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ABSTRACT. We associate to a sufficiently generic oriented matroid program and
choice of linear system of parameters a finite dimensional algebra, whose repre-
sentation theory is analogous to blocks of Bernstein–Gelfand–Gelfand categoryO.
When the data above comes from a generic linear program for a hyperplane ar-
rangement, we recover the algebra defined by Braden–Licata–Proudfoot–Webster.

Applying our construction to nonlinear oriented matroid programs provides a
large new class of algebras. For Euclidean oriented matroid programs, the result-
ing algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-
Euclidean case, we obtain algebras that are not quasi-hereditary and not known to
be Koszul, but still have a natural class of standard modules and satisfy numerical
analogues of quasi-heredity and Koszulity on the level of graded Grothendieck
groups.

1. INTRODUCTION

In [BLPW10, BLPW12], Braden–Licata–Proudfoot–Webster introduced a class
of finite-dimensional algebras related to the combinatorics of hyperplane arrange-
ments, whose representation theory is closely analogous to the integral blocks of
Bernstein–Gelfand–Gelfand (BGG) category O. Recall that BGG category O plays
an important role in Lie theory and can be described using the geometry of the
Springer resolution. Braden–Licata–Proudfoot–Webster discovered their algebras
by analogy, motivated by the geometry of toric hyperkähler (or hypertoric) vari-
eties, but the algebras can be defined from basic linear algebra data. The input for
their definition was the data of a polarized arrangement V = (V, η, ξ), where V ⊂ Rn
is a d-dimensional linear subspace, η ∈ Rn/V is a (generic) vector and ξ ∈ V ∗

is a (generic) covector. Braden–Licata–Proudfoot–Webster [BLPW16] and others
(e.g., [Los17]) have since introduced and studied other such geometric categories
O associated to conical symplectic resolutions.

In this paper we extend the definition of Braden–Licata–Proudfoot–Webster in
a different, more combinatorial direction: from the setting of polarized arrange-
ments to the combinatorics of oriented matroids. More precisely, the role of V ⊂
Rn is replaced by a rank d orientable matroid M with parameter space U and the
role of η and ξ by an oriented matroid program (M̃, g, f) that extends and lifts
an orientation of M . One motivation for our work was a desire to categorify and
better understand the matroidal Schur algebras of [BM17, BM19].

To explain our results and motivation, we first recall in more detail the results
of Braden–Licata–Proudfoot–Webster.

1.1. Hypertoric categoryO. In [BLPW10], Braden–Licata–Proudfoot–Webster de-
fined a quadratic algebra A(V). One motivation was a description of a regu-
lar block of category O as arising from a quantization of the structure sheaf of
T ∗(G/B), the cotangent bundle of a flag variety. When V is rational (meaning
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that V, η, and ξ are defined over Q), one may associate to V a hyperkähler variety
M1, sometimes called a hypertoric variety, which behaves in various ways like the
cotangent bundle of a flag variety. Braden–Licata–Proudfoot–Webster show that
in this case the category of representations of A(V) is equivalent to that obtained
by applying the same sort of quantization construction to the hypertoric variety
for V . Moreover they show:

Theorem 1.1 (Braden–Licata–Proudfoot–Webster). Let V = (V, η, ξ) be a polarized
arrangement where η and ξ are generic.2

(1) The algebraA(V) is quadratic with quadratic dualA(V∨), where V∨ = (V ⊥,−ξ,−η)
denotes the Gale dual polarized arrangement.

(2) The algebra A(V) is quasi-hereditary.
(3) The algebra A(V) is Koszul (and thus by the first result, Koszul dual to A(V∨)).
(4) Up to derived Morita equivalence, the algebraA(V) depends only on V ⊂ Rn and

not on η or ξ.

To give a feeling for the representation theory of these algebras, we will de-
scribe a labelling of the simple modules for A(V). It is convenient to consider the
following hyperplane arrangement defined by V = (V, η, ξ). Note that η ∈ Rn/V
can be viewed as the affine subspace η + V ⊂ Rn, and we consider the arrange-
ment of hyperplanes in η + V cut out by the coordinate hyperplanes of Rn. The
genericity condition on η is the requirement that the resulting arrangement be sim-
ple, meaning that the nonempty intersection ofm hyperplanes has codimensionm.
The covector ξ ∈ V ∗ lifts to an affine linear functional on η+V . The genericity con-
dition on ξ is the requirement that ξ be nonconstant on any positive dimensional
intersection of V and a coordinate subspace.

Example 1.2. The polarized arrangement from Example 2.2 of [BLPW10] consists
of a two-dimensional subspace V ⊂ R4 together with some chosen η and ξ. These
choices produce the hyperplane arrangement depicted in Figure 1(a).

The set P of chambers of the hyperplane arrangement in η+V that are bounded
with respect to ξ parametrize the simple modules {Lα}α∈P for A(V). In Exam-
ple 1.2, we can label these chambers α, β, γ, δ, ε as in Figure 1(a).

For each bounded chamber α ∈ P , let β � α if β is contained in the cone gen-
erated by α originating from its maximal vertex. The transitive closure of this
relation gives the highest weight partial order on simple objects for the quasi-
hereditary structure in the theorem. In the example above, this produces the poset
described by the following Hasse diagram:

α

β

γ δ

ε

1More precisely, the subspace V and vector η alone determine the variety M. The covector ξ can be
used to endow M with a C∗-action.

2See the following paragraph for the meaning of the word generic used here.
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FIGURE 1. Hyperplane arrangement and corresponding pseudo-
sphere arrangement.

More precisely, Braden–Licata–Proudfoot–Webster define standard modules Vα
for every α ∈ P and prove (see the proof of [BLPW10, Theorem 5.23]):

Theorem 1.3 (Braden–Licata–Proudfoot–Webster). For any α ∈ P the indecompos-
able projective cover Pα of Lα has a filtration with successive subquotients isomorphic to
Vβ for each β � α and each such standard module appears exactly once.

1.2. Matroidal setting. Fix a field k and a finite index set E. In this paper we will
begin with an orientable matroid M of rank d and a choice of parameter space
U ⊂ kE for M . By parameter space, we mean a subspace U ⊂ kE such that the
composition U ↪→ kE � Span{ti | i ∈ b} is an isomorphism for any basis b of M .

Example 1.4. Note that the subspace V ⊂ Rn in a polarized arrangement of
Braden–Licata–Proudfoot–Webster provides such a pair for k = R: let M be the
matroid on the index set E = {1, . . . , n} represented by the coordinate functions
of Rn restricted to V , viewed as vectors x1, . . . , xn ∈ V ∗, and let U = V .

LetM be an orientation of M , meaning an oriented matroidM such thatM =
M , where M denotes the underlying unoriented matroid. (In the polarized ar-
rangement example, there is a natural choice forM, asM is represented by vectors
in a real vector space.)

The remaining input data we need is the structure of a oriented matroid pro-
gram P = (M̃, g, f), meaning M̃ is an oriented matroid on the underlying set
E t {g, f} such that g is not a loop, f is not a coloop, and (M̃\f)/g =M. Like we
did for η and ξ, we ask that g and f be sufficiently generic (see Definiton 2.2).

The matroidM is determined by P, so we can and will omit it from our notation
and consider pairs (P, U) where P = (M̃, g, f) is a sufficiently generic oriented
matroid program andU ⊂ kE is a parameter space for the underlying (unoriented)
matroid M = (M̃\f)/g.
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FIGURE 2. Ringel example

Example 1.5. Polarized arrangements give a natural class of examples. For a d-
dimensional polarized arrangement (V, η, ξ), consider the (d+1)-dimensional sub-
space Ṽ of Rn × Rg × Rf spanned by the graph of ξ : V → Rf and the vector
(η, 1, 0) ∈ Rn × Rg × Rf , where η is any representative of the coset η ∈ Rn/V . Let
M̃ be the oriented matroid on the set {1, . . . , n} t {g, f} defined by the coordinate
functions x1, . . . , xn, xg, xf ∈ Ṽ ∗.

Not every oriented matroid program P comes from a polarized arrangement,
but by the Topological Realization Theorem of Folkman–Lawrence, every loop-
free program P can be expressed as a pseudosphere arrangement - a topological rep-
resentation generalizing the notion of a hyperplane arrangement.

Example 1.6. Figure 1(b) shows the feasible region of the pseudosphere arrange-
ment corresponding to the polarized arrangement from Example 1.2.

Example 1.7. Figure 2 depicts the feasible part of a pseudosphere arrangement,
where |E| = 8 and M is the uniform rank 2 matroid on 8 points, that defines a
non-realizable oriented matroid program P = (M̃, g, f). Here the oriented sub-
matroid M̃\f , a rank 3 oriented matroid on 9 points, is the non-stretchable simple
arrangement of 9 pseudolines defined by Ringel [Rin55] as a perturbation the Pap-
pus matroid.

Remark 1.8. Every oriented matroid program P where d = 2 and |E| ≤ 7 is realiz-
able, so the program described in Example 1.7 is a minimal non-realizable exam-
ple.

For a pair (P = (M̃, g, f), U) as above we define the dual pair (P∨, U⊥), where
P∨ = (M̃∨, f, g) is the dual oriented matroid program (here the roles of f and g
are swapped), and U⊥ ⊂ kE is the orthogonal complement.

Remark 1.9. It is an exercise in linear algebra to check that when the oriented ma-
troid program P = (M̃, g, f) comes from a polarized arrangement V = (V, η, ξ)
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as in Example 1.5, this duality agrees with the standard Gale duality of linear
programming. In other words, the dual program P∨ = (M̃∨, f, g) is the ori-
ented matroid program associated to the Gale dual polarized arrangement V∨ =
(V ⊥,−ξ,−η).

1.3. Main results. As above, let the pair (P, U) consist of a sufficiently generic
oriented matroid program P = (M̃, g, f) together with a parameter space U ⊂ kE

for the (unoriented) matroid M = (M̃\f)/g. Modifying the definition of Braden–
Licata–Proudfoot–Webster to this setting, we introduce a finite-dimensional alge-
bra A(P, U) over k. In particular, in the realizable case of Example 1.4 and 1.5, one
recovers the original algebra A(P, V ) = A(V).

In the more general setting, we show that part (1) of Theorem 1.1 extends with-
out modification:

Theorem 1.10. Let (P, U) be a pair as above. The algebra A(P, U) is quadratic with
quadratic dual A(P∨, U⊥) corresponding to the dual pair.

Similarly to the realizable case, the simple modules for A(P, U) are labelled by
the set P of bounded, feasible topes. For example, in Example 1.7 the bounded,
feasible topes correspond to shaded regions in Figure 2. Again one can define a
cone relation on P and standard modules Vα for each α ∈ P .

However, unlike in the realizable case, the transitive closure of the cone relation
need not define a poset. An oriented matroid program P = (M̃, g, f) is said to be
Euclidean if the transitive closure of the cone relation on bounded, feasible topes of
P is a poset.

Using this condition, we obtain the following analogue of Theorems 1.1(2),
1.1(3) and 1.3.

Theorem 1.11. For a pair (P, U) as above with the additional assumption that the pro-
gram P is Euclidean, the algebra A(P, U) is quasi-hereditary and Koszul.

Moreover, for any α ∈ P the indecomposable projective cover Pα of Lα has a filtration
with successive subquotients isomorphic to Vβ for each β � α and each such standard
module appears exactly once.

Remark 1.12. While oriented matroid programs are not always Euclidean, every
oriented matroid program of rank at most 3 (equivalently d at most 2) is Euclidean.
Thus there are plenty of Euclidean, non-realizable programs, such as Example 1.7.

We do not know whether or not every non-realizable oriented matroidM ad-
mits a Euclidean program P = (M̃, g, f) such that M̃/g\f =M. For connections
to a well-known conjecture of Las Vergnas, see the discussion surrounding Propo-
sition 2.27.

We observe in Example 7.10 that in the non-Euclidean case,A(P, U) need not be
quasi-hereditary. In particular, we give an example of a non-Euclidean program P
and projective A(P, U)-module which does not admit a standard filtration.

However, in Theorem 7.9 we do prove that for any oriented matroid program
P the following analogue of Theorem 1.3 holds on the level of the Grothendieck
group of graded A(P, U)-modules.
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Theorem 1.13. For any generic oriented matroid program P and any α ∈ P , the class of
the indecomposable projective Pα in the Grothendieck group can be expressed as the sum:

[Pα] =
∑
γ�α

qdαγ [Vγ ],

where dαγ denotes the distance between the topes α and γ.

While our proof of Koszulity in the Euclidean case relies on A(P, U) being
quasi-hereditary, it is conceivable that A(P, U) is Koszul more generally. As ev-
idence in this direction, in Theorem 7.14 we prove the Hilbert series of A(P, U)
andA(P∨, U⊥) satisfy the numerical identity discussed in [BGS96, Lemma 2.11.1].

1.4. Derived Morita equivalence. In light of Theorem 1.1(4) it seems natural to
ask:

Question 1.14. Let M be an orientable matroid and U a choice of parameter space
for M . For any two orientationsM1,M2 of M and generic oriented matroid pro-
grams P1 = (M̃1, g1, f1),P2 = (M̃2, g2, f2) such that M̃`/g`\f` = M`, ` = 1, 2,
are the algebras A(P1, U) and A(P2, U) derived Morita equivalent?

If the answer to this question is yes, it would appear to give a rather interest-
ing algebraic invariant of the matroid M . Or weaker, one might still hope for an
affirmative answer under the assumption thatM1 =M2:

Question 1.15. LetM be an oriented matroid and U a choice of parameter space for
M =M. For any two generic oriented matroid programs P1 = (M̃1, g1, f1),P2 =

(M̃2, g2, f2) such thatM = M̃1/g1\f1 = M̃2/g2\f2, are the algebrasA(P1, U) and
A(P2, U) derived Morita equivalent?

If the answer to one or both of these questions is no, the number of derived
Morita equivalence classes could also provide a interesting invariant of M orM.

As a partial result in this direction, following the strategy of Braden–Licata–
Proudfoot–Webster, we prove the following theorem in Section 8.

Theorem 1.16. FixM and let P1 = (M̃1, g1, f1) and P2 = (M̃2, g2, f2) be Euclidean
such that M̃i/gi\fi = M for i = 1, 2. Suppose in addition that the oriented matroid
program Pmid = (M̃mid, g2, f1) is also Euclidean, where Pmid is a generic oriented matroid
program3 such that

M̃mid/g2 = M̃1/g1, M̃mid\f1 = M̃2\f2.

Then the bounded derived categories of graded finitely generatedA(P1, U)- andA(P2, U)-
modules are equivalent.

This allow us to answer Questions 1.14 and 1.15 in some simple cases.

Corollary 1.17. Question 1.15 has an affirmative answer for any oriented matroidM of
rank 2.

3Note that such an oriented matroid program (M̃mid, g2, f1) always exists and there will typi-
cally be many such oriented matroid programs. However the particular choice will not matter for
us, because, as mentioned in Remark 2.1, all of our constructions depend only on the contraction and
restriction oriented matroids M̃mid/g2 and M̃mid\f1.
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Proof. Recall from Remark 1.12, that any oriented matroid program of rank 3 is
Euclidean, so for any P1 and P2, the three oriented matroid programs P1,P2 and
Pmid are all Euclidean and the result follows from Theorem 1.16. �

Corollary 1.18. Question 1.14 has an affirmative answer for M = U2,n, the uniform
matroid of rank 2 defined on a set E of n ≥ 2 elements.

Proof. By Corollary 1.17, it suffices to show that for any two orientationsM1 and
M2 of U2,n, there are generic oriented matroid programs P1 = (M̃1, g1, f1),P2 =

(M̃2, g2, f2) such thatM1 = M̃1/g1\f1 andM2 = M̃2/g2\f2, for which A(P1, U)
and A(P2, U) are derived equivalent.

But any two orientations of U2,n are related by a relabeling of E and reorienta-
tion. Note that relabelling and reorientation each induce a canonical isomorphism
between the associated algebras. �

The same sort of argument gives a handful of similar examples.

1.5. Matroidal Schur algebras. Motivated in part by [BLPW10], Braden and the
second author defined a hypertoric Schur algebra [BM19] - an analogue of the Schur
algebra associated to affine hypertoric varieties. Recall that one can construct an
affine hypertoric variety M0 with the input of a rational subspace V ⊂ Rn. In this
setting the resulting hypertoric Schur algebra R(V ) can be interpreted as a con-
volution algebra for a union of resolutions of stratum slices of M0. In particular,
for a rational polarized arrangement (V, η, ξ) with the same underlying subspace
V ⊂ Rn, the convolution algebra for the resolution M → M0 is a subalgebra
of the associated hypertoric Schur algebra. Braden–Proudfoot–Webster showed
in [BPW16, Proposition 6.16, Example 6.18] that the convolution algebra of the
resolution M → M0 is categorified by Harish-Chandra bimodules for hypertoric
category O. One expects the entire hypertoric Schur algebra to be similarly cate-
gorified by Harish-Chandra bimodules with more general support and similarly
to obtain a natural q-deformation of the hypertoric Schur algebra, or q-hypertoric
Schur algebra.

In [BM17], Braden and the second author observed that the hypertoric Schur
algebras studied in [BM19] can be defined in terms of the underlying matroid.
Following this observation, they defined a matroidal Schur algebraR(M) associated
to any matroid M .

One motivation for defining the category O for oriented matroid programs in
the present paper was to provide the foundation to categorify and find natural
q-deformations of matroidal Schur algebras for orientable, but non-realizable ma-
troids using an appropriate category of Harish-Chandra bimodules.

1.6. Outline of paper. In Section 2 we describe the combinatorial set-up of ori-
ented matroid programs and parameter spaces. In Section 3 we define the algebra
A(P, U) and in Section 4 we prove Theorem 1.10 (Lemma 4.1 and Theorem 4.2).
In Section 5 we define the algebra B(P, U) and prove Theorem 5.12, which is a
key ingredient in the proof of Theorem 1.11. Section 6 develops more topology,
resulting in a nice description of the center of B(P, U).

In Section 7, we study the category of finitely-generated (right)A(P, U)-modules
and prove Theorem 1.11. In particular, under the Euclidean assumption, we show
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A(P, U) is quasihereditary (Theorem 7.6) and Koszul (Theorem 7.13). In the non-
Euclidean setting, we prove Theorem 1.13 (Theorem 7.9), prove the Koszulity con-
dition on Hilbert series (Theorem 7.14) and show that Theorem 7.6 requires the
Euclidean assumption (Example 7.10). In Section 8, we study the derived cate-
gories of graded finitely-generated A(P, U)-modules for varying Euclidean P and
a fixedM and prove Theorem 1.16.
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The second author was supported in part by a Simons Foundation Collabora-
tion Grant and NSF grant DMS-1802299. He would also like to thank the Mathe-
matics department at Dartmouth College for its hospitality.

