input is assigned to one of
the cell’s primary inputs, e.g., X, Y,...; and each c-input is
assigned either to one of the primary inputs, or Vg4, or GND.

2) Properties Guaranteed by Above cAND Construction:
The above requirements for cAND are sufficient to derive the
following properties of cAND. These properties explain why
cAND cells, and their duals, cOR cells, appear in the 5-best
sets for so many logic functions.

Property 1 (cAND): For any input pattern where nMOS
devices in active mem-MOS paths are all passing logic-1, any
cAND cell is guaranteed to provide low 8V at the cell output,
as well as negligible short-circuit power dissipation.

Property 2 (cAND): When a mix of 0 and a 1 are applied to
the c-inputs of active mem-MOS paths in any cAND cell, then
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the cell always achieves low 8V and negligible short-circuit
power dissipation.

Any such pattern causes an MOS-MOS ratioed operation
and could have degraded the output voltage and caused high
power due to high short-circuit current. However, in any cAND
cell, the memristor in each active path (including the mem-
only path(s), which are always active) with 0 at its c-input
goes into Ry, while the memristor in every active path with 1
at its c-input goes into Rofr. We have already explained (end
of Section IV-D) how this avoids high §V. Further, the power
dissipation is reduced since each active mem-MOS path with
logic-1 at its c-input has a memristor in R state and hence
limits the short-circuit current and hence limits the short-
circuit power.

In the past, low §V and low P were provided by CMOS
cells, which have high areas as they require both nMOS pull-
down and pMOS pull-up networks. While pass-transistor logic
required much fewer transistors and hence had low areas, these
typically had much higher 6V and P.

In contrast, cAND cells only require nMOS networks and
cOR cells require pMOS networks, plus a few memristors
which have negligible areas. Hence, cCAND and cOR cells, for
the first time, combine the low areas of pass transistor logic
with provably low 8§V and P.

V. CONTRIBUTIONS AND ONGOING RESEARCH

IL enabled us to identify that in many of our best cells,
memristors and MOS devices operate synergistically to avoid
high 6V and P. Our key discovery is that this phenomenon
arises when the characteristics of memristors and MOS devices
are aligned with specific cell topologies. Importantly, this
enables low §V and P, which were previously confined to
CMOS cells, in a new family of cells — cAND and cOR — with
half as much area. We have also identified key requirements
for the construction of cAND/cOR cells.

We have developed an IL method and a completely new
tool, namely hypothesis exploration, refinement, and selection
(HERS), which automates critical tasks for IL. We have exten-
sively used these to develop a highly streamlined implicitly
exhaustive cell enumerator to enable the above discovery.
These tools have also generated a definitive library of mem-
MOS MRL cells.

Ongoing research spans device-cell co-optimization (i.e.,
co-optimization of the values of memristor parameters and our
cell designs), further optimization of cAND/cOR cells, and
new methods for logic synthesis using our definitive library of
mem-MOS MRL cells. We are also expanding our method for
the discovery of sequential mem-MOS MRL cells as well as
uniquely efficient cells for other types of emerging devices.
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