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Abstract—The objective of our research is to create efficient
methods and tools for the quick and thorough assessment of
emerging digital circuit devices, facilitating the adoption of
promising ones. In this work, we develop methods and tools
for hybrid technology that combines memristors with MOS
transistors and demonstrates their effectiveness. Although several
types of memristor-transistor logic have been proposed, 15 years
of research has created a small set of logic cells. We propose a
systematic method for generating new and efficient memristor-
transistor single-phase combinational logic cells. At the core
of our approach is a cell enumerator, which enables us to
explore a wide range of cell designs, including nonintuitive ones,
and a data-driven inductive learning method, which identifies
new properties of such cells and scales up our explorations.
In conjunction with other completely new tools, these create
a comprehensive and definitive library of logic cells. Our new
cells provide significant improvements or significantly distinct
Pareto-optimal alternatives for the few logic functions for which
prior research has created cells. Importantly, our methods
enable us to discover a previously unknown synergistic operation
between memristors and transistors that occurs for specific cell
topologies. We harness this synergy to develop a method for
adding memristors to low-area pass-transistor circuits such that
they produce strong output voltages and low power, including for
patterns that cause ratioed operation. We have also developed
a new memristor-transistor logic family, namely controlled-AND
(cAND)/controlled-OR (cOR), which includes many of the best
cells. We have also developed a constructive method for designing
such cells.

Index Terms—Data-driven inductive learning (IL), enumera-
tion, logic cells, memristors.

I. INTRODUCTION

I
T IS now widely believed that we are reaching the limits

of physical scaling of CMOS devices [1]. This has led

to the emergence of several promising devices, such as

memristors [2], [3], magnetic tunneling junctions [4], ferro-

electric field-effect transistors (FeFETs) [5], tunnel field-effect

transistors (TFETs) [6], and others.

Wide adoption of a new device and technology requires

a rigorous evaluation. To conduct a rigorous evaluation, we

must identify logic and memory cells that can best utilize
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Fig. 1. Time-line of discoveries of new logic cells in MOS.

the strengths of the new devices. Past experience has shown

that this is challenging, especially when the new devices

are significantly different from the prevailing technologies. In

such cases, the most efficient cells are often very different,

nonintuitive, and hence typically take years to discover.

For example, consider the timeline of the discoveries of

basic logic cells during the first two decades of MOS shown

in Fig. 1. After the MOS device was made possible in

1960 [7], designers discovered the CMOS logic family in

1963 [8], the transmission gate (TG) in 1965 [9], and the JK

flipflop in 1966 [10]. However, 13 years elapsed between the

emergence of MOS devices and the discovery of TG-based D

flipflops, in 1973 [11] and 1974 [12]. These flipflops were very

nonintuitive designs at that time, since bipolar technologies

prevailed and the characteristics of MOS devices were not

well understood. Yet, these flip-flops are highly efficient in

MOS and replaced all other types of flip-flops soon after their

discovery.

Our research aims to create methods and tools that can speed

up the process of discovering the most efficient cells, even

those that are completely nonintuitive for new devices and

technologies. This will be followed by a thorough evaluation of

the new cell library. In this research work, we develop our new

methods and tools by targeting a technology that combines

memristors with MOS transistors.

The primary technical challenge is to search for cells,

including those with nonintuitive topologies, since uniquely

efficient memristor-transistor cells may be very different from

those for the prevailing technology, namely MOS. Second,

based on the track record of the devices widely used today

(MOS) and in the past (bipolar), we expect that for any

emerging device, only a tiny fraction of cell designs will be

efficient. Consequently, we anticipate that the likelihood of

discovering efficient cells through a random search approach

will be extremely low. Third, our goal is not only to discover

efficient cells but also to discover the properties that explain

their operation and efficiency, and use these properties to

develop constructive methods for the design of cells and

circuits.
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To address the above challenges, we develop an enumerative

approach for the creation of cells. To scale this approach to

cell sizes where desired cells can be found, we develop a data-

driven inductive learning (IL) method and unique tools to make

IL significantly more effective and efficient. We demonstrate

that our approach dramatically increases the number of dis-

covered cells over the past 15 years and significantly enhances

or complements the previous set of cells. It is important to

note that we identify key properties of memristor-transistor

cells, including a previously unknown synergistic operation

between memristors and transistors. This synergistic operation

is at the core of our best cells’ ability to provide surprisingly

low-area as well as nearly ideal output voltage and low power

consumption.

We first introduce the memristor-transistor logic style

used for developing our methods and tools. The proposed

data-driven exploration methods and tools are described in

Section III. The results of our exploration, especially our

library of new and efficient cells, a new logic family, its key

properties, and a new constructive method for its design are

presented in Section IV. Finally, Section V concludes the

article.

II. TARGET TECHNOLOGY AND PRIOR RESEARCH

Memristor [2], [13] is an emerging nonvolatile device that

can be used, by itself or with MOS transistors [14], to perform

logic operations. Memristor-MOS circuits can be efficient,

especially in terms of the layout area, since memristors can be

implemented at very low areas [14]. This two-terminal device

acts like a variable resistor, with minimum and maximum

resistance Ron and Roff. In a voltage-controlled memristor [15],

the state of the device depends on the time integral of the

voltage difference across its terminals.

A. Memristor-Transistor Single-Phase Combinational Logic

There are two major styles for using memristors to

build logic circuits. The first style consists of multiphase

IMPLY [16] and MAGIC [17] implementations used for in-

memory computation in memristor crossbars. The input logic

values are stored as memristor states (e.g., Roff as logic-0 and

Ron as logic-1) in one phase, and memristor states are used

to evaluate the output in the next phase. The crossbar also

requires MOS decoders, READ/WRITE circuitry, and logic to

control the execution of the logic operation.

In contrast, a memristor-resistor logic (MRL) [18] cell takes

logic inputs as voltages, computes outputs in a single-phase,

and produces output logic values as voltages. Also, an MRL

logic cell does not require any additional MOS circuitry for

decoding, reading/writing, or control. Importantly, MRL logic

is compatible with static MOS logic. Hence, we target MRL-

style logic for the development of our new methods and tools.

B. MRL Cells and Operation

MRL AND and OR [18] (Fig. 2) are the two basic MRL

cells that can be implemented by memristors. As we focus

on voltage-controlled memristors, the state of each memristor

in a cell depends on the direction of the voltage across the

memristor. For MRL AND as well as OR, when identical logic

(a) (b)

Fig. 2. Operation of (a) MRL AND, and (b) MRL OR cells.

values are applied to both inputs (both high or both low), the

resistance values of memristors remain unchanged, and the

output voltage is equal to the voltage applied to the inputs.

For an MRL AND with different logic values at its two inputs,

the resistance of the memristor with logic-0 input decreases,

i.e., becomes Ron, and the resistance of the memristor with

logic-1 input increases, i.e., becomes Roff. Since Roff � Ron,

the output is evaluated as logic 0 for AND. The OR’s output

is 1 for such input values.

As a memristor is a passive device, an inverter (INV)

cannot be implemented using only memristors. However, by

combining memristors and MOS transistors, all types of

logic functions can be implemented in the MRL style. We

target such memristor-MOS MRL combinational cells in this

research and refer to these as mem-MOS MRL cells.

C. Prior Research in mem-MOS MRL

Mem-MOS MRL logic cells have been developed [19],

[20], [21], [22], [23], [24] to implement AND, OR, XOR,

and some other logic functions. As no systematic method had

emerged prior to our research, the pace of discoveries was

slow: 15 years of active research produced about two dozen

cells. In Sections IV-B and IV-C, we compare these cells with

the comprehensive and definitive library of cells generated by

our method.

