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Abstract— Structural Health Monitoring (SHM) uses wireless
sensor network (WSN) to monitor a civil construction’s
conditions remotely and constantly for its sustainable usage.
Security in WSN for SHM is essential to safeguard critical
transportation infrastructure such as bridges. While WSN
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mechanical, and electrical engineers identify and characterize
potential damage, corrosion, and other structural responses to
forcing events. WSN, connecting autonomous data acquisition
nodes which each encompasses sensing elements,
multiprocessor with memory, and wireless communication
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offers cost-effective solutions for Bridge SHM, its wireless
nature expands attack surfaces, making security a significant
concern. Despite progress in addressing security issues in WSN
for Bridge SHM, challenges persist in device authentication due
to the unique placement of sensor nodes and their resource
constraints, particularly in energy conservation requirements to
extend the system’s lifetime. To overcome these limitations, this
paper proposes an innovative authentication scheme with deep
learning at the physical layer. Our approach steers away from
conventional device authentication methods: no challenge-
response protocol with heavy communication overhead and no
cryptography carrying intensive computation. Instead, we use
radio frequency (RF) fingerprinting to authenticate sensor
nodes. Deep learning is chosen for its ability to discover patterns
in large datasets without manual feature engineering. We model
our scheme on IEEE 802.11ah, Wi-Fi HaLow of long-range
communication and low-power consumption for machine-to-
machine (M2M) applications. Simulations and experiments
using software defined radio (SDR) demonstrate the
effectiveness of the proposed scheme. By integrating security
into Cyber-Physical System/the Internet-of-Things (CPS/IoT)
design of WSN for Bridge SHM, our work contributes to critical
infrastructure protection.

components, creates a cyber space in the computer science and
engineering realm. Sensors/transducers link the physical world
and the cyber space by converting variations in a physical
quantity to data streams in an electrical signal. In the context of
Bridge SHM, sensors include strain gauges, load cells,
accelerometers, and inclinometers. Therefore, WSN-based
Bridge SHM is a type of cyber-physical system (CPS) [2].

Over the past two decades, significant progress has been
made in the development of WSN for Bridge SHM. Wisden, an
early work in 2004, demonstrated a transition from wired
sensing to wireless by designing a WSN prototype software
system that reliably delivered time-synchronized structural-
response data from multiple locations to a central server [3]. The
deployment of a WSN-based SHM system on the Golden Gate
Bridge (GGB) in 2007 marked a significant milestone [4].
Further advancements focused on machine learning techniques
for bridge rating and in-network processing to optimize energy
consumption and extend the system's lifetime [5].

Despite these achievements, security concerns within WSN
for Bridge SHM have been a longstanding issue. WSN presents
a double-edged sword, offering cost-effective solutions for
SHM while exposing vulnerabilities to potential cyber-attacks.
The massive dense deployment of sensor nodes poses challenges
in device authentication, and the resource constraints of sensor
nodes render conventional security methods ineffective [6].
Although some remedies leverage WSN features such as
random, grid, or cluster configurations [7], the specific
requirements of Bridge SHM, which necessitate node placement
at critical locations for accurate damage detection, demand
innovative security mechanisms. Presently, research in WSN for
SHM predominantly focuses on performance metrics such as
sensing coverage, communication range, energy consumption,
reliability, and lifetime, neglecting the crucial aspect of security.
Drawing lessons from the early days of the Internet, it is
imperative to incorporate security into the design of WSN for
Bridge SHM in particular and CPS in general, rather than relying
on post-deployment patching.

