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Abstract 18 

Shelf water is influenced by atmospheric forcing, river outflows, and the open ocean. Studying its 19 

variability is crucial for understanding anthropogenic impacts on coastal oceans and their transport 20 

to the open ocean. In the Middle Atlantic Bight (MAB), the interaction of the Gulf Stream with 21 

shelf/slope circulation leads to some of the complex exchanges between the shelf and open ocean 22 

along the U.S. East Coast. This study employs a Lagrangian particle tracking approach, grounded 23 

in a high-resolution, data-assimilative ocean reanalysis, to examine the export pathways of surface 24 

shelf water in the MAB. We analyzed over 700 daily images of simulated particle distributions 25 

using image clustering techniques. This revealed three distinct export patterns: abrupt entrainment 26 

to the Gulf Stream, gradual entrainment, and southern transport. Each pattern was observed 27 

roughly equally during the study period from January 2017 to December 2018. The observed 28 

export patterns are closely linked to the coastal circulation dynamics near Cape Hatteras. 29 

Understanding the timing and duration of these patterns is vital for assessing water quality and 30 

predicting the settlement of species that spawn in the region. Our study further underscores the 31 

influence of tropical cyclones, including Hurricanes Jose, Maria, and Chris, on these export 32 

patterns. These extreme weather events lead to significant shifts in coastal circulation near Cape 33 

Hatteras.  34 

 35 

Plain Language Summary 36 

This study focuses on the movement of ocean water in the Middle Atlantic Bight (MAB), a region 37 

along the U.S. east coast. The movement of this coastal water, or "shelf water," is affected by the 38 

weather, rivers, and the ocean. A Lagrangian particle tracking method was used to track the 39 

movement of water by simulating how particles move in the coastal ocean. Over 700 daily images 40 

of particle tracking simulations were obtained. Shelf water moves out of the MAB by three main 41 

pathways: abrupt entrainment, gradual entrainment, and southern transport. Each of these 42 

pathways happened about equally over two years (2017-2018). Understanding these water 43 

movements is key for knowing how long water stays in an area, which is important for water 44 

quality and for the life cycle of marine species that breed there. The study also highlights how 45 

tropical cyclones (like Hurricanes Jose, Maria, and Chris) can dramatically change these water 46 

movement patterns, especially near Cape Hatteras. 47 

 48 

1. Introduction 49 

The Middle Atlantic Bight (MAB) is a region of the U.S. East Coast that spans from North Carolina 50 

to Massachusetts. Most notably, this region creates a hotspot around Cape Hatteras for studying 51 

open ocean and coastal ocean interactions. These interactions create strong gradients and complex 52 

circulation, which when studied, help us to better understand underlying principles about the 53 

physics of open ocean and shelf water exchanges at broader scales. Globally these exchanges 54 

influence settlement of marine fauna (Epifanio, 1995; Shanks & Brink, 2005), fate of pollutants 55 

(Balthis, 2009; Moulton et al., 2023), and transfer of energy to the coastline (Brink, 2016). In the 56 

region surrounding Cape Hatteras, a significant amount of shelf water is often entrained and 57 

transported north due to the close approach of the Gulf Stream (GS) (Ford et al., 1952; Fisher, 58 

1972). Hence studying MAB shelf water properties and dynamics is important locally, for 59 
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downstream marine environments, and for more broadly understanding the oceanography of shelf 60 

exchange.  61 

Cross-shelf exchange in the MAB has received considerable attention over the last three decades. 62 

Specifically, exchange has been shown to be influenced by GS variability (Churchill & Berger, 63 

1998; Savidge & Bane, 2001; Churchill & Gawarkiewicz, 2012; Mao et al., 2023a), atmospheric 64 

forcing (Dirks et al., 1988; Glenn et al., 2016; Bane et al., 2023), and shelf water properties 65 

(Savidge et al., 2013; Savidge & Savidge, 2014). Significant advancements in understanding MAB 66 

shelf exchange have been achieved by four major observational programs: 67 

• Mooring Observations (1992-1994): Funded by the Mineral Management Service (MMS), 68 

these observations focused on mass analyses of MAB water, highlighting its cold and fresh 69 

attributes (Berger et al., 1995). 70 

• Ocean Margins Program (OMP) 1996: This program included two deployments of 26 71 

moorings each, spanning from Cape Hatteras to Chesapeake Bay (Verity et al., 2002). 72 

Salinity band analysis of the OMP dataset by Churchill and Gawarkiewicz (2012) proposed 73 

an MAB shelf water export scheme. Most of the MAB shelf water entered the inner and 74 

middle Hatteras shelf, underwent entrainment by the GS, and was transported offshore to 75 

the northeast. 76 

• Frontal Interaction Near Cape Hatteras (FINCH) Project: Conducted by collecting 77 

shipboard ADCP and towed CTD transect observations (Gawarkiewicz et al., 2008; 78 

Savidge & Austin, 2007), this project identified a shoreward transport of 0.05 Sv of 79 

Hatteras Front water in August 2004, driven by a dynamic height gradient due to varying 80 

water properties between MAB and South Atlantic Bight (SAB) shelf waters (Savidge & 81 

