A WD~

10

11
12

13
14

15

16
17

Manuscript submitted to Journal of Geophysical Research: Oceans

Quantifying Surface Shelf Water Export in the southern Middle Atlantic Bight
Using a Lagrangian Particle Tracking Approach

Shun Mao, Taylor Shropshire, and Ruoying He *

Department of Marine, Earth, and Atmospheric Sciences
North Carolina State University, Raleigh, NC 27695

*Corresponding author: Ruoying He (rhe@ncsu.edu)

Key Points:

e Three Middle Atlantic Bight shelf water export patterns linked to specific wind
conditions are identified

e Lagrangian flow patterns of the MAB Shelf Water were notably impacted by 2017 and
2018 Atlantic Hurricane Seasons

e Sea Surface Velocity maps and Progressive Vector Diagrams reveal varied estuarine
water pathways from Chesapeake and Delaware Bays.
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Abstract

Shelf water is influenced by atmospheric forcing, river outflows, and the open ocean. Studying its
variability is crucial for understanding anthropogenic impacts on coastal oceans and their transport
to the open ocean. In the Middle Atlantic Bight (MAB), the interaction of the Gulf Stream with
shelf/slope circulation leads to some of the complex exchanges between the shelf and open ocean
along the U.S. East Coast. This study employs a Lagrangian particle tracking approach, grounded
in a high-resolution, data-assimilative ocean reanalysis, to examine the export pathways of surface
shelf water in the MAB. We analyzed over 700 daily images of simulated particle distributions
using image clustering techniques. This revealed three distinct export patterns: abrupt entrainment
to the Gulf Stream, gradual entrainment, and southern transport. Each pattern was observed
roughly equally during the study period from January 2017 to December 2018. The observed
export patterns are closely linked to the coastal circulation dynamics near Cape Hatteras.
Understanding the timing and duration of these patterns is vital for assessing water quality and
predicting the settlement of species that spawn in the region. Our study further underscores the
influence of tropical cyclones, including Hurricanes Jose, Maria, and Chris, on these export
patterns. These extreme weather events lead to significant shifts in coastal circulation near Cape
Hatteras.

Plain Language Summary

This study focuses on the movement of ocean water in the Middle Atlantic Bight (MAB), a region
along the U.S. east coast. The movement of this coastal water, or "shelf water," is affected by the
weather, rivers, and the ocean. A Lagrangian particle tracking method was used to track the
movement of water by simulating how particles move in the coastal ocean. Over 700 daily images
of particle tracking simulations were obtained. Shelf water moves out of the MAB by three main
pathways: abrupt entrainment, gradual entrainment, and southern transport. Each of these
pathways happened about equally over two years (2017-2018). Understanding these water
movements is key for knowing how long water stays in an area, which is important for water
quality and for the life cycle of marine species that breed there. The study also highlights how
tropical cyclones (like Hurricanes Jose, Maria, and Chris) can dramatically change these water
movement patterns, especially near Cape Hatteras.

1. Introduction

The Middle Atlantic Bight (MAB) is a region of the U.S. East Coast that spans from North Carolina
to Massachusetts. Most notably, this region creates a hotspot around Cape Hatteras for studying
open ocean and coastal ocean interactions. These interactions create strong gradients and complex
circulation, which when studied, help us to better understand underlying principles about the
physics of open ocean and shelf water exchanges at broader scales. Globally these exchanges
influence settlement of marine fauna (Epifanio, 1995; Shanks & Brink, 2005), fate of pollutants
(Balthis, 2009; Moulton et al., 2023), and transfer of energy to the coastline (Brink, 2016). In the
region surrounding Cape Hatteras, a significant amount of shelf water is often entrained and
transported north due to the close approach of the Gulf Stream (GS) (Ford et al., 1952; Fisher,
1972). Hence studying MAB shelf water properties and dynamics is important locally, for
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downstream marine environments, and for more broadly understanding the oceanography of shelf
exchange.