2. COMBINATORIAL SETUP

In this section we briefly introduce the notation we will need to work with ori-
ented matroids, but assume some familiarity with the basic notions. To the uniniti-
ated reader, we recommend [BLVS+99] (particularly the first chapter) for a survey
and as a useful reference.

2.1. Generic oriented matroid programs. For an index set I and any function
Z : I → {0,+,−} , let Z := {i | Z(i) 6= 0} ⊂ I be the support of Z and let
z(Z) := I\Z be the zero set of Z.

Let M be an orientable matroid of rank d on the finite set E. Let M be an
oriented matroid such thatM = M is its underlying unoriented matroid.

Let B denote the set of bases for M . We let C = C(M) denote the set of signed
circuits and C∗ = C∗(M) the set of signed cocircuits, both regarded as subsets
of the set of functions E → {0,+,−}. Note the unoriented matroid M = M has
circuits {X | X ∈ C} and cocircuits {Y | Y ∈ C∗}. The dual oriented matroidM∨
is given by switching the roles of the circuits and cocircuits (i.e. C(M∨) = C∗(M)
and C∗(M∨) = C(M)), while the bases B∨ of the underlying matroid M∨ =M∨
are the complements in E of the elements of B.

Let S ⊂ E. Then the set

{X ∈ C(M) | X ⊂ E\S}
is the set of circuits of an oriented matroidM\S on E\S, called the deletion of S
fromM. The set

{X|S : S → {0,+,−} | X ∈ C(M) and X∩S is inclusion minimal and nonempty}
gives the set of circuits of an oriented matroidM/(E\S) on S, called the contraction
ofM to S. Duality exchanges contraction and deletion:

(M/S)∨ =M∨\S and (M\S)∨ =M∨/S.
An element i ∈ E is a loop ofM if {i} is the support of a circuit ofM. Dually,

i ∈ E is a coloop ofM if i is not contained in the support of any circuit ofM.
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An oriented matroid program P = (M̃, g, f) is an oriented matroid M̃ on the set
E t {f, g} such that (M̃\f)/g = M, g is not a loop and f is not a coloop. In
particular, the rank of M̃ is d+ 1, and this is defined to be the rank of P.

The deletion N = M̃\f of f from M̃ is called the corresponding affine oriented
matroid.

Remark 2.1. Our constructions will only depend on the contraction M̃/g, which
is a single element extension of M on E t {f}, and the deletion M̃\f , which is
a single element lift of M on E t {g}. Thus for our purposes it would be more
natural to define an oriented matroid program as a pair, which we have taken to
affectionately calling an eft, of a single element extension and single element lift of
M. We will refrain from doing so in this paper as the original notion appears to
be standard in the field.

Definition 2.2. We say that the oriented matroid program P = (M̃, g, f) is generic
forM if

(1) for any cocircuit Y of N = M̃\f , if |z(Y )| > d, then Y (g) = 0, and
(2) for any circuit X of M̃/g, if |z(X)| > n− d, then X(f) = 0.

Remark 2.3. As the rank of the oriented matroid M̃/g on E t {f} is d, for any
circuit X of M̃/g, |X| ≤ d + 1 and so X has at least n − d zero entries. In the case
of equality, X contains a basis of M̃/g and so z(X) is independent in (M̃/g)∨.

Dually, for any cocircuit Y of N , |z(Y )| ≥ d and if equality holds z(Y ) is inde-
pendent in N .

Example 2.4. As explained in Example 1.5, every polarized arrangement V =
(V, η, ξ) naturally gives rise to an oriented matroid program P. If η and ξ are
generic in the sense of Theorem 1.1, then P is generic as well.

We now deduce some simple consequences of genericity.

Lemma 2.5. Suppose P = (M̃, g, f) is generic. ThenN = M̃\f has no loops and M̃/g
has no coloops.

Proof. We prove the first statement and the second follows by duality. By our
assumption in the definition of an oriented matroid program, g is not a loop of
N , so g ∈ Y for some cocircuit Y of N . By Definition 2.2(1), |z(Y )| = d and so
Remark 2.3 implies z(Y ) is independent. If there were a loop i ofN , then i ∈ z(Y )
contradicting the fact that z(Y ) is independent. �

Lemma 2.6. Assume P is generic. Then there is a natural bijection between the set B of
bases forM and the set of feasible cocircuits for N = M̃\f .

Proof. Consider the map that takes a feasible cocircuit Y for N to its zero set b :=
z(Y ). As Y is feasible, Y (g) = + and so by condition (1), Y must have d zero
entries. Then Y has n + 1 − d non-zero entries and is a circuit of N∨ (which has
rank n− d), so any subset of Y of size n− d is a basis for N∨. In particular, Y \{g}
is a basis for N∨, so its complement b t {g} is basis for N . Thus b is a basis for
M = N/g.

To show that this is a bijection, suppose b is a basis for M. Then b t {g} is a
basis for N , its complement E\b is a basis for N∨ and so (E\b) ∪ g must contain a
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cocircuit Y forN . By condition (1), either Y = (E\b)∪ g or Y ⊂ E\b. But the latter
is not possible as E\b is a basis for N∨. We conclude that there is a unique choice
of feasible cocircuit Y with support Y = (E\b) ∪ g. �

For b ∈ B, we let Yb be denote the corresponding feasible cocircuit.

We will often use three constructions to obtain new generic oriented matroid
programs from a generic oriented matroid program P: duality, deletion, and con-
traction. Recall that duality for oriented matroid programs takes the program
P = (M̃, g, f) to the program P∨ = (M̃∨, f, g) with underlying oriented matroid

(M̃∨\g)/f = ((M̃/g)\f)∨ =M∨.
For any S ⊂ E, we denote the contraction and deletion of S by

P/S := (M̃/S, g, f) and P\S := (M̃\S, g, f),

respectively.
Note that P is generic if and only if P∨ is generic. If P is generic and S ⊂ b

for some b ∈ B, then P/S is generic and has rank d + 1 − |S|. If P is generic and
S ∩ b = ∅ for some b ∈ B, then P\S is also generic of rank d+ 1.

Lemma 2.7. For any oriented matroidM there exists a generic oriented matroid program
P = (M̃, g, f) such that (M̃/g)\f =M.

Proof. For example, for any order onE, consider the lexicographic extensionM′ =
M[E] by a point f with respect to this order (Note that this is the same as taking
the extensionM[bmin] where bmin is a lexicographically minimal basis ofM). By
a Lemma of Todd [BLVS+99, Lemma 7.2.6], any circuit X of M′ with more than
n − d zero entries satisfies X(f) = 0. It then remains to define M̃ as a single
element of lifting of M′ by a point g, such that N = M̃\f satisfies property (1)
above. This can be done via the dual construction: consider the colocalization τ :
C(M′) → {+,−, 0} defined for any X ∈ C(M′) by τ(X) = Xi, where i is the
minimal element of E such that Xi 6= 0. Let M̃ be the lexicographic lifting of
M′ defined by τ (in other words the dual of the lexicographic extension of (M′)∨
associated to τ ). �

For the rest of the paper we assume that P is generic.

2.2. Bounded feasible topes and sign vectors. In this section we recall the notions
of bounded and feasible topes and show in Corollary 2.15 that when P is generic
there is a natural bijection between bases B of M and bounded feasible topes for
P.

Let I be any index set. For any functions Z,Z ′ : I → {0,+,−}, their composition
Z ◦ Z ′ : I → {0,+,−} is defined by

Z ◦ Z ′(i) =

{
Z(i) if Z(i) 6= 0

Z ′(i) otherwise

We say that Z is a face of Z ′ if Z ◦ Z ′ = Z ′.
The nonzero covectors of an oriented matroid on the set E are the functions

E → {0,+,−} which can be written as the composition of cocircuits. The set of
covectors of M is denoted by L(M), and includes the zero function 0. It has a
natural poset structure defined by Y ≤ X if Y is a face of X . The poset L(M) is
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pure with minimal element 0, the zero function. The maximal elements of L(M)
are called topes, while the minimal elements of L(M)\{0} are the cocircuits ofM.

The rank of Y ∈ L(M) is given as ρ(Y ) = d − r(z(Y )), where r is the rank
function of the underlying matroidM. For Y1, Y2 ∈ L(M), the join Y1 ∨ Y2 is the
minimal covector that has both Y1 and Y2 as faces, which only exists if there is a
tope T with both Y1 and Y2 as faces. The meet Y1 ∧ Y2 is the maximal covector face
of both Y1 and Y2. Note that the meet of Y1, Y2 ∈ L(M) always exists, but is the
zero function when Y1 and Y2 do not have a common cocircuit face.

Definition 2.8. (Feasible covectors and affine space) Let P = (M̃, g, f) be a generic
program and let L = L(N ) denote the set of covectors for N = M̃\f . The affine
space of P is:

A = {Y ∈ L | Y (g) = +}.
We call elements of A feasible covectors.

We say that the boundary of affine space is:

A∞ = {Y ∈ L | Y (g) = 0}
Notice that A∞ defines an oriented matroid on E ∪ {g} which is equal to M

with g adjoined as a loop. Also, notice that the join of covectors in A is also in A if
it exists, while their meet is in A if and only if they share a common cocircuit face
in A; Otherwise, their meet is in A∞.

Definition 2.9. (Feasible topes) Let T (L) denote the set of topes of N . We let

F = A ∩ T (L)

denote the set of feasible topes.

Notice that the definition of feasible topes does not depend on f .

Remark 2.10. By Lemma 2.5 the topes ofN are the covectors T such that z(T ) = ∅.

A sign vector is a function α : E → {+,−}, usually written as α ∈ {+,−}E .
There is an obvious injective map from F to {+,−}E given by forgetting the value
at g (which is always +). We may refer to the sign vectors in the image as feasible
sign vectors, and in a slight abuse of notation we identify feasible topes with the
corresponding sign vectors. When there is a risk of confusion, we will write Tα to
denote the feasible tope of N corresponding to a sign vector α.

Definition 2.11. (Directions and optimality)
(1) We refer to covectors in the boundary of affine space Z ∈ A∞ as directions

in A. We say that a direction is increasing (resp. decreasing or constant)
with respect to f if Z(f) = + (resp. Z(f) = − or Z(f) = 0).

(2) For a feasible tope T ∈ F and a feasible covector face Y of T , we say that
the direction Z ∈ A∞ is feasible for Y in T if Y ◦ Z is a face of T .

(3) A feasible covector Y that is a face of T ∈ F is an optimal solution for T if
there is no feasible increasing direction for Y in T .

Definition 2.12. (Bounded sign vectors) A sign vector α ∈ {+,−}E is unbounded
if there exists a increasing direction Z ∈ A∞ such that Z|E ◦ α = α. If no such Z
exists, we say α is bounded. Similarly, a tope T is bounded if the sign vector T |E is
bounded.

Let B denote the set of bounded sign vectors and P = F ∩ B denote the set of
bounded and feasible sign vectors.
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Remark 2.13. Let Y be a bounded, feasible tope. Note that if Y1, Y2 are optimal
solutions for Y , then so is Y1 ◦ Y2. If Y1 is an optimal solution and Y2 ∈ A is a face
of Y1, then Y2 is also optimal. It follows that if Y has an optimal solution, then it
has an optimal cocircuit.

Theorem 2.14. Assume P is generic. Then every feasible, bounded tope Y has a unique
optimal solution (cocircuit) and the resulting map from P to the set of feasible cocircuits
for N is a bijection.

Proof. Let Y ∈ P . Recall that an optimal solution exists, without any condition
on P, by Bland and Lawrence’s Main Theorem of Oriented Matroid Programming
(see [BLVS+99, 10.1.13] for a survey).

We first show that if P is generic, then such a solution is unique.
Suppose that Y has two distinct optimal cocircuits Y1 and Y2. Then Y1 ◦ Y2 ∈ A

must also be an optimal solution. Replacing Y2 by another cocircuit face of Y1◦Y2 if
necessary, without loss of generality, we may assume that Y1 and Y2 are joined by
an edge (i.e., the rank of Y1◦Y2 is 2). There then exist two cocircuits at the boundary
±Z ∈ A∞ on the pseudoline Y1Y2 such that Y1 ◦Y2 = Y1 ◦Z and Y1 ◦Y2 = Y2 ◦−Z.
(The cocircuit Z can by obtained via elimination of g from the pair Y1, Y2 and this
elimination is unique up to sign as Y1, Y2 form a modular pair). By optimality of
Y1 and Y2, we conclude that±Z must be constant directions. Note that z(Y1◦Y2) is
an independent set inM of cardinality d−1. The contraction M̃/({g}∪z(Y1 ◦Y2))
is a rank 1 oriented matroid where f is a loop since the cocircuits are both zero on
f . Thus z(Y1 ◦ Y2) ∪ {f} contains a circuit X of M̃/g such that X(f) 6= 0. This
contradicts condition (2) since X is zero on at least n− d+ 1 entries.

It remains to show that the map fromP to feasible cocircuits is a bijection. Given
a cocircuit Y ∈ A, we would like to show that Y is the optimal solution for a
unique tope T ∈ P . We construct such a T as follows. For any i ∈ z(Y ), we
know that Pi := P/(z(Y )\{i}) is a generic program whose affine space is one-
dimensional. There is a unique cocircuit Zi in Pi such that Zi(f) = −, and this
cocircuit is the restriction of a cocircuitZi in M̃/g. ThenZi(j) = 0 for j ∈ z(Y )\{i},
while Zi(i) 6= 0 and Zi(f) = −. Then T is defined to be the composition Y ◦ Z,
where Z is the composition of all Zi, i ∈ z(Y ), taken in any order.

This T is feasible since T (g) = Y (g) = +, and unique since it agrees on z(Y )
with the unique bounded feasible tope of P\(E\z(Y )). To show that T is bounded,
recall that an equivalent definition for a feasible tope to be bounded is that it must
be in the bounded cone of some b ∈ B (see [BLVS+99, Definition 10.1.8.ii, Corollary
10.1.10.ii]), meaning that it agrees on b with a bounded tope of P\(E\b) (see also
Definition 2.18). Since T is in the bounded cone of z(Y ) ∈ B, we have that T is
bounded. �

Combining the bijections of Lemma 2.6 and Theorem 2.14 we obtain our desired
correspondence.

Corollary 2.15. There is a natural bijection between the set B of bases forM and the set
P of bounded feasible topes:

µ : B→ P,
which takes a basis b to the tope whose optimal cocircuit is Yb. (Recall that Yb is the feasible
cocircuit with z(Yb) = b.)
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We conclude this section with a discussion of the effect of duality on the bijec-
tion µ.

Recall the following result about duality for oriented matroid programs.

Proposition 2.16. [BLVS+99, Corollary 10.1.11] Let F∨, B∨, and P∨ respectively de-
note the sets of feasible, bounded, and bounded feasible sign vectors for the dual program
P∨ = (M̃∨, f, g). Then

F∨ = B and B∨ = F , and so P∨ = P.

Let B∨ denote the set of bases ofM∨. Then b 7→ bc := E\b defines a bijection
B → B∨. Let µ∨ : B∨ → P∨ be the bijection for the dual program P∨ defined as
above. Recall that P∨ = P .

Proposition 2.17 (Complementary Slackness). For any b ∈ B, µ(b) = µ∨(bc).

Proof. Recall that P is generic if and only if P∨ is generic. This is then the “Comple-
mentary Slackness” theorem of Bland applied to generic programs (cf. [BLVS+99,
Theorem 10.1.12]). �

2.3. Cone relation and Euclidean oriented matroid programs. In this section we
consider a binary relation on the set P of bounded feasible topes (or via µ equiva-
lently on the set of bases B).

Definition 2.18. For any basis b ∈ B we define the negative cone as

Bb = {β ∈ {+,−}E | µ(b)(i) = β(i) for all i ∈ b}.
Notice that this set of sign vectors depends onM and f but does not depend on g,
in the sense that the signs µ(b)(i) for i ∈ b only depend on the cocircuits of M̃/g.

Proposition 2.19 (Complementary Slackness). For any b ∈ B, let Xbc be the feasible
cocircuit of P∨ with z(Xbc) = bc = E\b. Then for any α ∈ P = P∨, α ∈ Bb if and only
if Xbc is a face of α.

Proof. By definition, the tope α is in the cone Bb if and only if

α(i) = µ(b)(i) for all i ∈ b.
By Proposition 2.17, we can rewrite the above condition as

α(i) = µ∨(bc)(i) for all i ∈ b.
Under the bijection µ∨ from Corollary 2.15 for the dual program P∨, we have that
µ∨(bc)(i) = Xbc(i) for all i ∈ b. Thus the previous condition becomes

α(i) = Xbc(i) for all i ∈ b,
which in turn is equivalent to Xbc is a face of α in the affine space associated to
P∨. �

Definition 2.20 (Cone relation). For α, β ∈ P , we write β � α whenever β ∈
Bµ−1(α).

The binary relation � on P is reflexive and anti-symmetric, but not necessarily
transitive. Let ≤ denote the transitive closure of �. In general, the binary relation
≤ on P does not define a poset, as the closure may no longer be anti-symmetric.

In the following sections we will define algebras associated to the program P.
To ensure that these algebras are quasi-hereditary, we will need the relation ≤ to



14 ETHAN KOWALENKO AND CARL MAUTNER

define a poset. It turns out that this is equivalent to a well-known condition on
the oriented matroid program P, namely we ask that P be Euclidean. To recall the
definition, we first define the following graph associated to P.

Definition 2.21. Let GP be the graph whose vertices are vertices in A (i.e., the
feasible cocircuits forN ) and whose edges are the edges inA (i.e., the feasible cov-
ectors of N of rank 2). By our genericity condition, the graph is naturally directed
by orienting each edge in increasing direction with respect to f .

Definition 2.22. For b, b′ ∈ B, we write b ≤ b′ if there is a directed path from Yb to
Yb′ in the graph GP.

Definition 2.23. The program P is Euclidean if the directed graph GP contains
no directed cycles. Equivalently, P is Euclidean if the binary relation on B from
Definition 2.22 is anti-symmetric.

By a result of Edmonds and Fukuda, the Euclidean property is well-behaved
under duality:

Proposition 2.24. [BLVS+99, Corollary 10.5.9] An oriented matroid program P =

(M̃, g, f) is Euclidean if and only if its dual program P∨ = (M̃∨, f, g) is Euclidean.

Importantly for us, for Euclidean programs, the transitive closure of the cone
relations is a poset. In fact these two conditions are equivalent:

Lemma 2.25. The oriented matroid program P = (M̃, g, f) is Euclidean if and only if
the transitive closure of the cone relation is anti-symmetric.