Keywords—wireless sensor network (WSN), transceiver design,
bridge structural health monitoring (SHM), deep learning for
physical layer security, fingerprinting, machine learning for
resource management

I. INTRODUCTION

Ensuring the security of Wireless Sensor Network (WSN)
used for Bridge Structural Health Monitoring (SHM) has
emerged due to economic and safety consequences associated
with protecting the nation's critical infrastructure [1]. Bridge
SHM, a process that determines and tracks the structural
integrity of bridges, observes the physical world where civil,
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This paper addresses the aforementioned security
challenges by proposing an innovative authentication scheme
that employs deep learning at the physical layer focusing on
generating datasets for such a scheme. To save communication

overhead, our scheme involves no challenge-response protocol 4

during authentication process. Furthermore, we leverage radio
frequency (RF) fingerprinting, instead of computationally
intensive cryptography such as digital signature to verify the
source of a message [8]. We choose deep learning in
authenticating sensor nodes to a data logger, for the need of
agility in the unpredictable arms race of WSN security. Deep
learning can discover patterns in large datasets without the need
of manual feature engineering [7]. WSN for Bridge SHM
readily collects or arguments massive datasets. We
demonstrate our approach’s security effectiveness on IEEE
802.11ah (aka Wi-Fi HaLow), a wireless networking standard
for machine-to-machine (M2M) and Internet-of-Things (IoT)
applications [9], the core of CPS. Results from simulations in
MATLAB and experiments with Software Defined Radio
(SDR) demonstrate the effectiveness of our approach. The
main contributions of our work are as follows:

e Devise an innovative physical-layer authentication
scheme, leveraged by deep learning, suitable to ensure
source integrity in WSN for Bridge SHM.

e Address the limitations of existing security mechanisms
in critical infrastructure protection to ensure the safety
and performance of CPS, particularly of Bridge SHM.

e Demonstrate feature extraction of RF fingerprinting for
building deep learning datasets used for physical layer
authentication.

e Improve security in CPS designs, applicable to protect
other critical infrastructures with similar characteristics
such as tunnels in transportation, powerlines in energy,
and borders in homeland.

Our scheme provides a novel approach of common
applications in deep learning by providing a systematic method
of collecting datasets for physical layer authentication of sensor
nodes. We also showcase the feasibility of this approach by

Cyber: Governing Equation [10]
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providing a use case example, training a CNN with the
generated dataset.

II. 'WSN SECURITY REQUIREMENTS AND ATTACK MODEL

System Architecture

We adopt CPS design principles in developing the system
architecture of WSN for Bridge SHM. The trend of deploying
WSN for SHM towards CPS design is anticipated to alleviate
WSN resource constraints and effectively meet the specific
requirements of SHM applications, by multidisciplinary
collaborations among engineering and computing. However,
comprehensive CPS design remains an open issue [2].
Integrating security in CPS design is challenging.

Fig. 1 illustrates our CPS architecture of WSN for Bridge
SHM. A physical world contains a bridge with its substructures
of physical elements. Civil, mechanical, and electrical
engineers examine the physical aspects of the bridge such as its
response to environmental forces for crack event detection. A
cyber space models the bridge dynamics, such as the governing
equation for a beam’s vertical dynamic displacement u(x,2), i.e.
vibration, of a single-degree-of-freedom beam on a truss bridge
with span L, mass m, shape function yf.), flexural rigidity EI,
and time-variant load P(.) [10].

Sensors in WSN, such as the load cells made by PASCO,
measure tension and compression forces in a bridge. Sensors
provide the perspective of a physical world to a cyber space for
detection, replacing costly and risky manual inspection. The
amount of raw data collected is small, in hundreds to a few
thousand bytes. For Bridge SHM, a part of a bridge, called
substructure, can be monitored independently without the need
to examine the whole structure. Thus, a group of sensor nodes
(each with sensing, processing/storage, and communication
components), called subnetwork, is placed on a substructure.
Sensor nodes are battery-operated to save cabling hassles as in
wired sensor network and to save investment cost as in energy-
harvesting devices. Most wireless sensor platforms are
supplied with limited power. For example, Crossbow MICAz
has two AA batteries, lasting several weeks while Intel Imote2
has two AAA batteries, up to a few months. Resources are also
limited in sensor nodes. MICAz has ATmegal28L (8-bit,
16MHz) CPU, 128KB ROM for code and 4KB RAM for data
[2].