Austin, 2007). 82 

• Processes Driving Exchange At Cape Hatteras (PEACH) Program (2016-2022): This 83 

comprehensive program investigated mechanisms and processes influencing shelf to open 84 

ocean exchanges near Cape Hatteras (Seim et al, 2022). Various observational platforms 85 

were utilized, including shipboard measurements (Andres et al., 2018; Mao et al., 2023b), 86 

bottom-mounted acoustic Doppler current profilers (Han et al., 2022), shore-based high-87 

frequency radar observations (Haines et al., 2017), bottom-moored current and pressure 88 

sensor-equipped inverted echo sounders (CPIESs) (Andres et al., 2021), and glider 89 

missions (Todd, 2020a, b). 90 

Despite these efforts, the actual spatial patterns that lead to MAB shelf water export have not been 91 

well documented. To date, drifter observations have provided some indications of export patterns. 92 

For example, Gawarkiewicz and Linder (2006) employed 42 satellite-tracked drifters to examine 93 

Lagrangian flow patterns in the southern MAB, identifying two major transport patterns. However, 94 

drifters are expensive to deploy, are quickly advected away from the region of interest, and 95 

typically are not feasible for continual deployment to identify local patterns over the course of  96 

seasons.  97 

In this study, a Lagrangian particle tracking modeling framework is used to identify export patterns 98 

of MAB shelf water. Specifically, a high-resolution (800 m) data-assimilative ocean reanalysis is 99 
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used along with the particle tracking framework OpenDrift (Dagestad et al., 2018) to simulate a 100 

two-year, continuous, near-surface particle evolution over the MAB and SAB continental shelf 101 

and slope from January 2017 through December 2018. Results from the particle tracking model 102 

are then used, along with image clustering techniques, to identify dominant spatial patterns of shelf 103 

water exchange. We also explores the mean transport pathways of estuarine water from the 104 

Chesapeake and Delaware Bay systems, which are significant estuarine systems on the East Coast 105 

serving as vital habitats for diverse marine species (Ruiz et al., 1993). By tracking particle 106 

displacement, we aim to illuminate the dynamics of water movement, including the dispersal of 107 

fish larvae and pollutants. Enhancing understanding of estuarine transport mechanisms help to 108 

support the broader implications for marine ecological management and conservation efforts 109 

(Cowen et al., 1993; Hare et al., 1996; Zhang et al., 2016). 110 

 111 

2. Model and methods 112 

2.1 Data-assimilative model 113 

The ocean reanalysis used in this study was constructed by integrating a high-resolution regional 114 

ocean model (ROMS, Shchepetkin & McWilliams, 2005; Haidvogel et al., 2008) with an ensemble 115 

data assimilation approach that incorporates available remote and in-situ ocean observations from 116 

multiple platforms. The model assimilates sea level anomaly data from several satellites, including 117 

Jason-2, Jason-3, CryoSat-2, SARAL-AltiKa, Haiyang-2A, and Sentinel-3. It also assimilates 118 

daily sea surface temperature data sourced from the Advanced Very High Resolution Radiometer 119 

(AVHRR) managed by NOAA CoastWatch. In addition, observations from the PEACH project 120 

are incorporated, including high-frequency radar data, temperature and salinity profiles obtained 121 

through glider surveys and moorings, alongside buoy data from the National Data Buoy Center 122 

(NDBC) near Cape Hatteras. The model domain features a uniform horizontal resolution of 800 123 

meters and 50 vertical layers, with enhanced resolution towards the surface and bottom boundary 124 

layers (Figure 1a). Atmospheric forcing data are obtained from the European Centre for Medium-125 

Range Weather Forecasts (ECMWF) and ERA interim products, while global Hybrid Coordinate 126 

Ocean Model (HYCOM) data supplies model initial and boundary conditions. Thirteen major tidal 127 

constituents from the Finite Element Solution (FES) 2014 tide model (Lyard et al., 2021) are 128 

utilized for tidal forcing, and 22 estuary rivers from the National Water Model within the model 129 

domain are integrated for river forcing, by defining river runoff mass transport vertical profile and 130 

river runoff transport. The model's daily output spans from January 2017 to December 2018, 131 

aligning with the availability of in situ observations from the PEACH project. 132 

 133 

2.2 Configuration of the OpenDrift framework 134 

Particle tracking simulations are conducted using the Lagrangian software package OpenDrift 135 

(Dagestad et al., 2018). OpenDrift computes trajectories of drifting objects in the ocean using 136 

three-dimensional velocity fields, allowing for the tracking of water masses. Our particle tracking 137 

experiments are conducted at the surface ocean, focusing on  diagnosing surface current dynamics. 138 

The sub-surface MAB shelf current dynamics is expected to be different due to its highly 139 

stratification characteristic in summer. To initially seed the model, approximately 4,200 neutrally 140 

buoyant surface particles are virtually released each day north of 36.8°N in MAB and SAB waters 141 

shallower than 100 m from January 1-10, 2017 (Figure 2). Because particles are quickly advected 142 

out of the target area, new particles are released into the surface ocean every three days throughout 143 
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the two-year simulation. A batch size of 4,200 particles was selected because it sufficiently 144 

populated the region while maintaining computational efficiency. Our OpenDrift simulation 145 

ensures particles return to their prior position upon hitting the coast. This effectively simulates 146 

their movement away from the coast under offshore currents, avoiding onshore deposition. 147 