Proof. By Proposition 2.24, it suffices to show that the dual program P∨ is Eu-
clidean if and only if the transitive closure on the cone relation is anti-symmetric.
By definition, P∨ is Euclidean if and only if the binary relation (B∨,≤) is anti-
symmetric.4

Thus it suffices to show that the bijection µ∨ : B∨ → P∨ = P is order reversing.
In other words, we wish to show that for b1, b2 ∈ B,

µ(b1) ≥ µ(b2) if and only if bc1 ≤ bc2.
As (P,≤) is the transitive closure of �, without loss of generality we may sup-

pose µ(b1) � µ(b2). Then µ(b2) ∈ Bb1 and by Proposition 2.19, Xbc1
is a face of

µ(b2) = µ∨(bc2). As Xbc2
is the (unique) optimal cocircuit of the tope µ∨(bc2), there is

a directed path from Xbc2
to Xbc1

. Thus bc1 ≤ bc2 as desired.
For the other direction, it suffices to consider the case where there is a directed

edge from Xbc2
to Xbc1

. Then Xbc1
is a cocircuit face of µ∨(bc2) = µ(b2). By Propo-

sition 2.19 this implies µ(b2) ∈ Bb1 and so µ(b2) ≤ µ(b1), which completes the
proof. �

2.4. On the existence of Euclidean generic programs. Unlike genericity, it is not
clear (at least to the authors) that any oriented matroid M can be extended to a
Euclidean generic oriented matroid program M̃.

On the other hand, we have already seen in Example 1.7 a non-realizable Eu-
clidean program (M̃, g, f) for whichM = M̃/g\f is realizable. There also appear

4Here by (B∨,≤) we are referring to the binary relation on B∨ coming from the directed graph
GP∨ .
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to be many examples for which the oriented matroidM is non-realizable, and so
our setting significantly generalizes that of [BLPW10].

In this section we first give such an example and then give a criterion onM for
the existence of a Euclidean generic oriented matroid program lifting and extend-
ingM.

Example 2.26. The Vámos matroid V (rank 4 on 8 elements) is not representable
over any field, but is orientable by [BV78]. We now define a Euclidean generic
program Ṽ by adjoining elements to V as labelled and orientated in [BV78]. Let
(Ṽ, g, f) be the generic oriented matroid program obtained from V by adjoining g
using the lexicographic one-element lift defined by the cobasis {3, 6, 7, 8}, and ad-
joining f by a lexicographic one-element extension defined by the basis {1, 2, 4, 5}.
One can verify that the graph GP of this program has no directed cycles, so this
program is Euclidean and generic.

We are grateful to Jim Lawrence for suggesting that we consider the following
statement.

Proposition 2.27. Let M be an oriented matroid. If one can adjoin elements g and f
to M to obtain a Euclidean generic oriented matroid program (M̃, g, f), then M has a
simplicial tope.

Before beginning the proof, we note that it is an open conjecture of Las Vergnas [LV80]
(see also [BLVS+99, 7.3.10]) that any oriented matroidM should have a simplicial
tope. Thus, the proposition implies that if for any oriented matroidM there is a
Euclidean generic oriented matroid program (M̃, g, f) for which M̃/g\f = M,
then Las Vergnas’ conjecture holds.

Proof. Suppose (M̃, g, f) is a Euclidean generic oriented matroid program such
that (M̃/g)\f =M.

As P is Euclidean, there exists a minimal vertex of GP. Let Ymin be the feasible
cocircuit ofN corresponding to such a minimal vertex. Let Tmin be the tope whose
optimal cocircuit is Ymin, which exists by Theorem 2.14. Then Ymin is the only
feasible cocircuit face of Tmin, so for all other cocircuit faces Y , Y (g) = 0. Consider
the subtopes covered by Tmin. There are d such subtopes that have Ymin as a face,
all of which are feasible. Any other subtope Z covered by Tmin cannot be feasible
and as all non-feasible cocircuit faces Y of T satisfy Y (g) = 0, then z(Z) = g.
There can be at most one such subtope covered by Tmin. By [BLVS+99, Exercise
4.4], any tope of M̃ covers at least d + 1 subtopes, so there does exist a subtope Z
and Tmin covers exactly d + 1 subtopes. By the same exercise, it follows that Tmin

is simplicial, hence the subtope Z is as well, which is in turn a tope ofM. �

2.5. Linear systems of parameters. Recall that M = M denotes the underlying
matroid of M. Consider the matroid complex ∆ of M - the simplicial complex of
independent sets of M .

Fix a field k. Let kE be the standard n-dimensional vector space with basis
{ti | i ∈ E}, so we may identify the symmetric algebra Sym kE with the polynomial
algebra k[ti | i ∈ E].
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Definition 2.28. For any field k, the face ring of the matroid complex ∆ of M is
defined as

k[M ] : = Sym kE/(tS | S 6∈ ∆)

= Sym kE/(tX | X ∈ C)

where tS :=
∏
i∈S ti for any S ⊂ E. We give k[M ] a Z≥0-grading by setting

deg(ti) = 2 for all i.

Definition 2.29. Recall d denotes the rank of M . A linear system of parameters
(l.s.o.p.) for k[M ] is a set

Ω = {ω1, ω2, . . . , ωd} ⊂ kE

such that k[M ] is a finitely-generated k[ω1, ω2, . . . , ωd]-module. Equivalently k[M ]/(Ω)
is a zero-dimensional ring, where ω is the image of Ω in k[M ]2.

Remark 2.30. Stanley [Sta04] defines an l.s.o.p. as a subset of k[M ]2 ⊂ k[M ]. The
set Ω is a l.s.o.p. in the sense we define above if its image in k[M ]2 is an l.s.o.p. in
the sense used by Stanley.

We introduce the following perhaps non-standard definition:

Definition 2.31. We call a subspace U ⊂ kE a parameter space for k[M ] if the com-
position U ↪→ kE � Span{ti | i ∈ b} is an isomorphism for any basis b ∈ B.

Example 2.32. If M is realizable as a hyperplane arrangement coming from a k-
vector subspace V ⊂ kE , then V is a parameter space for k[M ].

Lemma 2.33. If U ⊂ kE is a parameter space for k[M ], then any basis of U is a l.s.o.p.
for k[M ]. If Ω is an l.s.o.p. for k[M ], then its span Span(Ω) ⊂ kE is a parameter space for
k[M ].

Proof. Suppose U is a parameter space. By definition

dimU = dim Span{ti | i ∈ b} = d.

Suppose ω1, . . . , ωd is a basis of U . By [Sta04, Lemma 2.4(a)], ω1, . . . , ωd is an l.s.o.p.
for k[M ] if and only if for every facet of ∆, that is basis b ∈ B, the list ω1, . . . , ωd ∈
kE projects to a spanning set of Span{ti | i ∈ b}. This is true by the definition of U .

Similarly, if ω1, . . . , ωd ∈ kE is an l.s.o.p., then for any basis b ∈ B, the projections
to Span{ti | i ∈ b} of ω1, . . . , ωd are a spanning set. Thus the projection from
Span(Ω) to Span{ti | i ∈ b} is an isomorphism and Span(Ω) is a parameter space.

�

By the Noether Normalization Lemma, if k is an infinite field, then a l.s.o.p. for
k[M ] exists. From now on, we assume that an l.s.o.p. exists and fix a choice of
l.s.o.p. Ω and its span U .

2.6. Linear systems of parameters and duality. Let {ui | i ∈ E} be the basis of
(kE)∗ dual to {ti | i ∈ E}. It will be convenient for us to view the matroid complex
k[M∨] of the dual matroid M∨ as the appropriate quotient of

Sym(kE)∗ = k[ui | i ∈ E].

Let U⊥ be the kernel of the natural map (kE)∗ → U∗.

Lemma 2.34. U⊥ is a parameter space for the face ring of the dual matroid k[M∨].
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Proof. For any b ∈ B a basis for M , let bc := E\b be its complement, which is a
basis for M∨. It suffices to show that the projection U⊥ → Span{ui | i ∈ bc} is
an isomorphism. As the two vector spaces have the same dimension, it suffices to
show the null space is trivial. Suppose x is in the null space, so

x ∈ U⊥ ∩ Span{ui | i ∈ b}.
Then for any u ∈ U ,

0 = 〈x, u〉 = 〈x, prbu〉,
where prb : U → Span{ti | i ∈ b} is the projection. As U is a parameter space for
k[M ], the projection prb is an isomorphism and so 〈x,w〉 = 0 for any w ∈ Span{ti |
i ∈ b}. Thus x = 0 and we may conclude that the projection U⊥ → Span{ti | i ∈
bc} is an isomorphism. �

We define the dual of the pair (P, U) to be (P, U)∗ = (P∨, U⊥).

Proposition 2.35. k[M ] is a free algebra over k[ω1, . . . , ωd] = SymU ⊂ Sym kE , while
k[M∨] is a free algebra over SymU⊥ ⊂ Sym(kE)∗. Both have rank |B|.
Proof. Recall that the face ring of a matroid complex is shellable (e.g., [Sta04, Propo-
sition III.3.1]) and so the result follows [Sta04, Theorem III.2.5]. �

3. THE ALGEBRA A

3.1. The definition of A. Recall that P = (M̃, g, f) is a generic oriented matroid
program and U ⊂ kE is a parameter space for M =M.

Let Q denote the quiver with vertex set F , the set of feasible topes, and arrows
between topes that differ by exactly one sign. We say that two topes α, β that differ
by exactly one sign are adjacent and write α ↔ β. If α ↔ β and differ in the i-th
component, we write β = αi.

Let P (Q) denote the path algebra forQ, which is generated by orthogonal idem-
potents {eα | α ∈ F} and edge paths {p(α, β)} where α and β are adjacent and
p(α, β) is the path from α to β. We write p(α1, . . . , αk) for the element in the quiver
algebra obtained as the composition p(α1, α2) · . . . · p(αk−1, αk).

Definition 3.1. Let Ã = Ã(P) = Ã(M̃, g, f) be the quotient of P (Q)⊗kSym(kE)∗ =
P (Q)⊗k k[ui | i ∈ E] by the two-sided ideal generated by the following relations:

(A1) eα = 0 for α 6∈ P ,
(A2) p(α, γ, β) = p(α, δ, β) for any four distinct topes α, β, γ, δ ∈ F where α and

β are each connected to γ and δ by an edge, and
(A3) p(α, αi, α) = eαui whenever α, αi ∈ F differ only in the sign of i ∈ E.

We let A = A(P, U) = A(M̃, g, f, U) be

A := Ã⊗Sym(kE)∗ Sym((kE)∗/(U⊥)) = Ã⊗Sym(kE)∗ SymU∗,

or equivalently, the quotient of Ã by the additional relations
(A4) x = 0 for any x ∈ U⊥ ⊂ Sym(kE)∗.

Remark 3.2. When the pair (P, U) comes from a polarized arrangement as in Ex-
amples 1.4 and 1.5, there is an equality A(P, U) = A(V, η, ξ).

As in 2.6, for bookkeeping, we will use the dual coordinates for the dual matroid
program, so we view Ã(P∨) andA(P∨, U⊥) as the analogous quotients of P (Q)⊗k
Sym(kE) = P (Q)⊗k k[ti | i ∈ E].
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3.2. Expressions for elements ofA. We first introduce some terminology for paths
in the quiver Q. To distinguish between paths in Q and their images in A, we will
use the notation α0 → α1 → · · · → αr for a path of length r in the quiver Q.

A path α0 → · · · → αr in Q is taut if α0 and αr differ in exactly r coordinates.
To relate paths, we use the following notion.

Definition 3.3. Two paths P, P ′ in Q are related by an elementary homotopy (a sym-
metric relation) if

(i) P is the path α0 → · · · → αj → αj+1 → · · · → αr of length r while P ′ is
the path α0 → · · · → αj → β → αj → αj+1 → · · · → αr of length r + 2 for
some β adjacent to αj , or

(ii) P is the path α0 → · · · → αj−1 → αj → αj+1 → · · · → αr while P ′ is
the path α0 → · · · → αj−1 → α′j → αj+1 → · · · → αr of the same length,
where we assume αj−1 and αj+1 differ in exactly 2 coordinates.

Remark 3.4. Under our assumption that (M̃, g, f) is generic, any feasible covector
forN = M̃\f of rank d− 1 has exactly two zero coordinates. Thus, in this setting,
this definition of elementary homotopy coincides with that given in [BLVS+99,
Section 4.4, page 184] for paths in the tope graph, because every elementary ho-
motopy of type (ii) in the sense of [BLVS+99] between feasible paths is of the form
above.

We will use the following result:

Proposition 3.5. Let P and P ′ be any two taut paths in Q with the same start and end
points. Then P and P ′ are related by a sequence of elementary homotopies of type (ii) such
that every intermediate path is also taut.

Proof. If we consider instead paths in the entire tope graph and the more general
notion of elementary homotopy, this is a result of Cordovil-Moreira [CM93] (see
also [BLVS+99, Proposition 4.4.7]). Recall that a subset R ⊂ T is T -convex if
it contains every shortest path between any two of its members and the set of
feasible topes is T -convex (see [BLVS+99, Definition 4.2.5] and the discussion that
follows). The result then follows for paths in Q. �

Proposition 3.6. Given a path P = (α0 → · · · → αs) inQ, let di be the number of times
the i-th coordinate changes twice. Then for any taut path P ′ = (α0 = β0 → · · · → βr =
αs), we have

p(α0, . . . , αs) = p(β0, · · · , βr) ·
∏
i∈E

udii

in Ã.

Proof. Note that s − r ≥ 0 with equality if and only if P is a taut path. We prove
the proposition by induction on s− r. If s = r, then both paths are taut, and so by
Proposition 3.5 they are related by a sequence of elementary homotopies of type
(ii). But an elementary homotopy of type (ii) descends to an equality in the path
algebra by definition, so

p(α0, . . . , αr) = p(β0, . . . , βr),

as desired.
Assume that the statement holds whenever s− r < k for some positive integer

k. Suppose that s−r = k. There exists a minimal ` such that α0 → · · · → α` is taut,
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while α0 → · · · → α`+1 is not taut. Then α0 and α`+1 differ in ` − 1 coordinates
and for some i, α0(i) = α`+1(i) 6= α`(i).

Notice that any taut path between α0 and α` will have length exactly one more
than the length of a taut path from α0 to α`+1. Therefore, by Proposition 3.5, using
a sequence of elementary homotopies of type (ii) we can replace α0 → · · · →
α`−1 → α` with a taut path α0 → α′1 → · · · → α′`−2 → α`+1 → α`.

This gives an equality in the algebra A:

p(α0, α1, . . . , α`−2, α`−1, α`, α`+1) = p(α0, α
′
1, . . . , α

′
`−2, α`+1, α`, α`+1)

= p(α0, α
′
1, . . . , α

′
`−2, α`+1)ui.

We are then reduced to considering the path

α0 → α′1 → · · · → α′`−2 → α`+1 → α`+2 → · · · → αs

of length s− 1 and the number of times the i-th coordinate changes twice is di− 1,
while the number of times every j-th coordinate changes twice remains dj for all
j 6= i. We can then invoke the induction hypothesis to complete the proof. �

The following two corollaries are analogous to [BLPW10, Corollary 3.10].

Corollary 3.7. Consider an element

a = p ·
∏
i∈E

udii ∈ Ã,

where p is a taut path in Q from α to β. Suppose γ denotes a feasible tope such that if
α(i) = β(i) and di = 0, then γ(i) = α(i) = β(i). Then

a = a′ ·m,
where a′ is the concatenation of a taut path from α to γ with a taut path from γ to β and
m is a product of ui’s.

In particular, if γ is not bounded, then a = 0 in both Ã and A.

Proof. For all j ∈ E, either:
(1) α(i) 6= β(j) and the j-th coordinate changes in the concatenation a′ exactly

once.
(2) γ(j) = α(j) = β(j) and the j-th coordinate does not change in the concate-

nation a′.
(3) γ(j) 6= α(j) = β(j) and so the j-th coordinate changes exactly twice in the

concatenation a′.
Proposition 3.6 then says:

a′ = p ·
∏
i∈E

u
d′i
i ,

where d′i ∈ {0, 1} and by our assumption on γ, we have di ≥ d′i. Thus

a = a′ ·
∏
i∈E

u
di−d′i
i ,

as desired. �

Corollary 3.8. Let b be the zero set of any feasible cocircuit face of α ∈ P . For any j ∈ E,
eαuj ∈ A can be written as a k-linear combination of paths {p(α, αi, α) | i ∈ b}.

In particular, the image in A of the element a ∈ Ã described in Corollary 3.7 can be
expressed a linear combination of paths in Q that pass through γ.
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Proof. For j ∈ b, the tope αj is feasible, so eαuj = p(α, αj , α). On the other hand,
as U is a parameter space for k[M ], the set {ui|i ∈ b} restricts to a basis of U∗. Thus
for any j 6∈ b, uj ∈ A can be expressed as a linear combination of {ui | i ∈ b}. �

3.3. Alternative description of A. We conclude this section with a slightly dif-
ferent description of our algebra A, which will make it easier to describe how A
changes when we modify the choice of generic oriented matroid program.

Let D be the path algebra over k of the quiver with two vertices labelled by +
and − and an arrow in each direction. Let DE = D⊗E denote the E-fold tensor
product of D with itself. In particular, DE is the path algebra on the quiver with
vertices labelled by the set {+,−}E of sign vectors, or equivalently vertices of an
|E|-cube, and edges connecting any two sign vectors that differ in exactly one
position, modulo the relations that whenever α, β ∈ {+,−}E differ in exactly two
positions i and j, we have an equivalence of paths in DE :

p(α, αi, β) = p(α, αj , β).

(As before, αi ∈ {+,−}E denotes the sign vector that differs from α in exactly the
i-th coordinate.)

For any sign vector α, we again let eα denote the idempotent defined as the
trivial path at the vertex labelled by α. Let eP =

∑
α∈P eα be the sum of idempo-

tents corresponding to bounded, feasible topes and ef =
∑
α 6∈B eα be the sum of

idempotents corresponding to unbounded sign vectors.
For each i ∈ E, we consider the element θi ∈ DE defined as the sum

θi =
∑

α∈{+,−}E
p(α, αi, α).

Note that the center Z(DE) of DE is a polynomial algebra with generators θi. Let
ϑ : (kE)∗ → k{θi | i ∈ E} be the isomorphism sending ui to θi.

Lemma 3.9. The algebra Ã from Definition 3.1 is isomorphic to the quotient of ePDEeP
by the relation:

(A1′) eα = 0 for α 6∈ B,

and the algebra A is obtained by adding the additional relation:

(A4′) ϑ(x) = 0 for x ∈ U⊥.

Equivalently, there are isomorphisms

Ã ∼= ePDEeP/〈efeP〉, A ∼= ePDEeP/〈efeP〉+ 〈ϑ(U⊥)eP〉.

