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Abstract: Modern implementations of the Prony method have been used in the statistical
analysis of sinusoidal and/or exponential signals distorted with noise. Modern implementations
are auto-regressive, using a series of matrix calculations and least-squares to calculate the
values of interest from a signal; the frequency, decay constant, initial amplitude, and phase. In
cavity ring-down spectroscopy, the frequency and decay constant of an exponentially decaying
sinusoidal signal need to be obtained, in order to identify molecules and the chirality of these
molecules, which may be applied in, for instance, development of pharmaceuticals. This method
is applicable to signals from other fields - signals which are sinusoidal or exponential in nature.
An implementation of the Prony method for cavity ring-down spectroscopy has been developed
and characterised in Python.
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1. INTRODUCTION

The chirality of a molecule in a substance can be of vital
importance in determining the action of that substance.
If a molecule is not the same as its mirror image, it is
chiral; a chiral molecule cannot be superimposed on to its
mirror image. The chiral molecule and its mirror image
are called enantiomers. An example from pharmacology is
that of penicillamine: one enantiomer is a treatment for
rheumatoid arthritis, Wilson’s disease and as an antidote
for heavy metal poisoning; the other enantiomer is highly
toxic, causing nerve inflammation and bone infections
(He et al. (2006)). Therefore the identification of the
chirality of molecules is highly important in pharmacology
and multiple other fields such as analytical chemistry,
cosmetics, and biology.

Cavity ring-down signals can be used to identify the
chirality of a substance. In such an investigation, a laser
is used to illuminate an optical cavity, which contains the
substance of interest in gaseous form. The laser light is
reflected between two mirrors in the cavity, and can be
detected using micro-channel plate detectors. When the
laser is switched off, the light decays in the form of a
exponentially-decaying sinusoid

e−
t
τ (X sin(ωt+ ϕ) + Z) + S(t),
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where the signal S stands for the measurement noise. The
frequency, ω, and decay constant, τ of this signal need
to be measured to a high level of speed and accuracy,
in order to measure the chirality of the substance. The
decay constant determines the concentration of substance
of interest in the cavity, and the frequency is indicative of
the chirality.

The Ultrachiral collaboration is in the process of
developing a highly sensitive method of determining
chirality using cavity ring-down spectroscopy, with the
signal being detected by photon detectors such as photo-
multiplier tubes and avalanche photo-diodes (Sofikitis
et al. (2014)). Current chirality measurements are
hindered by weak signals, which may be further obscured
by spurious birefringence and imperfect background
subtraction. The Ultrachiral collaboration has developed
a cavity-enhanced optical method to amplify weak signals;
this method uses a pulsed-laser bowtie cavity ring-
down polarimeter with counter propagating beams, which
enhances the signal by a factor equal to the number of
cavity passes. The effects of birefringence are suppressed
and the need for background subtraction eliminated. Two
laser beams travelling in opposite directions within the
cavity are used to obtain the chirality; one beam is right-
handed circularly polarised, while the other is left-handed
circularly polarised. The frequencies of these beams are
used to obtain the chirality of the substance of interest.
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Determining, however, all relevant parameters of the
signal, that is its frequencies and the decay constants,
is a challenging technical problem due to the presence
of measurement noise and the requirements to produce
estimates in near-real time. The problem of inferring
parameters of signals has been the subject of intensive
research in signal processing, identification, applied
mathematics, and control community (see e.g. classical
books (Ljung (1998)), (Tarantola (2005)), (Aster et al.
(2005)) and references therein). More recently, observer-
based approaches were shown to be efficient in this
problem too (Aranovskiy et al. (2016)), (Na et al. (2015)),
including for sums of non-harmonic signals (Tyukin
et al. (2003)) and those whose models are non-linearly
parameterised (Tyukin et al. (2013)).

Despite these theoretical successes, industrial and
practical applications demand increased efficiency of
estimation, with high computational scalability and
reduced costs. As a response to these demands, recent
years have seen increased interest in simple classical
methods such as e.g. the method of Prony (de Prony
(1795)) due to their low computational complexity and
high scalability. This leads to a possibility to develop a one-
shot estimation procedure as opposed to the asymptotic
ones stemming from the observer-based approaches.

