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A B S T R A C T

To mitigate the vulnerability of distribution grids to severe weather events, some electric utilities use
preemptive de-energization as the primary line of defense, causing significant power outages. In such instances,
networked microgrids could improve resiliency and maximize load delivery, though the modeling of three-
phase unbalanced network physics and computational complexity pose challenges. These challenges are further
exacerbated by an increased penetration of uncertain loads. In this paper, we present a two-stage mixed-integer
robust optimization problem that configures and operates networked microgrids, and is guaranteed to be robust
and feasible to all realizations of loads within a specified uncertainty set, while maximizing load delivery. To
solve this problem, we propose a cutting-plane algorithm, with convergence guarantees, which approximates
a convex recourse function with sub-gradient cuts. Finally, we provide a detailed case study on the IEEE
37-bus test system to demonstrate the economic benefits of networking microgrids to maximize uncertain-load
delivery.

1. Introduction

Networked microgrids are gaining significant traction as a means
to improve the resilience and economic efficiency of modern distribu-
tion grids, especially during extreme weather events and unforeseen
contingencies [1–3]. During such events, isolating affected areas from
the rest of the system can be advantageous [4]. In radial distribution
networks, this isolation can result in widespread power outages. Parti-
tioning the network into multiple self-sufficient sub-networks, or ‘‘mi-
crogrids’’, could alleviate this issue, ideally minimizing load shedding
or maximizing load delivery.

Maximizing delivery of uncertain loads within distribution networks
while minimizing generation costs is challenging. Unlike transmission
networks, distribution networks are typically unbalanced. Moreover,
if load shedding is necessary, switches are usually employed to shed
entire sub-networks rather than just the fraction of load that cannot be
met [5]. This further complicates balancing power supply and demand.
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The integration of distributed energy resources (DERs) has brought
both challenges and opportunities for enhancing distribution network
resiliency [5,6]. Ref. [6] presents a Mixed-Integer Linear Program
(MILP) with chance constraints to determine a network configuration
that minimizes switching costs and expected costs of up-stream power
supply while accounting for uncertainty in distributed generation. How-
ever, [6] does not consider load uncertainty, which is inherent in
distribution networks. Some studies do consider load uncertainty. For
instance, [7] proposes a two-stage robust formulation for distribution
network reconfiguration under uncertain loads, while [8] presents a
single-stage mixed-integer conic program for minimizing losses via
distribution network reconfiguration in the presence of load uncer-
tainty. Scenarios wherein load shedding may be necessary are not
considered by the above works. With the exception of [6], these papers
and many others on network reconfiguration [9–11] only consider
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balanced networks. Ref. [12] proposes a two-stage robust formula-
tion for scheduling DERs to mitigate load shedding in the event of
distribution network disconnection from the upstream grid, but does
not consider network reconfiguration. Although the aforementioned
papers model some combination of load uncertainty, load shedding,
phase-imbalance, or network reconfiguration, none of them address
the unified problem of network reconfiguration aimed at maximizing
uncertain-load delivery in unbalanced multi-phase networks.

To address this planning problem under uncertain loads, we propose
a Robust Optimization (RO) approach by modeling loads as uncer-
tainty sets. This approach guarantees a robust partitioning strategy,
ensuring the feasibility of the partitioned power network’s operation
for all load realizations within the specified uncertainty set. In this
paper, we formulate a two-stage RO model. The first stage is a MILP
that optimizes network partitioning decisions while minimizing total
unsatisfied loads and generation costs for the nominal load realization.
Subsequently, after the load uncertainty is revealed, the second-stage
(recourse) problem adjusts generation set-points subject to three-phase,
unbalanced power flow constraints. This two-stage problem aims to
minimize the worst-case cost of operation and unsatisfied loads, lead-
ing to an infinite-dimensional mixed-integer nonlinear optimization
problem, typically requiring reformulation for tractability.

To ensure tractability of the two-stage RO problem, we propose the
following solution strategies: (a) employing a flow-based model to
enforce radial topology requirements in the first-stage, ensuring all sub-
networks are radial, and any islanded sub-network contains an indepen-
dent voltage/power source, (b) leveraging linearized ‘‘LinDist3Flow’’
constraints for tractability in the recourse problem, known for their
effectiveness on distribution networks [13,14], and (c) generalizing the
cutting-plane algorithm from [15] to solve the two-stage RO model.
We decompose the problem into a mixed-integer master problem and
infinitely-many convex subproblems. Given the intractability of han-
dling the latter, we instead find the most violated inequality across
all elements of the uncertainty set by solving a max*min problem.
To optimally solve this max*min problem, we exploit the property of
convex recourse over a polyhedral set, restricting the search to a finite
number of extreme points of the uncertainty set.