Proof. To distinguish between the two definitions, let Ã1 and A1 denote the orig-
inal algebras and Ã2 and A2 be the algebras defined as in the lemma. Note that
there is an injective homomorphism from Ã1 to Ã2 uniquely defined by sending
a path in Q to the corresponding path in the cube quiver {+,−}E and sending
ui to θi. To see that it is surjective, it suffices to observe that for any two topes
α, β ∈ P , there exists a taut path in Q from α to β, which follows from [Cor82,
Lemme 3.7]. �
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4. THE QUADRATIC DUAL OF A

In this section we observe that A(P, U) is a quadratic algebra and that its qua-
dratic dual is isomorphic to A(P∨, U⊥). To ease notational clutter, in this section
we will write A for A(P, U) and A∨ for A(P∨, U⊥).

To state and prove the results of this section, we will need some additional
notation. Let QP ⊂ Q be the full subquiver with vertices P ⊂ F . For α ∈ P , we let

Jα := {i | αi ∈ P},
Iα := {i | αi ∈ F},
Kα := {i | αi ∈ B}.

Lemma 4.1. The algebra A = A(P, U) is the quotient of the path algebra P (QP) by the
following relations:
(A2′′) For distinct topes α, β, γ ∈ P , δ ∈ F , where α and β are each connected to γ and

δ by an edge,

p(α, γ, β) =

{
p(α, δ, β) if δ ∈ P
0 otherwise

(A3/4′′) For any α ∈ P and w ∈ U⊥ ∩ Span{ui | i ∈ Iα}, if w =
∑
i∈Iα wiui for some

wi ∈ k, then ∑
i∈Jα

wip(α, α
i, α) = 0.

In particular, it follows that A is a quadratic algebra.

Proof. Note that there is a surjection from P (Q) to P (QP) (by setting eα = 0 for all
α 6∈ P) and that this map factors through the natural map from P (Q) to A.

We first show that the map from P (Q) to A (and hence from P (QP) to A) is
surjective. To do so, it suffices to show that the image in A of any element of
w ∈ U∗ is in the image of the map from P (Q) to A. In A, we can express w as the
sum w =

∑
α∈F weα, so it is enough to show that for any α ∈ F , weα is in the

image.
Because α is feasible, there exists a feasible cocircuit face Y of α and z(Y ) is

a basis of M . Thus z(Y ) ⊂ Iα and so by our assumption that U is a parameter
space, the image of {ui|i ∈ Iα} ⊃ {ui|i ∈ z(Y )} is a spanning set of U∗. For any
w ∈ U∗, we can therefore write weα as a linear combination of elements of the
form p(α, αi, α) where αi ∈ F . We conclude that map from P (Q) toA is surjective.

To identify the kernel, note that (A2′′) is simply the image of the relation (A2)
in P (QP) and similarly the relations (A3) and (A4) combine to give (A3/4′′).

As P (QP) is generated over its degree zero component by its degree one com-
ponent and the relations above are quadric, we conclude that A is a quadratic
algebra. �

Recall that A1 is an A0-bimodule. Since A is quadratic, A is a quotient of the
tensor algebra T (A1) over A0 of the form

A = T (A1)/T (A1) ·W · T (A1)

where W ⊂ N := (T (A1)⊗A0
T (A1))2 is the space of quadratic relations in A. The

quadratic dual of A is defined to be

A! = T (A∗1)/T (A∗1) ·W⊥ · T (A∗1)
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where W⊥ ⊂ N∗ := (T (A∗1)⊗A0
T (A∗1))2 is the set of elements orthogonal to W .

Theorem 4.2. There is an isomorphism A(P∨, U⊥) ' A(P, U)!.

Proof. Mimicking the proof of [BLPW10, Theorem 3.11], we define an isomor-
phism between (A∨)1 and (A1)∗ and show that the space W∨ of quadratic rela-
tions in A∨ coincides with the space W⊥ of quadratic relations in A! under this
identification.

In degree zero, we have a canonical identification

A0 = k{eα | α ∈ P = P∨} = (A∨)0.

In degree one,

{p(α, β) | α, β ∈ P such that α↔ β} ⊂ A1

is a natural basis for A1.
As P = P∨, to distinguish elements of A and A∨, we let p∨(α, β) denote the

element of (A∨)1 associated to the arrow α→ β in P∨.
We now identify (A∨)1 with (A1)∗ as follows. First we attach a sign ε(α↔ β) to

each pair α ↔ β of adjacent topes in P such that for distinct topes α, αi, αj , (αi)j ,
an odd number of the edges of the square

α oo //
OO

��

αiOO

��
αj oo // (αi)j

are attached a negative sign.5

We then identify (A∨)1 with (A1)∗ via the perfect pairing

(A∨)1 ×A1 → k

〈p∨(α, β), p(γ, δ)〉 =

{
ε(α↔ β) if α = δ, β = γ,

0 otherwise.

For the remainder of the proof, we let

N : = A1 ⊗A0
A1 = T (A1)2,

N∨ : = (A∨)1 ⊗A0
(A∨)1 = T ((A∨)1)2.

We wish to show that our choice of perfect pairing induces an isomorphism be-
tween W∨ ⊂ N∨ and W⊥ ⊂ N∗.

Note that the relations of type (A2′′) lie in eαWeβ and the relations of type
(A3/4′′) lie in eαWeα. As these relations are homogeneous with respect to the
idempotents eα for α ∈ P , we have a direct sum decomposition

W =
⊕
α,β∈P

eαWeβ .

Moreover, eαWeβ and eγW
∨eδ are orthogonal unless α = δ and β = γ. Thus it

is enough to check that eβW∨eα ⊂ eβN
∨eα is the perpendicular complement to

eαWeβ ⊂ eαNeβ for any α, β ∈ P .

5This can be done for the edges of the n-cube {+,−}E by identifying its vertices with monomials
in the exterior algebra Λk{e1, . . . , en} and then using the standard differential to attach signs to edges.
Restricting to P then gives a collection of signs as desired.
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Note that eαNeβ , eβN∨eα are zero unless α = β or α and β differ in exactly two
positions and there is a path from α to β in P .

We first deal with the latter case. Suppose the two elements of E where α and
β differ are i 6= j. We must have that at least one of αi or αj is in P by assumption.
We can assume that aj ∈ P .

If ai ∈ P , then we have that eαNeβ is a two dimensional k-vector space with
basis {p(α, αi)⊗ p(αi, β), p(α, αj)⊗ p(αj , β)} and

eαWeβ = k{p(α, αi)⊗ p(αi, β)− p(α, αj)⊗ p(αj , β)} ⊂ eαNeβ , , and

eβW
∨eα = k{p∨(β, αi)⊗ p∨(αi, α)− p∨(β, αj)⊗ p∨(αj , α)} ⊂ eβN∨eα.

Pairing the two basis vectors together using the form defined above we get

ε(α↔ αi)ε(αi ↔ β) + ε(α↔ αj)ε(αj ↔ β).

By our choice of signs, the terms cancel and we conclude that eαW⊥eβ = eβW
∨eα.

If αj 6∈ P , then either αj ∈ F\P and αj 6∈ B = F∨, or αj ∈ B\P = F∨\P∨ and
αj 6∈ F = B∨. Assume that αj ∈ F\P and αj 6∈ B = F∨. Then we have that

eαNeβ = k{p(α, αi)⊗ p(αi, β)} = eαWeβ

since p(α, αi, β) = p(α, αj , β) = 0 in A. On the other hand, αj 6∈ F∨ means that
eβN

∨eα = k{p∨(β, αi) ⊗ p∨(αi, α)} and (A2) does not impose any relations, so
eβW

∨eα = 0. Therefore eβW⊥eα = 0 = eβW
∨eα. The case αj ∈ B\P = F∨\P∨

and αj 6∈ F = B∨ follows from the same argument on the dual side.
Finally, consider the case where α = β. Note that

eαNeα = k{p(α, αi)⊗ p(αi, a) | i ∈ Jα}.

We identify eαNeα with kJα by regarding p(α, αi)⊗ p(αi, a) as the standard basis
element labelled by i ∈ Jα. We also use the standard pairing on kE to view U⊥

as a subspace of kE . From the relations (A3/4′′), we find that eαWeα is given
by prJα(U⊥ ∩ kIα) or equivalently by (prKαU

⊥) ∩ kJα , where prS denotes the
orthogonal projection from kE to kS for any S ⊂ E.

Taking the orthogonal complement of eαWeα ⊂ eαNeα using the first descrip-
tion gives:

(eαWeα)⊥ = (prJα(U⊥ ∩ kIα))⊥ = (prIαU) ∩ kJα

= (prK∨αU) ∩ kJ
∨
α = eαW

∨eα.

Here the second equality follows from the fact that (prSV )⊥ = V ⊥ ∩ kS , the third
equality uses the fact that Iα = K∨α and Jα = J∨α (see Proposition 2.16) and the
final equality follows from the second description of W above. �

5. THE ALGEBRA B

Following Braden–Licata–Proudfoot–Webster, we define in this section another
algebra B = B(P, U) associated to the pair (P, U) and prove that B is isomorphic
to the quadratic dual A! of A(P, U). We also consider a deformed version B̃(P)

such that B̃(P) ∼= Ã(P∨). The algebras B and B̃ defined in [BLPW10, Section
4.1] coincide with those defined here in the special case when (P, U) comes from
a linear subspace as in Example 2.4.
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5.1. A topological lemma. In this section we assume some familiarity with reg-
ular cell complexes, posets and their geometric realizations and refer the reader
to [BLVS+99, Section 4.7] for more on these topics.

Recall from Section 2.2 that L = L(N ) denotes the poset of covectors for N =

M̃\f . This poset is pure with a unique minimal element 0 and a rank function ρ.
Every covector is uniquely determined by its cocircuit faces.

We will define the algebraB(P, U) from the poset structure of L, using an affine
version of the following notion [BLVS+99, Definition 4.1.2(ii)]:

Definition 5.1. For any covector Y ∈ L, the Edmonds–Mandel face lattice of Y ,
denoted Fem(Y ), is the set of all faces of Y in L. The opposite poset Flv(Y ) :=
Fem(Y )op is called the Las Vergnas face lattice of Y .

Both Fem(Y ) and Flv(Y ) are graded posets and by theorems of Folkman–Lawrence
and Edmonds–Mandel, they have the following topological interpretation [BLVS+99,
Theorem 4.3.5]:

Theorem 5.2. The lattices Fem(Y ) and Flv(Y ) are each isomorphic to the face lattices (or
augmented face posets) of PL regular cell decompositions of the (ρ(Y )− 2)-sphere.

We will use the following affine (or feasible) version of the Edmonds–Mandel
and Las Vergnas face lattice.

Definition 5.3. Let Y ∈ A. The feasible Edmonds–Mandel face lattice of Y is

FFem(Y ) := (Fem(Y ) ∩ A) ∪ {0},

while the feasible Las Vergnas face lattice of Y is

FFlv(Y ) := FFem(Y )op.

For any feasible covector Y ∈ A, let Y∞ ∈ A∞ be the unique maximal face of Y
in the boundary. The face Y∞ is equal to the composition of all cocircuit faces of
Y in A∞.

Note that A does not have a cellular interpretation, since the faces of a feasible
covector need not be feasible. The same is true of FFem(Y ) when Y∞ 6= 0. On the
other hand, FFlv(Y ) will always have a cellular interpretation, even if the program
P is not generic. The assumption that g is generic implies FFlv(Y ) is the face lattice
of a pure simplicial complex, whose vertices correspond to the feasible facets of Y
and whose maximal simplices correspond to the feasible cocircuits faces of Y .

We will use the following lemma on the topology of FFlv(Y ) to show that the al-
gebraB(P, U) we define below is finite-dimensional (which will imply thatA(P, U)
is finite dimensional as well).

Lemma 5.4. Let Y ∈ A.
• If Y∞ = 0, then the geometric realization ‖FFlv(Y )\{0, Y }‖ of the proper part of

the feasible Las Vergnas face lattice of Y is a PL (ρ(Y )− 2)-sphere.
• If Y∞ 6= 0, then ‖FFlv(Y )\{0, Y }‖ is a PL (ρ(Y )− 2)-ball.

Proof. If Y∞ = 0, then FFlv(Y ) = Flv(Y ) and so the statement reduces to Theo-
rem 5.2.

Assume that Y∞ 6= 0, and let

∆ := FFlv(Y )\{0, Y }
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denote the proper part of the feasible Las Vergnas face lattice of Y .
The geometric realization ‖∆‖ of ∆ is homeomorphic to the geometric realiza-

tion ‖∆ord(∆)‖ of the order complex ∆ord(∆) of ∆ (which is a subdivision of the
former). Further, using the canonical identification ∆ord(∆) ∼= ∆ord(∆op), we find
that ‖∆‖ is homeomorphic to ‖∆ord(∆op)‖.

It will thus suffice to prove that ‖∆ord(∆op)‖ is a PL ball. By restricting to
P/z(Y ) if necessary, we may assume that Y is a tope, so ρ(Y ) = d + 1 and
∆ord(∆op) is a (d− 1)-dimensional simplicial complex.

We first note that ∆ord(∆op) ∼= ∆ord(∆) is pure because ∆ is the face poset
of a pure simplicial complex. By [BLVS+99, Proposition 4.5.4], the graded poset
FFem(Y ) admits a recursive coatom ordering, which implies by [BLVS+99, Lemma
4.7.19] that its open interval ∆op = (0, Y ) is shellable (meaning that the order
complex ∆ord(∆op) is shellable).

To conclude that the shellable (d−1)-dimensional simplicial complex ∆ord(∆op)
is a PL (d−1)-ball we use the criterion of [BLVS+99, Proposition 4.7.22(ii)]: namely
we must show that every (d−2)-simplex is the face of one or two (d−1)-simplices
and at least one (d− 2)-simplex is the face of exactly one (d− 1)-simplex.

Note that a (d − 1)-simplex of ∆ord(∆op) is a maximal chain x0 < x1 < · · · <
xd−1 of feasible covector faces of Y , where xi < xi+1 means that xi is a proper
face of xi+1. Now consider any (d− 2)-simplex of ∆ord(∆op). It will similarly be a
chain of the form x0 < x1 < · · · < xi−1 < xi+1 < · · · < xd−1 for some i between 0
and d− 1.

If i > 0, then the chain can be completed to a maximal chain in exactly two
ways because ∆ is a pure simplicial complex.

If i = 0, then the feasible edge x1 either has one or two feasible cocircuit faces
and so the (d− 2)-simplex can be completed to either one or two (d− 1)-simplices.
As Y∞ 6= 0, there exists an edge x1 of Y with only one feasible cocircuit face and
thus a (d− 2)-simplex of ∆ord(∆op) that is the face of a unique (d− 1)-simplex.

We conclude that ‖∆ord(∆op)‖ ∼= ‖∆‖ is a PL (d− 1)-ball. �

5.2. The algebra B̃. Recall that the face ring of a simplicial complex ∆ is defined
as

k[∆] = k[ti | i ∈ E]/(tS | S 6∈∆) = Sym kE/(tS | S 6∈∆),

where here and in what follows tS =
∏
i∈S ti with the convention t∅ = 1. As

before, we let k[M ] denote the face ring of the matroid complex of M .
For any bounded feasible topes α1, . . . , αr ∈ P , let Y = α1 ∧ · · · ∧ αr denote the

unique maximal common feasible covector face of all α1, . . . , αr. Then

FFem(Y ) =
r⋂
`=1

FFem(α`).

We define

∆α1···αr := FFlv(Y )\{0}

and

z(∆α1···αr ) := {S ⊂ E | S ⊂ z(X) for someX ∈ ∆α1···αr}.

Note that z(∆α1···αr ) is a simplicial complex and ∆α1···αr can be realized as the
face poset of a simplicial complex.
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Definition 5.5. For α1, . . . , αr ∈ P , let

R̃α1···αr := k[z(∆α1···αr )].

Remark 5.6. When (P, U) comes from a linear subspace as in Example 2.4, then
each feasible tope α corresponds to a bounded feasible chamber in the the corre-
sponding hyperplane arrangement and the ring R̃α1···αr defined here agrees with
the corresponding ones defined in [BLPW10, Definition 4.1].

For any feasible covector Y , the zero set z(Y ) ⊂ E is an independent set ofM , so
there are natural quotient maps k[M ] → R̃α1···αr . Notice that for any β ∈ F there
is also a natural quotient map R̃α1···αr → R̃α1···αrβ compatible with the maps from
k[M ]. Furthermore, the quotient k[M ]→ R̃α1···αr makes R̃α1···αr a SymU -module.

Lemma 5.7. For α1, . . . , αr ∈ P , let Y = α1 ∧ · · · ∧ αr. The ring R̃α1···αr is a free
SymU -module whose rank is equal to the number of feasible cocircuit faces of Y .

Proof. Lemma 5.4 tells us that ‖FFlv(Y )\{0, Y }‖ = ‖∆α1...αr‖ is a (ρ(Y )− 2)-sphere
or (ρ(Y )−2)-ball. If z(Y ) = ∅, then the posets z(∆α1···αr ) and ∆α1···αr are isomor-
phic. More generally, the geometric realization ‖z(∆α1···αr )‖ is the |z(Y )|-fold cone
over ‖∆α1···αr‖. In any case, ‖z(∆α1···αr )‖ is either a (d− 1)-ball or (d− 1)-sphere.

By results of Hochster, Reisner, and Munkres (cf [Sta04, Section II.4]) it follows
that R̃α1···αr = k[z(∆α1···αr )] is a Cohen-Macaulay ring. Hence [Sta04, Theorem
I.5.10] implies that R̃α1···αr is a free module of finite rank over the symmetric al-
gebra of any parameter space. Here U is a parameter space for R̃α1···αr by [Sta04,
Lemma III.2.4] because the composition U ↪→ kE � kz(X) is an isomorphism for
any cocircuit X ∈ FFem(Y ). Also by [Sta04, Lemma III.2.4], the rank is equal to
the number of maximal simplices of z(∆α1···αr ), which are in bijection with the
cocircuits of FFem(Y ). �

Remark 5.8. While we will not need it in what follows, we note that if P is Eu-
clidean one can prove that z(∆α1···αr ) is in fact shellable and then [Sta04, Theorem
III.2.5] gives an explicit basis of R̃α1···αr as a free SymU -module.

For any α, β ∈ P , we let

dαβ := |{i | α(i) 6= β(i)}|,

which coincides with the length of any taut path from α to β. For α, β, γ, we let

Sβαγ := {i | α(i) = γ(i) 6= β(i)},

which is the set of i ∈ E such that the concatenation of a taut path α to β and a
taut path β to γ changes the i-th coordinate exactly twice.

For a graded vector space (or module) M and integer k, we write M〈k〉 to de-
note the graded vector space shifted down by k, that is (M〈k〉)i = Mi+k.