In this contribution we demonstrate that, remarkably,
simple auto-regression methods like the Prony method,
can deliver a surprisingly high efficiency and accuracy
if coupled with suitable pre-processing and statistical
analysis. This is consistent with previous studies which
used the Prony approach to e.g. signal analysis
(Kumaresan et al. (1982)), high energy physics (Cushman
and Fleming (2018)), biomedical science (Fernández
Rodŕıguez et al. (2018)), and to power system oscillation
analysis (Arpanahi et al. (2019)). In addition, by exploring
various combinations of sampling rates and parameters of
noise, we propose a procedure for finding optimal sampling
rates delivering most robust and accurate estimates.

The paper is organized as follows. In section 2 we present
a background of the Prony method, Sections 3-5 describe
our procedure for determining relevant parameters of the
measurement data, and Section 6 concludes the paper.

2. THE PRONY ALGORITHM

Prony’s original algorithm was designed for processing
discrete time signals that are superpositions of exponen-
tially decaying sinusoids. It is also applicable to continuous
signals upon their discretisation at a generic sample rate.
Since the original signal satisfies an ordinary differential
equation with constant coefficients, the discretised signal
solves a finite difference equation facilitating Prony’s ap-
proach.

The original algorithm solved a linear system of equations
to exactly match the curve produced by the expansion of
gases. Modern implementations of Prony’s method extract
information from a signal, providing a statistical estimate
of frequency, initial amplitude, phase, and damping
components of that signal.

The application of Prony’s method consists of three steps:

(1) Build an autoregressive model that explains the
measurements.

(2) Recover the roots of polynomials built from the
model.

(3) Use the roots to determine the characteristics of the
signal.

Discrete time measurement of a mixture of exponentially
decaying sinusoidal signals satisfying an auto-regressive
model of order p has p past values, and assumes that the
value of yk depends linearly on the past p values in y in
the relation:

yk = −
p−1∑
j=0

αp−jyk−j k ≥ p (1)

To begin, the coefficient α is found by combining p copies
of this equation with different k−values into a n×p, n ≥ p
system of linear equations:




y0 y1 y2 . . . yp−1

y1 y2 y3 . . . yp
...

...
...

. . .
...

yn−1 yp yp+1 . . . yn+p−1


 ·




α0

α1

...
αp−1


 = −




yp
yp−1

...
y2p−1


 (2)

The matrix on the left, if n = p, is a Hankel matrix.
Equation 2 can also be written as:

Hααα = −h (3)

Where H is substituted for the data matrix, ααα is the
matrix of coefficients, and h is the vector of sampled
measurements.

The second step recovers the exponential parameters
(i.e. the rates of decay and frequencies) from ααα =
−(H′H)−1H′h, by finding the roots (eigenvalues) of the
following characteristic polynomial equation:

q(z) = zp +αp−1z
p−1 + ...+α1z+α0 =

∑
k

(z−λk)
r
k ,

(4)

where
∑

k rk = p and λk are the roots of q(z) (see
Hokanson (2013)).

Observe that the minimal number of data points is n ≥ p,
which in the case of a single sinusoid and Z = 0 is 3. The
number of data points affects computational costs of the
implementation, and we will exploit this later on in the
paper.

When implemented as an algorithm, the Prony method is
of the following form:

Algorithm 1. To implement the Prony method:

for each data point do generate discrete matrices H
for each matrix H do least squares fit

for each output do find roots
end for

end for
end for
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Fig. 1. The simulated signal, with 3% uniform noise, ω=
1 MHz, and τ = 10 µs, from a cavity ring-down
spectroscopy experiment, and a fit using the Prony
method. The fit obtains values of ω = 1.000530 MHz
and τ = 9.888738 µs.

Briefly, the data points on a signal are sampled at equally-
spaced intervals, and these points are used to generate an
n × p matrix (H in equation 3) and an associated p × 1
matrix (ααα in equation 3). Solutions of these matrices are
found using the least squares fit method, and solved as a
polynomial (cubic) equation. These roots, which are found
though finding the eigenvalues of the companion matrix,
can then be simply manipulated to obtain the sought
characteristics of the signal. If the sample rate is equal to
ω/π, the covariance matrix participating in least squaring
fails to be invertible, and the method is not applicable.
This manifests as the singularity at ω/π in figure 2, to be
discussed in greater detail in section 4.