Cross-shelf exchange in the MAB has received considerable attention over the last three decades.
Specifically, exchange has been shown to be influenced by GS variability (Churchill & Berger,
1998; Savidge & Bane, 2001; Churchill & Gawarkiewicz, 2012; Mao et al., 2023a), atmospheric
forcing (Dirks et al., 1988; Glenn et al., 2016; Bane et al., 2023), and shelf water properties
(Savidge et al., 2013; Savidge & Savidge, 2014). Significant advancements in understanding MAB
shelf exchange have been achieved by four major observational programs:

e Mooring Observations (1992-1994): Funded by the Mineral Management Service (MMS),
these observations focused on mass analyses of MAB water, highlighting its cold and fresh
attributes (Berger et al., 1995).

e Ocean Margins Program (OMP) 1996: This program included two deployments of 26
moorings each, spanning from Cape Hatteras to Chesapeake Bay (Verity et al., 2002).
Salinity band analysis of the OMP dataset by Churchill and Gawarkiewicz (2012) proposed
an MAB shelf water export scheme. Most of the MAB shelf water entered the inner and
middle Hatteras shelf, underwent entrainment by the GS, and was transported offshore to
the northeast.

e Frontal Interaction Near Cape Hatteras (FINCH) Project: Conducted by collecting
shipboard ADCP and towed CTD transect observations (Gawarkiewicz et al., 2008;
Savidge & Austin, 2007), this project identified a shoreward transport of 0.05 Sv of
Hatteras Front water in August 2004, driven by a dynamic height gradient due to varying
water properties between MAB and South Atlantic Bight (SAB) shelf waters (Savidge &
Austin, 2007).

e Processes Driving Exchange At Cape Hatteras (PEACH) Program (2016-2022): This
comprehensive program investigated mechanisms and processes influencing shelf to open
ocean exchanges near Cape Hatteras (Seim et al, 2022). Various observational platforms
were utilized, including shipboard measurements (Andres et al., 2018; Mao et al., 2023b),
bottom-mounted acoustic Doppler current profilers (Han et al., 2022), shore-based high-
frequency radar observations (Haines et al., 2017), bottom-moored current and pressure
sensor-equipped inverted echo sounders (CPIESs) (Andres et al.,, 2021), and glider
missions (Todd, 2020a, b).

Despite these efforts, the actual spatial patterns that lead to MAB shelf water export have not been
well documented. To date, drifter observations have provided some indications of export patterns.
For example, Gawarkiewicz and Linder (2006) employed 42 satellite-tracked drifters to examine
Lagrangian flow patterns in the southern MAB, identifying two major transport patterns. However,
drifters are expensive to deploy, are quickly advected away from the region of interest, and
typically are not feasible for continual deployment to identify local patterns over the course of
seasons.

In this study, a Lagrangian particle tracking modeling framework is used to identify export patterns
of MAB shelf water. Specifically, a high-resolution (800 m) data-assimilative ocean reanalysis is
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used along with the particle tracking framework OpenDrift (Dagestad et al., 2018) to simulate a
two-year, continuous, near-surface particle evolution over the MAB and SAB continental shelf
and slope from January 2017 through December 2018. Results from the particle tracking model
are then used, along with image clustering techniques, to identify dominant spatial patterns of shelf
water exchange. We also explores the mean transport pathways of estuarine water from the
Chesapeake and Delaware Bay systems, which are significant estuarine systems on the East Coast
serving as vital habitats for diverse marine species (Ruiz et al., 1993). By tracking particle
displacement, we aim to illuminate the dynamics of water movement, including the dispersal of
fish larvae and pollutants. Enhancing understanding of estuarine transport mechanisms help to
support the broader implications for marine ecological management and conservation efforts
(Cowen et al., 1993; Hare et al., 1996; Zhang et al., 2016).

2. Model and methods

2.1 Data-assimilative model

The ocean reanalysis used in this study was constructed by integrating a high-resolution regional
ocean model (ROMS, Shchepetkin & McWilliams, 2005; Haidvogel et al., 2008) with an ensemble
data assimilation approach that incorporates available remote and in-situ ocean observations from
multiple platforms. The model assimilates sea level anomaly data from several satellites, including
Jason-2, Jason-3, CryoSat-2, SARAL-AItiKa, Haiyang-2A, and Sentinel-3. It also assimilates
daily sea surface temperature data sourced from the Advanced Very High Resolution Radiometer
(AVHRR) managed by NOAA CoastWatch. In addition, observations from the PEACH project
are incorporated, including high-frequency radar data, temperature and salinity profiles obtained
through glider surveys and moorings, alongside buoy data from the National Data Buoy Center
(NDBC) near Cape Hatteras. The model domain features a uniform horizontal resolution of 800
meters and 50 vertical layers, with enhanced resolution towards the surface and bottom boundary
layers (Figure 1a). Atmospheric forcing data are obtained from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and ERA interim products, while global Hybrid Coordinate
Ocean Model (HY COM) data supplies model initial and boundary conditions. Thirteen major tidal
constituents from the Finite Element Solution (FES) 2014 tide model (Lyard et al., 2021) are
utilized for tidal forcing, and 22 estuary rivers from the National Water Model within the model
domain are integrated for river forcing, by defining river runoff mass transport vertical profile and
river runoff transport. The model's daily output spans from January 2017 to December 2018,
aligning with the availability of in situ observations from the PEACH project.