The contributions of this paper are (i) generalization of grid-forming
DER constraints from [5] to ensure any islanded and energized portions
of the network contain at least one grid-forming DER, (ii) development
of a tractable, two-stage reformulation of the RO problem to maxi-
mize the delivery of uncertain load within an unbalanced distribution
network while minimizing generation costs, (iii) a novel cutting plane
algorithm to solve the reformulated RO problem, and (iv) a detailed
numerical study analyzing the sensitivity of planning and operation to
uncertainty set parameters, and illustrating the potential benefits of
networked microgrids for maximizing load delivery. Additionally, we
demonstrate the feasibility of obtained two-stage RO solutions against
non-convex AC three-phase power flow through a sampling approach.

2. Problem formulation

In this section, we present necessary notation, the network con-
figuration constraints, and the single-stage robust optimization (RO)
problem formulation.

2.1. Notation and preliminaries

Bold typeface represents vector notation and blackboard bold type-
face represents matrix notation. The � operation represents the cardi-
nality when the input is a set, the absolute value when the input is a
real number, and magnitude when the input is a complex number.

Consider a distribution network with a set of nodes N , a set of
lines L, and a set of phases �. There is also a set of transformers Ex
which can be sub-divided into a set of wye-connected transformersEx,Y , and a set of delta-connected transformers Ex,�, such that Ex =

Fig. 1. Dynamic partition of networked microgrids using switches. Load blocks are
interconnected by switches to form connected components (CCs), acting as independent
microgrids. Each CC contains uncertain loads and a set of DERs, with at least one
designated as a Grid-Forming DER (GF-DER) when it is CC is energized.

Ex,Y ‰ Ex,�. The network has a meshed structure, but we assume that it
can only be operated in radial configurations, as is typical for protection
coordination [7]. Within the network, there is a set G of controllable
generators (also referred to as DERs) g. The apparent power injected
into the grid by generator g on phase � is given by s�g .

There is also a set of uncontrollable loads D. The apparent power
demanded by load d on phase � is given by s�d = s0,�d +u�d , where s

0,�
d is

the nominal load power and u�d represents the load uncertainty defined
by the set

U =
<

u�d À RDù� Û
Û

Û

Û

s�d * s0,�d Õ u�d Õ s�d * s0,�d

≈� À �,≈d À D
=

. (1)

where s�d and s
�
d represent the upper and lower bounds of uncertain

load d on phase �.
To capture unbalanced, three-phase power flow typical of distribu-

tion grids, the formulation presented in this paper uses the LinDist3Flow
model to approximate the AC power flow equations [16,17]. Let v�i
represent the voltage magnitude on phase � at node i and let w�i =
(v�i )

2. Let z� ij = r� ij + jx� ij represent the self and mutual impedances
on the line connecting nodes i and j between phases � and  . The
power flowing on the line between nodes i and j on phase � is given
by s�ij = p�ij + jq

�
ij .

In the network, there is a set of switches E sw that can be opened
or closed to reconfigure it. A connected component (CC) is a group
of two or more connected nodes [18]. A microgrid is a CC containing
at least one load and at least one DER. Let B be the set of CCs that
exist when every switch in the network is open. The CCs within this
set will be referred to as blocks. When a switch between two blocks is
closed, the two blocks form one CC. Thus, the number of blocks in the
network remains static, while the number of CCs changes with switch
configurations, as shown in Fig. 1.

2.2. Network configuration constraints

Two general requirements govern network configuration: Firstly,
every energized CC must be a spanning tree, devoid of loops. Sec-
ondly, each energized CC must include at least one Grid-Forming DER
(GF-DER).