3. ANALYSIS OF SIMULATED SIGNALS FROM
CHIRAL EXPERIMENTS

The form of signals from cavity ring-down spectroscopy
experiments is that of an exponentially decaying sinusoid,
as shown in figure 1. This is of the form:

V (t) = e−t/τ (X cos(ωt) + Y sin(ωt) + Z) (5)

Here, X, Y , and Z are known constants, t is the time, τ is
the damping component, ω is the frequency, and S is the
noise. In these simulations, a range of values for ω, τ , and
the noise were suggested, based on discussions with the
Ultrachiral collaboration. The range of values for ω was
between 1 and 10 MHz, for τ between 1 and 10 µs, and a
normal noise distribution of between 0% and 5%.

Although this signal is time continuous, it becomes
discrete upon sampling at equidistant time moments. Not
all sample rates are admissible, so we process the signal at
various sample rates simultaneously, to determine the valid
region and do additional statistical processing, making use
of a weak dependence of the result of the sample rate in
a “good” region. When applied to a continuous signal, a
sample rate is utilised in order to approximate a discrete
signal. As Prony analysis is a sub-Nyquist method, this
periodic, discrete sampling is required in order to obtain
accurate results. The Nyquist frequency is the minimum
sampling frequency of a sinusoidal function, in order to
regenerate the function without the loss of information

(Colarusso et al. (1999)), which is not applicable to
the Prony method due to the satisfaction the full spark
condition (or full Kruskal rank) (see Kruskal (1977); Ye
et al. (2017)). The Nyquist sampling limit is twice the
waveform frequency.

Using the trigonometric identity:

a cos(θ) + b sin(θ) = c sin(θ + ϕ) (6)

where c =
√
(a2 + b2) and ϕ = arctan

(
b
a

)
, the signal can

be rearranged as:

V (t) = e−t/τ (X2 sin(ωt+ ϕ) + Z) (7)

Then, using the identity:

sin θ = − cos
(
θ +

π

2

)
(8)

The form of the signal can be further rearranged as:

V (t) = e−t/τ
(
−X2 cos(ωt+ ϕ+

π

2
) + Z

)
. (9)

Fix a sampling time interval T . Then, with the use of the
Euler identity

cos θ =
eiθ + e−iθ

2
, (10)

equation (9) translates to

V (nT ) = e−
nT
τ

(
Z+e

iωnT + Z−e
−iωnT + Z

)
(11)

where Z± = −X2

2 e±i(ϕ+π
2 ) and n = 0, 1, . . .. The sequence

V (nT ) satisfies the auto-regression relation of order 3.

Once the roots u0 = e−
T
τ , u± = e−

T
τ e±iωT of its

characteristic equation have been found via the Cardano
formulas, values of ω′

0 and τ ′ can be obtained:

τ ′ =− ln(u0)/T, (12)

ω′ = Im ln(u+)/T. (13)

Remark that the estimates ω′ and τ ′ can be alternatively
determined directly from any pair of coefficients of the
characteristic polynomial, but the difference in the results
is found statistically insignificant.

4. PERFORMANCE OF PRONY’S METHOD FOR A
SIGNAL WITH NOISE

The range of parameters for which this implementation
of the Prony method works well was investigated. This
included modelling a signal, of the form of equation 7,
with a range of values of ω, between 1 and 10 MHz, a
range of values of τ , between 1 and 10 µs, and a range of
values of uniform noise, between 0 and 5%.