2.2 Configuration of the OpenDrift framework

Particle tracking simulations are conducted using the Lagrangian software package OpenDrift
(Dagestad et al., 2018). OpenDrift computes trajectories of drifting objects in the ocean using
three-dimensional velocity fields, allowing for the tracking of water masses. Our particle tracking
experiments are conducted at the surface ocean, focusing on diagnosing surface current dynamics.
The sub-surface MAB shelf current dynamics is expected to be different due to its highly
stratification characteristic in summer. To initially seed the model, approximately 4,200 neutrally
buoyant surface particles are virtually released each day north of 36.8°N in MAB and SAB waters
shallower than 100 m from January 1-10, 2017 (Figure 2). Because particles are quickly advected
out of the target area, new particles are released into the surface ocean every three days throughout

4



144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180

181
182
183

184
185

Manuscript submitted to Journal of Geophysical Research: Oceans

the two-year simulation. A batch size of 4,200 particles was selected because it sufficiently
populated the region while maintaining computational efficiency. Our OpenDrift simulation
ensures particles return to their prior position upon hitting the coast. This effectively simulates
their movement away from the coast under offshore currents, avoiding onshore deposition.
OpenDirift is run using a 6-hour time step with daily output. The decision to use a 6-hour time step
was informed by the small impact of tidal currents in the Cape Hatteras region. The barotropic
tidal velocities in the Cape Hatteras region are generally weak. Anders et al (2018) noted their
contribution to velocities in this area is less than 0.1 cm/s, making the tidal effects negligible for
the purposes of our study's focus on surface current dynamics over longer time scales and broader
spatial extents. Once a particle exits the defined study area, its position is no longer tracked. We
utilized as small a time step as possible and deployed a large number of particles, reaching into the
millions, to enhance the statistical significance of the diagnosed pathways. However, we
acknowledge that despite these efforts, our offline particle tracking simulation has limitations.
Discussions in North et al.(2009), and Van Sebille et al.(2018), offers valuable insights into the
challenges and limitations of particle tracking simulations. Dugstad et al. (2019) suggests that
when dealing with model outputs that have both high resolution and high output frequency, as in
our case, it's a customary practice not to apply additional diffusion.

2.3 Image clustering method

In the study area, over 700 daily snapshots of particle spatial distribution are generated. These
daily images capture the horizontal distribution of MAB shelf water and are processed using image
clustering to identify the dominant export patterns. Due to the complex circulation and lateral
meanders of the GS near Cape Hatteras, conventional methods such as empirical orthogonal
functions or self-organizing maps are not effective in extracting export patterns. In contrast,
clustering techniques are well suited to identify complex patterns and are frequently used in
machine learning and statistics (Kaufman & Rousseeuw, 2009).

In our application, clusters are composed of images showing similar Lagrangian flows. This offers
insights into the prevailing export patterns and their temporal occurrence. Each daily image is
dissected into a series of multidimensional vectors. These vectors encapsulate the distinct
characteristics and flow patterns of the MAB shelf water for that day. During the clustering
process, images are systematically compared against each other using similarity metrics to
establish clusters that share flow patterns.

In our study, we used the same 800-m resolution for the clustering analysis. Each pixel is treated
as a data point in a 2-dimensional space defined by latitude (p) and longitude (q). The pixel’s
intensity or color represents the distribution of particles. The intensity of each pixel is translated
into a value between 0 (black, no particles) and 1 (white, maximum particle concentration).
Consequently, each feature vector X ; within the image can be represented as:

Xi= (g l) (1)
where [; is the intensity of the ith pixel. The k-means algorithm can then be applied to this set of
feature vectors.

The first step is initialization. We randomly select k feature vectors from the dataset to serve as
the initial centroids. Each centroid C j, where j ranges from 1 to k, takes the form:
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Cj= (Gp o ) (2)
The second step is assignment. This involves calculating the Euclidean distance between each data
point and all the centroids, then assigning the data point to the centroid with the shortest distance.