Definition 5.9. Let B̃ = B̃(P), as a graded vector space in non-negative degree,
be defined as

B̃ :=
⊕

(α,β)∈P×P

R̃αβ〈−dαβ〉

where the variables ti are given degree 2.
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Following [BLPW10] we define a multiplication ? : B̃⊗B̃ → B̃ as zero on R̃αβ⊗
R̃δγ if β 6= δ and for α, β, γ ∈ P , by the composition

R̃αβ ⊗ R̃βγ → R̃αβγ ⊗ R̃αβγ → R̃αβγ
fαβγ→ R̃αγ

where the first map is the product of the restrictions, the second is multiplication
in R̃αβγ , and the third map fαβγ is induced by multiplication by tSβαγ .

Lemma 5.10. The map fαβγ is well-defined.

Proof. It suffices to check that if tS = 0 in R̃αβγ , then tSβαγ tS = 0 in R̃αγ . In other
words, we want to show if S 6⊂ z(Y ) for all Y ∈ ∆αβγ , then S ∪Sβαγ 6⊂ z(Y ′) for all
Y ′ ∈ ∆αγ . Suppose Y ′ ∈ ∆αγ and either: (1) Y ′ 6∈ ∆β or (2) Y ′ ∈ ∆β .

In the first case, Y ′ 6∈ ∆β means that there exists an i such that Y ′(i) = −β(i),
in particular Y ′(i) 6= 0 and i 6∈ z(Y ′). As Y ′ is a face of α and γ, it follows that
Y ′(i) = α(i) = γ(i) and so i ∈ Sβαγ . Thus S ∪ Sβαγ 6⊂ z(Y ′).

In the second case, we have Y ′ ∈ ∆αβγ hence by assumption S 6⊂ z(Y ′) and so
again S ∪ Sβαγ 6⊂ z(Y ′). �

Proposition 5.11. The multiplication ∗ gives B̃ the structure of a graded ring.

Proof. We need to check associativity and compatibility with grading. For associa-
tivity, the map R̃αβ ⊗ R̃βγ ⊗ R̃γδ → R̃αδ given by x ⊗ y ⊗ z 7→ (x ? y) ? z is equal
to the map given by restricting each of the components to R̃αβγδ , multiplying in
order, and then multiplying by tSβαγ · tSγαδ to get back into Rαδ . For x ? (y ? z), the
only change is that we multiply by tSγβδ · tSβαδ . To show

tSβαγ · tSγαδ = tSγβδ · tSβαδ ,

note that the power of ti appearing on each side is equal to the number of times
a path given by the concatenation of taut paths from α to β, β to γ, and γ to δ
changes the i-th coordinate twice.

For the compatibility of gradings, note that

dαβ + dβγ − dαγ = 2|Sβαγ |.
It follows that multiplication ? gives a graded preserving map

R̃αβ〈−dαβ〉 ⊗k R̃βγ〈−dβγ〉 → R̃αγ〈−dαγ〉.
(Recall that deg(ti) = 2 for all i.) �

Note that the map ζ : Sym(kE)→ B̃ given by the composition

Sym(kE) ↪→
⊕
α∈P

Sym(kE) �
⊕
α∈P

R̃αα ↪→ B̃

makes B̃ into a graded Sym(kE)-algebra. Moreover, this map factors through the
projection Sym(kE)→ k[M ] and so we may also view B̃ as a graded k[M ]-algebra.

Let
Rα1···αr := R̃α1···αr ⊗SymU k = R̃α1···αr ⊗k[M ] k[M ]/(U).

We define B = B(P, U) via

B := B̃ ⊗SymU k = B̃ ⊗k[M ] k[M ]/(U).

Note, B is itself a graded ring whose multiplication we will also denote by ?.
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Theorem 5.12. There is a natural isomorphism Ã(P∨) → B̃(P) as graded Sym(kE)-
algebras, and this induces an isomorphism A(P∨, U⊥) ' B(P, U) as graded rings.

In particular the theorem implies that Ã(P∨) is in fact a k[M ]-module.

Proof. We define a map φ : Ã(P∨)→ B̃(P) by

(1) eα 7→ 1αα ∈ R̃αα for all α ∈ P ,
(2) p∨(α, β) 7→ 1αβ ∈ R̃αβ〈−1〉 for adjacent α, β ∈ P , and
(3) f 7→ ζ(f) for all f ∈ Sym(kE) = k[ti | i ∈ E].

We will first show that this gives a well-defined homomorphism. We then prove
surjectivity and conclude with injectivity.

We must check that the image of the relations (A2) and (A3) for Ã(P∨) hold in
B̃(P).

For (A2), we consider α ∈ P∨ = P and i 6= j in E such that γ = (αi)j ∈ P∨ and
αi, αj ∈ F∨. This means that Sα

i

αγ = ∅ = Sα
j

αγ , so that tSαiαγ = 1.

If αi and αj are both in P∨ = P , then we have

1ααi ? 1αiγ = 1αγ = 1ααj ? 1αjγ .

Otherwise, by relabelling i and j if necessary, we may assume without loss of
generality that αi 6∈ P∨. This means that in Ã(P∨), we have

0 = p∨(α, αi, γ) = p∨(α, αj , γ).

On the other hand it also means that αi ∈ F∨\P∨ = B\F . But any common face
of α and γ must also be a face of αi, which is infeasible, hence α and γ have no
common feasible faces and so R̃αγ = 0, which means both products 1ααi ? 1αiγ
and 1ααj ? 1αjγ must be zero.

We now check the relation (A3). Let α ∈ P∨ and αi ∈ F∨.
If αi ∈ P∨, we have that

φ(eαti) = 1αα ? ζ(ti) = (ti ∈ R̃αα)

= (tSαiαα
∈ R̃αα)

= 1α(αi) ? 1(ai)α = φ(p(α, αi, α)).

If αi 6∈ P∨, then αi ∈ F∨\P∨ and so eαti = eαp
∨(α, αi, α) = 0 in Ã(P∨). On the

other hand, αi ∈ B\P implies that i is not in the zero set of any feasible face of the
feasible tope α of N = M̃\f , so ti = 0 ∈ R̃αα. This completes the proof that the
relation (A3) is satisfied.

Thus, the homomorphism φ is well-defined.

To see that φ is surjective, note that φ(eαti) = 1ααti for all i ∈ E and α ∈ P∨ =

P . This means that
⊕

α R̃αα ⊂ B̃ is contained in the image of φ. Since the natural
quotient R̃αα → R̃ααβ = R̃αβ is given by multiplication by 1αβ = φ(p∨α,β) for any
β ∈ P and p∨α,β representing a taut path from α to β in the quiver Q∨ associated to
P∨, we have that φ is surjective.

Finally, we must prove that φ is injective. It suffices to show that the dimension
of R̃αβ in each degree is at least the dimension of the corresponding graded part
of eαÃ(P∨)eβ . To do so, we construct a surjection of graded Sym(kE)-modules
R̃αβ → eαÃ(P∨)eβ .



A CATEGORY O FOR ORIENTED MATROIDS 29

Let χ : Sym(kE) = k[ti | i ∈ E] → eαÃ(P∨)eβ be the map that takes 1 to a
taut path p from α to β in the quiver Q∨. By Proposition 3.6 and Proposition 3.5
this map is surjective. It remains to show that χ factors through R̃αβ , which is
equivalent to showing that for any S 6⊂ z(Y ) for all Y ∈ ∆αβ , we have χ(tS) =
p · tS = 0. Notice that S 6⊂ z(Y ) for all Y ∈ ∆αβ if and only if S ∪ Sβαα 6⊂ z(Y ) for
all Y ∈ ∆α, so we may reduce to the case α = β if we replace S with S ∪ Sβαα.

By Corollary 3.7 it suffices to prove the existence of γ ∈ F∨\P∨ = B\P such
that γ(i) = α(i) for all i 6∈ S. Since S 6⊂ z(Y ) for any Y ∈ ∆α, the image α of
α in P/S = (M̃/S, g, f) is not feasible. However, α is bounded in P/S since any
cocircuit faceX ∈ A∞(P/S) of α comes from a cocircuit faceX ∈ A∞(P) of α, and
therefore has X(f) = X(f) = −. Hence α is a feasible but unbounded sign vector
in P∨\S, and lifts to at least one γ ∈ F∨\P∨ with γ(i) = α(i) for all i 6∈ S. �

6. THE CENTER OF B

We continue to assume P = (M̃, g, f) is a generic oriented matroid program
and U ⊂ kE is a parameter space for M = M. In this section we compute the
centers of B̃ := B̃(P) and B := B(P, U).

Let ζ be the composition

k[M ] ↪→
⊕
α∈P

k[M ]→
⊕
α∈P

R̃αα ↪→ B̃

and recall that this map makes B̃ a graded k[M ]-algebra.

Theorem 6.1. The map ζ : k[M ] → B̃(P) is injective, and its image is the center of
B̃(P). Furthermore, the quotient B̃(P) → B(P, U) induces a surjection of centers and
the center of B(P, U) is isomorphic to k[M ]/(U).

This is the natural generalization of [BLPW10, Theorem 4.16] and we imitate
the structure of their proof, which makes use of the extended algebras:

B̃ext = B̃ext(P) :=
⊕

(α,β)∈F×F

R̃αβ〈−dαβ〉 and Bext = Bext(P, U) := B̃ext⊗SymUk,

where the product ? is defined as before but we use all feasible topes, not just the
bounded feasible topes. Braden–Licata–Proudfoot–Webster first prove their result
is true when B̃ and B are replaced by the extended algebras B̃ext and Bext. This is
done by studying a chain complex whose homology is the center Z(B̃ext). To get
the theorem for B̃ and B, they then use a categorical limit argument.

This section is split into two subsections. In the first subsection we define the
necessary notation and lay the topological foundation for the proof. In the second
subsection we adapt the arguments of [BLPW10] to our setting.

6.1. The topology of affine space and feasible Edmonds–Mandel face lattices.
When P realizable by a polarized arrangement (V, η, ξ), it is possible to view A as
the cells of the coordinate hyperplane arrangement in η + V ⊂ Rn. This allows
one to find tubular neighborhoods of intersections of hyperplanes, and compute
the relative cellular Borel-Moore homology of these tubular neighborhoods using
the decomposition by cells. In this section we recall definitions and notation to
generalize these notions to our setting.
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Recall that A and A∞ were defined respectively in Definition 2.8 as the feasible
and boundary covectors. We also define the core of A to be

A0 := {Y ∈ A | Y∞ = 0}.

For any i ∈ E and S ⊂ E, let

HFi := {X ∈ A | X(i) = 0} and HFS :=
⋂
i∈S

HFi .

Our genericity assumption on g implies that HFS 6= ∅ if and only if S is indepen-
dent in the underlying matroid M ofM, in which case any maximal covector in
HFS has rank d + 1 − |S|. Note that HFS does not have a cellular interpretation6

unless S is a basis of M , in which case HFS consists of a single feasible cocircuit.
It is known [BLVS+99, Theorem 4.5.7.i] that ‖∆ord(A)‖ is a shellable d-ball. Thus

its boundary ‖∆ord(A\A0)‖ is a PL (d − 1)-sphere. In ‖∆ord(A)‖, we have that
‖∆ord(HFS )‖ is a (d− |S|)-ball (when nonempty), with boundary ‖∆ord(HFS \A0)‖.

For any Y ∈ A, let

σY := ‖∆ord(FFem(Y )\{0})‖ ⊂ ‖∆ord(A)‖.

Lemma 6.2. For any Y ∈ A, the order complex ∆ord(FFem(Y )\{0}) is a shellable (ρ(Y )−
1)-ball.

Proof. Recalling the notation from the proof of Lemma 5.4, note that ∆ord(FFem(Y )\{0})
is the cone on ∆ord(∆op) with vertex Y . If Y∞ = 0, then ∆ord(∆op) is a shellable
sphere (see [BLVS+99, Theorem 4.3.5(i)]) and if Y∞ 6= 0, then in the proof of
Lemma 5.4 we showed that ∆ord(∆op) is a shellable ball. In both cases, the cone is
a shellable ball as claimed. �

The boundary of each σY is the union of cells σX for the proper facesX of Y and
the geometric simplices in ∆ord(FFem(Y )\{0}) corresponding to chains that do not
begin with a cocircuit. Let Ξ be the regular cell complex of cells {σY }Y ∈A together
with the set of (geometric) simplices {σ}σ∈∆ord(A\A0). In particular, ∆ord(A) is a
subdivision of Ξ. The cells σY for Y ∈ A0 define a subcomplex of Ξ, as do those
for Y ∈ HFS ∩ A0 when S is independent in M .

Remark 6.3. Figure 3 shows an example to illustrate some of these definitions. The
reason we consider ∆ord(A) and Ξ is because A does not have a cellular interpre-
tation unless we include a boundary. The natural boundary would beA∞, but this
gives us undesirable topology at the boundary. By introducing ∆ord(A) and Ξ we
resolve this issue.

Definition 6.4. For an independent set S ⊂ E of M , we define

ΣS := {A ∈ ∆ord(A)|A ⊂ (x0 < x1 < · · · < xi) ∈ ∆ord(A) and xj ∈ HFS for some j}

and let NS := ‖ΣS‖◦ be the interior of ‖ΣS‖. In particular:

NS := {A ∈ ∆ord(A)|A = (x0 < x1 < · · · < xi) and xj ∈ HFS ∩ A0 for some j}

6As was discussed in the case of HF∅ = A following Definition 5.3.
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g

FIGURE 3. ‖A ∪ A∞‖, ‖∆ord(A)‖, ‖Ξ‖

Proposition 6.5. The Borel-Moore homology of NS is

HBM
m (NS ;Z) =

{
Z m = d

0 m 6= d

and can be computed in ‖Ξ‖ using the relative cellular Borel-Moore homology of NS via
the decomposition by cells NS ∩ σY for Y ∈ A. These NS ∩ σY are nonempty exactly
when FFem(Y ) ∩HFS 6= ∅.

Proof. We first show that NS is a d-ball, from which the first statement follows.
By [BLVS+99, Theorem 4.5.7(i)], ‖∆ord(HFS )‖ is a shellable ball. In particular,

‖∆ord(HFS )‖ is collapsible (i.e., it collapses to a point).
Now NS is a regular neighborhood of ‖∆ord(HFS )‖ in the d-ball ‖∆ord(A)‖ and

so by [RS72, Corollary 3.27], NS is a d-ball.
To see that each intersection NS ∩ σY for Y ∈ A is a cell, note that NS ∩ σY is a

regular neighborhood of the shellable ball HS ∩ σY in σY . The same collapsibility
argument from above then implies NS ∩ σY is a ball.

The cells NS ∩σY provide a cellular decomposition of NS modulo its boundary
and the space NS ∩σY is nonempty if and only if a face of Y is contained in HFS or
equivalently, FFlv(Y ) ∩HFS 6= ∅. �

Proposition 6.6. Let Y ∈ A\A0 such that Y has a face in HFS ∩ A0. Then

HBM
m (NS ∩ σY ;Z) = 0

for all m. This can be computed in ‖Ξ‖ using the decomposition of NS ∩ σY by cells
NS ∩ σX for X ∈ FFem(Y ), which are nonempty exactly for X which have a face in HFS .

Proof. The idea of this proof is to again use relative homology, this time on the
pair (σY , σY \NS). Recall that σY is a PL (ρ(Y )− 1)-ball by Lemma 6.2. Then σY is
contractible, so we are done if we can prove the same for σY \NS .

There is a unique maximal element of HFS ∩A0 ∩FFem(Y ), which we call X . The
complement of NS in σY is ‖∆‖, where

∆ := ord(FFem(Y )\(HFS ∩ A0)) ⊂ ord(FFem(Y )).

Notice that ∆ is nonempty since Y∞ 6= 0, and ∆ is equivalent to the cone over
ord(FFem(Y )\FFem(X)) with cone point Y . Thus ‖∆‖ is contractible, and we are
done. �

6.2. The proof of Theorem 6.1. We will construct a chain complex with homology
isomorphic to the center Z(B̃ext).

Let
Ar = {Y ∈ A | ρ(Y )− 1 = r} = {Y ∈ A | dim(σY ) = r},
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where, as in Section 2.2, ρ is the poset rank of Y in L and by Lemma 6.2, σY =
‖ ord(FFem(Y ))‖ ⊂ ‖Ξ‖ is a ball. For example, Ad is the set of feasible topes F and
A0 is the set of feasible cocircuits.

For all Y ∈ Ar, the space of orientations of σY is a one-dimensional vector space

or(Y ) := HBM
r (σ◦Y ; k),

where σ◦Y denotes the interior of σY . There is a natural boundary map

∂Y : or(Y )→
⊕

X∈Ar−1∩FFem(Y )

or(X).

Assembling all such maps, we obtain a chain complex on
⊕

Y ∈A or(Y ), graded by
dim(σY ), which computes the cellular Borel-Moore homology of ‖Ξ‖◦. As ‖Ξ‖ is
a closed PL d-ball, this homology is one-dimensional in degree d and zero in all
other degrees.

For Y ∈ Ar, let

R̃Y := k[z(FFlv(Y )\{0})] = R̃α1···α` ,

for any choice of α1, . . . , α` ∈ F such that Y = α1 ∧ · · · ∧ α`. We define a chain
complex C• such that

Cr =
⊕
Y ∈Ar

R̃Y ⊗k or(Y )

with differentials for each Y ∈ Ar
R̃Y ⊗k or(Y )→

⊕
X∈Ar−1∩FFem(Y )

R̃X ⊗k or(X)

induced by the natural boundary maps or(Y ) → or(X) and the quotients R̃Y →
R̃X for each facet X of Y .

Lemma 6.7. Fix an orientation class Ω ∈ HBM
d (‖Ξ‖◦; k), and let Ωα ∈ or(α) be the

restriction of Ω for any α ∈ F . Let ψα : k[M] → R̃α denote the natural quotient map.
Then the homology of C• is zero outside of degree d and k[M] ' Hd(C•) via the map

x 7→
∑
α∈F

ψα(x)⊗ Ωα.

Proof. Following the proof of [BLPW10, Lemma 4.17], for a monomial m =
∏
i t
si
i ,

let S = {i | si > 0} and Cm• ⊂ C• be the subcomplex consisting of all images of m,
namely

Cmr =
⊕

Y ∈ Ar
HFS ∩ FFem(Y ) 6= ∅

or(Y ).

Note that the complex C• decomposes as a direct sum ⊕mCm• of subcomplexes
because the terms of C• are direct sums of quotients of Sym kE = k[ti|i ∈ E]
by monomial ideals, while the differentials are induced by the identity map on
k[ti|i ∈ E], up to sign.

If the set S = {i | si > 0} is dependent in M , then HS = ∅ and so Cm• = 0. If
S is independent in M , then Cm• is the cellular Borel-Moore complex of the neigh-
borhood NS ⊂ ‖Ξ‖, the homology of which is one-dimensional and concentrated
in degree d by Proposition 6.5. �
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Proposition 6.8. The obvious map ζext : k[M ] → B̃ext is injective, and its image is the
center of B̃ext. The quotient homomorphism B̃ext → Bext induces a surjection of centers,
and yields an isomorphism Z(Bext) ∼= k[M ]/(U).