2.2.1. Radiality constraints
We enforce a radial topology in each CC using the directed multi-

commodity flow-based model of spanning tree constraints as described
in [18]. For brevity, we omit the formulation constraints here and refer
the reader to [18] for details. Henceforth, we will refer to this model
as the radiality constraints.
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2.2.2. Grid-forming DER constraints
To be energized, a CC must contain a voltage source capable of

serving load within it. Distribution network DERs are typically inverter-
based resources, which can be either grid-forming or grid-following. A
grid-forming DER (GF-DER) controls the AC-side voltage, acting as a
voltage source for the network, while a grid-following DER controls
the AC-side current and follows the phase angle of the existing grid
voltage [19]. In small networks, uncoordinated operation of two
or more GF-DERs can lead to independent control of voltage and
frequency, potentially leading to instability [20]. Control strategies
facilitating multiple GF-DERs in one microgrid may encounter com-
patibility challenges with existing older equipment [21]. Thus, the
following constraints ensure that each CC contains at least one GF-DER
and no more than kder GF-DER, where kder g 1 is a chosen design
parameter representing the maximum number of DERs per CC that can
simultaneously operate in grid-forming mode. The choice of kder will
depend on equipment capabilities and control strategies.

We utilize a coloring scheme to determine the presence of a GF-DER
within a CC based on the implementation in [5]. Each CC, along with
its connected switches, is colored according to the internal block con-
taining the GF-DER. We define binary variables ylij to denote whether
switch ij is colored by block l, zbll to denote whether block l is
energized, and zinvg to denote whether DER g is grid-forming. When
switch ij is colored by block l, ylij equals 1; otherwise, it equals 0. Note
that a single switch can be colored by up to kder blocks. When a block
is energized, zbl equals 1; otherwise, it equals 0. Similarly, when a DER
is grid-forming, zinv equals 1; otherwise, it equals 0.

Let Gl and E sw
l be the set of DERs and switches, respectively,

connected to block l. The relationship between the block states zbll and
the DER states zinvg is defined by

zbli * zblj  f (1 * zswij ), ≈ij À E sw (2)

zbll sg f s�g f zbll sg , ≈g À Gl ,≈l À B (3)

zbll *
…

ijÀEswl
zswij f …

iÀGl
zinvi f kderzbll , ≈l À B (4)

where (2) states that if switch ij is closed, the blocks it connects are
either both energized or both de-energized; (3) enforces generation
power limits for DERs within an energized block and ensures that DERs
within a de-energized block cannot produce power; and (4) states that,
if a block is energized and not connected to another block, then it must
contain at least one and no more than kder GF-DER.

The coloring scheme used to determine whether a GF-DER exists
within a CC is described by
…

lÀB
ylij Õ kderzswij , ≈ij À E sw (5)

ylij * (1 * zswij ) f …

iÀGl
zinvi f kder

⇠

ylij + (1 * zswij )
⇡

,

≈l À B,≈ij À E sw
(6)

yl®dc * (1 * zswdc ) * (1 * zswab ) f yl®ab f yl®dc + (1 * zswdc )
+(1 * zswab ), ≈ab ë dc À E sw

l ,≈l, l® À B (7)

ylij f …

iÀGl
zinvi , ≈l À B,≈ij À E sw (8)

zbll f …

iÀGl
zinvi +

…

ijÀEswl
…

lÀB
ylij , ≈l À B (9)

where constraint (5) restricts a closed switch to at most kder colors,
while an open switch has no color. Constraint (6) ensures that if switch
ij is closed and colored by block l, then it is in the same CC as block l,
which contains at least one GF-DER. Constraint (7) ensures that if two
switches are closed and connected to the same block, they must have
the same color. Constraint (8) enforces that a switch cannot have color
l unless block l contains at least one GF-DER. Constraint (9) states that
a block is de-energized unless it contains at least one GF-DER or it is
connected to at least one closed switch.

Let Evl be a set of virtual edges between block l and all other blocks
l®, oriented from l to l® (there are B* 1 of these edges for each l). Let
⇠lij represent a unit of flow of commodity l across the virtual edge from
i to j. For each ij À E sw

l , there is an arbitrary orientation (e.g., either
i = l or j = l). Then the following set of constraints can be used to
determine if there is a connection between a GF-DER and a CC.