OpenDrift is run using a 6-hour time step with daily output. The decision to use a 6-hour time step 148 

was informed by the small impact of tidal currents in the Cape Hatteras region. The barotropic 149 

tidal velocities in the Cape Hatteras region are generally weak. Anders et al (2018) noted their 150 

contribution to velocities in this area is less than 0.1 cm/s, making the tidal effects negligible for 151 

the purposes of our study's focus on surface current dynamics over longer time scales and broader 152 

spatial extents. Once a particle exits the defined study area, its position is no longer tracked. We 153 

utilized as small a time step as possible and deployed a large number of particles, reaching into the 154 

millions, to enhance the statistical significance of the diagnosed pathways. However, we 155 

acknowledge that despite these efforts, our offline particle tracking simulation has limitations. 156 

Discussions in North et al.(2009), and Van Sebille et al.(2018), offers valuable insights into the 157 

challenges and limitations of particle tracking simulations. Dugstad et al. (2019) suggests that 158 

when dealing with model outputs that have both high resolution and high output frequency, as in 159 

our case, it's a customary practice not to apply additional diffusion. 160 

 161 

2.3 Image clustering method 162 

In the study area, over 700 daily snapshots of particle spatial distribution are generated. These 163 

daily images capture the horizontal distribution of MAB shelf water and are processed using image 164 

clustering to identify the dominant export patterns. Due to the complex circulation and lateral 165 

meanders of the GS near Cape Hatteras, conventional methods such as empirical orthogonal 166 

functions or self-organizing maps are not effective in extracting export patterns. In contrast, 167 

clustering techniques are well suited to identify complex patterns and are frequently used in 168 

machine learning and statistics (Kaufman & Rousseeuw, 2009).  169 

In our application, clusters are composed of images showing similar Lagrangian flows. This offers 170 

insights into the prevailing export patterns and their temporal occurrence. Each daily image is 171 

dissected into a series of multidimensional vectors. These vectors encapsulate the distinct 172 

characteristics and flow patterns of the MAB shelf water for that day. During the clustering 173 

process, images are systematically compared against each other using similarity metrics to 174 

establish clusters that share flow patterns.  175 

In our study, we used the same 800-m resolution for the clustering analysis. Each pixel is treated 176 

as a data point in a 2-dimensional space defined by latitude (p) and longitude (q). The pixel’s 177 

intensity or color represents the distribution of particles. The intensity of each pixel is translated 178 

into a value between 0 (black, no particles) and 1 (white, maximum particle concentration). 179 

Consequently, each feature vector 𝑋 𝑖 within the image can be represented as:  180 

                                                   𝑋 𝑖 =  (𝑝𝑖 , 𝑞𝑖 , 𝑙𝑖)                                                             (1) 181 

where 𝑙𝑖 is the intensity of the 𝑖𝑡ℎ pixel. The k-means algorithm can then be applied to this set of 182 

feature vectors.  183 

The first step is initialization. We randomly select k feature vectors from the dataset to serve as 184 

the initial centroids. Each centroid 𝐶 𝑗 , where j ranges from 1 to k, takes the form:  185 
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                                                  𝐶 𝑗 =  (𝑐𝑗𝑝, 𝑐𝑗𝑞, 𝑐𝑗𝑙)                                                          (2)  186 

The second step is assignment. This involves calculating the Euclidean distance between each data 187 

point and all the centroids, then assigning the data point to the centroid with the shortest distance.  188 

                           𝐷𝑖,𝑗,𝑙  =  𝑠𝑞𝑟𝑡((𝑝𝑖  −  𝑐𝑗𝑝)
2

+ (𝑞𝑖  −  𝑐𝑗𝑞)
2

+ (𝑙𝑖  −  𝑐𝑗𝑙)
2

) )                 (3) 189 

Third, we update the new centroids by computing the mean of all data points in the cluster. The 190 

centroid of a cluster is the point that minimizes the total distance to all other points in the cluster, 191 

and it turns out that this point is simply the mean (average) of all points in the cluster. 192 

                                                     𝑐𝑗𝑝_𝑛𝑒𝑤 =  𝑚𝑒𝑎𝑛(𝑝𝑖)                                                 (4)   193 

                                                     𝑐𝑗𝑞_𝑛𝑒𝑤 =  𝑚𝑒𝑎𝑛(𝑞𝑖)                                                 (5)   194 

                                                     𝑐𝑗𝑙_𝑛𝑒𝑤 =  𝑚𝑒𝑎𝑛(𝑙𝑖)                                                  (6)  195 

Last, we repeat the assignment and update steps until the centroids do not change significantly. If 196 

the Euclidean distance between the positions of the centroids from one iteration to the next falls 197 

below 0.0001, we consider the centroids to have stabilized. Upon completion, the k-means 198 

algorithm will have divided the image into k clusters, each representing a region of the image with 199 

similar particle concentration. To conclude the clustering process, a cluster validation index is 200 

employed to determine the optimal quantity of clusters. 201 

In our application, we utilize a pre-trained model known as VGG16 (Simonyan & Andrew, 2014) 202 

available in the Keras library. Keras is an open-source, deep learning library that provides a set of 203 

state-of-the-art deep learning models (Gulli et al., 2017; Ketkar et al., 2017). The image clustering 204 

process involves three steps: (1) importing a pre-trained VGG16 model; (2) employing the VGG16 205 

model to extract features per image; and (3) applying k-means, a widely used unsupervised 206 

clustering method, to cluster the images (Dhanachandra et al., 2015).  207 

Determining the optimal numbers of clusters was achieved using the Elbow Method (Nainggolan 208 

et al., 2019). We executed the k-means clustering algorithm for a range of k values. For every 209 

value of k, the sum of squared distances (SSE) is computed from each data point to its assigned 210 

centroid. By plotting the SSE values (Table 1) against the corresponding k values, the “elbow” 211 

point can be identified. Beyond this point, adding more clusters does not lead to a significant 212 

decrease in the SSE. For our particle distribution images, the optimal value of k was identified as 213 