Adopting CPS design principles, engineering and
computing experts co-design the SHM system to optimize both
WSN performance (network lifetime) and application
performance (damage detection) [11]. Each aspect involves
different but intertwined issues: cyber builds a computation
model from data collected and information exchanged by

What You

token fingerprint
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+ ICertiﬁcateI & IProtocolI

Fig. 2 Device Authentication
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computer scientists/engineers while physical dynamics of a
bridge are studied by civil, mechanical, and electrical
engineers. More particularly in Bridge SHM, our previous
work demonstrated the achievement by engineering and
computing collaboration in time domain responses for Bridge
SHM, which otherwise had resulted in suboptimal solutions if
cyber and physical aspects are processed separately [12].

a) B. WSN Security Requirements for Bridge SHM

Security services aim at three general goals: Confidentiality,
Integrity, and Availability, abbreviated as C.I.4. Confidentiality
prevents data from unauthorized access. Integrity is divided into
two categories: one is Data Integrity that protects data in
transmission or at storage from unauthorized changes or
fabrication; the other is Device Integrity, also known as Source
Integrity, to assure that a device or system is not compromised or
tampered. Availability ensures that legitimate users can access
resources (system, data, and service) without disruption.

CPS/IoT exposes layers of attack surfaces [7]:

e Perception Layer: where sensors collect data including the
medium that they use to communicate. Physical tampering
and resource depletion

e Network Layer: where transceivers (Tx/Rx) deliver data to
access points (AP) for datalogger/server

o Application Layer: where a server processes data based on
some computation model to make intelligent decisions[7].

Device Integrity defends the frontline of WSN for Bridge
SHM. As shown in Fig. 2, device integrity is classified into three
levels by the answering the questions of:

2) What You Know? For example, password.
3) What You Have? For example, token or smart card.
4) What You Are? For example, fingerprint.

These schemes are enhanced by cryptography-based
certificates and challenge-response protocols.

C. Attack Model

In the context of WSN for Bridge SHM, one-way
authentication by sensor nodes to the datalogger is sufficient.
Fig. 3 illustrates the attack scenario where “Alice” is one of the
sensor nodes in the network collecting data. The datalogger
“Bob” will authenticate Alice as a device in the network before

Verifier: Bob
Datalogger

Claimer: Alice
\ Sensor Node

“l am Alice.”

Impersonator: Darth

Fig. 3 Attack Model against Device Integrity

retrieving its data through the wireless channel.

The impersonator “Darth” aims to gain the trust of Bob by
authenticating itself under the guise of Alice. If successful,
Darth is able to transmit fabricated data freely to Bob and Bob
will present it as collected data from a trusted node.

III. VULENRABILITY ANALYSIS OF IEEE 802.11AH

A. IEEE 802.11ah for Bridge SHM

With low-power consumption and long-range
coverage, IEEE 802.11ah is an ideal wireless
communication standard suitable to WSN for Bridge SHM
[13]. Sub 1 GHz operating frequency reduces attenuation
when propagating through surfaces. This addresses the
concerns involving the deployment of our WSN for Bridge
SHM where sensor nodes are required to communicate
through dense material. IEEE 802.11ah Medium Access
Control (MAC) allows for shared communication to more
Access Points (APs) in the sensor network. 802.11ah
stations are not required to be always on by eliminating
Traffic Information Message (TIM) in the data frame. Non-
TIM stations reduce power consumption in M2M and IoT
applications [9].