It was found that the product of the values of ω and
τ gives a good indication of how well the fit using the
Prony method would perform; when ωτ ≤ 2, the error
seen on the fit is significantly greater than when ωτ > 2.
This inequality is only applicable for a signal of the form
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Fig. 1. The simulated signal, with 3% uniform noise, ω=
1 MHz, and τ = 10 µs, from a cavity ring-down
spectroscopy experiment, and a fit using the Prony
method. The fit obtains values of ω = 1.000530 MHz
and τ = 9.888738 µs.
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spaced intervals, and these points are used to generate an
n × p matrix (H in equation 3) and an associated p × 1
matrix (ααα in equation 3). Solutions of these matrices are
found using the least squares fit method, and solved as a
polynomial (cubic) equation. These roots, which are found
though finding the eigenvalues of the companion matrix,
can then be simply manipulated to obtain the sought
characteristics of the signal. If the sample rate is equal to
ω/π, the covariance matrix participating in least squaring
fails to be invertible, and the method is not applicable.
This manifests as the singularity at ω/π in figure 2, to be
discussed in greater detail in section 4.
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experiments is that of an exponentially decaying sinusoid,
as shown in figure 1. This is of the form:

V (t) = e−t/τ (X cos(ωt) + Y sin(ωt) + Z) (5)

Here, X, Y , and Z are known constants, t is the time, τ is
the damping component, ω is the frequency, and S is the
noise. In these simulations, a range of values for ω, τ , and
the noise were suggested, based on discussions with the
Ultrachiral collaboration. The range of values for ω was
between 1 and 10 MHz, for τ between 1 and 10 µs, and a
normal noise distribution of between 0% and 5%.

Although this signal is time continuous, it becomes
discrete upon sampling at equidistant time moments. Not
all sample rates are admissible, so we process the signal at
various sample rates simultaneously, to determine the valid
region and do additional statistical processing, making use
of a weak dependence of the result of the sample rate in
a “good” region. When applied to a continuous signal, a
sample rate is utilised in order to approximate a discrete
signal. As Prony analysis is a sub-Nyquist method, this
periodic, discrete sampling is required in order to obtain
accurate results. The Nyquist frequency is the minimum
sampling frequency of a sinusoidal function, in order to
regenerate the function without the loss of information

(Colarusso et al. (1999)), which is not applicable to
the Prony method due to the satisfaction the full spark
condition (or full Kruskal rank) (see Kruskal (1977); Ye
et al. (2017)). The Nyquist sampling limit is twice the
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0 and τ ′ can be obtained:
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ω′ = Im ln(u+)/T. (13)

Remark that the estimates ω′ and τ ′ can be alternatively
determined directly from any pair of coefficients of the
characteristic polynomial, but the difference in the results
is found statistically insignificant.

4. PERFORMANCE OF PRONY’S METHOD FOR A
SIGNAL WITH NOISE

The range of parameters for which this implementation
of the Prony method works well was investigated. This
included modelling a signal, of the form of equation 7,
with a range of values of ω, between 1 and 10 MHz, a
range of values of τ , between 1 and 10 µs, and a range of
values of uniform noise, between 0 and 5%.

It was found that the product of the values of ω and
τ gives a good indication of how well the fit using the
Prony method would perform; when ωτ ≤ 2, the error
seen on the fit is significantly greater than when ωτ > 2.
This inequality is only applicable for a signal of the form
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Fig. 2. Showing the error on ω at different values of the
sample rate. The input value of ω is 5 MHz, with ω/π
being 1.592 MHz. Where the sample rate is less than
ω/π, indicated by the red vertical line, the error on
ω becomes significant. At values of the sample rate
greater than ω/π, the error on ω is close to zero.

discussed here, and with 3% uniform noise (that is, the
noise is 3% of the initial amplitude of the signal). Below
this boundary the signal decays so fast that oscillations
are suppressed by the noise and the frequency cannot be
reliably determined.

Also of importance in indicating how well the fit would
perform is a relation between the sample rate R and ω.
Both are measured in MHz, and if R < ω/π, then the
error on the fit can be significant (due to symmetries
of the cosine function the phase a root cannot be
uniquely determined from the characteristic polynomial).
An example of this is shown in figure 2, wherein the
difference in the error on ω is clearly delineated at R =
ω/π. This is due to the covariance matrix degenerating,
as mentioned previously. In order to process a signal with
noise, an initial calculation based on an assumed maximum
value of ω is used.