Proof. As in the proof of [BLPW10, Proposition 4.18], for an element z ∈ B̃ext to be
in the center, it must commute with each idempotent 1αα and thus be of the form
z =

∑
α∈F zα where zα ∈ Rα. Similarly, using the fact that z must commute with

1αβ for α and β adjacent, we find that

ψαβ(zα) = ψβα(zβ)

where ψαβ : R̃α → R̃αβ and ψβα : R̃β → R̃αβ denote the canonical quotient
homomorphisms. As B̃ext is generated by the elements 1αα and 1αβ for adjacent
α, β and the image of ζext, it follows that:

Z(B̃ext) ∼=

{
(zα) ∈

⊕
α∈F

R̃α | ψαβ(zα) = ψβα(zβ) for all α↔ β ∈ F

}
.(6.1)

On the other hand,

Hd(C•) =

{
y =

∑
α∈F

yα ⊗ Ωα ∈ Cd | ∂y = 0

}
and the cycle condition ∂y = 0 is equivalent to ψαβ(yα) = ψβα(yβ) for all α↔ β ∈
F . We conclude that ζext induces an isomorphism

k[M ] ∼= Hd(C•) ∼= Z(B̃ext).

Finally, we can define a chain complex Ĉ• of free SymU -modules with Ĉm =

Cm for 0 ≤ m ≤ d and Ĉd+1 = ker(∂d) ∼= k[M ]. This is acyclic, and thus so is
Ĉ• ⊗SymU k. Arguments analogous to above prove that

k[M ]/(U) ∼= Hd(C• ⊗SymU k) ∼= Z(Bext)

through an isomorphism compatible with the quotient B̃ext → Bext. �

We now include boundedness into our considerations. Define

AP :=
⋃

Y ∈P⊂Ad

FFem(Y ),

and notice that we have a chain of proper inclusions A0 ⊂ AP ⊂ A.
Note that the description of Z(B̃ext) in (6.1) can be rewritten as asking that

ψαβ(zα) = ψβα(zβ) for all α, β ∈ F , not necessarily adjacent. This can be rephrased
as a limit:

Z(B̃ext) ∼= lim←−
X∈A

R̃X .(6.2)

By the same sort of argument, we find

Z(Bext) ∼= lim←−
X∈A

RX , Z(B̃) ∼= lim←−
X∈AP

R̃X , and Z(B) ∼= lim←−
X∈AP

RX .(6.3)

The next lemma allows us to conclude that these centers only depend on A0.
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Lemma 6.9. For any Y ∈ AP and any subcomplex D ⊂ FFem(Y ) with FFem(Y ) ∩ A0 ⊂
D, the restrictions

lim←−
X∈FFem(Y )

R̃X → lim←−
X∈D

R̃X and lim←−
X∈FFem(Y )

RX → lim←−
X∈D

RX(6.4)

are isomorphisms.

Proof. This proof is simply a rephrasing of [BLPW10, Lemma 4.20] in our setting.
This is trivial if Y ∈ FFem(Y ) ∩ A0 (equivalently Y∞ = 0), which includes the

case where Y is a feasible cocircuit. So we may assume Y∞ 6= 0, and we may also
inductively assume the statement is true if Y is replaced by any X ∈ FFem(Y )\{Y }.

We will prove the statement first for D = FFem(Y )\{Y }. Let CY• be the sub-
complex of C• consisting only of the summands R̃X ⊗k or(X) for X ∈ FFem(Y ).
As in the proof of Lemma 6.7, this complex splits into a direct sum of complexes
CY,m• = CY• ∩ Cm• for each monomial m =

∏
i x

si . The summand CY,m• computes
the cellular Borel-Moore homology of NS ∩ σY ⊂ σY , for S = {i | si > 0}. By
Proposition 6.6, this Borel-Moore homology is trivial, so every CY,m• is acyclic and
so is CY• .

We have that lim←−X∈D R̃X is isomorphic to the kernel of the boundary map
CYd−1 → CYd−2. Since CY• is acyclic, the first map of (6.4) is therefore an isomor-
phism. Similarly, the second map is an isomorphism since CY• is an acyclic com-
plex of free SymU -modules, which implies CY• ⊗SymU k is an acyclic complex of
vector spaces.

For a general D containing FFem(Y ) ∩ A0, pick an ordering X1, . . . , Xr of the
elements of Fem(Y )\D such that their ranks are nondecreasing, and let D` = D ∪
{X1, . . . , X`}. Then for 1 ≤ ` ≤ r, we have FFem(X`)\{X`} ⊂ D`−1, so an identical
argument shows that

lim←−
X∈D`

R̃X → lim←−
X∈D`−1

R̃X and lim←−
X∈D`

RX → lim←−
X∈D`−1

RX

are isomorphisms. �

Proof of Theorem 6.1. Put the equations (6.2) and (6.3) together with Lemma 6.9 to
get

Z(B̃ext) ∼= lim←−
X∈A

R̃X ∼= lim←−
X∈AP

R̃X ∼= Z(B̃)

and

Z(Bext) ∼= lim←−
X∈A

RX ∼= lim←−
X∈AP

RX ∼= Z(B).

All of these isomorphisms are compatible with ζext, ζ and the natural quotients
B̃ext → Bext and B̃ → B, so we are done. �

7. THE MODULE CATEGORY OF A

In this section, we study the simple modules for A = A(P, U) and their projec-
tive covers using a class of standard modules.
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Definition 7.1. For any α ∈ P , let

Lα := A/(eβ | β 6= α).

Then Lα is the simple one-dimensional A-module supported at α and each simple
A-module is isomorphic to Lα for some α ∈ P . Let

Pα := eαA

be the projective cover of Lα. We also define Vα to be Pα/Kα, where

Kα :=
∑
i∈b

p(α, αi) ·A ⊂ Pα

and b is the basis of M such that µ(b) = α under the bijection of Corollary 2.15. We
refer to Vα as the standard module and Lα as the simple module associated to α.

Lemma 7.2. Let α ∈ P . The standard module Vα has a basis consisting of a taut path
from α to each β � α.

Proof. We simply copy the argument from [BLPW10, Lemma 5.21]. It is clear that
the collection of such taut paths is linearly independent. We now show that the
image of any other path is trivial in Vα.

Let b = µ−1(α) ∈ B.
Suppose p is a taut path from α to γ ∈ F and γ 6� α. Then for some i ∈ b,

γ(i) 6= α(i) and αi ∈ F . By Corollary 3.7 p can be replaced by one of the form
p(α, αi) · x ∈ Kα. Thus p = 0 as an element of Vα.

If p is a non-taut path, then by Proposition 3.6, we can write

p = p′ ·
∏
i

uaii =

(∏
i

eαu
ai
i

)
· p′

where p′ is taut (with the same endpoint as p) and ai > 0 for some i. Corollary 3.8
implies that for all i ∈ E and some ci,j ∈ k, we have

eαui =
∑
j∈b

ci,jp(α, α
j , α) ∈ Kα.

Thus, p ∈ Kα and we are done. �

Corollary 7.3. The kernel of Vα � Lα has a filtration with subquotients isomorphic to
Lβ for β ≺ α, each appearing exactly once.

7.1. A is a quasi-hereditary algebra when P is Euclidean. Recall that a finite-
dimensional algebra is quasi-hereditary if its category of finitely generated modules
is highest weight in the following sense.

Definition 7.4. Let C be an abelian, artinian k-linear category and let I be the set
indexing the isomorphism classes of simple objects {Lα | α ∈ I} and indecom-
posable projective objects {Pα | α ∈ I}. Then C is a highest weight category if the
set I can be endowed with a partial order ≤ and there exists a collection of objects
{Vα | α ∈ I} with surjections

Pα → Vα → Lα

that satisfy:
(i) the kernel of Vα → Lα has a filtration for which each subquotient is iso-

morphic to Lγ for some γ < α, and
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(ii) The kernel of Pα → Vα has a filtration for which each subquotient is iso-
morphic to Vβ for some β > α.

Now consider the category of finitely generated A(P, U)-modules. As dis-
cussed above, the isomorphism classes of simple modules are indexed by the set
P of bounded feasible topes. For A = A(P, U) to be a quasi-hereditary algebra,
we will assume that the oriented matroid program P is Euclidean. Recall from
Section 2.3, that this implies there is partial order ≤ on P defined by: α ≤ β when
there exists a directed sequence of edges from µ−1(α) to µ−1(β) in the graph GP

of the program. By Lemma 2.25, this is the same partial order as that defined by
the transitive closure of the cone relation �.

Suppose P is Euclidean. Then the category of A(P, U)-modules and the poset
I = (P,≤) satisfies condition (i) of Definition 7.4 by Corollary 7.3. To show that A
is quasi-hereditary it remains to show condition (ii).

We will use the following simple lemma.

Lemma 7.5. Suppose β ∈ P and i ∈ µ−1(β). Then the feasible sign vector βi is either
unbounded or βi � β.

Proof. Suppose βi is bounded. As βi(j) = β(j) for all j 6= i, if i 6∈ µ−1(βi), then for
all j ∈ µ−1(βi), βi(j) = β(j). Thus β ∈ Bµ−1(βi) or equivalently β � βi.

If βi is bounded and i ∈ µ−1(βi), then the optimal solutions of β and βi are
also optimal solutions of their common subtope Y = β ∧ βi. But Y is a tope of
P/{i} and so Y has a unique optimal solution. Thus µ−1(β) = µ−1(βi), which
contradicts the fact that µ is bijection. �

Theorem 7.6. Assume P is Euclidean. Then the kernel of the quotient homomorphism
Pα � Vα has a filtration with each successive subquotient isomorphic to Vβ for β � α.
Each of these standard modules appears exactly once.

In particular, A is quasihereditary.

Proof. For any γ ∈ P , we define P γα ⊂ Pα to be the submodule generated by paths
which pass through γ. For any β ∈ P , let

Kβ
α :=

∑
γ>β

P γα .

After choosing a total order on {β ∈ P | α ≤ β} refining ≤, the set of submodules
P βα +Kβ

α with β ≥ α forms a filtration of Kα with successive subquotients

Mβ
α :=

(
P βα +Kβ

α

)
/Kβ

α .

We pause to note that to make the definitions above, it is essential that P is
Euclidean, for if P were not Euclidean there would be no partial (or total) order
refining the cone relation on P .

Our goal now is to prove that Mβ
α is zero if β 6� α, and is isomorphic to Vβ if

β � α. Notice that Mα
α = Vα.

If β 6� α, then there is an index i ∈ µ−1(β) such that α(i) 6= β(i). By Proposition
3.6, any path starting at α and passing through β can be written as pα,β · r in P≥βα ,
where pα,β represents a taut path from α to β and r represents a path starting at
β. We may then apply Corollary 3.7 to the taut path pα,β and γ = βi, to show that
pα,β can be chosen to pass through βi ∈ F . By Lemma 7.5, P βα ⊂ P β

i

α ⊂ Kβ
α , so

Mβ
α = 0.
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On the other hand, assume that β � α. There is a natural map Pβ → P βα given
by composing any element of Pβ with a fixed taut path pα,β from α to β. This
induces a homomorphism Vβ →Mβ

α that we wish to show is an isomorphism.
By Proposition 3.6, any path starting at α and passing through β can be ex-

pressed as a product of an element in Pβ with some taut path from α to β and by
Proposition 3.5 the taut path can be chosen to be the one we have fixed. It fol-
lows that the map Pβ → P βα is surjective and thus the induced map Vβ → Mβ

α is
surjective as well.

Finally, we need to show that Vβ → Mβ
α is injective. We proceed by showing

that they have the same dimension. The surjectivity of the map implies

dimkM
β
α ≤ dimk Vβ = |{γ ∈ P | γ � β}|,

so that
dimk Pα =

∑
β�α

dimkM
β
α ≤ |{(γ, β) ∈ P × P | α, γ � β}|.

We’re done if we can show this is an equality. AsA =
∑
α∈P Pα, it suffices to prove

that
dimk A =

∑
α∈P

dimk Pα = {(α, γ, β) ∈ P × P × P | α, γ � β}.

But recall that

A = A(P, U) ' B(P∨, U⊥) =
⊕

(α,γ)∈P∨×P∨
R∨αγ

and so by Lemma 5.7

dimk B(P∨, U⊥) =
∑

(α,γ)∈P∨×P∨
|{common feasible cocircuit faces of α and γ}|.

We are then reduced to showing that the number of common feasible cocircuit
faces in P∨ of α and γ is equal to the number of bounded feasible topes β of P
such that α � β and γ � β. This follows from Complementary Slackness (Propo-
sition 2.19). �

7.2. The structure of projectives when P is not Euclidean. Note that the defini-
tion of the standard modules makes sense for any P and Lemma 7.2 holds even in
the non-Euclidean case. However, when P is not Euclidean, the transitive closure
of the cone relation is not a poset and so the standard modules are not part of a
highest weight structure.

Nonetheless, one might still hope for a version of Theorem 7.6: that the kernel of
Pα � Vα has a filtration with successive subquotients isomorphic to Vβ for β � α.

In this section we observe that this is too optimistic a hope, but that it does hold
on the level of graded Grothendieck groups.

Recall from Lemma 5.7, that for any α ∈ P , the dimension dimk Rα is equal to
the number of feasible cocircuit faces of α. We begin with a graded refinement of
this statement.

Lemma 7.7. Let (h0, h1 . . . , hd−1) denote the h-vector of z(∆α) or equivalently hi is
equal to the dimension of the graded piece of Rα of degree 2i. Then hi is equal to the
number of feasible vertices of α with i outgoing edges.
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Proof. We proceed by showing that z(∆α) is partitionable. Recall that a pure sim-
plicial complex ∆ is partitionable, if it can be expressed as a disjoint union of closed
intervals of the form

∆ = [G1, F1] t . . . t [Gs, Fs],

where each Fi is a facet of ∆. By [Sta04, Proposition III.2.3] the h-polynomial of
such a simplicial complex is given by

hi = #{j : |Gj | = i}.

Recall that z(α) = ∅ and z(∆α) is isomorphic as a poset to FFlv(α)\{0}. Thus we
may identify a face of α with the faces of the abstract simplicial complex z(∆α).

The facets F1, . . . , Fs of z(∆α) are the zero sets of the feasible vertices (i.e., fea-
sible cocircuit faces) of α. If Fi = z(Xi) for a feasible vertex Xi, let Gi be (the zero
set of) the meet in ∆α of the incoming edges of Xi.

Recall that each face of α has a unique optimal solution (this follows from The-
orem 2.14). For each feasible face Y of α, the face z(Y ) ∈ ∆α is in the interval
[Gj , Fj ] if and only if Xj is the optimal solution of Y . Thus [G1, F1] t . . . t [Gs, Fs]
is a partition of z(∆α). Note that

|Gj | = d−#{incoming edges to Xj} = #{outgoing edges from Xj}.

We conclude that

hi = #{j : |Gj | = i} = #{feasible vertices of Y with i outgoing edges}.

�

Corollary 7.8. Let (h0, h1 . . . , hd−1) denote the h-vector of z(∆αβ) or equivalently hi
is equal to the dimension of the graded piece of Rαβ of degree 2i. Then hi is equal to the
number of feasible vertices of α ∧ β with i outgoing edges of α ∧ β.

Proof. Let γ be the tope in P/z(α ∧ β) given by the restriction of α ∧ β. Then the
simplicial complex z(∆αβ) is equal to the simplicial join z(∆γ)∗Γ of z(∆γ) with the
(dαβ−1)-simplex Γ on the set z(α∧β). By standard properties of the h-polynomial,
we have:

h(z(∆αβ), x) = h(z(∆γ) ∗ Γ, x) = h(z(∆γ), x)h(Γ, x) = h(z(∆γ), x).

We conclude that the h-vector of z(∆αβ) is equal to that of z(∆γ). The result then
follows from Lemma 7.7. �

For an A-module M , let [M ] denote the class of M in the Grothendieck group
of A-modules. We will consider the Grothendieck group of the category of graded
A-modules as a Z[q, q−1]-module, where

[M〈−k〉] = qk[M ].

For a graded vector space V = ⊕iVi, we denote the graded dimension of V by

grdimV =
∑
i

(dimVi) q
i.

Theorem 7.9. For any generic oriented matroid program P and any α ∈ P , the class of
the indecomposable projective Pα in the Grothendieck group can be expressed as the sum:

[Pα] =
∑
γ�α

qdαγ [Vγ ].
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Proof. For any β ∈ P the graded composition series multiplicity of the simple Lβ
in the projective Pα is equal to the graded dimension of the space of paths in A
that start at α and end at β. In other words we have:

[Pα] =
∑
β∈P

(grdim Pαeβ) · [Lβ ] =
∑
β∈P

(grdim eαAeβ) · [Lβ ].

By Theorem 5.12,

grdim eαAeβ = grdim R∨αβ〈−dαβ〉 = qdαβ · grdim R∨αβ .

By Corollary 7.8, we can express the graded dimension of R∨αβ as

grdim R∨αβ =
d∑
i=0

#{feasible vertices of α ∧ β in P∨ with i outgoing edges} · q2i.

Observe that by Proposition 2.19 the feasible vertices of α ∧ β in P∨ (i.e., com-
mon feasible vertices of both α and β) are in bijection with the bounded feasible
topes δ of P such that α � δ and β � δ. We claim that the number of outgoing
edges of α ∧ β of the feasible vertex corresponding to δ is equal to |Sδαβ |. As in
the proof of Corollary 7.8, let γ be the bounded feasible tope (α ∧ β)|α∧β in the
contraction P∨/z(α ∧ β). Then the number of outgoing edges of the vertex of γ
corresponding to δ is equal to the distance between γ and the restriction δ of δ to
α ∧ β. But α ∧ β = {i ∈ E | α(i) = β(i)} and so the distance between γ and δ is
equal to the cardinality of the difference set

S(γ, δ) = {i ∈ E | α(i) = β(i) 6= δ(i)} = Sδαβ .

Rewriting the sum over topes δ of P such that α � δ and β � δ and using the
formula dαδ + dδβ = dαβ + 2|Sδαβ |, we find:

(7.1) grdim eαAeβ = qdαβgrdim R∨αβ =
∑
δ�α,β

qdαβ+2|Sδαβ | =
∑
δ�α,β

qdαδ+dδβ .

Putting it all together,

[Pα] =
∑
β

∑
δ�α,β

qdαδ+dδβ [Lβ ]

=
∑
δ�α

qdαδ
∑
β�δ

qdβδ [Lβ ]

=
∑
γ�α

qdαδ [Vγ ],

as we wished to show. �

We conclude this section with an example of a generic non-Euclidean program
and sign vector α for which the kernel of Pα � Vα does not admit a filtration with
successive standard subquotients.