Moreover, only a handful of fundamental principles underly-

ing the previous cells have been recognized. In Sections IV-D

and IV-E, we derive new properties and constructive methods

for the design of the best cells in our definitive mem-MOS

MRL library.

III. DATA-DRIVEN EXPLORATION OF LOGIC CELLS

The objective of this research is to identify the definitive

set of mem-MOS MRL cells, i.e., cells that combine mem-

ristors and MOS transistors, provide single-phase operation,

are compatible with static MOS logic, have low areas, and

provide high performance. Further, in this study, we focus on

cells that implement combinational logic functions and are

acyclic.

To identify the definitive set of cells, it is necessary to

explore all possible cell structures. This includes completely

new and nonintuitive structures that go well beyond incre-

mental modifications of MOS cells (e.g., complementary and

pass-transistor logic), mem-only MRL cells, and combinations.

A. Initial Explorations and the Emergence of Our Method

We started our exploration with a naïve method: We could

enumerate the exhaustive set of , i.e., all possible, netlists of

cells with k or fewer devices. We could then simulate each cell,

and select the cells that are acyclic, implement combinational
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logic functions, and have low area and good performance, in

terms of output voltage, delay, and power.

1) Key Challenge: We knew that this naïve version would

not be scalable to higher values of k. We also knew that this

was in direct opposition to the following sage advice:

“Invention consists in avoiding the constructing of

useless contraptions and in constructing the useful

combinations which are in infinite minority.”

-Henri Poincare

Indeed, our naïve enumerator generated extremely large

numbers of cells and could only be used for 1-to-3 device

cells, i.e., for k ≤ 3 (see Table II). After simulations and a

quick review of randomly selected cells, we confirmed that

most of the cells created were undesirable. Despite this, our

naïve enumerator provided the starting point for us to develop

our new method for the discovery of new logic cells, i.e., a

method for “constructing the useful combinations which are

in infinite minority.”

We first focus on completely new aspects of our method,

namely data-driven IL and our new tools to support this IL

method.

For now, assume that we have our naïve cell enumera-

tor (exhaustive) and a circuit-level, i.e., SPICE-like, circuit

simulator. The simulator is used to characterize each cell by

computing the logic function (F) it implements along with its

delay (D), power (P), and voltage degradation (δV) relative

to ideal output voltages. It is also used to classify the cells

into undesirable (und) and potentially desirable (pd). Also,

all the created cells and their simulation results are stored in

a database. Finally, Our database, along with an extensible

toolkit, supports all types of queries, including an extensible

set of graph queries on the netlists of cells.

2) Emergence of Data-Driven Inductive Learning: Our

first challenge for moving past our naïve method was to

develop an approach for “avoiding the constructing of useless

contraptions.” IL emerged as the natural approach when we

started reviewing a handful of randomly selected cells, most

of which were found to be undesirable via simulations. During

the review of each cell, we noted the feature that made a

specific cell undesirable. For example, in a few cells, one

device was disconnected from others. In one cell we reviewed,

an nMOS transistor’s gate was driven by GND. In another cell

reviewed, the two diffusion terminals of a pMOS transistor

were connected to Vdd and GND. In yet another cell, the cell’s

output was driven by a single memristor, and so on.

For each of the above example cells, we were able to

show that the specific device we had noted could indeed be

removed from the cell without affecting its functionality. As

we removed this device, the resulting cell would have one

less device and would already be in the set we generated.

Therefore, we labeled this cell with k-device as undesirable.

We could also subsequently update our enumerator to avoid

the generation of this cell.

Our review of undesirable cells raised questions like: Is a

device with this topological feature removable only in this

specific cell? Or, is it removable in every cell that we have

created for k = 1 to 3? Is it also removable in every cell

with a larger value of k, which we have not even created yet?

Does this topological feature imply other related features that

Fig. 3. Overview of our method and tools for systematically exploring logic
cells. The key modules are the enumerator, simulator, and data-driven IL.
Each is supported by an extensible set of tools distributed throughout (all
boxes and text in blue). The enumerator is supported by tools to avoid many
undesirable cells and is complemented by post-enumeration filters. Also, the
simulator is complemented by tools such as low-complexity analyzers, and
IL is supported by tools for cell selection, HERS, and so on. On the right
side, we show our two foundational and extensible toolkits, namely database
search and graph toolkit.

we have not observed in the small sample of cells we have

reviewed?

A positive response to any of these questions would expand

the scope of our review for each cell, since it would enable

us to not only eliminate the specific cell we reviewed but also

a large number of other cells that are undesirable for the

same reason. Every one of these questions requires inductive

reasoning, where one starts with a specific example and

derives a general principle.

3) Method for Data-Driven Inductive Learning: As we

started using inductive reasoning, we added steps to derive the

following IL method, which heavily relies on data, namely our

cells and simulation results.

1) Select and review one or more cells and identify whether

they have some undesirable or desirable characteristics.

2) Identify features that may potentially be making these

cells undesirable or desirable.

3) Via inductive reasoning, formulate a hypothesis that

captures the potentially general cause of desirability or

undesirability.

4) Develop a deductive proof for each hypothesis to derive

a property.

Fig. 3 provides an overview of our method and tools. IL can

identify negative properties and positive properties. Negative

properties enable us to avoid or eliminate undesirable cells,

while positive properties help us identify or create pd cells.

Our IL first focused on negative properties (e.g., all the

above examples) before identifying positive properties. Also,

most of the early properties we identified were topological

properties, i.e., were related to the topology of the cell’s netlist

graph. However, as described ahead, later in our research, we

identified powerful general properties.

4) Early Examples of Inductive Learning: For our early

observations, IL was easy and effective. For the above

examples, we were able to rapidly carry out considerable

generalizations. For instance, by applying IL, the specific

undesirable feature of having both channel terminals of an

nMOS device connected to Vdd and GND can be generalized

to cover all three types of devices, namely nMOS, pMOS,

and memristor, with both channel terminals connected to

any combination of Vdd, GND, or inputs. (To simplify our
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presentation, we use the term channel terminal for the source

and drain of MOS transistors as well as the p and n terminals

of memristors. Further, we use the term channel for the source-

to-drain path via any MOS device as well as for the p-to-n path

via any memristor.) We were also able to develop hypotheses

that these topological features would cause any cell of any

size to be undesirable. We derived deductive proofs for these

hypotheses to identify a wide range of negative topological

properties summarized in Section III-C.

5) Using the Properties Identified by Inductive Learning:

The early identified negative topological properties were local,

meaning they pertained to the combinations of inputs, such

as Vdd and GND, which should not be assigned to device

terminals. It is easy to modify our enumerator to avoid

generating cells with undesirable device configurations.

For example, our naïve enumerator first enumerates all

possible sets of k devices. (e.g., for k = 2: 2 nMOS, 2 pMOS,

2 mem, 1 nMOS + 1 pMOS, 1 nMOS + 1 mem, and 1

pMOS + 1 mem.) Once we have all possible sets, we then

proceed to create all possible ways in which these devices

can be connected to form a circuit. Finally, it enumerates all

possible ways in which we can assign inputs, e.g., X and Y ,

and special signals, namely Vdd and GND. It is easy to modify

the last step to avoid assigning to the terminals of any device

the combinations of inputs and special signal values already

proven as undesirable by negative topological properties. Thus,

each such property, derived from a review of a handful of

undesirable cells, dramatically reduced the complexity of our

enumerator and the number of cells it generates.