* zswij (E sw
) f ⌘lij f zswij (E sw

), ≈ij À E sw
l , ≈l À B (10)

0 f ⇠lij f 1, ≈ij À Evl ,≈l À B (11)
…

ijÀEswl :i=l
⌘lij *

…

ijÀEswl :j=l
⌘lij +

…

ijÀEvl
⇠lij = B * 1,

≈l À B (12)

…

ijÀEswl :i=l®
⌘lij *

…

ijÀEswl :j=l®
⌘lij * ⇠

l
ll® = *1,

≈l® ë l,≈l À B (13)

ylij f 1 * ⇠lll® , ≈l® ë l, ij À E sw
l® ,≈l À B (14)

zbl, zsw, zinv, yl À {0, 1} (15)

Constraint (10) limits the flow magnitude ⌘lij across a closed switch
ij from block l by the number of switches in the network. Con-
straint (11) restricts flow across each virtual edge to at most one
unit. Constraints (12) and (13) collectively ensure flow balance among
blocks l and l®. Constraint (14) ensures ylij = 0 for every ij À E sw

l® if
there is flow on the virtual line between l and l®. Lastly (15) defines
binary variables zbl, zsw, zinv and yl.

2.3. Single-stage robust partitioning and operation problem

We now define the single-stage Robust Partitioning and Operation
Problem (RPOP) for distribution grids. Its optimal solution comprises
of network partitions and generator/DER set-points that minimize load
shed and operational costs while ensuring feasibility and robustness
against all realizations of uncertain loads. The formulation is as follows:

min
…

lÀB
↵l(1 * zbll ) +

…

gÀG

…

�À�g
c1,gs�g + c0,g (16a)

s.t. Radiality Constraints (Sec. 2.2.1), (2)–(15) (16b)

zbll vi
2 f wi,� f zbll vi

2, ≈� À �,
≈i À Nl ,≈l À B (16c)

wi = wj *Mp
ijpij *Mq

ijqij ,
≈i, j À N , ≈ij À L (16d)

s�ij  f s�ij , ≈� À �ij ,≈ij À L ‰ Ex (16e)

s�ij  f zswij s
�
ij , ≈� À �ij ,≈ij À E sw (16f)

w�i = n2ijw
�
j , ≈� À �ij ,≈ij À Ex,Y (16g)

s�ij = s�ji, ≈� À �ij ,≈ij À Ex,Y (16h)

3(wi,� +wi, ) = 2(nij )2wj,�,
≈(�, ) À {(a, b), (b, c), (c, a)}, ≈ij À Ex,� (16i)

2pij,� = *(pji,� + pji, ) + (qji, * qji,�)_
˘

3,
≈(�, ) À {(a, c), (b, a), (c, b)}, ≈ij À Ex,� (16j)

2qij,� = (pji,� * pji, )_
˘

3 * (qji, + qji,�),
≈(�, ) À {(a, c), (b, a), (c, b)}, ≈ij À Ex,� (16k)
…

ijÀEi
s�ij =

…

gÀi
s�g * zblk

…

dÀDi
s�d *

…

cÀ�i
y�c w

�
i ,

≈� À �i,≈i À l, ≈l À B (16l)

where E = L‰E sw‰Ex is the set of all lines, switches, and transformers.
The objective function minimizes the number of de-energized blocks
and the generation cost, where ↵l is a weighting parameter for block l,
indicating block priority, and c1,g , c0,g are parameters of the linear cost
function of generator g. The voltage limits at each bus are enforced
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by (16c) and the linearized voltage drop between bus j and downstream
bus i is computed in (16d), also known as the LinDist3Flow [13,16],
where the variables represented with bold typeface are 3-phase vectors,
and

Mp
ij =

b

f

f

f

d

*2raa rab *
˘

3xab rac +
˘

3xac
rba +

˘

3xba *2rbb rbc *
˘

3xbc
rca *

˘

3xca rcb +
˘

3xcb *2rcc

c

g

g

g

eij

,

Mq
ij =

b

f

f

f

d

*2xaa xab +
˘

3rab xac *
˘

3rac
xba *

˘

3rba *2xbb xbc +
˘

3rbc
xca +

˘

3rca xcb *
˘

3rcb *2xcc

c

g

g

g

eij

.

Constraints (16e) and (16f), define the power flow limits for each line,
transformer, and switch. Constraints (16g) and (16i) define the voltage
transformations across each wye-connected and delta-connected trans-
former, where nij is the tap ratio of transformer ij. Constraints (16h),
(16j) and (16k) define the relationship between the directions of
power flow on each wye-connected and delta-connected transformer.
Finally, (16l) is the linearized power balance equation.