3. 214 

3. Results  215 

3.1 Model validation  216 

A number of model-data comparisons were investigated to validate the model’s data assimilation 217 

and performance. To address data assimilation, the simulated sea surface temperature (SST) was 218 

compared to four buoys from the National Data Buoy Center (buoys 44014, 44095, 41064, and 219 

41025; Figure 1b). Correlation coefficients were > 0.95 for all buoys except 41025, which had a 220 

coefficient of r = 0.73 (Figure 3). The lower correlation coefficient at buoy 41025 can be attributed 221 

to its proximity to the GS's separation point, where more dynamic and intricate interactions occur 222 

between the GS and adjacent shelf and slope waters near Cape Hatteras. Nevertheless, the high 223 

correlation coefficients indicate the ocean reanalysis effectively assimilates in-situ measurements.  224 

Model performance was also evaluated using independent comparisons with unassimilated data as 225 

was done in He and Weisberg (2003). Simulated near-surface (at 5 m depth) currents were 226 
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compared with in situ current measurements at two buoys north of Cape Hatteras (B1 and A4, see 227 

Figure 1b) and two to the south (A7 and B2. See Figure 1b). When averaged over the simulation 228 

period, both modeled and observed data consistently show a southward flow at B1 and A4, with 229 

complex correlation coefficients of 0.49 and 0.46, respectively (Figures 4-5). The model also 230 

performed reasonably well at capturing high frequency events in this region. For instance, in 231 

March 2018, a significant Nor'easter induced a large southward flow that was well represented by 232 

the model. Phase angles, which represent the directional difference between model predictions and 233 

observations, were +7.43° (B1) and +1.64° (A4), suggesting a slight eastward shift in the model-234 

predicted current from the observed current. 235 

In the southern region of the domain, there was a slight discrepancy between the observed and 236 

modeled mean flow (Figures 6-7). At sites A7 and B2, observations showed a weak mean 237 

northward flow, while the model showed a weak mean southward flow. However, complex 238 

correlation coefficients were 0.62 (A7) and 0.61 (B2), indicating a fairly strong positive correlation 239 

despite the small differences in mean flow. Phase angles were -2.57° (A7) and -1.21° (B2), 240 

suggesting a small directional shift between the model and observed data. Overall, the model 241 

solution demonstrates a reasonable level of agreement with in-situ measurements in terms of both 242 

magnitude and direction of near-surface velocity. 243 

 244 

3.2 Export patterns 245 

In our thorough examination of circulation patterns using cluster configurations k=2, k=3, and 246 

k=4, we observed that k=2 successfully captures southward transport and abrupt entrainment. 247 

However, it overlooks the gradual entrainment process that is essential for understanding the 248 

trajectory of MAB shelf water towards the outer MAB shelf and into the Slope Sea. As for the 249 

scenario with k=4 while it similarly identifies the southward transport and abrupt entrainment 250 

processes, it goes further by distinguishing two closely related patterns in coastal circulation. One 251 

pattern shows shelf flow ranging from 35.5°N to 36.5°N with an east-southeast direction (112.5o 252 

clockwise from the north), while the second pattern exhibits an southeast flow direction (135o 253 

clockwise from the north). Therefore, we conclude that k=3 is the optimal cluster number, 254 

providing a balanced and clear depiction of circulation patterns near Cape Hatteras. 255 

Three export patterns for MAB shelf water were identified by the image clustering analysis 256 

(Figures 8-10). Over the two-year study period, the occurrence of each export pattern is 257 

remarkably similar: 31.62%, 33.15% and 35.64% for Patterns 1, 2, and 3, respectively (described 258 

below). The southward entrainment pattern is more straightforward than the other two, describing 259 

the transport of MAB shelf water southward into the SAB and its subsequent entrainment by the 260 

GS into the open ocean. Regarding the abrupt entrainment, the curvature radius near 35.5°N is 261 

approximately 0.5 degrees (~55 km), with surface particle entrainment speeds reaching 1-1.5 m/s. 262 

For the gradual entrainment, the curvature radius near 36.5°N is about 0.75 degrees (~85 km), and 263 

the surface particle entrainment speeds are approximately 0.2-0.4 m/s. Each pattern reveals an 264 

underlying forcing mechanism with clear temporal variability. This results in the persistence of a 265 

single pattern for specific periods followed by transition periods from one pattern to the next 266 

(Figure 11). To better interpret these mechanisms, composite mean circulation and wind anomaly 267 

fields (relative to mean wind condition for each pattern) were analyzed during each export pattern 268 

(Figure 12).  269 
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Pattern 1: “Abrupt entrainment.” This pattern is characterized by the rapid entrainment of shelf 270 

water into the GS, predominantly taking place from April to September (Figure 11), when 271 

prevailing winds are southwesterly during spring and summer (Figure 12a). Throughout this 272 

period, the seasonal wind forcing significantly influences the circulation around Cape Hatteras. As 273 

a result, southward-moving MAB shelf water and northward-flowing SAB shelf water converge 274 

north of Cape Hatteras, near 35.5°N. This distinctive configuration of shelf circulation sets the 275 

stage for the abrupt entrainment of MAB shelf water into the GS (Figure 8). 276 

Pattern 2: “Gradual entrainment.” This pattern emerges primarily in the first half of the year 277 