Dy, = sqre((pi - ij)z + (g — qu)z + (L - le)z) ) (3)
Third, we update the new centroids by computing the mean of all data points in the cluster. The
centroid of a cluster is the point that minimizes the total distance to all other points in the cluster,
and it turns out that this point is simply the mean (average) of all points in the cluster.

cjp_new = mean(p;) 4)
Cjg_new = mean(q;) (5)
cji_new = mean(l;) (6)

Last, we repeat the assignment and update steps until the centroids do not change significantly. If
the Euclidean distance between the positions of the centroids from one iteration to the next falls
below 0.0001, we consider the centroids to have stabilized. Upon completion, the k-means
algorithm will have divided the image into k clusters, each representing a region of the image with
similar particle concentration. To conclude the clustering process, a cluster validation index is
employed to determine the optimal quantity of clusters.

In our application, we utilize a pre-trained model known as VGG16 (Simonyan & Andrew, 2014)
available in the Keras library. Keras is an open-source, deep learning library that provides a set of
state-of-the-art deep learning models (Gulli et al., 2017; Ketkar et al., 2017). The image clustering
process involves three steps: (1) importing a pre-trained VGG16 model; (2) employing the VGG16
model to extract features per image; and (3) applying k-means, a widely used unsupervised
clustering method, to cluster the images (Dhanachandra et al., 2015).

Determining the optimal numbers of clusters was achieved using the Elbow Method (Nainggolan
et al., 2019). We executed the k-means clustering algorithm for a range of k values. For every
value of k, the sum of squared distances (SSE) is computed from each data point to its assigned
centroid. By plotting the SSE values (Table 1) against the corresponding k values, the “elbow”
point can be identified. Beyond this point, adding more clusters does not lead to a significant
decrease in the SSE. For our particle distribution images, the optimal value of k was identified as
3.

3. Results

3.1 Model validation

A number of model-data comparisons were investigated to validate the model’s data assimilation
and performance. To address data assimilation, the simulated sea surface temperature (SST) was
compared to four buoys from the National Data Buoy Center (buoys 44014, 44095, 41064, and
41025; Figure 1b). Correlation coefficients were > 0.95 for all buoys except 41025, which had a
coefficient of r = (.73 (Figure 3). The lower correlation coefficient at buoy 41025 can be attributed
to its proximity to the GS's separation point, where more dynamic and intricate interactions occur
between the GS and adjacent shelf and slope waters near Cape Hatteras. Nevertheless, the high
correlation coefficients indicate the ocean reanalysis effectively assimilates in-situ measurements.

Model performance was also evaluated using independent comparisons with unassimilated data as
was done in He and Weisberg (2003). Simulated near-surface (at 5 m depth) currents were
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compared with in situ current measurements at two buoys north of Cape Hatteras (B1 and A4, see
Figure 1b) and two to the south (A7 and B2. See Figure 1b). When averaged over the simulation
period, both modeled and observed data consistently show a southward flow at B1 and A4, with
complex correlation coefficients of 0.49 and 0.46, respectively (Figures 4-5). The model also
performed reasonably well at capturing high frequency events in this region. For instance, in
March 2018, a significant Nor'easter induced a large southward flow that was well represented by
the model. Phase angles, which represent the directional difference between model predictions and
observations, were +7.43° (B1) and +1.64° (A4), suggesting a slight eastward shift in the model-
predicted current from the observed current.

In the southern region of the domain, there was a slight discrepancy between the observed and
modeled mean flow (Figures 6-7). At sites A7 and B2, observations showed a weak mean
northward flow, while the model showed a weak mean southward flow. However, complex
correlation coefficients were 0.62 (A7) and 0.61 (B2), indicating a fairly strong positive correlation
despite the small differences in mean flow. Phase angles were -2.57° (A7) and -1.21° (B2),
suggesting a small directional shift between the model and observed data. Overall, the model
solution demonstrates a reasonable level of agreement with in-situ measurements in terms of both
magnitude and direction of near-surface velocity.

3.2 Export patterns

In our thorough examination of circulation patterns using cluster configurations k=2, k=3, and
k=4, we observed that k=2 successfully captures southward transport and abrupt entrainment.
However, it overlooks the gradual entrainment process that is essential for understanding the
trajectory of MAB shelf water towards the outer MAB shelf and into the Slope Sea. As for the
scenario with k=4 while it similarly identifies the southward transport and abrupt entrainment
processes, it goes further by distinguishing two closely related patterns in coastal circulation. One
pattern shows shelf flow ranging from 35.5°N to 36.5°N with an east-southeast direction (112.5°
clockwise from the north), while the second pattern exhibits an southeast flow direction (135°
clockwise from the north). Therefore, we conclude that k=3 is the optimal cluster number,
providing a balanced and clear depiction of circulation patterns near Cape Hatteras.