In addition, we describe ahead how we identify negative

general properties which are more powerful than the negative

topological properties. To utilize their benefits, we filter (i.e.,

remove) any cells deemed undesirable by a general property

from the set of cells generated by the above enumerator (more

ahead).

Hence, by incorporating the negative properties for avoid-

ance or filtering of cells, we updated our naïve enumerator

and created an implicitly exhaustive enumerator, i.e., an enu-

merator that generates all possible cells except the undesirable

ones. Due to the effectiveness of the negative properties we

identified via data-driven IL, we created dramatically smaller

numbers of cells. Thus, it enables us to scale our study to cells

with more devices, i.e., for higher values of k.

In summary, our data-driven IL method dramatically

reduced the number of undesirable cells generated, allowed

us to scale up our exploration, and enabled the discoveries

we describe ahead. Thus, our approach and tools achieve

the key goal suggested by Poncaire: “constructing the useful

combinations which are in infinite minority.”

B. Completely New Tools to Facilitate Data-Driven

Inductive Learning

As above, a review of a small number of randomly selected

cells readily provided hypotheses and these hypotheses were

easy to prove. Although highly effective, this engineering

approach tends to yield diminishing returns, as is often the

case with most such approaches. In particular, as we increase

k, the number of cells that we can potentially review increases

exponentially. Also, in an undesirable cell, the numbers of

potential features and hypotheses that capture the general

cause of the cell being undesirable grow rapidly with k.

This led us to ask: Can we build tools to enable more

comprehensive IL?

We have developed novel tools to enhance IL while

reducing manual effort. These tools include features for cell

selection, identification of general causes of observed unde-

sirable/desirable outcomes, hypothesis creation, and more.

Due to space limit, we present only our most powerful, and

completely new, method and tool which enables feature and

hypothesis exploration, refinement, and selection (HERS).

1) Background (Extensible Toolkit): We have built all our

key tools around a database and an extensible library of graph

functions. The database holds the cell netlists, the information

created by the simulators (logic function (F), delay (D), power

(P), and voltage degradation (δV)), labels and categories for

each cell, relations between pairs of cells, and so on.

To enable rapid implementation of HERS for a wide range

of hypotheses and post-enumeration filters for general proper-

ties, we have developed a toolkit that includes basic functions,

especially for graph operations on cells. Key types of functions

check whether a cell’s netlist graph has a given topological

property, check whether two netlists are isomorphic, and so

on. Importantly, the toolkit is extensible. For example, we have

already added more complex functions for modifying cells,

e.g., for modifying a cell Ci by removing a specific device

dj, either by simply removing dj or by short-circuiting its two

channel terminals before removing the device.

2) HERS: Our new approach automates major inductive

reasoning tasks, such as feature identification and hypothesis

creation, thereby improving the effectiveness of data-driven

IL. As mentioned above, the number of potential features

and hypotheses can grow exponentially with cell size. In

existing practice, the exploration of each hypothesis requires

considerable manual analysis, hence only a handful of the most

promising hypotheses can be explored. HERS differs from

traditional approaches by introducing data-driven tools that

explore various hypotheses, identify the most promising ones,

offer guidance for refining these hypotheses, and generate

insights that simplify the process of deductive proofs.

The underlying principle of HERS is that the correctness of

a hypothesis for all cells we have generated is a necessary (but

not sufficient) condition for the hypothesis to be correct for all

cells, including large cells that we have not even generated.

Through implicitly exhaustive enumeration, we have generated

all cells that have k ≤ 5 devices, except for the ones that

we have proven to be undesirable. If our hypothesis holds for

every cell in our database, then we can have a high level of

confidence (but no guarantee) that the hypothesis is true for

all values of k. Therefore, it is worthwhile to make the effort

to develop a deductive proof.

We utilize the above principle as follows. First, we select

and review some cells to identify a large number of potential

features and hypotheses. We describe each hypothesis in

terms of the topological features of the cell and the property

that the device/cell is expected to satisfy. Second, we use

our extensible graph toolkit to formulate every one of our

hypotheses as a sequence of queries. Third, we use this

sequence of queries on our database of cells to identify every

cell that has the features specified in our hypothesis and to

check whether the cell has the specified property. For each

hypothesis, this sequence of queries either reports that every
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Algorithm 1: Exploring Example Hypothesis Using Our

New Tool HERS
Data: Query the database to identify all cells where only a memristor

drives the output, say Ci, and note the logic function
implemented by the cell, say as Fi

for each Ci and Fi do
Short-circuit channel terminals of output memristor and remove
the memristor from Ci to obtain Cr

i ;
Query the database to identify the logic function implemented by
Cr

i , say Fr
i ;

if Fr
i ! = Fi then

output Ci;
return(false);

end

end
return(true);

cell in the database satisfies the hypothesis, or returns one

or more counterexamples of cells that do not satisfy the

hypothesis.

Consider an example hypothesis: if the output of a cell is

driven only by a single device which is a memristor (feature),

then that memristor is redundant (hypothesis) and can be

removed from the cell without changing the logic function the

cell implements. HERS enables us to formulate this hypothesis

into a compound query using our toolkit (see Algorithm 1):

query the cell database to identify every cell Ci with the

feature, i.e, the cell’s output is driven only by a memristor;

for every Ci that satisfies above, modify Ci by removing the

memristor that drives the output to create a reduced version

of the cell, Cr
i ; query the database to search for cell Cr

i and

return the logic function it implements; and compare the logic

functions implemented by Ci and Cr
i .

For the above example hypothesis, the query reported that

our hypothesis is satisfied by every cell in our database (and

returned true). In contrast, for some other example hypothesis,

that is not true for all cells in our database, the query would

print one counterexample, i.e., a cell that does not satisfy

the hypothesis, and return false. (Algorithm 1 can be easily

modified to print all counter-examples.)

In the former case, we conclude that the hypothesis is

strong, and we proceed to develop a deductive proof for the

hypothesis. In the latter case, we review the counterexamples

to determine whether to modify or abandon the hypothesis,

i.e., we either undertake hypothesis refinement or hypothesis

abandonment. If we decide to refine, the counterexamples

provide guidance for hypothesis refinement and insights for

our subsequent deductive proof. If we decide to abandon,

HERS helps us by avoiding the considerable effort that would

have been wasted on a search for a futile proof.

HERS has dramatically improved the effectiveness of our

IL. As summarized in Table I, it has enabled the identification

of our most impactful positive properties, namely the identifi-

cation of generator graphs and our derivation of the sufficient

topological conditions for the controlled-AND/controlled-OR

(cAND/cOR) logic family which includes many of the best

cells identified by this research. (More on these ahead.)

C. Results-1: Key Properties Identified via Inductive

Learning

1) Negative Local Topological Properties and Their Use:

In Section III-A, we presented some examples of negative

(a) (b)

Fig. 4. (a) XOR cell proposed in [19]. (b) This cell is nonprimitive as it can
be constructed using two smaller cells from our library, and its logic function
is identical to the composition of the logic functions of the two smaller cells.

topological properties we identified via straightforward IL.

We have identified a much larger set of properties ranging

from intuitive – e.g., many types of device redundancy, inter-

changeability of MOS device source-drain, interchangeability

of input names, etc. – to less intuitive – e.g., redundancy of

only a memristor driving the cell output, the undesirability of

memristors in series, and so on. As most of these properties are

local, we easily updated our enumerator to use these properties

to avoid large numbers of cell netlists that are proven to be

undesirable.

2) General Properties and Their Use: As we identified the

above topological properties, we observed that sets of these

shared a type of impact. For example, a set of properties

caused one or more devices in a cell to be proven redundant.

