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ABSTRACT. We associate to a sufficiently generic oriented matroid program and
choice of linear system of parameters a finite dimensional algebra, whose repre-
sentation theory is analogous to blocks of Bernstein—-Gelfand-Gelfand category O.
When the data above comes from a generic linear program for a hyperplane ar-
rangement, we recover the algebra defined by Braden-Licata—Proudfoot-Webster.

Applying our construction to nonlinear oriented matroid programs provides a
large new class of algebras. For Euclidean oriented matroid programs, the result-
ing algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-
Euclidean case, we obtain algebras that are not quasi-hereditary and not known to
be Koszul, but still have a natural class of standard modules and satisfy numerical
analogues of quasi-heredity and Koszulity on the level of graded Grothendieck
groups.

1. INTRODUCTION

In [BLPW10, BLPW12], Braden-Licata—Proudfoot—-Webster introduced a class
of finite-dimensional algebras related to the combinatorics of hyperplane arrange-
ments, whose representation theory is closely analogous to the integral blocks of
Bernstein—-Gelfand-Gelfand (BGG) category O. Recall that BGG category O plays
an important role in Lie theory and can be described using the geometry of the
Springer resolution. Braden-Licata—Proudfoot-Webster discovered their algebras
by analogy, motivated by the geometry of toric hyperkihler (or hypertoric) vari-
eties, but the algebras can be defined from basic linear algebra data. The input for
their definition was the data of a polarized arrangement V = (V,n, &), where V. C R™
is a d-dimensional linear subspace, 7 € R"/V is a (generic) vector and { € V*
is a (generic) covector. Braden-Licata—Proudfoot-Webster [BLPW16] and others
(e.g., [Los17]) have since introduced and studied other such geometric categories
O associated to conical symplectic resolutions.

In this paper we extend the definition of Braden-Licata-Proudfoot-Webster in
a different, more combinatorial direction: from the setting of polarized arrange-
ments to the combinatorics of oriented matroids. More precisely, the role of V' C
R™ is replaced by a rank d orientable matroid M with parameter space U and the
role of n and ¢ by an oriented matroid program (Mv , g, ) that extends and lifts
an orientation of M. One motivation for our work was a desire to categorify and
better understand the matroidal Schur algebras of [BM17, BM19].

To explain our results and motivation, we first recall in more detail the results
of Braden-Licata—Proudfoot-Webster.

1.1. Hypertoric category O. In [BLPW10], Braden-Licata—Proudfoot-Webster de-

fined a quadratic algebra A(V). One motivation was a description of a regu-

lar block of category O as arising from a quantization of the structure sheaf of

T*(G/B), the cotangent bundle of a flag variety. When V is rational (meaning
1
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that V, 7, and £ are defined over QQ), one may associate to V a hyperkihler variety
M, sometimes called a hypertoric variety, which behaves in various ways like the
cotangent bundle of a flag variety. Braden-Licata—Proudfoot-Webster show that
in this case the category of representations of A(V) is equivalent to that obtained
by applying the same sort of quantization construction to the hypertoric variety
for V. Moreover they show:

Theorem 1.1 (Braden-Licata—Proudfoot-Webster). Let V = (V,n, &) be a polarized
arrangement where ) and & are generic.”
(1) Thealgebra A(V) is quadratic with quadratic dual A(VV), where V¥ = (V4 —¢,—n)
denotes the Gale dual polarized arrangement.
(2) The algebra A(V) is quasi-hereditary.
(3) The algebra A(V) is Koszul (and thus by the first result, Koszul dual to A(VV)).
(4) Up to derived Morita equivalence, the algebra A(V) depends only on V- C R™ and
not on nor €.

To give a feeling for the representation theory of these algebras, we will de-
scribe a labelling of the simple modules for A(V). It is convenient to consider the
following hyperplane arrangement defined by V = (V,7,¢). Note that n € R"/V
can be viewed as the affine subspace n + V' C R", and we consider the arrange-
ment of hyperplanes in  + V' cut out by the coordinate hyperplanes of R™. The
genericity condition on 7 is the requirement that the resulting arrangement be sim-
ple, meaning that the nonempty intersection of m hyperplanes has codimension m.
The covector £ € V* lifts to an affine linear functional on 7+ V. The genericity con-
dition on { is the requirement that £ be nonconstant on any positive dimensional
intersection of V and a coordinate subspace.

Example 1.2. The polarized arrangement from Example 2.2 of [BLPW10] consists
of a two-dimensional subspace V' C R* together with some chosen 1 and £. These
choices produce the hyperplane arrangement depicted in Figure 1(a).