Three export patterns for MAB shelf water were identified by the image clustering analysis
(Figures 8-10). Over the two-year study period, the occurrence of each export pattern is
remarkably similar: 31.62%, 33.15% and 35.64% for Patterns 1, 2, and 3, respectively (described
below). The southward entrainment pattern is more straightforward than the other two, describing
the transport of MAB shelf water southward into the SAB and its subsequent entrainment by the
GS into the open ocean. Regarding the abrupt entrainment, the curvature radius near 35.5°N is
approximately 0.5 degrees (~55 km), with surface particle entrainment speeds reaching 1-1.5 m/s.
For the gradual entrainment, the curvature radius near 36.5°N is about 0.75 degrees (~85 km), and
the surface particle entrainment speeds are approximately 0.2-0.4 m/s. Each pattern reveals an
underlying forcing mechanism with clear temporal variability. This results in the persistence of a
single pattern for specific periods followed by transition periods from one pattern to the next
(Figure 11). To better interpret these mechanisms, composite mean circulation and wind anomaly
fields (relative to mean wind condition for each pattern) were analyzed during each export pattern
(Figure 12).
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Pattern 1: “Abrupt entrainment.” This pattern is characterized by the rapid entrainment of shelf
water into the GS, predominantly taking place from April to September (Figure 11), when
prevailing winds are southwesterly during spring and summer (Figure 12a). Throughout this
period, the seasonal wind forcing significantly influences the circulation around Cape Hatteras. As
a result, southward-moving MAB shelf water and northward-flowing SAB shelf water converge
north of Cape Hatteras, near 35.5°N. This distinctive configuration of shelf circulation sets the
stage for the abrupt entrainment of MAB shelf water into the GS (Figure 8).

Pattern 2: “Gradual entrainment.” This pattern emerges primarily in the first half of the year
(January - May) during the winter - spring transition (Figure 11). Throughout this period, the
prevailing wind is westerly, causing the shelf surface water to move more consistently and
gradually offshore relative to Pattern 1(Figure 12b). In this Pattern, a significant portion of MAB
shelf water is directed towards the outer MAB shelf then enters the Slope Sea, where it eventually
gets swept northeast by the GS (Figure 9). This circulation results in particle tracks exhibiting
relatively large radii of curvature, a defining feature of Pattern 2.

Pattern 3: “Southward transport.” This pattern is characterized by the southward extension of MAB
shelf water into the SAB and is prominent during the late fall and winter (Figure 11). During this
period, prevailing winds are primarily northeasterly, resulting in robust coastal downwelling and
a southward flow around Cape Hatteras (Figure 12¢). Driven by wind-induced transport, particle
trajectories extend further southward, reaching as far as Long Bay, South Carolina, before being
drawn into the GS (Figure 10). During this pattern, the GS's velocity is slower than in Patterns 1
and 2.

3.3 Mean estuarine water transport pathways

In this section, we examine the mean transport pathways of estuarine water from the Chesapeake
and Delaware Bay systems. The analysis is based on the composite mean Sea Surface Velocity
(SSV) fields (Figure 12). To achieve this, we employ Progressive Vector Diagrams (PVDs) in an
idealized experimental setup. This approach contrasts with the realistic OpenDrift particle tracking
experiment and is specifically designed to provide insight into movement of estuarine water, such
as fish larvae and pollutants.

In our analysis, we specifically track the displacement of particles, depicted as blue filled circles
in Figure 13, released from both Chesapeake and Delaware Bays over a 45-day interval. These
particle displacements are driven by the three composite mean SSV patterns (highlighted in Figure
12). The composite mean SSV fields are derived by averaging velocities throughout each pattern
period. PVDs are utilized to calculate and illustrate the historical trajectories of the released
particles (Figure 13). Due to the large number of particles, only daily tracking results are shown.