The data frame format remains the same across the suite of
IEEE 802.11 standards which contain the following fields:

o Frame Body field stores the payload received from a
higher layer. It can vary in length but has a maximum
size of 2312 octets.

e Frame Check Sequence (FCS) field is responsible for
error detection in the received frame.

e Frame Control Field includes bits used to indicate the
version of the IEEE 802.11 MAC and the Protected
Frame bit.

e Duration field allows a station (STA) to determine the
remaining duration of the frame exchange between the
station and the AP.

e The Sequence Control field assists the STA in
identifying duplicate frames and helps in reassembling
fragmented frames.

e The MAC header of a data frame includes four separate
address fields, although not all of them contain relevant
addresses in every case. These address fields identify
the original source address (SA), final destination

MAC Header
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Fig. 4 IEEE 802.11ah Frame Format
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Fig. 3 CNN-Rx Architecture [8]

address (DA), receiver address (RA), and either the
transmitter address (TA) or the BSS identifier (BSSID),
depending on the function of the frame.

B. Threats to IEEE 802.11ah

IEEE 802.11ah shares the same frame format and protocols as
other standards in IEEE 802.11 making it susceptible to some of
the same attack threats. Common attacks to device integrity in
CPS/IoT and M2M applications include 1) spoofing and 2) replay
attacks[14].

1) Spoofing: Attackers attempt to replicate a trusted device
in the network to steal or manipulate data after gaining accesss.

2) Replay Attack: Data is intercepted during transmission by
an attacker and used to gain access by resending the captured
data to trick the recipient to accept the transmission as legitimate.

Attacks are carried out by exploiting vulnerabilities in the
component’s software/hardware in the network. The National
Vulnerabilities Database (NVD) labels and makes known these
Critical Vulnerabilities and Exposures (CVEs) identified by
trusted authorities. Mapping CVEs using language models
identify present threats in a network that leave openings for attack
[6]. Link predictions and text-to-text models can associate known
vulnerabilities to infer potential risks in software based on test
generation. Good security management for WSNs must include
awareness of known vulnerabilities and exposures paired with a
plan to identify their presence and eliminated attackers ability to
exploit them.

IV. DEFEND WITH DEEP LEARNING

A. Deep Learning in CPS/IoT Security

Deep Learning (DL) offers several benefits for remote
WLANS. Deep learning can take large data sets and extract
complex patterns through neural networks. The ability to
automate the deep learning process makes it a better choice in
our system compared to Machine Learning (ML) which
requires more processing power and feature engineering [15].
This research focuses on dataset generation for two types of
deep neural networks 1) Convolutional Neural Network, 2)
Reinforcement Learning. The training is to be performed
offline while the testing is online.

1) Convolutional Neural Network (CNN): Reduces layer
connections in neural network decresing computation
requirements while also maintaining high performance. Fig.
5 is a successful example of Rx uses CNN model to classify
legitimate Tx’s and abnormal ones [8].

2) Reinforcement Learning (RL): Produces output
solution through trial and error with success in spoofing
attack protection.

B. Deep Learning to Device Integrate in WSN for SHM

Deep learning, data-driven by RF fingerprinting, can be a
powerful security tool for device authentication of sensor
nodes in the WSN for Bridge SHM [8]. RF fingerprints can be
used to characterize wireless transmissions in a WSN where a
deep learning network can identify malicious channels.

Physical characteristics of the sensor node, such as Rx and
Tx integrated circuit, contain process imperfections from
manufacturing. These imperfections contribute to the RF
fingerprint of devices giving them a Physical Unclonable
Function (PUF) which cannot be falsely mapped. By building
a dataset of extracted Rx/Tx specific features, we can label
known devices and authenticate them through the DL
network.

Claimer: Alice
Sensor Node
"I am Alice"

RF Fingerprint: AB(

Verifier: Bob Above Threshold? v

Datalogger <

Above Threshold? x \

Impersonator: Darth

Fig 6. Attack Model with DL Solution Implemented

The dataset is compiled through feature extraction for
legitimate sensor node’s unique RF signatures. This is
established through features such as signal strength, phase
noise, frequency offset, and modulation characteristics
depending on the node and WSN. A supervised CNN model
is trained and labeled with legitimate and malicious
transmitters. This scheme defends the WSN from the attack
model in Fig. 3 adding a layer of authentication for the
datalogger that an attacker cannot impersonate.
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Fig. Depicts the attack model with DL implemented at the
physical layer of the datalogger. Darth attempts to pose as
Alice but is unsuccessful after the DL model identifies it does
not meet the threshold set by the RF fingerprint.