3. A cutting-plane algorithm to solve the RPOP

Since it is intractable to solve the RPOP as given in Section 2.3 using
any off-the-shelf solvers, we propose a two-stage version of the RPOP,
which can be solved effectively to global optimality using an iterative
cutting-plane algorithm.

3.1. Two-stage robust partitioning and operation problem

The RPOP in (16) can be exactly reformulated as a master problem
and a set of subproblems [22]. The master, or first-stage, decision vari-
ables include controllable power injections, s�g ≈� À �, ≈g À G, switch
configurations zswij , ≈ij À E sw, generator operating states zinvg , ≈g À G as
either grid-forming or grid-following, block energized states zbll , ≈l À B,
and additional variables related to network configuration constraints.
Let x represent a vector of these variables s�g , zswij , zinvg , zbll including
every generator, switch, and block in the network. Let s<d be the worst-
case uncertain load realization. The master problem, which relaxes the
single-stage problem by ignoring the power flow constraints, is

min
…

lÀB
↵l(1 * zbll ) +

…

gÀG

…

�À�g
c1,gs�g + c0,g + ✓ (M)

s.t. Radiality Constraints (Sec. 2.2.1), (2)–(15) (17a)

V2(x<k, s
<
d,k) + ⇡

⇧
kA(x * x<k) f ✓,≈k = 1, 2,… (17b)

where a subscript k denotes the value at the kth iteration, x<k denotes
the optimal solution of (M) at the kth iteration, V2(x<k, s

<
d,k) is the

objective value of the kth subproblem, ⇡ is a vector of dual variables
corresponding to equations in (S1) containing x, and A is the coefficient
on x in those equations.

In the second stage of the problem (or the subproblem), adjustments
to the controllable power injections are permitted after the uncertainty
is revealed. These adjustments are represented by variables o+ and o*,
bounded by generator ramping capabilities and capacity constraints.
Additionally, squared bus voltages w�i ≈� À �i,≈i À N , and power
flows s�ij ≈� À �ij ,≈ij À E are determined by the power flow equations
in this stage. The subproblem formulation is

min !

H

…

iÀN
…

�À�i

⇠

h+,�i + h*,�i
⇡

I

+
…

gÀG

…

�À�g
c1,go�g (S1)

s.t. (16c)–(16k),
…

ijÀEi
s�ij + h

+,�
i * h*,�i =

…

gÀi

⇠

s�<g + o+,�g * o*,�g
⇡

*zbl<k
…

dÀDi
s�d *

…

cÀ�i
y�c w

�
i , ≈i À k, ≈k À B, (18a)

o+,�g f zbl<i s�g * s�<g , ≈� À �g ,≈g À i,≈i À B, (18b)

o*,�g f s�<g * zbl<i s�g , ≈� À �g , ≈g À i, ≈i À B, (18c)

o+,�g f o�g , ≈� À �g , ≈g À i, ≈i À B, (18d)

o*,�g f o�g , ≈� À �g , ≈g À i, ≈i À B, (18e)

o+,�g , o*,�g g 0, ≈� À �g , ≈g À i, ≈i À B, (18f)

h+,�i ,h*,�i ,g 0, ≈� À �i, ≈i À N . (18g)

where ! is a weighting parameter, and h+,�i ,h*,�i are slack variables in-
dicating a power balance violation on phase � at node i. If any of these
slack variables are non-zero at optimality, there are no feasible o+, o*
that satisfy the power flow equations for the candidate solution x<
and uncertain load realization sd . In such cases, a feasibility cut (17b)
is generated to ensure that x< cannot be chosen again in subsequent
iterations of the master problem. Constraints (18b)–(18f) set limits on
generator set-point modifications based on ramping and capacity limits.

The decomposition algorithm cannot be directly implemented due
to infinitely many subproblems arising from uncertain load realizations.
Instead, it is preferable to identify and solve only the subproblem with
most violated power balance constraints within the given uncertainty
set. This entails addressing a bilevel max*min problem of the form:

maxU min !