The methodology of PVD can be outlined as follows: Considering the equation for displacement,
x, and y, represent longitudinal and latitudinal particle locations, respectively. U, and V|, denote
the respective composite mean SSV field. Each n represents a specific time step, and At is the
duration between steps. We used At = 1 day during the PVD calculation. The equations are:

Xp = Xp_q + Uy * At (7

Yn = Yn-1+ Vo xAt )]
Particle motion can be represented by displacement vectors:
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Sn = (Xn, Yn) )

Marine larvae often spend 30-60 days in the water column (Strathmann, 1985; Jablonski, 1986;
Wellington & Robertson, 2001). Therefore, we chose 45 days as a typical PVD integration period.
After 45 days, the PVDs corresponding to the abrupt entrainment pattern (Pattern 1; green dots in
Figures 13a, b) and southward transport pattern (Pattern 3; green dots in Figures 13e, f) show
similar movement of estuarine water originating from Chesapeake Bay and Delaware Bay. These
estuarine waters are transported further south by MAB shelf flow before ultimately becoming
entrained by the GS offshore of Cape Hatteras. This entrainment of estuarine water typically takes
place between latitudes 35.5°N and 36°N. The diagrams also indicate that estuarine water from the
MAB does not enter the SAB region when influenced by the average SSV pattern. However, when
subjected to a strong atmospheric forcing event near Cape Hatteras, MAB estuarine water may
enter the SAB region.

In contrast, the gradual entrainment pattern (Pattern 2) shows more direct offshore entrainment of
MAB estuarine water transport. Driven by averaged SSV of gradual entrainment (Pattern 2), both
the Chesapeake and Delaware estuarine waters (Figures 13c, d) are transported eastward over the
MAB shelf initially. For the Chesapeake, its estuarine water is entrained by the GS within latitudes
36°N to 36.5°N, while the Delaware estuarine water is transported by the shelfbreak jet and slope
sea gyre before being entrained by the GS near 37°N. This estuarine water entrainment is evident
in the larger radii of curvature displayed by the drifter tracks.

The Coastal Pioneer Array (black dots in Figure 13) has been operational since spring 2024 to
collect new oceanographic observations in the southern MAB. Our results suggest that this
mooring array would effectively capture both Chesapeake and Delaware estuarine water exports
near Cape Hatteras during abrupt entrainment (Pattern 1) and southward transport (Pattern 3)
patterns. However, it might not capture the freshwater export during the gradual entrainment
(Pattern 2). Mobile platforms such as gliders and autonomous underwater vehicles could provide
valuable observations of the shelf-open ocean exchange between 36.5°N and 37.75°N.

4. Discussions

4.1 Export patterns in relation to an earlier study

Export patterns identified in this study align well with previous field observations. Using satellite-
tracked drifters, Gawarkiewicz and Linder (2006) identified two major transport patterns (abrupt
and gradual entrainment) and two rarer cases of MAB shelf water transport. The two major patterns
in the aforementioned study are characterized by small and large radii of curvature, which closely
resemble our Pattern 1 (abrupt entrainment) and Pattern 2 (gradual entrainment), respectively.
Abrupt entrainment frequently occurred within the latitudinal range of 35.4°N to 36.5°N. A
defining characteristic of this pattern is the small radii of curvature evident in drifter tracks within
this region, indicating a swift and almost instantaneous merging of MAB shelf water with the GS
as it approaches Cape Hatteras. In contrast, the gradual entrainment pattern is reflected in the larger
radii of curvature observed in the drifter tracks and frequently occurred between 35.7°N and 37°N.
Gawarkiewicz and Linder (2006) documented two rare cases where drifters traveled southward
across Cape Hatteras, diverging from typical patterns observed in the region. These drifter tracks
align with the pathway described in our southward transport pattern. Unlike the abrupt or gradual
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entrainment patterns, MAB shelf water that moves south of Cape Hatteras quickly becomes
entrained by the GS.

4.2 Image clustering application in oceanography

Although seldom employed in oceanography, utilizing image-clustering methods to investigate
circulation patterns presents several advantages. First, image clustering improves pattern
recognition. Such algorithms excel at detecting patterns within complex datasets, allowing them
to identify similar trajectories, group them together, and thus help delineate circulation patterns.
Second, image clustering aids in quantifying transport mechanisms. These algorithms can identify
the various dominant flows of shelf water that drive the export pattern of MAB shelf water. Lastly,
image-clustering can enable time-evolution analysis, providing insights into the progression of
Lagrangian transport patterns over time. To ensure more robust results, future studies should
continue to leverage image-clustering methods for identifying dominant circulation patterns over
extended time spans.

4.3 Estuarine water transport and potential ecological impacts

Estuaries are known to be important nursery grounds for a diverse range of fish species, each with
varying levels of dependence on these habitats (Able, 2005; Whitfield, 2021). This is underscored
by the behavior of some species that, while not residing in estuaries, migrate into them and nearby
areas to spawn (Warlen & Burke, 1990). Furthermore, the early life stages of some species that
spawn offshore are found in estuaries and subsequently migrate back offshore as they mature
(Pattrick & Stydom, 2014). Consequently, understanding the transport of water to the mouth of
estuaries and away from estuaries is vital for comprehending population connectivity. Results from
this study elucidate mechanisms that influence the latter.