The set P of chambers of the hyperplane arrangement in 4V that are bounded
with respect to ¢ parametrize the simple modules {L,}qocp for A(V). In Exam-
ple 1.2, we can label these chambers «, 3, v, §, € as in Figure 1(a).

For each bounded chamber o € P, let 8 < «if § is contained in the cone gen-
erated by « originating from its maximal vertex. The transitive closure of this
relation gives the highest weight partial order on simple objects for the quasi-
hereditary structure in the theorem. In the example above, this produces the poset
described by the following Hasse diagram:

IMore precisely, the subspace V and vector 7 alone determine the variety 1. The covector £ can be
used to endow 9t with a C*-action.
2See the following paragraph for the meaning of the word generic used here.
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FIGURE 1. Hyperplane arrangement and corresponding pseudo-
sphere arrangement.

More precisely, Braden-Licata-Proudfoot-Webster define standard modules V,
for every a € P and prove (see the proof of [BLPW10, Theorem 5.23]):

Theorem 1.3 (Braden-Licata-Proudfoot-Webster). For any oo € P the indecompos-
able projective cover P, of L, has a filtration with successive subquotients isomorphic to
Vs for each B > o and each such standard module appears exactly once.

1.2. Matroidal setting. Fix a field k and a finite index set E. In this paper we will
begin with an orientable matroid M of rank d and a choice of parameter space
U C k¥ for M. By parameter space, we mean a subspace U C k¥ such that the
composition U < k¥ — Span{t; | i € b} is an isomorphism for any basis b of M.

Example 1.4. Note that the subspace V' C R™ in a polarized arrangement of
Braden-Licata-Proudfoot-Webster provides such a pair for £ = R: let M be the
matroid on the index set E = {1,...,n} represented by the coordinate functions
of R" restricted to V, viewed as vectors z1,...,x2, € V*,and letU = V.

Let M be an orientation of M, meaning an oriented matroid M such that M =
M, where M denotes the underlying unoriented matroid. (In the polarized ar-
rangement example, there is a natural choice for M, as M is represented by vectors
in a real vector space.)

The remaining input data we need is the structure of a oriented matroid pro-
gram P = (Mg, f), meaning M is an oriented matroid on the underlying set
E U {g, f} such that g is not a loop, f is not a coloop, and (ﬂ\f)/g = M. Like we
did for n and &, we ask that g and f be sufficiently generic (see Definiton 2.2).

The matroid M is determined by P, so we can and will omit it from our notation
and consider pairs (P,U) where P = (M, g, f) is a sufficiently generic oriented
matroid program and U C k¥ is a parameter space for the underlying (unoriented)

matroid M = (M\ f)/g.
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FIGURE 2. Ringel example

Example 1.5. Polarized arrangements give a natural class of examples. For a d-
dimensional polarized arrangement (V, 7, £), consider the (d+1)-dimensional sub-
space V of R™ x R,y x Ry spanned by the graph of £ : V' — Ry and the vector
(7,1,0) € R" x R, x Ry, where 7 is any representative of the cosetn € R"/V. Let

M be the oriented matroid on the set {1,...,n}uU{g, f} defined by the coordinate
functions 1, ..., &, 4,2 € V*.

Not every oriented matroid program P comes from a polarized arrangement,
but by the Topological Realization Theorem of Folkman-Lawrence, every loop-

free program P can be expressed as a pseudosphere arrangement - a topological rep-
resentation generalizing the notion of a hyperplane arrangement.

Example 1.6. Figure 1(b) shows the feasible region of the pseudosphere arrange-
ment corresponding to the polarized arrangement from Example 1.2.

Example 1.7. Figure 2 depicts the feasible part of a pseudosphere arrangement,
where |E| = 8 and M is the uniform rank 2 matroid on 8 points, that defines a
non-realizable oriented matroid program P = (M, g, f). Here the oriented sub-

matroid M \f, a rank 3 oriented matroid on 9 points, is the non-stretchable simple
arrangement of 9 pseudolines defined by Ringel [Rin55] as a perturbation the Pap-
pus matroid.

Remark 1.8. Every oriented matroid program P where d = 2 and |E| < 7 is realiz-
able, so the program described in Example 1.7 is a minimal non-realizable exam-

ple.

For a pair (P = (/T/l/7 g, f),U) as above we define the dual pair (PV,U~), where
PY = (MY, f,g) is the dual oriented matroid program (here the roles of f and g
are swapped), and U+ C k¥ is the orthogonal complement.