H

…

iÀN
…

�À�i

�

h+,�i + h*,�i
�

I

+
…

gÀG

…

�À�g
c1,go�g (S2)

s.t. (16c)–(16k), (18b)–(18g)

According to convex optimization theory, the optimal solution to the
max*min problem (S2) will manifest at one of the extreme points of
the uncertainty set since the inner minimization problem constitutes
a convex function of the uncertain load parameters [23]. Leveraging
this result, we can substitute U in (S2) with a finite-dimensional
uncertainty set

ùU =
<

u�d À RDù� Û
Û

Û

Û

u�d = ⇣+d (s
�
d ) + ⇣

*
d (s

�
d ) * s

0,�
d ,

⇣+d + ⇣*d = 1, ⇣+d , ⇣
*
d À {0, 1}, ≈� À �,≈d À D

=

.

To simplify the uncertainty modeling further, we assume that the load
variation for multi-phase loads at a bus is uni-directional, meaning
⇣+d , ⇣

*
d are indexed by loads but not by phases. Thus, the reduced finite-

dimensional (S2) problem can be replaced by solving the modified
subproblem for every possible combination of ⇣+d , ⇣

*
d , selecting the

solution that yields the largest objective, i.e.,

min !

H

…

iÀN
…

�À�i

⇠

h+,�i + h*,�i
⇡

I

+
…

gÀG

…

�À�g
c1,go�g (E)

s.t. (16c)–(16k), (18b)–(18g),
…

ijÀEi
s�ij + h

+,�
i * h*,�i =

…

gÀi

⇠

s�<g + o+,�g * o*,�g
⇡

*zbl<k
…

dÀDi
�

s0,�d + ⇣+d s
�
d * ⇣*d s

�
d
�

*
…

cÀ�i
y�c w

�
i ,

≈i À k, ≈k À B,
⇣+d + ⇣*d = zbl<i , ⇣+d , ⇣

*
d À {0, 1}, ≈d À Di, ≈i À B.

This approach still requires solving 2D number of quadratically-
constrained convex programs (E), and may not scale efficiently as the
number of uncertain loads increases.

3.2. A cutting-plane algorithm

We propose Algorithm 1 to solve the two-stage RPOP. In summary,
the master problem (M) is solved for the network configuration and
generator set-points (master solution, x<) in Step 4. Given this x<, (S2)
is solved for every scenario in ùU to get the worst-case load realization
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in Step 5. Finally, the subproblem (S1) is solved in Step 6 to check if the
chosen master solution is feasible for the worst-case load realization. If
they are feasible, the algorithm terminates with an optimal solution
to the RPOP. Otherwise, if there is non-zero slack h+,�,h*,�, then a
sub-gradient cut is added to (M) in Step 3 and the process is repeated.

Convergence guarantee: Algorithm 1 ensures convergence within
a finite number of iterations due to the finite number of load blocks in
any distribution grid. In the worst-case scenario, the sub-gradient cuts
will necessitate de-energizing every block in the network to meet the
termination criterion, as indicated in step 2 of Algorithm 1.

Algorithm 1: Cutting-plane algorithm for two-stage RPOP

1: Initialize: k } 1, h+,�i } ÿ, h*,�i } ÿ ≈i À N , ✏ > 0, V2(x<1 , s
<
d,1) }

0, and ⇡1 } 0
2: while

≥

iÀN ≥

�À�i

⇠

h+,�i + h*,�i
⇡

> ✏ do
3: Append V2(x<k, s

<
d,k) + ⇡

⇧
kA(x * x<k) f ✓ to (M)

4: Solve master problem (M) for x<k
5: Given x<k, find the worst-case uncertainty realization s<d,k by
solving (E) for every scenario in ÇU

6: Given x<k and s
<
d,k, solve Subproblem (S1) for h+,�,h*,�, o+,�, o*,�

7: Set k} k + 1
8: Output: x<k*1, o

+,�, o*,�

4. Numerical results

We now present results illustrating how robust partitioning and
operation of networked microgrids using Algorithm 1 can maximize
load delivery.

4.1. Implementation details

The proposed optimization formulations and Algorithm 1 were im-
plemented using JuMP v1.13.0 [24] in the Julia v1.9.2 programming
language. PowerModelsONM.jl [5] served as the foundational frame-
work for all implementations. All optimization tasks were executed
with Gurobi 10.0.3 [25] as an MILP solver on hardware comprising
a 1.3 GHz 4-Core Intel Core i7 processor with 16 GB memory.