One salient discovery from the current study is that, under typical (mean) conditions, estuarine
water from the MAB does not enter the SAB region within 45 days for any of the three export
patterns. Many species have pelagic larval durations shorter than 45 days. Following the larval
phase, they require a substrate for further development. This implies that species spawning in
estuaries, whose habitat ranges span both north and south of Cape Hatteras, either:

(1) populate regions south of Cape Hatteras via southern movement of adults that initially
developed from larvae settled north of Cape Hatteras;

(2) have spawning locations south of Cape Hatteras;
(3) rely on sub-surface currents to transport larvae from the MAB to the SAB; or

(4) depend heavily on sporadic, high-intensity ocean circulation caused by extreme weather
conditions that transport larvae from the MAB to the SAB.

Future modeling endeavors could integrate vertical motion into Lagrangian simulations to refine
these hypotheses.
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Another significant finding is that, under Pattern 2, larvae consistently move offshore, eventually
becoming entrained in the GS. Years dominated by this circulation pattern may profoundly
influence the abundance of new fish entering a population (recruits). Such information can be
harnessed to generate environmental indices useful in fisheries management. Further exploration
is needed to examine the relationship and frequency of export patterns and the recruitment of
species to the MAB and SAB.

4.4 Impacts of tropical cyclones

The 2017 and 2018 Atlantic hurricane seasons notably impacted the Lagrangian flow patterns of
MAB shelf water, especially when four tropical cyclones entered our study domain near Cape
Hatteras (Figure 14).

In September 2017, Hurricanes Jose and Maria followed a roughly northward track from 28°N to
36°N on the eastern flank of the GS. While Hurricane Jose decelerated and dissipated south of
New England after crossing the GS, Hurricane Maria turned sharply eastward and gradually
weakened. Their collective influence intensified northeasterly winds over the MAB shelf and
coastal circulation near Cape Hatteras. In October 2017 (Figure 10d), an extreme southward
movement of MAB shelf water was evident, extending to both Onslow Bay and Long Bay south
of Cape Hatteras.

On July 6, 2018, a tropical depression formed south-southeast of Cape Hatteras, and later
intensified into Tropical Storm Chris. Chris followed a northeastward trajectory over the Atlantic
Ocean before eventually dissipating. When this low-pressure system passed approximately 500
kilometers south-southeast of Cape Hatteras, it altered the MAB shelf flow pattern (Figure 11)
from the abrupt entrainment pattern (Pattern 1 in Figure 15a) to the southward transport pattern
(Pattern 3 in Figure 15b). Once Chris dissipated, Pattern 1 resumed.

Hurricane Florence made landfall on September 14, 2018, and its effects were substantial. The
storm lingered over the Carolinas due to synoptic-scale interactions (Zambon et al., 2021), leading
to record-breaking rainfall. Prior to Florence's impact, MAB shelf waters were entrained into the
GS south of Cape Hatteras (Pattern 3). However, Florence's slow movement onshore altered the
dynamics, leading to MAB shelf waters being constrained to export north of Cape Hatteras (Pattern
1). The shift in the export configuration from Pattern-3 (Figure 15c¢) to the abrupt entrainment
Pattern -1 (Figure 15d) was a result of Florence's influence. During this period, Florence also
brought unprecedented rainfall to North and South Carolina from mid-September to early October.
Export returned to Pattern 3 once Florence’s impacts subsided.

5. Summary

Through our application of Lagrangian particle tracking, grounded in a high-resolution, data-
assimilative ocean reanalysis, in conjunction with image clustering analyses, we extracted three
distinct patterns of MAB shelf water export during 2017-2018. Each of these patterns is associated
with specific surface wind forcing: 1) Abrupt entrainment (Pattern 1) is associated with
southwesterly wind from April to September. This pattern, covering 31.62% of the study period,
is marked by shelf water particles undergoing rapid entrainment between 35.4°N and 36.5°N. 2)

11
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Gradual entrainment (Pattern 2) is associated with westerly winds during January - May (winter -
spring) seasonal transition. Constituting 33.15% of the instances, this pattern features particles
gradually entraining between 35.7°N and 37°N. 3) Southward transport (Pattern 3) is associated
with strong northeasterly wind during the late fall - winter season. It accounts for 35.64% of the
instances, with the MAB shelf waters moving southward across Cape Hatteras before ultimately
being entrained by the GS. Additionally, extreme weather events such as tropical cyclones exert
significant influence in shifting the export patterns of MAB shelf water.