In the case of the experimental work performed by the
Ultrachiral collaboration the signal is processed at a grid
of sample rates. Since the assumed maximum value of ω
is 10 MHz, the initial approximation ωinit of ω with a
margin error of < 20% is derived at a sample rate greater
than 10/π MHz. From this estimate the singularity ω/π
is approximated. Then all the rates below ωinit/π are
discarded and only the rates above ωinit/π are utilized
and averaged over to obtain final calculations of ω and τ .

In most cases, with 3% uniform noise, the code fits well,
with calculations of ω having an error of within 0.2%, and
calculations of τ within 2%. As ω is of greater interest in
obtaining the chirality of a substance, this is a positive
indication of the Prony method’s applicability to this
work.

5. IMPLEMENTATIONS OF PRONY’S METHOD IN
PYTHON

Given the nature of cavity ring-down spectroscopy
experiments, the fast calculation of ω and τ is required.
To that end, different methods of implementing the
Prony method in Python were investigated. This includes
implementations in pure python, as well as using different

Python packages in order to speed up the computation.
These included NumPy (van der Walt et al. (2011)),
Numba (Lam et al. (2015)), Cython (Behnel et al. (2011)),
and the asynchronous, parallel computation package trio
(Smith (2017)).

5.1 Comparison of Python Implementations

Table 1. Summarising the time taken and rate
of each implementation of the Prony method,
with different Python packages, as well as the
fast Fourier transform, implemented in Python

with NumPy (indicated by ‘*’).

Package(s) Used Time (µs) Rate (kHz)

Pure Python 20000 0.005
NumPy 6000 0.2
Numba 35 28.6
Cython 60 16.7
trio 1000 1.0
NumPy and Numba 27 37.0
FFT* 59 16.8

The slowest implementation of the Prony method was
the pure Python implementation. The quickest was a
combination of NumPy and Numba - this combination of
highly optimised operations and jit compilation resulted
in a rate of around 37 kHz, or a signal fitting time of
27 µs. This allows for sustained calculations with this
method at a laser switch off frequency in cavity ring-
down spectroscopy of around 37 kHz . A summary of
these implementations, and the time and rate for each,
are shown in table 1.

Also of interest are alternative methods of implementing
more widely-used methods which can be used to obtain
the properties of the signals, such as the discrete fast
Fourier transform. In order to recover the parameters
of interest, the Prony method requires the fewest
data points, on balance comparing favourably with
the fast Fourier transform, and the adaptive observer
method; while the fast Fourier transform may be more
accurate, the larger number of points required to
accurately recover parameters mean that these require
greater computational resources. For instance, the most
computationally intensive part of the Prony method is
finding the matrix inverse, but since this is only for a 3×3
matrix, this is not as onerous as, for example, the adaptive
observer method.

6. CONCLUSION

The development of a quick algorithm for obtaining
the frequency and damping components of a signal
produced during cavity ring-down spectroscopy is of great
importance for obtaining the chirality of a substance. The
Prony method is shown to calculate the frequency and
damping components of a signal to a good degree of
accuracy, to within 0.2% and 2% respectively, for a signal
with uniform noise of 3% of the initial amplitude of the
signal.

Several different implementations of this using different
Python packages were performed, of which the quickest
was found to be a combination of NumPy and Numba,
with a peak rate of 37 kHz.

The Prony method has a speed advantage over other
methods such as performing a least squares fit or Fourier
transform on the full signal, since it requires fewer data
points. Unlike the other two methods, the Prony method
requires fewer data points than the Nyquist frequency
(Nyquist (1928); Shannon (1949)); the Prony method
is a sub-Nyquist method. The Nyquist frequency is the
minimum sampling frequency of a sinusoidal function,
in order to regenerate the function without the loss of
information (Colarusso et al. (1999)). That the Prony
method does not require so high a sample rate is due to
the satisfaction of an algebraic condition, the full spark
condition (or full Kruskal rank) (see Kruskal (1977); Ye
et al. (2017)). The result of the Prony method being sub-
Nyquist is that it has the potential to be quicker than a fit
to a full signal, for example in a least square fit or Fourier
transform (see Gherasim (2006)).
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