Remark 1.9. It is an exercise in linear algebra to check that when the oriented ma-
troid program P = (M, g, f) comes from a polarized arrangement V = (V,7,§)
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as in Example 1.5, this duality agrees with the standard Gale duality of linear

programming. In other words, the dual program PV = (MY, f,g) is the ori-
ented matroid program associated to the Gale dual polarized arrangement VV =

(VL7 _57 _77)

1.3. Main results. As above, let the pair (P,U) consist of a sufficiently generic
oriented matroid program P = (M, g, f) together with a parameter space U C k¥
for the (unoriented) matroid M = (M) f)/g. Modifying the definition of Braden—

Licata—Proudfoot-Webster to this setting, we introduce a finite-dimensional alge-
bra A(P,U) over k. In particular, in the realizable case of Example 1.4 and 1.5, one
recovers the original algebra A(P,V) = A(V).

In the more general setting, we show that part (1) of Theorem 1.1 extends with-

out modification:

Theorem 1.10. Let (P,U) be a pair as above. The algebra A(P,U) is quadratic with
quadratic dual A(PY,U~) corresponding to the dual pair.

Similarly to the realizable case, the simple modules for A(P,U) are labelled by
the set P of bounded, feasible topes. For example, in Example 1.7 the bounded,
feasible topes correspond to shaded regions in Figure 2. Again one can define a
cone relation on P and standard modules V,, for each o € P.

However, unlike in the realizable case, the transitive closureAc/)f the cone relation
need not define a poset. An oriented matroid program P = (M, g, f) is said to be
Euclidean if the transitive closure of the cone relation on bounded, feasible topes of
P is a poset.

Using this condition, we obtain the following analogue of Theorems 1.1(2),
1.1(3) and 1.3.

Theorem 1.11. For a pair (P, U) as above with the additional assumption that the pro-
gram P is Euclidean, the algebra A(P,U) is quasi-hereditary and Koszul.

Moreover, for any o € P the indecomposable projective cover P, of L, has a filtration
with successive subquotients isomorphic to V for each = « and each such standard
module appears exactly once.

Remark 1.12. While oriented matroid programs are not always Euclidean, every
oriented matroid program of rank at most 3 (equivalently d at most 2) is Euclidean.
Thus there are plenty of Euclidean, non-realizable programs, such as Example 1.7.

We do not know whether or not every non-realizable oriented matroid M ad-
mits a Euclidean program P = (MV , g, ) such that M /g\f = M. For connections
to a well-known conjecture of Las Vergnas, see the discussion surrounding Propo-
sition 2.27.

We observe in Example 7.10 that in the non-Euclidean case, A(P, U) need not be
quasi-hereditary. In particular, we give an example of a non-Euclidean program P
and projective A(P, U)-module which does not admit a standard filtration.

However, in Theorem 7.9 we do prove that for any oriented matroid program
P the following analogue of Theorem 1.3 holds on the level of the Grothendieck
group of graded A(P,U)-modules.
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Theorem 1.13. For any generic oriented matroid program P and any o € P, the class of
the indecomposable projective P, in the Grothendieck group can be expressed as the sum:

[Pa] = Z qdw V4l

Tz

where d,., denotes the distance between the topes o and .

While our proof of Koszulity in the Euclidean case relies on A(P,U) being
quasi-hereditary, it is conceivable that A(P,U) is Koszul more generally. As ev-
idence in this direction, in Theorem 7.14 we prove the Hilbert series of A(P,U)
and A(PV,U") satisfy the numerical identity discussed in [BGS96, Lemma 2.11.1].

1.4. Derived Morita equivalence. In light of Theorem 1.1(4) it seems natural to
ask:

Question 1.14. Let M be an orientable matroid and U a choice of parameter space
for M. For any two orientations M1, My of M and generic oriented matroid pro-
grams Py = (My, g1, f1), P2 = (Ma, g2, f2) such that My/g/\fo = My, £ = 1,2,
are the algebras A(P;,U) and A(P2, U) derived Morita equivalent?

If the answer to this question is yes, it would appear to give a rather interest-
ing algebraic invariant of the matroid M. Or weaker, one might still hope for an
affirmative answer under the assumption that M; = Mp:

Question 1.15. Let M be an oriented matroid and U a choice of parameter space for
M = M. For any two generic oriented matroid programs Py = (M1, ¢1, f1), P2 =

(Mg, g2, f2) such that M = M1/gl\f1 = Mz/gg\fg, are the algebras A(P1,U) and
A(P2,U) derived Morita equivalent?