That is, any device in a cell that satisfied any one of these

properties could be removed from the cell without affecting

the logic function the cell implements. [In many (but not all)

cases, the cell’s performance metrics would also not change

appreciably.] This observation enabled further IL to derive the

general property that we call reducibility.

In this manner, IL from sets of negative topological prop-

erties we had already identified enabled us to identify several

negative general properties: reducibility, degeneracy, isomor-

phism, nonprimitivity, and noncombinationality. Similarly, IL

from other already identified sets of specific local properties

enabled the identification of the positive general property of

duality.

A cell is reducible if one or more devices in the cell can

be removed without affecting the logic function implemented

by the cell. When removing a device from the netlist, we can

either simply remove the device, or we can remove the device

and replace the removed device’s channel with a wire.

A cell is degenerate if it has p inputs but implements a logic

function of q variables where q < p. Two cells are isomorphic,

if they have identical structures, once we consider device-level

symmetries, e.g., the interchangeability of the two diffusion

regions of MOS devices, or after permuting the names of cell

inputs and/or the names of internal nodes in the cell’s netlist.

A cell is nonprimitive if its netlist graph can be viewed as

a composition of two or more smaller cells. This can occur

when the cell has multiple disconnected components. This

can also occur if: parts of the cell’s netlist graph are smaller

cells; and the logic function implemented by the given cell

is a composition of the logic functions implemented by the

smaller cells. For example, the XOR shown in Fig. 4 [19]

is a nonprimitive cell since it is comprised of a memristor-

only MRL AND and one of the cells we generated which

implements Z′(X + Y).

A cell is noncombinational if it does not implement a

combinational logic function. This includes any cell whose
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TABLE I
SUMMARY OF KEY PROPERTIES IDENTIFIED VIA IL. OUR NEW METHOD AND TOOL, HERS, HAS HELPED WITH THE IDENTIFICATION

OF EVERY TOPOLOGICAL PROPERTY (AS INDICATED BY
†)

output is tri-state for one or more input patterns. Finally,

duality is defined between a pair of cells, say Ci and Cj, where

the structure and the logic function implemented by Cj can be

derived by applying specific sets of transformations to those

of Ci. For mem-MOS MRL, the set of circuit transformations

is: reverse the p-n direction of every memristor; replace

every nMOS transistor by a pMOS and vice versa; and

replace every Vdd by GND and vice versa. The corresponding

transformation of the logic function requires AND and OR to

be interchanged in the logic expression. For example, if the

original cell implements X + YZ′, then the cell obtained via

duality transformation implements X(Y + Z′), i.e., XY + XZ′.

General properties are extremely useful for cell explorations

in any technology, especially as post-enumeration filters in the

early stages of the study of new technology.

Post-Enumeration Filters Based on General Properties:

Each of the above negative general properties can be used to

develop filters to identify undesirable cells in a given set of

cells. For example, we can use our toolkit of graph functions

and database to filter, i.e., to remove, all reducible cells created

by the enumerator, as shown in Algorithm 2.

We have developed a set of such filters based on the above

general properties and used these to eliminate extremely large

fractions of cells generated by naïve enumerators. Even when

we move beyond a naïve enumerator, filters continue to be

valuable since it is difficult to identify topological properties

that can avoid every undesirable cell which satisfies one of

these general negative properties.

Also, ahead we use duality to reduce the number of cells

we need to study to identify positive properties.

3) Positive Topological Properties and Their Use: We used

our naïve enumerator for k = 2 and k = 3, identified negative

properties, and used these to modify our enumerator to avoid

the generation of large numbers of provably undesirable cells.

Generator Graphs: When we reviewed a few of the remain-

ing cells for k = 2, we observed that all the cells we reviewed

shared the general graph structure shown in Fig. 5(b), where

the graph is obtained by replacing each device in the cell with

a graph edge to denote the device’s channel. Based on this

observation, we formulated a hypothesis: all the pd cells for

k = 2 share this graph structure. We used HERS, implemented

using our extensible toolkit, to show that all pd cells for k = 2

indeed map to only one generator graph shown in Fig. 5(b).

Further, for k = 3, all pd cells map to the two generator graphs

shown in Fig. 5(c) and (d). (More ahead on deductive proofs.)

IL to Derive Larger Generator Graphs: We applied IL

across the graphs for different values of k, to create all possible

generator graphs for k = 4 to 6. For k = 4, we identified the

four generator graphs shown in Fig. 5(e)–(h); for k = 5 and 6,

we identified 10 and 17 generator graphs (not shown in the

figure).

Algorithm 2: Post-Enumeration Filter for Reducibility

Data: Query the database to identify all cells, say Ci, and note the
logic function implemented by the cell, say as Fi

for each Ci and Fi do
reducible = false;
for each dj in Ci do

Remove dj from Ci to obtain C
j,o
i ;

Query the database to identify the logic function implemented

by C
j,o
i , say F

j,o
i ;

if F
j,o
i == Fi then

reducible = true;
end
Short-circuit channel terminals of dj and remove dj from Ci

to obtain C
j,s
i ;

Query the database to identify the logic function implemented

by C
j,s
i , say F

j,s
i ;

if F
j,s
i == Fi then

reducible = true;
end

end
if reducible == true then

label Ci as undesirable;
end

end

(a) (b)

(e) (f) (g) (h)

(c) (d)

Fig. 5. Complete set of generator graphs for k ≤ 4. The graph(s) for k = 2
and k = 3 are derived from the results of exhaustive enumeration, while those
for k = 4 and k = 5 (ten graphs, not shown here), are derived via IL. (a) A
sample cell, (b) generator graph for k = 2, (c)-(d) generator graph for k = 3,
(e)-(h) generator graph for k = 4.

Collectively, these generator graphs are the most useful

instance of positive topological properties to date. As we show

ahead, the latest version of our enumerator avoids extremely

large numbers of undesirable cells by limiting to the circuit

netlists created using these graphs.

We derived deductive proofs for the genesis of these graphs.

As the formal proofs are complex, we summarize the key

properties that underlie our proofs.

Property: A cell where the gate of any transistor is driven

by either of its diffusion regions (channel terminals), either

directly or transitively via some subcircuit, is undesirable.

Property: Every transistor gate must be the cell’s input.

Property: The output node of the cell must be driven by

channels of at least two devices.
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In summary, we only need to consider cells where: 1) the

gate input of every transistor is connected to a primary input,

called a g-input of the cell (we are considering primitive cells

with independent gate inputs). 2) The memristor-transistor

network has an acyclic structure (from inputs to the output)

that we call a channel-connected component, as shown in the

generator graphs. 3) The inputs shown on the left side of the

graphs in Fig. 5 are called channel inputs, c-inputs.

D. Our Key Methods, Tools, and General Properties

Fig. 3 shows our key methods and tools. We have already

described our extensible toolkit and HERS above.

1) Cell Analyzers and Fast Simulator: Using our toolkit,

we have developed tools for analysis and fast simulation for

the initial characterization of our cells. These tools do not

require specific transistor sizes.

Each of our analysis tools checks a cell’s netlist graph for

a specific negative topological property that renders the cell

degenerate, nonprimitive, or noncombinational, especially tri-

state. Thus, these tools eliminate large fractions of cells at

extremely low complexities.

Our fast simulator generalizes the switch-level simulation

algorithms for MOS [25], [26] for mem-MOS MRL cells, by

adding technology-specific values, namely tri-state, weak 0/1,

and ratioed, in addition to logic-0/1, and adding specialized

algorithms for key tasks. At low complexity, this simulator

eliminates large fractions of undesirable cells, especially most

tri-state cells. It also computes the truth table entries for

most input patterns, and the higher complexity simulation is

required only for the small fraction of input patterns that cause

ratioed voltage at the output.