(January - May) during the winter - spring transition (Figure 11). Throughout this period, the 278 

prevailing wind is westerly, causing the shelf surface water to move more consistently and 279 

gradually offshore relative to Pattern 1(Figure 12b). In this Pattern, a significant portion of MAB 280 

shelf water is directed towards the outer MAB shelf then enters the Slope Sea, where it eventually 281 

gets swept northeast by the GS (Figure 9). This circulation results in particle tracks exhibiting 282 

relatively large radii of curvature, a defining feature of Pattern 2. 283 

Pattern 3: “Southward transport.” This pattern is characterized by the southward extension of MAB 284 

shelf water into the SAB and is prominent during the late fall and winter (Figure 11). During this 285 

period, prevailing winds are primarily northeasterly, resulting in robust coastal downwelling and 286 

a southward flow around Cape Hatteras (Figure 12c). Driven by wind-induced transport, particle 287 

trajectories extend further southward, reaching as far as Long Bay, South Carolina, before being 288 

drawn into the GS (Figure 10). During this pattern, the GS's velocity is slower than in Patterns 1 289 

and 2.  290 

 291 

3.3 Mean estuarine water transport pathways 292 

In this section, we examine the mean transport pathways of estuarine water from the Chesapeake 293 

and Delaware Bay systems. The analysis is based on the composite mean Sea Surface Velocity 294 

(SSV) fields (Figure 12). To achieve this, we employ Progressive Vector Diagrams (PVDs) in an 295 

idealized experimental setup. This approach contrasts with the realistic OpenDrift particle tracking 296 

experiment and is specifically designed to provide insight into movement of estuarine water, such 297 

as fish larvae and pollutants.  298 

In our analysis, we specifically track the displacement of particles, depicted as blue filled circles 299 

in Figure 13, released from both Chesapeake and Delaware Bays over a 45-day interval. These 300 

particle displacements are driven by the three composite mean SSV patterns (highlighted in Figure 301 

12). The composite mean SSV fields are derived by averaging velocities throughout each pattern 302 

period. PVDs are utilized to calculate and illustrate the historical trajectories of the released 303 

particles (Figure 13). Due to the large number of particles, only daily tracking results are shown. 304 

The methodology of PVD can be outlined as follows: Considering the equation for displacement, 305 

𝑥𝑛 and 𝑦𝑛 represent longitudinal and latitudinal particle locations, respectively. 𝑈0 and 𝑉0 denote 306 

the respective composite mean SSV field. Each 𝑛 represents a specific time step, and ∆𝑡 is the 307 

duration between steps. We used ∆𝑡 = 1 day during the PVD calculation. The equations are: 308 

                                                      𝑥𝑛  =  𝑥𝑛−1 + 𝑈0 ∗ ∆𝑡                                                 (7)        309 

                                                      𝑦𝑛  =  𝑦𝑛−1 + 𝑉0 ∗ ∆𝑡                                                  (8)   310 

Particle motion can be represented by displacement vectors: 311 
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                                                        𝑆𝑛 =  (𝑥𝑛, 𝑦𝑛)                                                           (9) 312 

Marine larvae often spend 30-60 days in the water column (Strathmann, 1985; Jablonski, 1986; 313 

Wellington & Robertson, 2001). Therefore, we chose 45 days as a typical PVD integration period. 314 

After 45 days, the PVDs corresponding to the abrupt entrainment pattern (Pattern 1; green dots in 315 

Figures 13a, b) and southward transport pattern (Pattern 3; green dots in Figures 13e, f) show 316 

similar movement of estuarine water originating from Chesapeake Bay and Delaware Bay. These 317 

estuarine waters are transported further south by MAB shelf flow before ultimately becoming 318 

entrained by the GS offshore of Cape Hatteras. This entrainment of estuarine water typically takes 319 

place between latitudes 35.5°N and 36°N. The diagrams also indicate that estuarine water from the 320 

MAB does not enter the SAB region when influenced by the average SSV pattern. However, when 321 

subjected to a strong atmospheric forcing event near Cape Hatteras, MAB estuarine water may 322 

enter the SAB region. 323 

In contrast, the gradual entrainment pattern (Pattern 2) shows more direct offshore entrainment of 324 

MAB estuarine water transport. Driven by averaged SSV of gradual entrainment (Pattern 2), both 325 

the Chesapeake and Delaware estuarine waters (Figures 13c, d) are transported eastward over the 326 

MAB shelf initially. For the Chesapeake, its estuarine water is entrained by the GS within latitudes 327 

36°N to 36.5°N, while the Delaware estuarine water is transported by the shelfbreak jet and slope 328 

sea gyre before being entrained by the GS near 37°N. This estuarine water entrainment is evident 329 

in the larger radii of curvature displayed by the drifter tracks. 330 

The Coastal Pioneer Array (black dots in Figure 13) has been operational since spring 2024 to 331 

collect new oceanographic observations in the southern MAB. Our results suggest that this 332 

mooring array would effectively capture both Chesapeake and Delaware estuarine water exports 333 

near Cape Hatteras during abrupt entrainment (Pattern 1) and southward transport (Pattern 3) 334 

patterns. However, it might not capture the freshwater export during the gradual entrainment 335 