Example 7.10. Let P = (EFM(8), g, f) be the generic non-Euclidean program de-
fined in [BLVS+99, Section 10.4]. Then M = EFM(8)/g\f is the uniform matroid
of rank 3 on E6. As short hand, we simply write ijk for the basis {i, j, k} of M .
We denote the sign vector of a bounded feasible tope α : E6 → {0,+,−} using the
string of signs

α(1)α(2)α(3)α(4)α(5)α(6).
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The bijection µ between B and P can described as follows, where we have listed
the pairs (b, µ(b)) ∈ B× P for P:

(123,+ + + + ++) (124,+ + +−+−) (123,+ +−+ ++) (126,+−+ + +−)

(134,+−+ + ++) (135,−+ + +−+) (136,+ + + +−−) (145,−+ +−−−)

(146,+−+−+−) (156,+ + + + +−) (234,+ +−−++) (235,+ + +−−+)

(236,−+ + + ++) (245,+ +−−−+) (246,+ + +−++) (256,+−+−−−)

(345,+ + + +−+) (346,+ +−−−−) (356,−+ + +−−) (456,+ + +−−−).

Using this table one can deduce the cone relation � on P from the fact that µ(b) �
µ(b′) if µ(b)(i) = µ(b′)(i) for any i ∈ b′. For example, if µ(b) ≺ µ(456), then
b = 346, 145 or 256.

Let α = + + + − −− ∈ P . Recall the notation αS denoting the sign vector of a
tope which differs from α on exactly the set S ⊂ E6. Using the above list, we find
that

{β ∈ P | β � α} = {α, α4, α5, α6, α{1,4}, α{2,5}, α{3,6}, α{4,5,6}}

Suppose there were a filtration 0 ⊂ F1 ⊂ . . . ⊂ F6 ⊂ Kα of the kernel Kα :=∑
i∈b p(α, α

i) ·A of Pα → Vα with nonzero successive standard subquotients {Vγ |
γ ∈ Cα\{α}} as in the proof of Theorem 7.6. Let Vγ = Kα/F6 be the final standard
subquotient and suppose that γ = αS .

Let p be a taut path from α to αS . If p ∈ F6, then (Kα/F6)eαS = 0, which is
a contradiction. Thus we may assume that p 6∈ F6. For any i ∈ S, p = p(α, αi)q
where q is a taut path from αi to αS . As p 6∈ F6, it follows that p(α, αi) 6∈ F6 and
Lαi is a quotient of Vγ . This is a contradiction unless S = {i}. Thus S is either
{4}, {5} or {6}.

Suppose S = {4}, so γ = α4 = + + + + −−. Note that α6 ≺ α4, so (Vα4)eα6 =
(Kα/F6)eα6 6= 0 and thus p(α, α6) 6∈ F6. But this would mean thatLα6 is a quotient
of Vα4 , which is a contradiction.

After permuting indices, the same argument shows that neither Vα5 nor Vα6

is a quotient of Kα. We conclude that Pα does not have the expected filtration.
More generally, we will see below in the proof of Theorem 7.14 that the change of
basis matrix between the standard and simple bases for the Grothendieck group is
invertible, so [Pα] cannot be expressed as a different sum of standard classes. Thus
Pα does not admit a filtration by standards.

7.3. A is a Koszul algebra when P is Euclidean. Recall the notion of a Koszul
algebra:

Definition 7.11. Let M =
⊕

`≥0M` be a graded k-algebra. A complex

. . .→ P3 → P2 → P1 → P0

of graded projective right M -modules is linear if each P` is generated in degree
`. We say that M is Koszul if every simple right M -module has a linear projective
resolution.

Theorem 7.12. Assume P is Euclidean. Then for all α ∈ P , the standard module Vα has
a linear projective resolution.

Proof. We follow the proof of [BLPW10, Theorem 5.24].
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Let a be the basis corresponding to the optimal cocircuit for α. We will define
the promised resolution as the total complex of the following multicomplex.

For any S ⊂ a, let αS ∈ {+,−}E be the sign vector which disagrees with α on
exactly the entries in S. For example, α∅ = α, and α{i} = αi for any i ∈ a. Notice
that if i ∈ S ⊂ a and αS , αS\i ∈ P , then there is a degree one map

φS,i : PαS −→ PαS\i ,
q 7→ p(αS\i, αS) · q.

We extend this to all S ⊂ a and i ∈ a by declaring that PαS = 0 if αS 6∈ P and
φS,i = 0 if i 6∈ S. Consider the module

Πα :=
⊕
S⊂a

PαS ,

which we view as being graded by the free abelian group Z{εi | i ∈ a} where
the summand PαS is given degree εS :=

∑
i∈S εi. For each i ∈ a, consider the

differential ∂i : Πα → Πα of degree −εi defined as the sum

∂i :=
∑
S⊂a

φS,i.

Observe that ∂i∂j = ∂j∂i for any i, j ∈ a by relation (A2) and so we can view Πα

as a multi-complex with differentials ∂i for each i ∈ a.
Let Π•α denote the total complex of Πα. Then Π•α is a linear complex of projec-

tive modules and H0(Π•α) = Vα. It remains to show that the complex Π•α is exact
in positive degrees.

To do so, we will filter the multicomplex Πα. For each β ∈ P , let (Πα)β ⊂ Πα be
the submodule whose εS-graded part is defined as∑

γ≥β,αS
P γ
αS
⊂ PαS ,

that is, the submodule consisting of all paths from αS passing through some γ ∈ P
where γ ≥ αS and γ ≥ β. Observe that the differentials ∂i for i ∈ a are compatible
with the submodules (Πα)β and so we have defined a filtration of Πα by the poset
P .

Computing the associated graded of this filtration yields a multi-complex

Π̃α =
⊕
β∈P

(Πα)β/(Πα)>β =
⊕
β∈P

(⊕
S

Mβ
αS

)
,

where Mβ
αS

is the subquotient of PαS defined as in the proof of Theorem 7.6.
Consider the resulting quotient multi-complexes for each β ∈ P . Let b =

µ−1(β). Recall from the proof of Theorem 7.6 that Mβ
αS

is non-zero if and only
if αS ∈ Bb.

If β = α, then Mβ
αS

= Mα
αS = 0 for any non-empty S ⊂ a = b. Thus the only

non-zero summand of the α-subquotient is Mα
α = Vα in total degree zero.

If β 6= α, choose an element i ∈ a such that i 6∈ b. Consider those subsets S ⊂ a
such that i 6∈ S. Then we have αS ∈ Bb if and only if αS∪{i} ∈ Bb. If αS ∈ Bb,
then Mβ

αS∪i
' Vβ ' Mβ

αS
and the differential induced by ∂i is the isomorphism

given by left multiplication with p(αS , αS∪{i}). On the other hand, if αS 6∈ Bb,
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then Mβ
αS∪i

= 0 = Mβ
αS

. In particular, the differential induced by ∂i on the β-
component of the associated graded multi-complex is exact.

Recall that if any differential of a multi-complex is exact then the total com-
plex of the multi-complex is also exact. We conclude that the total complex of
the associated graded multi-complex is exact in positive degree. It then follows
that the total complex of the original multi-complex must also be exact in positive
degrees. �

Theorem 7.13. Assume P is Euclidean. Then A and B are Koszul algebras and A is
Koszul dual to B.

Proof. By [ÁDL03, Theorem 1] a quasi-hereditary algebra is Koszul if the standard
modules have linear projective resolutions. Such resolutions exist forA by the pre-
vious theorem. Theorem 5.12 implies that B ∼= A(P∨, U⊥) must also be Koszul.
Finally the Koszul duality follows from the quadratic duality statement of Theo-
rem 4.2. �

7.4. Numerical identity for Hilbert polynomials. We do not know whether or
not the Euclidean condition on P is necessary for A to be Koszul. In this section
we prove that for any generic oriented matroid program P the Hilbert polynomial
of the algebra A = A(P, U) satisfies the following numerical identity.

Let H(A, q) denote the Hilbert polynomial of A, which is the P ×P-matrix with
entries

H(A, q)α,β = grdim eαAeβ .

Recall [BGS96, Lemma 2.11.1] that if A is Koszul, then there is an equality of ma-
trices

H(A, q)H(A!,−q)T = I.

Theorem 7.14. For any generic oriented matroid program P, the algebra A = A(P, U)
satisfies the numerical identity above, that is, the Hilbert polynomials of A and its qua-
dratic dual A! satisfy the matrix equation

H(A, q)H(A!,−q)T = I.

Remark 7.15. This identity does not necessarily imply that A is Koszul. See [Pos95]
for an example of a non-Koszul quadratic algebra whose Hilbert series satisfies
the numerical identity.

Proof. Using equation (7.1) in the proof of Theorem 7.9, the (α, β)-entry of H(A, q)
is given by

H(A, q)α,β = grdim eαAeβ =
∑
γ�α,β

qdαγ+dγβ .

In particular,H(A, q) factors as the productH(A, q) = XXT , whereX is theP×P-
matrix with (α, β)-entry given by

Xα,β =

{
qdαβ if β � α
0 otherwise.

Dually, using Proposition 2.19 we find that the (α, β)-entry ofH(A!,−q) is given
by

H(A!,−q)α,β =
∑
i

(−q)i dim eαA
!
ieβ =

∑
γ⊃Yµ−1(α),Yµ−1(β)

(−q)dαγ+dγβ ,
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in other words the sum runs over all γ ∈ P for which the optimal solution (cocir-
cuit) of both α and β are faces of γ. Again this factors as a product H(A!,−q) =
Y Y T , where Y is the P × P-matrix with (α, β)-entry given by

Yα,β =

{
(−q)dαβ if Yµ−1(β) is a face of α

0 otherwise.

We wish to show that

H(A, q)H(A!,−q)T = XXTY Y T = I.

Note that it suffices to show XTY = I .
Computing the product XTY , we find that its (α, β)-entry is given by

(XTY )α,β =
∑
γ∈Q

qdαγ (−q)dγβ ,

where Q is the set of all γ ∈ P such that α � γ and Yµ−1(β) is a face of γ. In other
words, Q consists of all γ ∈ P such that

(7.2) γ(i) = α(i) if i ∈ µ−1(α) and γ(i) = β(i) if i 6∈ µ−1(β).

We wish to show that

(XTY )α,β =

{
1 if α = β

0 otherwise.

If α = β, then Q = {α} and the sum is equal to qdαα(−q)dαα = 1.

Now assume that α 6= β and let

J := µ−1(β)\µ−1(α) and J ′ := µ−1(α)\µ−1(β)

so that
J t J ′ = (µ−1(α) ∪ µ−1(β))\(µ−1(α) ∩ µ−1(β)).

As we have assumed that α 6= β, J and J ′ are nonempty.
Note that if α(i) 6= β(i) for some i ∈ J ′, then by the conditions (7.2) Q is empty

and (XTY )α,β = 0 as desired. Thus we will assume that α(i) = β(i) for all i ∈ J ′.
Let

K := {i ∈ µ−1(α) ∩ µ−1(β) | α(i) 6= β(i)}.
For δ ∈ P , Yµ−1(β) is a face of δ if and only if δ = βW for some subset W ⊂

µ−1(β). On the other hand, δ = βW � α if and only if K ∪ J ⊃ W ⊃ K. Thus
Q = {(βK)S | S ⊂ J} and

(XTY )α,β =
∑
S⊂J

qdα,(βK )S (−q)d(βK )S,β = (−1)|K|
∑
S⊂J

(−1)|S|qdα,(βK )S+d(βK )S,β

= (−1)|K|
∑
S⊂J

(−1)|S|qdα,β+2|S(βK )S

α,β | = (−1)|K|qdα,β
∑
S⊂J

(−1)|S|q2|Sβ
S

α,β |,

where in the last line we have used S(βK)S

α,β = Sβ
S

α,β = {i ∈ S | α(i) = β(i)}. We will
need the following lemma to finish this proof.

Lemma 7.16. Assume as above that α 6= β and α(i) = β(i) for all i ∈ J ′. Then there
exists an element t ∈ J such that α(t) 6= β(t).
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Proof. Suppose for the sake of contradiction that α(i) = β(i) for all i ∈ J , then
α(i) = β(i) for all i ∈ J t J ′. In the deletion-contraction program(

P/(µ−1(α) ∩ µ−1(β))
)
\ (µ−1(α) ∪ µ−1(β))c

defined on the set J t J ′, the restrictions of the sign vectors of α and β are then
equal and so describe the same tope T . Now Yµ−1(α) is the optimal solution for α
and Yµ−1(β) is the optimal solution for β, so the restrictions Yα and Yβ of Yµ−1(α)

and Yµ−1(β) to J tJ ′ should both be the unique optimal solution of the tope T . But
z(Yα) = J ′ 6= J = z(Yβ), which is a contradiction. Thus there exists a t ∈ J such
that α(t) 6= β(t) as desired. �

In particular if S ⊂ J\{t}, we have Sβ
St{t}

α,β = Sβ
S

α,β .
Using this fact we rewrite the sum above:

(XTY )α,β = (−1)|K|qdα,β
∑
S⊂J

(−1)|S|q2|Sβ
S

α,β |,

= (−1)|K|qdα,β
∑

S⊂J\{t}

(
(−1)|S|q2|Sβ

S

α,β | + (−1)|St{t}|q2|Sβ
S∪{t}
α,β |

)

= (−1)|K|qdα,β
∑

S⊂J\{t}

(
(−1)|S|q2|Sβ

S

α,β | − (−1)|S|q2|Sβ
S

α,β |
)

= 0.

�

7.5. Self-dual projectives. Consider the duality functor

d : A-mod→ A-mod

defined by composing the equivalence Aop-mod ' A-mod induced by the isomor-
phism A ∼= Aop given by reversing the arrows of the quiver DE in Section 3.3 with
the induced functor Aop-mod→ A-mod coming from vector space duality.

In the following result, for a fixed sign vector α ∈ P = P∨ we will need to
refer to both the corresponding bounded feasible tope in the affine space of P and
the corresponding bounded feasible tope in the affine space of P∨. To distinguish
these two topes, we write Tα to denote the tope in P and T∨α for the tope in P∨.

Theorem 7.17. For any generic oriented matroid program P and α ∈ P . The following
are equivalent:

(1) The projective Pα is injective.
(2) The projective Pα is self-dual.
(3) The simple Lα is contained in the socle of some standard module Vβ .
(4) The bounded feasible tope Tα covers an infeasible subtope X , meaning X(g) = 0.
(5) The bounded feasible tope T∨α in the dual program P∨ is in the core of the affine

space for P∨. In other words (T∨α )∞ = 0 or equivalently the cocircuit faces of the
tope T∨α are all feasible.

When P is Euclidean, and so A is quasi-hereditary by Theorem 7.6, then the statements
above are also equivalent to the following:

(6) The projective Pα is tilting.
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Proof. The implications (1) ⇔ (2) ( ⇔ (6), if A is quasi-hereditary) are standard
facts.

(2) =⇒ (3) : If Pα is self-dual, then the socle of Pα is isomorphic to the cosocle
of Pα, which is Lα. Therefore when expressing [Pα] as a sum of simple classes
times powers of q in the Grothendieck group, Lα is the only simple to appear in
the top degree. On the other hand, by Theorem 7.9,

[Pα] =
∑
β∈Cα

qdαβ [Vβ ],

so the unique simple class appearing in the highest degree must also appear as the
highest degree term of some [Vβ ]. We conclude that Lα is the socle of Vβ .

(3) =⇒ (4) : Let b = µ−1(β). Lemma 7.2 says that Vβ is spanned as a vector
space by taut paths pγ from β to γ � β. A taut path pα is in the socle of Vβ if
there does not exist a longer taut path pγ that factors through pα. Note that this is
equivalent to the condition: if i 6∈ b and α has a feasible face Y such that Y (i) = 0,
then α(i) 6= β(i).

Recall that Yb ∈ A denotes the feasible cocircuit of N = M̃\f that is the opti-
mal solution of the tope Tβ . By the covector axioms of an oriented matroid, the
composition T := (−Yb) ◦ Tα is also a covector ofN and in particular an infeasible
tope such that T (i) = α(i) for all i ∈ b and for all i which are zero on a feasible
face of α. A taut path p from Tα to T exists in the tope graph of M̃\f , and this
path cannot change the sign corresponding to any feasible facet of Tα. Thus the
first sign change of the path p must be infeasible, which means that Tα covers a
subtope X with X(g) = 0.

(4) =⇒ (5): If the bounded tope Tα in M̃\f covers a subtope X with X(g) = 0
then α is a bounded feasible sign vector for both the original program P as well as
the reoriented program −gP = (−gM̃,−g, f). Dually, this means that the tope T∨α
in M̃∨\g = (−gM̃∨)\(−g) is bounded and feasible in both dual programs P∨ and

−gP
∨ = (−gM̃∨, f,−g). In particular, the tope α ∈ P∨ does not have any cocircuit

face Y with Y (f) = 0, since this would imply T∨α was unbounded in one of these
generic programs.

(5) =⇒ (2): If (T∨α )∞ = 0, then eαAeα ' R∨α = k[z(∆∨α)]/(U⊥), where ∆∨α =
Flv(T

∨
α )\{0}. By Lemma 5.4, ‖∆∨α‖ = ‖Flv(T∨α )\{0}‖ is homeomorphic to a (n −

d− 1)-sphere and so a result of Munkres (see [Sta04, Theorem II.4.3]) implies that
R∨α is Gorenstein, meaning that there is an isomorphism

∫
: (eαAeα)n−d−1 → k

such that 〈x, y〉 =
∫
xy defines a perfect pairing on eαAeα.

We wish to produce an isomorphism of A-modules d(Pα) ∼= Pα. To do so, we
will show that the map

〈−,−〉 : eαA×Aeα → k

(p, q) 7→
∫
pq

defines a perfect pairing and so it will follow that d(Pα) = (eαA)∗ ∼= Aeα = Pα as
right A-modules.

To prove that 〈−,−〉 is perfect, we first observe that it suffices to show that the
map ·pβ,α : eαAeβ → eαAeα is injective for some taut path pβα from β to α. This
is because for any nonzero x ∈ eβAeα, if x · pβα 6= 0, then there exists y ∈ eαAeα
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such that
∫

(xp)y =
∫
x(py) = 〈x, py〉 6= 0. On the B side, this means showing that

·uSβαα : R∨αβ → R∨α

is injective. We proceed by showing

·uSβαα : R̃∨αβ → R̃∨α

is the injective map in a split short exact sequence of SymU⊥-modules, which
proves the claim by applying the functor −⊗SymU⊥ k.