4.2. Test case: IEEE 37-bus test system

We demonstrate the benefits of robust network partitioning against
load uncertainty using a modified version of the unbalanced, three-
phase, IEEE 37-bus test network [26], whose single-line diagram is
shown in Fig. 2. This modified network includes 10 controllable switches
and 7 controllable DERs. Among these switches, three are part of
redundant lines (dashed) with sufficient capacity to facilitate power
transfer between networked microgrids. These controllable switches
allow the network to be partitioned into a maximum of 7 blocks. We
consider the case where a disruptive event occurs upstream of the
network’s substation, necessitating isolation from the main grid. To
achieve this isolation, the switch between the substation and node 701
is opened.

The network comprises 30 loads, distributed non-uniformly across
nodes and three phases, resulting in significant phase imbalance [26].
The total nominal load in the network is 2542 kW. Among these loads,
six are subject to modeling uncertainty, distributed across the network,
while the remaining 24 loads are held fixed at their nominal values.
We consider using this reduced set of uncertain loads reasonable, owing
to the computational burden of solving the exponential number of (E)
problems for each iteration of the algorithm.

We assume no autonomous coordination among DERs, necessitating
that each energized CC in the network has precisely one GF-DER (kder =
1), with all other DERs in the CC designated as grid-following. The total

Fig. 2. Single-line diagram of the 37-bus network without loads shown.

generation capacity of the DERs in the network is 2180 kW, distributed
unevenly across 7 DERs. For each DER, the ramping limit og in ((18))
is set at 30% of its capacity sg . Block weighting parameters ↵l in (M)
are set to 10+0.01(Dl) ≈l À B, where Dl represents the set of loads in
block l. The weighting parameter ! in (E) is empirically set to 705 to
facilitate convergence.

4.3. RPOP’s performance for varying levels of load uncertainty

Results in this section (from Algorithm 1) address the 2-stage RPOP
at varying load uncertainty levels: 0% (nominal case), 10%, 15%, and
25%. Table 1 details generation and load shedding costs, the number
of energized blocks and closed switches, and Algorithm 1 run times.
We observe a monotonic increase in the total cost (generation + load
shedding in (M)) with higher load uncertainty levels. Moreover, in-
creased uncertainty correlates with reduced energized blocks, lowering
generation costs but increasing load shedding costs.

Table 1 shows increased run times for cases with load uncer-
tainty compared to the nominal case. This is mainly because obtaining
the worst-case uncertainty realization requires solving 2D subprob-
lems (E) for every iteration of Algorithm 1. Moreover, run times
increase for higher uncertainty levels requiring more iterations/cuts in
Algorithm 1 to approximate the second-stage cost function and ensure
robustness against larger uncertainty sets. The last column of Table 1
displays the run times at which Algorithm 1 reaches the best integer
feasible solution (IFS), i.e., the optimal integer solution for the 2-stage
RPOP, under each uncertainty level. Notably, the best IFS is achieved
within 81% of the total run time, on average.

Optimal network configurations and block states for various uncer-
tainty levels are shown in Fig. 3. In Fig. 3(a), a single inter-connected
microgrid is formed using two redundant lines to maximize load deliv-
ery. Notably, even without uncertainty, DERs are unable to satisfy every
load. At 10% load uncertainty and beyond, satisfying all loads within
the energized CC of the nominal case becomes infeasible. To maintain
robustness against the worst-case uncertain load, more blocks must be
de-energized, as shown in Figs. 3(b) and 3(c).

Without network partitioning (i.e., when the network is fixed to
Fig. 2), the optimal solution for all uncertainty levels is to de-energize
all loads. This is primarily due to the assumption that individual loads
cannot be shed in the distribution network, a practice followed by
most electric utilities. In contrast, partitioning the grid and forming net-
worked microgrids can significantly increase the amount of load served. For
instance, under nominal loading conditions, the optimal partitioning
solution of the 2-stage RPOP increases the served load to 1190 kW,
representing 53.2% of the total load.