(Pattern 2). Mobile platforms such as gliders and autonomous underwater vehicles could provide 336 

valuable observations of the shelf-open ocean exchange between 36.5°N and 37.75°N. 337 

 338 

4. Discussions 339 

4.1 Export patterns in relation to an earlier study 340 

Export patterns identified in this study align well with previous field observations. Using satellite-341 

tracked drifters, Gawarkiewicz and Linder (2006) identified two major transport patterns (abrupt 342 

and gradual entrainment) and two rarer cases of MAB shelf water transport. The two major patterns 343 

in the aforementioned study are characterized by small and large radii of curvature, which closely 344 

resemble our Pattern 1 (abrupt entrainment) and Pattern 2 (gradual entrainment), respectively. 345 

Abrupt entrainment frequently occurred within the latitudinal range of 35.4°N to 36.5°N. A 346 

defining characteristic of this pattern is the small radii of curvature evident in drifter tracks within 347 

this region, indicating a swift and almost instantaneous merging of MAB shelf water with the GS 348 

as it approaches Cape Hatteras. In contrast, the gradual entrainment pattern is reflected in the larger 349 

radii of curvature observed in the drifter tracks and frequently occurred between 35.7°N and 37°N.  350 

Gawarkiewicz and Linder (2006) documented two rare cases where drifters traveled southward 351 

across Cape Hatteras, diverging from typical patterns observed in the region. These drifter tracks 352 

align with the pathway described in our southward transport pattern. Unlike the abrupt or gradual 353 

https://journals.ametsoc.org/search?f_0=author&q_0=Glen+Gawarkiewicz
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entrainment patterns, MAB shelf water that moves south of Cape Hatteras quickly becomes 354 

entrained by the GS. 355 

 356 

4.2 Image clustering application in oceanography 357 

Although seldom employed in oceanography, utilizing image-clustering methods to investigate 358 

circulation patterns presents several advantages. First, image clustering improves pattern 359 

recognition. Such algorithms excel at detecting patterns within complex datasets, allowing them 360 

to identify similar trajectories, group them together, and thus help delineate circulation patterns. 361 

Second, image clustering aids in quantifying transport mechanisms. These algorithms can identify 362 

the various dominant flows of shelf water that drive the export pattern of MAB shelf water. Lastly, 363 

image-clustering can enable time-evolution analysis, providing insights into the progression of 364 

Lagrangian transport patterns over time.  To ensure more robust results, future studies should 365 

continue to leverage image-clustering methods for identifying dominant circulation patterns over 366 

extended time spans. 367 

 368 

4.3 Estuarine water transport and potential ecological impacts 369 

Estuaries are known to be important nursery grounds for a diverse range of fish species, each with 370 

varying levels of dependence on these habitats (Able, 2005; Whitfield, 2021). This is underscored 371 

by the behavior of some species that, while not residing in estuaries, migrate into them and nearby 372 

areas to spawn (Warlen & Burke, 1990). Furthermore, the early life stages of some species that 373 

spawn offshore are found in estuaries and subsequently migrate back offshore as they mature 374 

(Pattrick & Stydom, 2014). Consequently, understanding the transport of water to the mouth of 375 

estuaries and away from estuaries is vital for comprehending population connectivity. Results from 376 

this study elucidate mechanisms that influence the latter.  377 

One salient discovery from the current study is that, under typical (mean) conditions, estuarine 378 

water from the MAB does not enter the SAB region within 45 days for any of the three export 379 

patterns. Many species have pelagic larval durations shorter than 45 days. Following the larval 380 

phase, they require a substrate for further development. This implies that species spawning in 381 

estuaries, whose habitat ranges span both north and south of Cape Hatteras, either: 382 

(1) populate regions south of Cape Hatteras via southern movement of adults that initially 383 

developed from larvae settled north of Cape Hatteras;  384 

(2) have spawning locations south of Cape Hatteras;  385 

(3) rely on sub-surface currents to transport larvae from the MAB to the SAB; or  386 

(4) depend heavily on sporadic, high-intensity ocean circulation caused by extreme weather 387 

conditions that transport larvae from the MAB to the SAB.  388 

Future modeling endeavors could integrate vertical motion into Lagrangian simulations to refine 389 

these hypotheses. 390 
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Another significant finding is that, under Pattern 2, larvae consistently move offshore, eventually 391 

becoming entrained in the GS. Years dominated by this circulation pattern may profoundly 392 

influence the abundance of new fish entering a population (recruits). Such information can be 393 

harnessed to generate environmental indices useful in fisheries management. Further exploration 394 

is needed to examine the relationship and frequency of export patterns and the recruitment of 395 

species to the MAB and SAB.  396 

 397 

4.4 Impacts of tropical cyclones  398 

The 2017 and 2018 Atlantic hurricane seasons notably impacted the Lagrangian flow patterns of 399 

MAB shelf water, especially when four tropical cyclones entered our study domain near Cape 400 

Hatteras (Figure 14). 401 

In September 2017, Hurricanes Jose and Maria followed a roughly northward track from 28°N to 402 

36°N on the eastern flank of the GS. While Hurricane Jose decelerated and dissipated south of 403 