The claim is obvious if α = β or T∨α ∧T∨β is not feasible, so we assume α 6= β and
T∨α ∧T∨β is a proper non-empty face of T∨α . To see the monomial map ·uSβαα : R̃∨αβ →
R̃∨α is injective and to determine its cokernel, consider the image of any non-zero
monomial m =

∏
i∈S u

si
i in R̃∨αβ , where si > 0 for any i ∈ S. As m is non-zero in

R̃∨αβ , there exists Y ∈ ∆∨αβ such that S ⊂ z(Y ). Note that Sβαα = z(T∨α ∧T∨β ) ⊂ z(X)

for any X ∈ ∆∨αβ . Thus S ∪ Sβαα ⊂ z(Y ) and the product m · uSβαα =
∏
i∈S∪Sβαα u

ti
i ,

where ti > 0 for i ∈ S ∪ Sβαα, is non-zero in R̃∨α .
The computation above also shows that the cokernel of the map ·uSβαα : R̃∨αβ →

R̃∨α is the face ring k[∆] of

∆ = {S ⊂ E | S ⊂ z(Y ) for some Y ∈ ∆α and Sβαα 6⊂ S}.

= z(∆α)\{S ∈ z(∆α) | Sβαα ⊂ S}.

Recall from Lemma 5.4 that the geometric realization of the simplicial complex
z(∆α) is a PL (d − 1)-sphere. The subset of simplices {S ∈ z(∆α) | Sβαα ⊂ S} is
the open star of the simplex on the set Sβαα and thus its complement ∆ in z(∆α)
is a PL (d − 1)-ball. It follows that k[∆] is Cohen-Macaulay, again with parameter
space U⊥. Thus, k[∆] is a free SymU⊥-module, and therefore the exact sequence

R̃∨αβ ↪→ R̃∨α � k[∆]

splits. �

8. DERIVED MORITA EQUIVALENCE

We conclude with a proof of Theorem 1.16. Recall that M is an oriented ma-
troid, U a parameter space for M = M, and P1 = (M̃1, g1, f1),P2 = (M̃2, g2, f2)

and Pmid = (M̃mid, g2, f1) are Euclidean generic oriented matroid programs such
that

M = (M̃1/g1)\f1 = (M̃2/g2)\f2

and
M̃mid/g2 = M̃1/g1, M̃mid\f1 = M̃2\f2.

We wish to show there is an equivalence of categories

D(A(P1, U)) ∼= D(A(P2, U)),

where D(A) denotes the bounded derived category of graded finitely generated
A-modules.
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Remark 8.1. Note that if P1 and P2 are Euclidean, it is not automatic that Pmid will
be Euclidean as well. For example, one could take EFM(8) (see Example 7.10) and
then change the choice of g and f separately to obtain two realizable (and hence
Euclidean) generic oriented matroid programs P1 and P2 such that Pmid is the
non-Euclidean program EFM(8).

We will prove Theorem 1.16 by reducing it to the following claim.

Proposition 8.2. Suppose P1 = (M̃1, g1, f) and P2 = (M̃2, g2, f) are generic Eu-
clidean programs extendingM such thatM1/g1 =M2/g2. Then there is an equivalence
of categories

D(A(P1, U)) ' D(A(P2, U)).

Before giving a proof of this Proposition, we will use it to deduce Theorem 1.16.

Proof that Proposition 8.2 implies Theorem 1.16. Under the assumptions of Theorem 1.16,
M̃mid/g2 = M̃1/g1. Then by Proposition 8.2 it follows that

(8.1) D(A(P1, U)) ' D(A(Pmid, U).

On the other side, duality together with the assumptions of Theorem 1.16 give:

M̃∨mid/f1 = (M̃mid\f1)∨ = (M̃2\f2)∨ = M̃∨2 /f2.

Viewing f1 and f2 as playing the role of g in the Euclidean programs M̃∨mid and
M̃∨2 respectively, we can again apply Proposition 8.2 to find:

(8.2) D(A(P∨2 , U
⊥)) ' D(A(P∨mid, U

⊥)).

Putting these equivalences (8.1) and (8.2) together with the equivalences from
Koszul duality:

D(A(Pmid, U)) ' D(A(P∨mid, U
⊥)) and D(A(P2, U)) ' D(A(P∨2 , U

⊥)),

gives the desired result:

D(A(P1, U)) ' D(A(P2, U)).

�

8.1. The definition and properties of the functor. It remains to prove Proposition
8.2. For the remainder of the paper we will let

P1 = (M̃1, g1, f) and P2 = (M̃2, g2, f)

be two Euclidean generic oriented matroid programs such that M̃1/g1 = M̃2/g2.
For ` = 1, 2 let A` = A(P`, U), B` = B(P`, U) and P` be the set of bounded,

feasible sign vectors of P`. Note that the set of bounded sign vectors B is the same
for P1 and P2.

As in [BLPW10, Section 6], the desired equivalence will come from a derived
tensor product with a certain bimodule N .

It is slightly easier to define the bimodule N on the B-side, using the isomor-
phisms A` ' B∨` of Theorem 5.12 for ` = 1, 2. Namely, let

N =
⊕

(α,β)∈P1×P2

R∨αβ [−dαβ ]

with the natural left B∨1 -action and right B∨2 -action given by the ? operation.
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To translate this to the A-side, recall the following the alternative definition of
A from Section 3.3,

A(P, U) = ePDEeP/〈efeP〉+ 〈ϑ(U⊥)eP〉.

We consider an extended version of A that only depends on M̃/g by replacing eP
by eB =

∑
α∈B eα. That is, let

Aext(P, U) = eBDEeB/〈efeB〉+ 〈ϑ(U⊥)eB〉.

As Aext(P, U) only depends on M̃/g and we have assumed that M̃1/g1 =

M̃2/g2, let
Aext := Aext(P1, U) = Aext(P2, U).

When viewed as an (A1, A2)-bimodule, N can be described as

N = eg1Aexteg2 ,

where eg` =
∑
α∈P` eα for ` = 1, 2.

To check that these definitions of N coincide, consider the graded vector space

Bext(P, U) =
⊕

(α,β)∈F×F

Rαβ [−dαβ ],

made into an algebra via ?, as in the definition of B(P, U) from Section 5.2. Then
an easy extension of the proof of Theorem 5.12 gives us the following lemma.

Lemma 8.3. There is an isomorphism Aext(P, U) ' Bext(P
∨, U⊥). Combining this

isomorphism with the isomorphisms A` ' B∨` , we obtain an equivalence between the two
definitions of N .

We define the functor Φ : D(A1)→ D(A2) via

Φ(M) = M
L
⊗A1

N.

For ` = 1, 2 and any α ∈ P`, let P `α and V `α be the corresponding projective and
standard A`-modules. Define ν : P1 → P2 to be the composition

P1
µ−1
1−→ B µ2−→ P2.

Proposition 8.4. If α ∈ P1 ∩ P2, then Φ(P 1
α) = P 2

α.

Proof. Consider the natural map

Γ : P 2
α = eαA2 → eαA1 ⊗A1 eg1Aexteg2 = P 1

α ⊗A1 N = Φ(P 1
α)

taking eα to eα⊗ eg1eg2 . For paths p, q in the quiver Q with p only passing through
nodes in P1, the equality of the simple tensors

eαp⊗ eg1qeg2 = eα ⊗ eαpeg1qeg2 = eα ⊗ eg1eg2 · eαpeg1qeg2
implies that Γ is an isomorphism. �

Remark 8.5. Note that the proposition above and its proof are valid without the
assumption that P1 and P2 be Euclidean.

Lemma 8.6. For any α ∈ P1, the A2-module Φ(P 1
α) has a filtration with standard sub-

quotients. For b ∈ B, if α ∈ Bb then the standard module V 2
µ2(b) appears with multiplicity

1 in the associated graded, and otherwise it does not appear.7

7Recall that the set Bb defined in Definition 2.18 only depends on M̃/g.
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Proof. We have

Φ(P 1
α) = P 1

α ⊗A1
N = eαA1 ⊗A1

eg1Aexteg2 ,

so elements of Φ(P 1
α) can be represented as linear combinations of paths inBwhich

begin at α and end at elements of P2 = B ∩ F2. For β ∈ P2, let Φ(P 1
α)β be the

submodule generated by paths p such that β is the maximal element of P2 (with
respect to the ordering ≤2 on P2 coming from our Euclidean assumption on P2)
through which p passes. Then let

Φ(P 1
α)>2 β =

⋃
γ>2 β

Φ(P 1
α)γ and Φ(P 1

α)≥2 β =
⋃

γ≥2 β

Φ(P 1
α)γ .

We then obtain a filtration

Φ(P 1
α) =

⋃
β∈P2

Φ(P 1
α)≥2 β .

Suppose b ∈ B and let β = µ2(b). It suffices to show that the quotient Φ(P 1
α)≥2 β/Φ(P 1

α)>2 β

is isomorphic to V 2
β if α ∈ Bb, and is zero otherwise.

Our argument follows the proof of Theorem 7.6.
If α 6∈ Bb, then for some i ∈ b, α(i) 6= β(i). Thus any path from α to β can be

represented by one passing through βi. By Lemma 7.5, βi >2 β and therefore

Φ(P 1
α)≥2 β/Φ(P 1

α)>2 β
∼= 0.

Otherwise, precomposition with a taut path from α to β gives a surjective map

V 2
β � Φ(P 1

α)≥2 β/Φ(P 1
α)>2 β .

Thus
dimV 2

β ≥ dim Φ(P 1
α)≥2 β/Φ(P 1

α)>2 β

and it suffices to show equality holds. After summing over all β ∈ P2:

dim(Φ(P 1
α)) =

∑
β∈P2

dim Φ(P 1
α)≥2 β/Φ(P 1

α)>2 β

≤
∑
α∈Bb

dimV 2
µ2(b) = #{(γ, b) ∈ P2 × B | α, γ ∈ Bb}.

It suffices to show that equality holds after summing over all α ∈ P1. As N =
⊕α∈P1Φ(P 1

α), we have∑
α∈P1

dim Φ(P 1
α) = dimN =

∑
(α,γ)∈P1×P2

dimR∨αγ

= #{(α, γ, b) ∈ P1 × P2 × B | α, γ ∈ Bb}.
Here we are using Lemma 5.7 and Proposition 2.19 on each (α, γ) ∈ P1 × P2. �

Remark 8.7. Notice that Theorem 7.6 can be viewed as the special case P1 = P2.

Remark 8.8. We note that the above proof does not use the assumption that P1

is Euclidean, and so for this result we need only assume that P2 is Euclidean.
More generally, when P2 is not Euclidean one can prove the result on the level of
Grothendieck groups with a nearly identical proof as was given for the analogous
Theorem 7.9.
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Proposition 8.9. For all α ∈ P1, we have [Φ(V 1
α )] = [V 2

ν(α)] in the Grothendieck group
of (ungraded) right A2-modules. Thus Φ induces an isomorphism of Grothendieck groups.

Proof. For any α ∈ P1, the equalities∑
[V 2
µ2(b)] = [Φ(P 1

α)] =
∑

[Φ(V 1
µ1(b))]

follow from Lemma 8.6 and its special case Theorem 7.6, where both sums are
taken over

{b ∈ B | α ∈ Bb}.
The first claim then follows by induction on the poset P1 with base case α ∈ P1

maximal, so
P 1
α = V 1

α and Φ(P 1
α) = V 2

ν(α).

The second statement follows from the fact that the classes of standard modules
in a highest weight category form a Z-basis for the Grothendieck group. �

Remark 8.10. One can show that this result holds without the Euclidean condition
on P1 and P2 by the second part of Remark 8.8 and the fact that the matrixX from
the proof of Theorem 7.14 is invertible.

Proposition 8.11. Let α ∈ P1. Then Φ(V 1
α ) is the quotient of Φ(P 1

α) by the submodule
generated by all paths changing their i-th coordinate for some i ∈ µ−1

1 (α). In particular,
TorA1

m (V 1
α , N) = 0 for all m > 0.

Proof. Apply Φ to the linear projective resolution of V 1
α of Theorem 7.12. The de-

gree zero homology of the resulting complex is the quotient promised. We wish
to show that the resulting complex is a resolution of V 1

α ⊗A1
N . This claim fol-

lows from argument is analogous to the proof of Theorem 7.12, where for each
S ⊂ µ−1

1 (α) we filter each A2-module Φ(P 1
αS ) = P 1

α ⊗A1
N by standards as in the

proof of Lemma 8.6. �

Corollary 8.12. If a rightA1-moduleM admits a filtration by standard modules, we have
TorA1

m (M,N) = 0 and therefore

Φ(M) = M ⊗A1
N.

8.2. Ringel duality and composition of functors. Suppose that P = (M̃, g, f) is a
generic Euclidean extension ofM. Consider the program P = −gP = (−gM̃,−g, f)

obtained from P by reorientation of g. In other words P is the program on the
oriented matroid M with feasible cocircuits equal to the negative of the feasible
cocircuits of P. This program is also generic and Euclidean. We let A = A(P, U)
and denote by

Φ− : D(A)→ D(A),

the functor Φ for P1 = P and P2 = P. We will prove that Φ− is an equivalence
and relate it to Ringel duality.

Theorem 8.13. Φ− is an equivalence, the algebras A and A are Ringel dual, and the
Ringel duality functor is d ◦ Φ− = Φ− ◦ d.

Proof. Notice that for any α ∈ P , we have that the B-side description of Φ− gives

Φ−(Pα) =
⊕
β∈P

R∨
αβ

[−dαβ ].
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Then we have that the tope corresponding to the restrictions of both α and β in
the oriented matroid M̃∨/Sβαα on E ∪ {f} has all cocircuit faces taking the value
+ on f . As in the proof of Theorem 7.17, this implies that R∨

αβ
is Gorenstein and

Φ−(Pα) is self-dual. By Lemma 8.6 it follows that Φ−(Pα) is tilting.
It remains to show that Φ− is an equivalence. With Proposition 8.4 and Theorem

7.17 in hand, one can repeat the proof of [BLPW10, Theorem 6.10] word for word.
�

To complete the proof of Proposition 8.2 in the general case, we will need to
study the composition of functors.

Let P1 = (M̃1, g1, f), P2 = (M̃2, g2, f), and P3 = (M̃3, g3, f) be generic Eu-
clidean programs extending M for which M̃1/g1 = M̃2/g2 = M̃3/g3. We can
then define the three functors

D(A1)
Φ12−→ D(A2)

Φ23−→ D(A3) and D(A1)
Φ13−→ D(A3)

as before. We would like to compare Φ13 with the composition Φ23 ◦ Φ12.
Notice that

N12 = Φ12(A1) =
⊕
α∈P1

Φ12(P 1
α)

has a filtration by standard modules as a right A2-module by Lemma 8.6. Then

Φ23 ◦ Φ12(M) = (M
L
⊗A1 N12)

L
⊗A2

N23 = M
L
⊗A1

(N12 ⊗A2
N23)

by Corollary 8.12. The natural map N12 ⊗A2 N23 → N13 given by concatenation
of paths induces a natural transformation Φ23 ◦ Φ12 → Φ13. We also have that
Φ23 ◦ Φ12 and Φ13 induce the same map on Grothendieck groups by Proposition
8.9. This implies that

dimkN12 ⊗A2 N23 = dimkN13

since the classes of N12 ⊗A2
N23 and N13 agree in the Grothendieck group of A3-

modules.
We now combine this discussion with the equivalence we have already proved.

Let P3 = P1, so that

Φ13 = Φ− : D(A1)→ D(A1) and Φ23 = Φ21 : D(A2)→ D(A1).

Lemma 8.14. Φ− ∼= Φ21 ◦ Φ12.

Proof. The conclusion follows from the discussion above if we can show that the
map N12 ⊗A2

N21 → N11 is an isomorphism. We have already observed that the
source and target have the same dimension, so it will suffice to show that this map
is surjective. This means showing that for any (α, β) ∈ P1×P1, every path from α
to β in eαAexteβ can be represented as a path that passes through some sign vector
γ in P2. It suffices to do this for a taut path from α to β. Translating this to the
B-side, we wish to show that 1∨αβ = 1∨αγ ? 1∨γβ for some γ ∈ P2.

Let (α, β) ∈ P1 ×P1 and suppose that R∨αβ is nonzero. This means the maximal
common covector face T∨α ∧ T∨β of the topes T∨α and T∨β in

M̃∨ := M̃∨1 \g1 = (M̃1/g1)∨ = (M̃1/g1)∨ = M̃∨
1
\g1



52 ETHAN KOWALENKO AND CARL MAUTNER

is nonzero and all of its nonzero cocircuit faces are feasible, i.e. they take the value
+ on f . Together with the fact that z(T∨α ∧ T∨β ) = Sβαα, this implies that T∨α ∧ T∨β
restricts to a bounded feasible tope in the oriented matroid program

P∨2 /S
β
αα = (M̃∨/Sβαα, f, g2).

Let Y be the optimal cocircuit face of T∨α ∧ T∨β viewed as a covector in P∨2 /S
β
αα.

Then Y lifts to a unique feasible cocircuit of P∨2 and let γ ∈ P∨2 = P2 be the
corresponding sign vector. By construction, T∨α ∧ T∨β is a face of T∨γ .

Thus R∨αγβ = R∨αβ , S
γ
αβ = ∅ and

1∨αβ = 1∨αγ ? 1∨γβ .

�

Proof of Proposition 8.2. We can set up everything as in Lemma 8.14, and we know
that Φ− is an equivalence by Theorem 8.13. This gives us that Φ12 : D(A1) →
D(A2) is faithful while Φ21 is full and essentially surjective.

Note that P2 is Euclidean if P2 is Euclidean. Appealing to the same arguments
as before, Φ12 ◦ Φ21 is an equivalence. We conclude that Φ12 is also full and essen-
tially surjective and thus an equivalence. �
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[ÁDL03] I. Ágoston, V. Dlab, and E. Lukács. Quasi-hereditary extension algebras. Algebras and Rep-
resentation Theory, 6(1):97–117, Mar 2003. 42

[BGS96] A. Beilinson, V. Ginzburg, and W. Soergel. Koszul duality patterns in representation theory.
J. Amer. Math. Soc., 9(2):473–527, 1996. 6, 42

[BLPW10] T. Braden, A. Licata, N. Proudfoot, and B. Webster. Gale duality and Koszul duality. Adv.
Math., 225(4):2002–2049, 2010. 1, 2, 3, 7, 8, 15, 19, 22, 23, 26, 27, 29, 32, 33, 34, 35, 40, 47, 51

[BLPW12] T. Braden, A. Licata, N. Proudfoot, and B. Webster. Hypertoric category O. Adv. Math.,
231(3-4):1487–1545, 2012. 1

[BLPW16] T. Braden, A. Licata, N. Proudfoot, and B. Webster. Quantizations of conical symplectic
resolutions II: category O and symplectic duality. Astérisque, (384):75–179, 2016. with an
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