Composite Sea Surface Velocity (SSV) field maps, along with their corresponding Progressive
Vector Diagrams (PVD), help shed light on the mean export pathways of estuarine water from
Chesapeake and Delaware Bays. Under the influence of the composite mean SSV from both the
abrupt entrainment (Pattern 1) and southward transport (Pattern 3), these estuarine waters flow
south through MAB shelf, and are then drawn offshore by the GS near Cape Hatteras, within the
35.5°N to 36°N range. In contrast, during the gradual entrainment (Pattern 2), estuarine waters
primarily move eastward across the MAB shelf. Waters from Chesapeake Bay merge with the GS
between 36°N and 36.5°N, while waters from Delaware Bay are carried by the shelfbreak jet and
slope sea gyre before being entrained by the GS offshore near 37°N.

The Coastal Pioneer Array commissioned in spring 2024, is currently monitoring exports of both
Chesapeake and Delaware estuarine water near Cape Hatteras during the phases of abrupt
entrainment (Pattern 1) and southward transport (Pattern 3). However, to gain a clearer
understanding during gradual entrainment (Pattern 2), especially for observations of shelf-open
ocean exchange between 36.5°N and 37.75°N, supplementary mobile platforms like gliders and
autonomous underwater vehicles will be essential.

In summary, this study unveils new insights into the predominant pathways and export patterns
that govern the dynamics of near-surface MAB shelf water. It also highlights an innovative
application of deep-learning image clustering techniques to coastal circulation studies. Building
upon our findings, future research can utilize our particle-tracking framework to examine the
export pathways of subsurface water masses throughout the MAB shelf and to investigate the
complex dynamics of shelf water subduction as it interacts with the slope sea and the GS.
Additionally, these studies are poised to yield new insights into potential larval transport pathways
and population connectivity, which are crucial for sustainable fisheries management. Regarding
future research, besides examining the residence time of specific water masses over the continental
shelf and Slope Sea, the analytical techniques described by van Sebille et al. (2018) also facilitate
the study of age distributions, probability characteristics, and biological interactions of these water
masses. These methodologies can be further applied to investigate the dynamics between the shelf
and the open ocean at the southern boundary of the MAB.
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are denoted with black solid lines. Panel (b): Notable observational sites in this study from PEACH
project: four buoys from National Data Buoy Center (NDBC) are denoted with blue circles; Bl
and B2 are two meteorological buoys with in-water CTDs, denoted with red circles; A4, ASOE,
A7 and A8 are mooring Acoustic Doppler Current Profilers (ADCPs), denoted with red circles.
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Figure 2. Panel (a): Initial particle locations on January 1, 2017. These particles are located within
the 100 m isobath, north of 36.8°N, in the model domain. The same number of particles are released
every three days at the same locations during particle tracking simulations. Panels (b), (c), and (d)
show the horizontal distribution of near-surface MAB shelf water on February 1, March 1, and
April 1, 2017, respectively.
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506  Figure 4. Comparisons of near-surface (at 5 m depth) current at buoy B1 from model results and
507  in-situ observations, with a 7-day low-pass filter applied to both. The upper and middle panels
508  display the velocity vectors of the observed and modeled current time series, respectively, from
509  April 2017 to November 2018. The 19-month mean eastward and northward velocity components
510  are presented in the bottom left corner of each panel. The comparison between the model and data
511  is quantified using the squared complex correlation coefficient and phase angle. Both values are
512 displayed in the bottom right corner of the middle panel. The lower panel shows a comparison of
513 the mean current component (u, v) magnitudes derived from both the model results (blue line) and

514  observations (red line).
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520  Figure 6. Same as Figure 4, but for site A7. For better visualization, both observed and modeled

521  vectors are rotated 45° counterclockwise (upper and middle panel).
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531
532 Figure 9. Pattern 2, “gradual entrainment,” of MAB shelf water Lagrangian flow. Panels show

533 snapshots of horizontal distribution of near-surface MAB shelf water on April 12, 2017; July 12,
534 2017; February 12, 2018; and May 16, 2018, respectively.
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Table 1: Sum of Squared Errors (SSE) for Different Numbers of Clusters

Number of Clusters Sum of Squared Errors (SSE)
1.0 268,910,336.0
2.0 223,770,432.0
3.0 199,561,136.0
4.0 189,915,488.0
5.0 184,717,632.0
6.0 180,378,976.0
7.0 175,382,544.0
8.0 173,308,048.0
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