New England after crossing the GS, Hurricane Maria turned sharply eastward and gradually 404 

weakened. Their collective influence intensified northeasterly winds over the MAB shelf and 405 

coastal circulation near Cape Hatteras. In October 2017 (Figure 10d), an extreme southward 406 

movement of MAB shelf water was evident, extending to both Onslow Bay and Long Bay south 407 

of Cape Hatteras. 408 

On July 6, 2018, a tropical depression formed south-southeast of Cape Hatteras, and later 409 

intensified into Tropical Storm Chris. Chris followed a northeastward trajectory over the Atlantic 410 

Ocean before eventually dissipating. When this low-pressure system passed approximately 500 411 

kilometers south-southeast of Cape Hatteras, it altered the MAB shelf flow pattern (Figure 11) 412 

from the abrupt entrainment pattern (Pattern 1 in Figure 15a) to the southward transport pattern 413 

(Pattern 3 in Figure 15b). Once Chris dissipated, Pattern 1 resumed. 414 

Hurricane Florence made landfall on September 14, 2018, and its effects were substantial. The 415 

storm lingered over the Carolinas due to synoptic-scale interactions (Zambon et al., 2021), leading 416 

to record-breaking rainfall. Prior to Florence's impact, MAB shelf waters were entrained into the 417 

GS south of Cape Hatteras (Pattern 3). However, Florence's slow movement onshore altered the 418 

dynamics, leading to MAB shelf waters being constrained to export north of Cape Hatteras (Pattern 419 

1). The shift in the export configuration from Pattern-3 (Figure 15c) to the abrupt entrainment 420 

Pattern -1 (Figure 15d) was a result of Florence's influence. During this period, Florence also 421 

brought unprecedented rainfall to North and South Carolina from mid-September to early October. 422 

Export returned to Pattern 3 once Florence’s impacts subsided. 423 

5. Summary 424 

Through our application of Lagrangian particle tracking, grounded in a high-resolution, data-425 

assimilative ocean reanalysis, in conjunction with image clustering analyses, we extracted three 426 

distinct patterns of MAB shelf water export during 2017-2018. Each of these patterns is associated 427 

with specific surface wind forcing: 1) Abrupt entrainment (Pattern 1) is associated with 428 

southwesterly wind from April to September. This pattern, covering 31.62% of the study period, 429 

is marked by shelf water particles undergoing rapid entrainment between 35.4°N and 36.5°N. 2) 430 
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Gradual entrainment (Pattern 2) is associated with westerly winds during January - May (winter - 431 

spring) seasonal transition. Constituting 33.15% of the instances, this pattern features particles 432 

gradually entraining between 35.7°N and 37°N. 3) Southward transport (Pattern 3) is associated 433 

with strong northeasterly wind during the late fall - winter season. It accounts for 35.64% of the 434 

instances, with the MAB shelf waters moving southward across Cape Hatteras before ultimately 435 

being entrained by the GS. Additionally, extreme weather events such as tropical cyclones exert 436 

significant influence in shifting the export patterns of MAB shelf water.  437 

Composite Sea Surface Velocity (SSV) field maps, along with their corresponding Progressive 438 

Vector Diagrams (PVD), help shed light on the mean export pathways of estuarine water from 439 

Chesapeake and Delaware Bays. Under the influence of the composite mean SSV from both the 440 

abrupt entrainment (Pattern 1) and southward transport (Pattern 3), these estuarine waters flow 441 

south through MAB shelf, and are then drawn offshore by the GS near Cape Hatteras, within the 442 

35.5°N to 36°N range. In contrast, during the gradual entrainment (Pattern 2), estuarine waters 443 

primarily move eastward across the MAB shelf. Waters from Chesapeake Bay merge with the GS 444 

between 36°N and 36.5°N, while waters from Delaware Bay are carried by the shelfbreak jet and 445 

slope sea gyre before being entrained by the GS offshore near 37°N.  446 

The Coastal Pioneer Array commissioned in spring 2024, is currently monitoring exports of both 447 

Chesapeake and Delaware estuarine water near Cape Hatteras during the phases of abrupt 448 

entrainment (Pattern 1) and southward transport (Pattern 3). However, to gain a clearer 449 

understanding during gradual entrainment (Pattern 2), especially for observations of shelf-open 450 

ocean exchange between 36.5°N and 37.75°N, supplementary mobile platforms like gliders and 451 

autonomous underwater vehicles will be essential.  452 

In summary, this study unveils new insights into the predominant pathways and export patterns 453 

that govern the dynamics of near-surface MAB shelf water. It also highlights an innovative 454 

application of deep-learning image clustering techniques to coastal circulation studies. Building 455 

upon our findings, future research can utilize our particle-tracking framework to examine the 456 

export pathways of subsurface water masses throughout the MAB shelf and to investigate the 457 

complex dynamics of shelf water subduction as it interacts with the slope sea and the GS. 458 

Additionally, these studies are poised to yield new insights into potential larval transport pathways 459 

and population connectivity, which are crucial for sustainable fisheries management. Regarding 460 

future research, besides examining the residence time of specific water masses over the continental 461 

shelf and Slope Sea, the analytical techniques described by van Sebille et al. (2018) also facilitate 462 

the study of age distributions, probability characteristics, and biological interactions of these water 463 

masses. These methodologies can be further applied to investigate the dynamics between the shelf 464 

and the open ocean at the southern boundary of the MAB. 465 
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 483 
 484 

Figure 1. Panel (a): Modeling domain. Isobaths of 200 m, 1000 m, 1500 m, 2500 m, and 2500 m 485 

are denoted with black solid lines. Panel (b): Notable observational sites in this study from PEACH 486 

project: four buoys from National Data Buoy Center (NDBC) are denoted with blue circles; B1 487 

and B2 are two meteorological buoys with in-water CTDs, denoted with red circles; A4, A5OE, 488 