2) Customized Spectre Simulator: For the characterization

of cells, we use a Cadence Spectre simulator. We use CMOS

65 nm technology for transistors and the VTEAM model for

memristors [15], [27] with Ron = 1 K�, Roff = 100 K�,

Von = −0.05 V, and Voff = 0.05 V. We selected the VTEAM

model as it combines sufficient accuracy with low simulation

time [15]. Also, we use Vdd = 1.2 V and GND = 0 V. Further,

while our enumerator does not assign device sizes, our default

transistor sizes are: nMOS with minimum length and width,

and pMOS with minimum length and 2× the minimum width.

Also, every logic cell is simulated with a capacitive load at

its output, namely a CMOS INV with the above default W/L

values.

In our first mode, we use this simulator to characterize the

truth table of each cell. As mentioned above, we only use

this simulator for input patterns for which the fast simulator

has determined that the output value is ratioed. If the output

voltage is between 0.4 and 0.8 V, we eliminate the cell;

otherwise, depending on the voltage, we assign it logic-0/1.

In the second mode, for all the remaining cells, we use

the Spectre simulator to characterize the power (P), voltage

deviation from the ideal voltage (δV), and delay (D). During

this process, we simulate all possible two-pattern sequences.

This mode has higher complexity but is used only for the

relatively small number of cells that are not eliminated near

the end of our study.

Power (P): From the above simulations, we compute the

average of the power values over all possible patterns. Each

(a) (b) (c)

Fig. 6. Our implicitly exhaustive cell enumeration method: (a) Example
generator graph, (b) one of the general netlists obtained at the end of stage-1,
and (c) one of the final cell netlists obtained at the end of stage-2.

pattern is applied for 10 ns and the reported average power

includes both dynamic and static power within this duration.

Output Voltage Deviation (δV): For each pattern, we com-

pute the absolute value of the voltage deviation relative to the

corresponding ideal voltage, namely, 0 V for logic-0 and Vdd

for logic-1, compute the worst-case across all patterns.

Delay (D): We compute the worst-case among the propa-

gation delay values across all two-pattern sequences.

Finally, for any cell that has a ratioed output for one or more

input patterns, we study whether the cell is stable. A ratioed

cell is deemed stable if, for every pattern, the logic value at

its output remains unchanged when we sweep all transistor

widths over a range that spans 1× to 32× of the above default

widths, while the lengths remain at the minimum. In most of

our studies, we focus on stable cells.

3) Implicitly Exhaustive Cell Enumerators: By harnessing

all the negative topological properties summarized above and

the positive properties embodied in the generator graphs

(Fig. 5), we have developed a highly optimized implicitly

exhaustive enumerator for mem-MOS MRL cells. Our latest

enumerator works in three stages.

Stage-1 (Create General Netlists): In the first stage, for each

generator graph, we enumerate every possible combination of

device type and polarity for each edge in the graph. Hence,

for each edge, we enumerate a memristor and a MOS channel.

In terms of polarity, for a memristor, we enumerate both

directions (p-n and n-p), for a transistor we enumerate both

types (nMOS and pMOS). We consider graph isomorphism

during device assignment to avoid the creation of (many, but

not all; more ahead) isomorphic netlists. We call each netlist

generated at this stage a general netlist.

Each general netlist has two types of inputs: 1) g-inputs

and 2) c-inputs, where each g-input drives the gate of a

transistor, and each c-input drives a channel input, i.e., one of

the terminals of a memristor (p or n) or one of the diffusion

terminals of a MOS transistor. At this stage, for each general

netlist, we assign each input a distinct input label: to the

ith c-input we assign the label αi and to the jth g-input we

assign the label βj. Fig. 6(b) shows one example general netlist

created for the generator graph shown in Fig. 6(a). Finally,

we use the above combination of fast and customized Spectre

simulators to compute the truth table for every general netlist.

Stage-2 (Assign Primary Input Names): In this stage, for

each general netlist, we enumerate versions with all possible

primary input assignments to create a set of final cell netlists.

Specifically, we enumerate all possible assignments of actual

primary input names, e.g., X, Y , and so on, to the above-

mentioned general input labels, namely αi’s and βj’s. During

this, we consider the facts that multiple general input labels

can be assigned the same primary input and that some (or all)
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TABLE II
CELLS GENERATED BY OUR ENUMERATOR AND OTHER TOOLS

of the c-inputs may also be assigned special signals, namely

Vdd or GND, in addition to primary inputs. Fig. 6(c) shows

one example primary input name assignment.

As we assign primary input names, we use the general

netlist’s truth table to compute the truth table for the final cell

and discard degenerate and noncombinational cells, including

tri-state cells.

Stage-3 (Use General Property Filters): Our above two

stages avoid/eliminate all degenerate, nonprimitive, and

noncombinational cells. In the third stage, we use a post-

enumeration filter to avoid isomorphism and types of

reducibility that occur frequently, including memristors in

series or parallel, transistors in series/parallel whose g-inputs

are assigned the same primary input name, and some com-

monly occurring types of logically equivalent cells.

E. Results-2: Effectiveness of Our Enumerator and Other

Tools

Table II demonstrates the effectiveness of our above IL,

HERS, enumerator, and other tools. It also shows the number

of cells created by our naïve enumerator for k ≤ 3. For k = 3,

the naïve enumerator creates 905 467 cells. In contrast, our

above enumerator starts with two generator graphs and creates

56 general netlists and 3828 circuit netlists. The number of

circuit netlists that have Boolean outputs is 572. After using

post-enumeration filters, it finally provides 173 mem-MOS

MRL cells for our study.

Importantly, the naïve enumerator does not even work for

k > 3 due to its exponential complexity. Yet we identify four

and ten generator graphs for k = 4 and k = 5, respectively.

Starting with these, our new enumerator finally provides 4522

and 134 449 mem-MOS MRL cells for these cases. The set of

all cells reported in the last column of this table is the starting

point of our study described next and results in discoveries

that dramatically expand the last 15 years of research results.

IV. EXPERIMENTAL RESULTS: THE LIBRARY OF

UNIQUELY EFFICIENT CELLS AND NEW LOGIC FAMILIES

We first identify the robust and uniquely efficient cells

among the cells we have generated, to create our library

of mem-MOS MRL cells. We introduce our library by first

comparing the mem-MOS MRL cells proposed by prior

research with the set of Pareto-optimal cells in our library,

and demonstrating the benefits of our new cells. We then

summarize how our library is a definitive library for circuit

designers interested in mem-MOS MRL logic.

Subsequently, we use our data-driven IL method and tools

to identify positive properties of our best cells. Importantly,

we have discovered a new way in which memristors and

MOS devices can work together to create low-area cells with

excellent performance. We also identify one new logic family

and develop a method to design high-performance cells with

any number of devices.

A. Metrics and Methods for Selecting Robust and Efficient

Cells

1) Performance Metrics: We focus on four metrics: 1)

area (A); 2) power (P); 3) deviation from the ideal output

voltage (δV); and 4) delay (D).

Memristors are considerably smaller than transistors [14],

hence some previous studies have completely ignored the

memristor area. However, to distinguish between two cells

with the same number of transistors but different numbers

of memristors, we assign a nonzero weight to the area of

each memristor. We designate the area of each memristor as

0.1, relative to 1 for the area of each transistor. We have

already described above how we compute the values of the

other three metrics. In our studies, we use the values of these

metrics for each cell for the default transistor sizes presented

in Section III-D.

2) Methods for Identifying Uniquely Efficient Cells: We

categorize the cells based on the logic functions they imple-

ment, as cells that implement the same logic are directly

comparable.