V. EVAULATION

The testing setup depicted in Fig. 7 shows the WLAN using
four Raspberry Pi ™ Model 4 units with the AHP17292S HAT
form factor developed by ALFA Network Inc. This attachment
allows 802.11ah communication between the Raspberry Pi
boards where one is setup as an AP and the other three are
STAs (A, B & C). Signals are captured on the ADALM-
PLUTO software defined radio module and can be processed
using MATLAB signal processing software as shown in Fig.
8. Each device in the WSN

STA (A)

«© AP

802.11ah

STA (B)

STA (C)

Fig. 7 IEEE 802.11ah with-Deep Learning Testing Setup

that employs our scheme must be captured and input into the
dataset so the AP can recognize it. The captured signal
undergoes feature extraction using techniques such as the
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Fig. 8 Captured Signal from STA A
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Fig. 9 Spectral Analysis of Captured Signal from STA A

spectral density in Fig. 9 performed on STA A. Analyzing the
features of the signal allow us to build a deep learning dataset
that can differentiate between signals originating from trusted
devices or masquerading nodes. By training the AP before the
WSN is deployed we can authenticate nodes at the PHY layer
and create a framework deep learning dataset generation that
can be adapted to many WSN applications beyond Bridge
SHM.

The effectiveness of this scheme is tested in MATLAB by
training AlexNet, a popular CNN in image recognition, with
our dataset. For compatibility with AlexNet we must pre-
process our data. AlexNet requires 227x227 pixel RGB images
as input. To accomplish this, we convert our spectral density
from Fig. 9 into a spectrogram and resize it to the appropriate
227x227 RGB image. Each spectrogram is labeled by the
source device that generated it. After loading AlexNet into
MATLAB, we train it using our dataset generated by our SDR
setup. The dataset is split between 60% training, 20% testing
and 20% validation. The results of the training can be seen in

Confusion Matrix (%)

True Class
~N

Predicted Class

Fig. 10 Confusion Matrix, STAs A, B and C
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the confusion matrix in Fig. /0 where classes 1,2 and 3
represent STAs A, B and C respectively. AlexNet was 78.33%
accurate in classifying each sensor node and 71.43%, 68.18%,
100% precise in its classifications for STAs A, B and C
respectively.

VI. CONCLUSION AND FUTURE WORK

WSN has become crucial for Bridge SHM to ensure safe
operation of the nation’s critical infrastructure. However, WSN
security remains a significant concern due to potential economic
and safety consequences. Although progress has been made to
address the security issues in WSN for Bridge SHM, the peculiar
placement of sensor nodes and their resource constraints,
especially in the need to conserve energy consumption, pose
challenges in device authentication.

To overcome these limitations, we propose an innovative
authentication scheme of sensor nodes that utilizes deep learning
at the physical layer and provides a framework for generating
datasets for this scheme. Our approach saves communication
overhead by skipping challenge-response protocol. Utilizing RF
fingerprinting, instead of cryptography-based authentication
methods, reduces computation cost. Deep learning is chosen for
its ability to discover patterns in large datasets without manual
feature engineering. The effectiveness of our scheme is
demonstrated on IEEE 802.11ah through simulations in
MATLAB and experiments with Software Defined Radio (SDR)
By incorporating security into the design of WSN for Bridge
SHM, our work contributes to the protection of critical
transportation infrastructure.

Future work includes systematic testing of our proposed
scheme for device authentication. Using generative adversarial
network (GAN), we examine the limit of our scheme to
discriminate legitimate devices from spoofed instances that
another deep learning model generates. We will extend our
physical-layer authentication scheme to two-way authentication
between sensor nodes and data loggers as well as prevention of
sybil attacks among many threats to WSN for Bridge SHM.
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