A7 and A8 are mooring Acoustic Doppler Current Profilers (ADCPs), denoted with red circles. 489 

 490 
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 491 

Figure 2. Panel (a): Initial particle locations on January 1, 2017. These particles are located within 492 

the 100 m isobath, north of 36.8oN, in the model domain. The same number of particles are released 493 

every three days at the same locations during particle tracking simulations. Panels (b), (c), and (d) 494 

show the horizontal distribution of near-surface MAB shelf water on February 1, March 1, and 495 

April 1, 2017, respectively.  496 

 497 

 498 
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                      499 

 500 

Figure 3. Sea surface temperature comparisons between model results (blue lines) and in situ 501 

observations (red lines). Panel (a), (b), (c) and (d) show comparison at NDBC buoys 44014, 44095, 502 

41025 and 41064, respectively. A 7-day low-pass filter has been applied to both observations and 503 

modeling results.   504 
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 505 

Figure 4. Comparisons of near-surface (at 5 m depth) current at buoy B1 from model results and 506 

in-situ observations, with a 7-day low-pass filter applied to both. The upper and middle panels 507 

display the velocity vectors of the observed and modeled current time series, respectively, from 508 

April 2017 to November 2018. The 19-month mean eastward and northward velocity components 509 

are presented in the bottom left corner of each panel. The comparison between the model and data 510 

is quantified using the squared complex correlation coefficient and phase angle. Both values are 511 

displayed in the bottom right corner of the middle panel. The lower panel shows a comparison of 512 

the mean current component (u, v) magnitudes derived from both the model results (blue line) and 513 

observations (red line). 514 

  515 
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 516 

Figure 5. Same as Figure 4, but for site A4.  517 

  518 
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 519 

Figure 6. Same as Figure 4, but for site A7. For better visualization, both observed and modeled 520 

vectors are rotated 45º counterclockwise (upper and middle panel). 521 

  522 
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 523 

Figure 7. Same as Figure 4, but for site B2. For better visualization, both observed and modeled 524 

vectors are rotated 45 º counterclockwise (upper and middle panel). 525 

526 
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 527 

Figure 8. Pattern 1, “abrupt entrainment,” of MAB shelf water Lagrangian flow. Panels show 528 

snapshots of horizontal distribution of near-surface MAB shelf water on May 31, 2017; August 529 

22, 2017; March 16, 2018; and May 14, 2018, respectively.  530 
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 531 
Figure 9. Pattern 2, “gradual entrainment,” of MAB shelf water Lagrangian flow. Panels show 532 

snapshots of horizontal distribution of near-surface MAB shelf water on April 12, 2017; July 12, 533 

2017; February 12, 2018; and May 16, 2018, respectively.  534 
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 535 
Figure 10. Pattern 3, “southward transport,” of MAB shelf water Lagrangian flow. Panels show 536 

snapshots of horizontal distribution of near-surface MAB shelf water on September 13, 2017; 537 

September 20, 2017; September 27, 2017; and October 4, 2017, respectively.  538 

 539 

 540 

 541 

 542 

 543 
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 544 

 545 
 546 

Figure 11. Time series of three MAB shelf water Lagrangian flow patterns from Jan. 2017 to Dec. 547 

2018. Hurricane Jose, Maria, Chris, Florence, and Michael are indicated by vertical lines.   548 

  549 
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 550 

Figure 12. Composite mean maps of sea surface velocity (SSV) fields near Cape Hatteras based 551 

on three export patterns. The SSV fields for patterns 1, 2, and 3 are shown in (a), (b), and (c), 552 

respectively. Wind anomaly vectors during each pattern period are overlaid (blue vectors). Orange 553 

solid lines denote the two-year mean GS path during 2017-2018 and magenta solid lines denote 554 

mean GS path during each pattern period. 555 
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 556 
 557 

Figure 13. Movement of estuarine water particles (blue dots) from Delaware Bay (a, c, e) and 558 

Chesapeake Bay (b, d, f). The 45-day trajectories (green dots) computed from the progressive 559 

vector diagrams are driven by the composite mean sea surface velocity (SSV) fields from Figure 560 

12, corresponding to Pattern 1 (a, b), Pattern 2 (c, d), and Pattern 3 (e, f), respectively, over 45 561 

days. The location of the Coastal Pioneer Array in the southern MAB is shown by black dots. 562 

 563 
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 564 
Figure 14. Hurricane paths of Jose, Maria, Chris, and Florence during the 2017 and 2018 Atlantic 565 

Hurricane seasons.    566 

 567 

 568 

 569 

 570 

 571 

  572 
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 573 
Figure 15: Panels (a), (b), (c), and (d) show the horizontal distribution of near-surface MAB shelf 574 

water on July 3, July 10, September 12, and September 27, 2018, respectively.  575 

 576 

 577 

 578 

 579 
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Table 1: Sum of Squared Errors (SSE) for Different Numbers of Clusters 580 

Number of Clusters Sum of Squared Errors (SSE) 

1.0 268,910,336.0 

2.0 223,770,432.0 

3.0 199,561,136.0 

4.0 189,915,488.0 

5.0 184,717,632.0 

6.0 180,378,976.0 

7.0 175,382,544.0 

8.0 173,308,048.0 

 581 

 582 
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