Baseline Robustness (Cells With Low δV and P): Our

exploration of mem-MOS MRL cells has identified a large

number of low-cost cells with very low δV values and

relatively low power, namely δV < 0.1 V and P < 5 µW.

Low δV is correlated with better noise margin and lower short-

circuit power. Hence, we mainly focus on cells that satisfy

these constraints.

Baseline Robustness (Stable Cells): In most of our studies,

we focus on cells that are stable, i.e., on cells that implement

the same logic function over the wide range of transistor

sizes provided in Section III-D. Such cells provide the same

desirable property as a ratioless cell, namely the flexibility to

size transistors to optimize other metrics, e.g., power or delay.

A Library for a Range of Users (Pareto-Optimal Cells):

Subject to the above quantitative and qualitative robustness

requirements (low δV-and-P and stable), we create a library

that includes cells which a wide range of users would find

optimal. It is important to remove only the cells that are

inefficient for every possible user priority. This is captured

by the notion of Pareto-optimality: For each logic function,

we compare every pair of cells Ci and Cj that implement the

function. If Ci is inferior or equal to Cj in every one of the four

metrics, while being inferior in at least one metric, then Ci

is marked as dominated. At the end of pair-wise comparisons

across all cells that implement the function, the cells that are

not marked as dominated constitute the set of Pareto-optimal

cells. Each cell in this set excels in at least one metric, making

it desirable for users to prioritize among A, D, P, or δV .
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Selecting Cells to Study (n-Best Cells): In contrast to Pareto-

optimality, here we focus on the cells that are all-rounders: by

identifying n cells whose four metric values – A, P, δV , and

D – are all within 100ε percent of their minimum values.

Let S denote the set of all robust cells that implement a

given logic function. Also, let Ci denote a cell in the set S.

Across all the cells in the set S, first, we identify the minimum

to maximum range for each of the four metric values. That is,

across all cells in S, for A we identify

Arange(S) = [Amin(S), Amax(S)].

Similarly, we identify the ranges for P, δV , and D.

Then, for a given value of a parameter ε, we identify all cells

Ci ∈ S that simultaneously satisfy the following conditions for

all four metrics:

A(Ci) ≤ Amin(S) + ε[Amax(S) − Amin(S)], and

...

D(Ci) ≤ Dmin(S) + ε[Dmax(S) − Dmin(S)].

That is, we select a cell if every one of its four metric values

is within 100ε percent of the best value (i.e., minimum) for the

corresponding metric across all the cells, where the percentage

is taken over the range between the maximum and minimum

value of the metric.

Finally, we compute the minimum value of ε such that

exactly n cells in set S satisfy the above conditions. This

identifies the n-best all-rounder cells for that function, and we

designate the corresponding value of ε as εn. In particular,

we study the best cell for every logic function and the

corresponding ε1. We also study the 5-best cells and ε5.

B. Results-3: Our Cells and Comparison With Prior

Research

Over 15 years of prior research has created a relatively small

number of mem-MOS MRL logic cells [18], [19], [20], [21],

[22], [23], [24]. Here, we compare the prior cells with the

cells we have created.

Previous studies have manually explored existing cells and

logic families to design new cells for specific logic functions,

deriving inspiration from a range of sources. The key question

that motivated our research is: Are there efficient cell designs

that are so far from existing cells and logic families that

they may have been missed by such explorations? This has

prompted us to create an exhaustive set of cells with ≤ 5

devices, except those that are certainly not desirable, to ensure

that we do not miss any nonintuitive design that may be

uniquely efficient.

Hence, the goal of these comparisons is to answer the

following types of questions: Do there exist new cells that

are significantly superior to the prior cells created via manual

explorations? Alternatively, do there exist new cells that

are Pareto-optimal and provide sufficiently different tradeoffs

relative to the prior cells?

As mentioned earlier, for each logic function, we compare

prior cells with the cells we have created, in terms of A, P,

δV , and D.

In [19], a mem-MOS MRL template has been proposed by:

1) starting with a MOS pass-transistor MUX and 2) using

(a) (b) (c)

(d)

Fig. 7. Cells implementing the function X + Z′Y . (a) C4: a prior cell [19],
(b) C5: a new Pareto optimal cell, (c) C6: another new Pareto optimal cell
which improves all metrics over the prior cell, and (d) corresponding metric
values.

Fig. 8. Cells implementing two-input XOR. (a) C7: a prior cell [19], (b) C8:
a prior cell [20], (c) C9: a prior cell [22], (d) C10: a new Pareto optimal cell,
(e) C11: a new Pareto optimal cell, and (f) corresponding metric values.

mem-only MRL AND/OR gates to drive some/all of the three

inputs of this MUX. This template can be used to create mem-

MOS MRL cells for eight different logic functions of two and

three input variables. Our method creates every one of the

prior cells that are primitive. Importantly, our method creates

additional new cells that significantly improve the values of

some/all metrics over the corresponding prior cells.

The prior cell C4 shown in Fig. 7 is an example of the above

template that implements the function X +Z′Y . Two new cells

C5 and C6 generated by our method also implement the same

function. In this case, our method generates the prior cells as

well. Our new cell C6 improves all four performance metrics

over the prior cell C4, lower P (0.72×), lower δV (0.28×),

and lower D (0.75×).

Fig. 8 shows several XOR implementations, three prior cells,

C7 [19], C8 [20], and C9 [22], and two new cells, C10 and

C11. Our method does not generate these prior cells, since all

are nonprimitive. We ignore the prior cell C8, since it does not

work for the device parameters we use (its δV is 480 mV).
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TABLE III
HOW OUR CELLS IMPROVE UPON LOGIC CELLS PROPOSED BY PRIOR RESEARCH

TABLE IV
OUR DEFINITIVE LIBRARY OF MEM-MOS MRL CELLS

Our new cells provide significantly different new Pareto

alternatives for the prior cells. The new cell C10 significantly

improves δV compared to prior cells but at the cost of higher

P and D. Relative to C9, C10 lowers δV to 0.13×, while our

other new cell C11 lowers D to 0.61×.

Table III shows a summary of our above comparisons. It

also summarizes a comparison of three cells implementing the

logic function XY ′ (a prior cell C1 [22], an MRL cell [18] C2,

and one of our new cells C3) and three cells implementing

the function XY ′Z (a prior cell C12 [22], an MRL implemen-

tation [18] C13, and one of our new Pareto optimal cells C14).

Our method has produced cells that either significantly

improve all metrics over the cells reported by prior research,

replacing them entirely, or adding new cells to the set of

Pareto-optimal cells. These new cells significantly alter the

tradeoffs by improving one or more metrics while trading off

other metrics.

Hence, these comparisons clearly show that while prior

research has indeed identified a few very good cells, the scope

of manual explorations and design is limited. This clearly

shows the benefits of our methods and tools, namely their

ability to discover significantly better cells and hence enable

a much more meaningful evaluation of a new technology.

Notably, our new cells provide significant improvements or

significantly different tradeoffs, even though we compare our

primitive cells with k ≤ 5 devices with all the prior cells,

including many nonprimitive and/or cells with k ≥ 6 devices.

C. Results-4: Our Cell Library Versus Prior Research

Table IV summarizes the numbers of unique, robust, and

pd cells. Column-3 shows the number of cells created by the

latest version of our enumerator. Column-2 shows the number

of logic functions for which our enumerator has created cells.