4.4. RPOP’s performance against deterministic counterparts

We now analyze network partitioning without considering load
uncertainty. For this analysis, we fix the network configuration (switch
and load block states) to the optimal solution of the nominal load case
(as shown in Fig. 3(a), and set DER limits as ±30% of their capacity
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Table 1
Sensitivity of operating costs and algorithm run times to load uncertainty percentage.
Uncertain
load (%)

Gen cost
($)

Load shed
cost ($)

# of
energized
blocks

# of
closed
switches

Run time
(s)

Run time
for best
IFS (s)

0 15,399 21,100 5 4 100.8 45.67
10 12,295 31,140 4 3 1952.6 1708.2
15 12,299 31,140 4 3 2500.4 2359.8
25 9,317 41,160 3 2 4599.9 4572.5

Fig. 3. Optimal partitioning of the 37-bus network with varying levels of uncertain
loads. We assume the substation is out-of-service. Energized and de-energized CCs are
colored green and red, respectively. GF-DER and closed switches are highlighted in
blue.

around the established nominal set-points. This limit is assumed rea-
sonable for fast ramping DERs commonly encountered in distribution
grids. Subsequently, we assess operational feasibility for varying levels
of load uncertainty via out-of-sample feasibility tests. For each level of
uncertainty, we generate 10,000 random load samples from the uncer-
tainty set and, for each sample, compute the LinDist3Flow power flow
to ascertain feasibility. A sample is deemed feasible if all engineering
limits are met.

In summary, this analysis suggests that even with fast ramping DERs
to handle real-time load fluctuations, deterministic planning may not
always satisfy engineering limits, even at low levels of uncertainty.
At higher uncertainty levels, network partitioning and operation without
considering uncertainty can significantly reduce grid resilience and increase
vulnerability to disruptive extreme-weather events.

Table 2
Robust feasibility of two-stage RPOP solutions against non-convex three-phase AC
power flow at varying levels of uncertainty.
Load Uncertainty (%) AC feasible load samples (%)

10 100
15 98.23
25 99.69

4.5. Robust feasibility for non-convex AC power flow

We empirically assess the robustness of the two-stage RPOP’s solu-
tions, constrained by linearized LinDist3Flow, against true AC Power
Flow (ACPF) constraints, which are non-convex, in three-phase un-
balanced grids. Algorithm 1 does not straightforwardly extend for
subproblems with non-convex constraints. Instead, for each uncertainty
level, we obtain optimal network configurations and DER set-points
from Algorithm 1 based on the LinDist3Flow approximation. We fix
this network configuration (by fixing all binaries) and set DER capacity
limits to ±30% around the obtained DER set-points. Then, for each
uncertainty level, we generate 10,000 random load samples from un-
certainty set U , as the worst-case load scenario in the ACPF setting
may not occur at an extreme point, i.e., in set ùU , as discussed in 3.1.
Next, for each level of load uncertainty, we compute the percentage
of random load samples for which the ACPF (polar) formulation is
feasible. Table 2 illustrates that very few load samples render the
ACPF formulation infeasible, even at higher uncertainty levels. To
summarize, for the IEEE 37-bus case, the LinDist3Flow formulation in
the two-stage RPOP provides a sufficiently robust approximation, being
almost always feasible under the non-convex ACPF constraints.

5. Conclusions

In this paper, we introduced a mixed-integer robust partitioning
and operation problem (RPOP) to optimize network configuration and
generator set-points, minimizing generation costs and undelivered un-
certain load. To make this problem tractable, we proposed a novel
two-stage RPOP reformulation. The first stage optimizes network par-
titioning decisions using a mixed-integer program to maximize load
delivery, while the second stage verifies robustness and feasibility
of linearized three-phase unbalanced power flow. Additionally, we
presented a cutting-plane algorithm for efficient solving of this two-
stage RPOP. Illustrating the algorithm’s efficacy during a disruptive
event, we conducted a case study using a modified IEEE 37-bus test
system. Results demonstrated that partitioning a distribution grid into
networked microgrids significantly reduces load shedding. Further-
more, the optimal planning decisions under nominal loading conditions
were found to become infeasible to power flow under worst-case load
uncertainty, even at uncertainty levels as low as 10%. This underscores
the necessity of a robust formulation. Finally, despite relying on a
LinDist3Flow approximation for robustness, the method’s planning and
operational solutions remained adequately accurate in the non-convex
AC framework.

In future work, we aim to scale these approaches for larger and
realistic distribution grids, utilizing load-clustering-based heuristics to
expedite solving the max*min problems. Additionally, we will explore
less conservative uncertainty sets and integrate battery storage devices
and renewable sources.
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