We apply our two quantitative criteria for robustness,

namely δV < 0.1 V and P < 5 µW, to select cells, and the

numbers of selected cells are shown in Columns-4 and 5. Then

we apply our qualitative criterion for robustness, namely cell

stability, to select cells. The resulting numbers of cells are

shown in Column-6. We also use our approach to select only

the Pareto-optimal cells and show the numbers of cells in our

library in Column-7. Our library includes cells for the number

of logic functions displayed in the last column.

Two important observations about the above steps. When

we apply our two quantitative robustness criteria (δV < 0.1 V

and P < 5 µW), we eliminate rapidly increasing fractions

of cells as we move from two-input cells to six-input cells.

This is because a cell with a limited number of devices that

implements a logic function with a large number of inputs is

likely to be not robust. Hence, our focus on robustness reduces

the number of logic functions for which our library includes

cells (compare Columns-2 and 8). Also, when we select only

the stable cells we do not eliminate any cell that meets both

our quantitative criteria for robustness, namely δV < 0.1 V

and P < 5 µW. We will explain this ahead.

1) Definitive Library of Cells: The cells and logic functions

summarized in Columns 7 and 8 of Table IV constitute a

definitive library of mem-MOS MRL cells. The term definitive

captures the fact that these cells collectively constitute a set

that guarantees Pareto-optimality relative to the set of all

possible mem-MOS MRL cells which are robust. Simply, if

a cell is not in this library, then it cannot be implemented

as a primitive mem-MOS MRL cell, or is not robust, or has

performance metrics that are dominated by one of the other

cells in our library.

In quantitative terms, 15 years of prior research has created a

couple of dozen cells. Our method and tools have dramatically

expanded the library of mem-MOR MRL cells to provide a
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TABLE V
SUMMARY OF THE 5-BEST CELLS FOR TWO-INPUT LOGIC FUNCTIONS (ASTERISKS IDENTIFY THE TYPES OF THE BEST CELLS).

choice of 2070 cells, counting only the cells that are robust

and Pareto-optimal. Hence, most of our cells are the first

known implementations of the corresponding logic functions.

Also, our research has dramatically expanded the set of logic

functions for which robust mem-MOS MRL cells are now

known.

2) Best mem-MOS MRL Cells: We now select the best cells

and apply our IL method to derive their properties and develop

a constructive method for their design.

We have already presented above our method for iden-

tifying, for each logic function, the n-best cells and the

corresponding εn values. Here, we use this n-best method with

n = 1 to identify the best cell and compute the value of ε1.

We also use it with n = 5 and identify the 5-best cells and

ε5. Table V shows the key characteristics of the best and the

5-best cells for each logic function. The ε1 value, for a logic

function, shows how close the best all-rounder cell for the

function comes to achieving the minimum value of every one

of the four metrics, simultaneously.

Interestingly, for every one of the logic functions of two

variables, an all-rounder cell exists whose performance is

within a small range – between 1.04× and 1.20× – of the

minimum values for all four metrics, simultaneously. The

value of ε1 is especially low for X + Y and XY , followed by

X + Y ′ and XY ′. Hence, there exists at least one all-rounder

cell that is very close to being globally optimal.

Having identified the best and 5-best cells, we select these

for review and apply our IL method.

3) General Structures of the 5-Best Cells: IL starting with

a review of the 5-best cells enabled us to identify the general

structures of these cells shown in Fig. 9. Each one of these

structures constitutes a mem-MOS MRL logic style and is

described next.

First, mem-only MRL cells (column labeled MRL in

Table V) can only implement noninverting functions. For two-

input logic functions, this limits such cells to AND and

OR. For three-input functions, these are also useful for other

inversion-free AND-ORs and OR-ANDs. Our study shows

that, for many of these logic functions, even when compared

to the set of all-possible mem-MOS MRL cells, mem-only

MRL cells, shown in Fig. 9(a), are the best.

Second, due to their high areas, CMOS cells do not appear

in the set of 5-best designs. However, our review of 5-

best cells for NAND (XY)′ and NOR (X + Y)′, showed that

(a) (b)

(c) (d)

Fig. 9. Transformation from CMOS cell to controlled AND (cAND) cell:
the general structure of (a) memristor AND cell, (b) CMOS cell, (c) mem-
MOS MRL version of pseudo nMOS cell, where the pull-up of the CMOS
cell is replaced by a load memristor, and (d) cAND cell. αi and βj are c- and
g-inputs of the cell and will be replaced by input variables such as X and Y .
c-inputs may also be replaced by GND or Vdd .

the use of memristors along with MOS devices enables a

mem-MOS version of pseudo-MOS: the general structure for

NAND is shown in Fig. 9(c); NOR has the dual structure.

The specific NAND and NOR cells are shown in Fig. 10(c)

and (d). The NAND can be viewed as the pull-down network

of the corresponding CMOS cell, combined with a single

memristor serving as the pull-up. In this cell, the memristor

M3 is logically redundant but it reduces the cell’s delay and

makes it one of the 5-best cells. Such mem-MOS versions

of pseudo-MOS have significantly lower areas (about 0.5×)

compared to the corresponding CMOS cells. Despite this, for

two-input functions, such pseudo-MOS designs are the best

only for NAND and NOR, i.e., the two-input functions for which

a single CMOS cell implementation exists. For three-input

logic functions, such cells are the best only for NAND, NOR,

and OR-AND-INV functions.

Third, for all other two-input logic functions, the 5-best

cells all share the general structure shown in Fig. 9(d), or the

structure of its dual. Fig. 10(a) and (b) show the implemen-

tations of X + Y ′ and XY ′. (We have discussed XOR earlier.)

Fig. 10(e) shown the performance metrics for the four cells

above. The input–output waveforms for cell C15 (OUT1) are

shown in Fig. 11 and illustrate what is typical of our best

cells: low delays and low δV values, despite much lower areas

compared to CMOS.
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(a) (b)

(c)

(e)

(d)

Fig. 10. One of the five-best cells implementing the function. (a) C15: X+Y ′,
(b) C16: XY ′ function, (c) C17: two-input NAND, (d) C18: two-input NOR,
and (e) corresponding metric values.

Fig. 11. Timing diagram for the input–output signal of the cell C1
implementing the function X + Y ′.

Hence, our review of 5-best cells enabled us to identify new

types of mem-MOS MRL cells which we call cAND and cOR.

Finally, the cells mentioned in the column labeled “Other”

in Table V are cascaded combinations of two cells of the

above three types (All types of cascaded structure are not

logically viable [28]). Interestingly, cAND/cOR are also key

components of these cells, especially for most of the three-

input logic functions.

Hence, one of the most important discoveries enabled by

our research is the identification of a new cell type in mem-

MOS MRL: namely the cAND, and its dual, cOR. Detailed

analysis of such cells is presented next.

D. Results-5: Synergistic Operation of Memristors and MOS

Our cAND and cOR cells universally provide low δV .

This is surprising given their structures. In this section, we

investigate the causes of this and discover that memristors and

MOS devices operate synergistically, and this is the key to the

performance of these cells.

Almost every cAND and cOR cell uses MOS transistors

in configurations where paths from one or more c-inputs to

the output pass via transistor channels. From MOS device

(a) (b) (c)

Fig. 12. (a) cAND cell with two-channel inputs with memristor states for
ZYX = 110. (b) Same cell for ZYX = 111. In this case, memristor states
are determined by the previous pattern. However, the states do not affect
the output voltage, since both inputs are identical. (c) cAND cell with three
channel inputs with memristor states for ZYUVW = 11110.

characteristics we know that, in such a pass-transistor con-

figuration, while a logic-0 (0) passes perfectly via an nMOS

transistor, a logic-1 (1) is degraded from Vdd to a voltage less

than VDD − Vtn, which is called weak-1 (w1). A pMOS in a

similar configuration passes weak-0 (w0). At a cell output w1

corresponds to δV > Vtn, which is much higher than the δV

for all cAND/cOR, as well as for most of our Pareto cells.

Hence, we faced the question: How do all cAND cells use

only nMOS transistors in the pass-transistor configuration,

and still avoid weak values and achieve dramatically lower

δV values? Also, many cAND cells have paths from multiple

c-inputs that pass via nMOS devices in the pass-transistor

configuration and converge at the output. Hence, the question:

How do cAND cells provide low δV for patterns where the

MOS devices in the mem-MOS paths have a ratioed operation?

We used IL to answer these questions and discovered key

positive properties. Consider the cell shown in Fig. 12(a)

and (b). This cell has two c-inputs, X and Y , and one g-input,

Z. The path from X to the output is a mem-only path with

memristor M1, while that from Y is a mem-MOS path with

memristor M2 in series with nMOS transistor N3. These figures

show this cell for input patterns where the mem-MOS path is

active, i.e., N3 is on, and its c-input, Y , is trying to pass a

logic-1 via the nMOS device’s channel. Hence, the question

is: Why do we not get a weak value, w1, at the output?

First, for pattern ZYX = 110, nMOS N3 is on and both

input–output paths are active. Due to X = 0 and Y = 1,

memristors M1 and M2 achieve the resistance values shown in

Fig. 12(a). nMOS N3, in series with M2, tries to pass 1 via the

mem-MOS path and would have produced a w1 at the output.

However, for this pattern, mem M1 in the mem-only path is

passing 0 and is in the low resistance state (Ron). In contrast,

mem M2 in the mem-nMOS path is in a high resistance state

(Roff). Hence, the mem-only path overrides the w1 from the

mem-nMOS path and drives the output to 0. Hence, w1 is

avoided by the mem-only path overriding w1 to produce 0.

Very low δV is achieved at the output due to the high Roff to

Ron ratio.

Next, for pattern ZYX = 111, nMOS N3, in series with M2,

passes w1 via the mem-MOS path. At the same time, mem

M1 in the mem-only path supplements this by also passing 1.

Hence, w1 is avoided by the mem-only path supplementing w1

to produce 1. Again, this achieves δV close to 0v.

Consider another cell shown in Fig. 12(c), which shows the

states of the memristors for the pattern ZYUVW = 11110,

which causes a ratioed operation between the mem-MOS path
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with mem M3 in series with nMOS N5 trying to pass a 0; the

mem-MOS path with mem M2 in series with nMOS N4 trying

to pass a w1; and the mem-only path with M1 trying to pass

1. Each of the memristors in the paths passing a 1 is in the

high resistance state (Roff), while the memristor in the path

passing a 0 is in low resistance state (Ron). Hence, the path

passing 0 decisively overrides the other two paths and drives

0 at the output, thus avoiding high δV that could have been

caused either due to MOS-MOS ratioed operation, or due to

nMOS passing a w1, or both.

Our review of the above example cAND cells, and a

few others, enabled us to discover a synergistic operation

between memristors and MOS devices in cAND cells. In these

cells, if a pattern tries to pass w1 via nMOS device(s) or

degrade the output voltage via MOS-MOS ratioed operation,

the memristors switch states to avoid voltage degradation,

either by overriding the weak value, or by supplementing the

weak value, or by decisively resolving the ratioed operation.

E. Results-6: A Constructive Method to Create cAND/cOR

Cells

In this section, we present a method to construct our new

family of mem-MOS MRL cells, namely cAND. cOR can be

derived using duality (see Section III-C).

1) Topology of cAND: We have outlined the general struc-

ture of a cAND cell in Fig. 9(d). Now we present the

requirements we impose on its topology, as well as the

variations we allow. Then we present key properties satisfied

by any cAND that meets the above requirements.

Requirement 1 (cAND): The block labeled nMOS Network

in Fig. 9(d) is any channel-connected configuration (CCC) of

nMOS devices, All the gate inputs are driven by g-inputs of

the cell, labeled βj. On the right side of this network, all the

channels are combined into a single port that is connected to

the cell output. The channels of the nMOS network on the left

side are combined into one or more ports.

Requirement 2 (cAND): Each of the port(s) on the left side

of the nMOS Network is driven either by one c-input via a

memristor with the polarity shown in the figure, or by two or

more c-inputs via a memristor AND.

Requirement 3 (cAND): Finally, the memristor-only network

at the top either has one c-input that drives the output via one

memristor with the polarity shown in the figure, or has two or

more c-inputs that drive the output via a memristor AND.

Requirement 4 (cAND): Each g-input is assigned to one of

the cell’s primary inputs, e.g., X, Y, . . .; and each c-input is

assigned either to one of the primary inputs, or Vdd, or GND.

2) Properties Guaranteed by Above cAND Construction:

The above requirements for cAND are sufficient to derive the

following properties of cAND. These properties explain why

cAND cells, and their duals, cOR cells, appear in the 5-best

sets for so many logic functions.

Property 1 (cAND): For any input pattern where nMOS

devices in active mem-MOS paths are all passing logic-1, any

cAND cell is guaranteed to provide low δV at the cell output,

as well as negligible short-circuit power dissipation.

Property 2 (cAND): When a mix of 0 and a 1 are applied to

the c-inputs of active mem-MOS paths in any cAND cell, then

the cell always achieves low δV and negligible short-circuit

power dissipation.

Any such pattern causes an MOS-MOS ratioed operation

and could have degraded the output voltage and caused high

power due to high short-circuit current. However, in any cAND

cell, the memristor in each active path (including the mem-

only path(s), which are always active) with 0 at its c-input

goes into Ron while the memristor in every active path with 1

at its c-input goes into Roff. We have already explained (end

of Section IV-D) how this avoids high δV . Further, the power

dissipation is reduced since each active mem-MOS path with

logic-1 at its c-input has a memristor in Roff state and hence

limits the short-circuit current and hence limits the short-

circuit power.

In the past, low δV and low P were provided by CMOS

cells, which have high areas as they require both nMOS pull-

down and pMOS pull-up networks. While pass-transistor logic

required much fewer transistors and hence had low areas, these

typically had much higher δV and P.

In contrast, cAND cells only require nMOS networks and

cOR cells require pMOS networks, plus a few memristors

which have negligible areas. Hence, cAND and cOR cells, for

the first time, combine the low areas of pass transistor logic

with provably low δV and P.

V. CONTRIBUTIONS AND ONGOING RESEARCH

IL enabled us to identify that in many of our best cells,

memristors and MOS devices operate synergistically to avoid

high δV and P. Our key discovery is that this phenomenon

arises when the characteristics of memristors and MOS devices

are aligned with specific cell topologies. Importantly, this

enables low δV and P, which were previously confined to

CMOS cells, in a new family of cells – cAND and cOR – with

half as much area. We have also identified key requirements

for the construction of cAND/cOR cells.

We have developed an IL method and a completely new

tool, namely hypothesis exploration, refinement, and selection

(HERS), which automates critical tasks for IL. We have exten-

sively used these to develop a highly streamlined implicitly

exhaustive cell enumerator to enable the above discovery.

These tools have also generated a definitive library of mem-

MOS MRL cells.

Ongoing research spans device-cell co-optimization (i.e.,

co-optimization of the values of memristor parameters and our

cell designs), further optimization of cAND/cOR cells, and

new methods for logic synthesis using our definitive library of

mem-MOS MRL cells. We are also expanding our method for

the discovery of sequential mem-MOS MRL cells as well as

uniquely efficient cells for other types of emerging devices.
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