If the answer to one or both of these questions is no, the number of derived
Morita equivalence classes could also provide a interesting invariant of M or M.

As a partial result in this direction, following the strategy of Braden-Licata—
Proudfoot-Webster, we prove the following theorem in Section 8.

Theorem 1.16. Fix M and let P, = (le’gh f1) and Py = (.//\\/1/2,92, f2) be Euclidean
such that ./T/l/L /9i\fi = M for i = 1,2. Suppose in addition that the oriented matroid
program P g = (/\7mim 92, f1) s also Euclidean, where P,;4 is a generic oriented matroid
program® such that

Muia/ge = Mi1/g1,  Mui\f1 = Mo\ fo.
Then the bounded derived categories of graded finitely generated A(P1,U)-and A(P3,U)-
modules are equivalent.

This allow us to answer Questions 1.14 and 1.15 in some simple cases.

Corollary 1.17. Question 1.15 has an affirmative answer for any oriented matroid M of
rank 2.

3Note that such an oriented matroid program (Mmid, g2, f1) always exists and there will typi-
cally be many such oriented matroid programs. However the particular choice will not matter for
us, because, as mentioned in Remark 2.1, all of our constructions depend only on the contraction and
restriction oriented matroids Mmid /g2 and Mmid\ f1.
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Proof. Recall from Remark 1.12, that any oriented matroid program of rank 3 is
Euclidean, so for any P; and P, the three oriented matroid programs P, P, and
P niq are all Euclidean and the result follows from Theorem 1.16. O

Corollary 1.18. Question 1.14 has an affirmative answer for M = U, y, the uniform
matroid of rank 2 defined on a set E of n > 2 elements.

Proof. By Corollary 1.17, it suffices to show that for any two orientations M; and
My of U, there are generic oriented matroid programs P; = (/K/tv 1,01, /1), P2 =
(Ma, g2, f2) such that My = M1 /g1\f1 and My = M /gs\ fo, for which A(Py,U)
and A(P,, U) are derived equivalent.

But any two orientations of U, ,, are related by a relabeling of &/ and reorienta-
tion. Note that relabelling and reorientation each induce a canonical isomorphism
between the associated algebras. O

The same sort of argument gives a handful of similar examples.

1.5. Matroidal Schur algebras. Motivated in part by [BLPW10], Braden and the
second author defined a hypertoric Schur algebra [BM19] - an analogue of the Schur
algebra associated to affine hypertoric varieties. Recall that one can construct an
affine hypertoric variety 91, with the input of a rational subspace V' C R". In this
setting the resulting hypertoric Schur algebra R(V') can be interpreted as a con-
volution algebra for a union of resolutions of stratum slices of ;. In particular,
for a rational polarized arrangement (V, 7, {) with the same underlying subspace
V c R”, the convolution algebra for the resolution 9t — 9N is a subalgebra
of the associated hypertoric Schur algebra. Braden-Proudfoot-Webster showed
in [BPW16, Proposition 6.16, Example 6.18] that the convolution algebra of the
resolution Mt — My, is categorified by Harish-Chandra bimodules for hypertoric
category O. One expects the entire hypertoric Schur algebra to be similarly cate-
gorified by Harish-Chandra bimodules with more general support and similarly
to obtain a natural g-deformation of the hypertoric Schur algebra, or ¢-hypertoric
Schur algebra.

In [BM17], Braden and the second author observed that the hypertoric Schur
algebras studied in [BM19] can be defined in terms of the underlying matroid.
Following this observation, they defined a matroidal Schur algebra R(M) associated
to any matroid M.

One motivation for defining the category O for oriented matroid programs in
the present paper was to provide the foundation to categorify and find natural
g-deformations of matroidal Schur algebras for orientable, but non-realizable ma-
troids using an appropriate category of Harish-Chandra bimodules.

1.6. Outline of paper. In Section 2 we describe the combinatorial set-up of ori-
ented matroid programs and parameter spaces. In Section 3 we define the algebra
A(P,U) and in Section 4 we prove Theorem 1.10 (Lemma 4.1 and Theorem 4.2).
In Section 5 we define the algebra B(P,U) and prove Theorem 5.12, which is a
key ingredient in the proof of Theorem 1.11. Section 6 develops more topology,
resulting in a nice description of the center of B(P,U).

In Section 7, we study the category of finitely-generated (right) A(P,U)-modules
and prove Theorem 1.11. In particular, under the Euclidean assumption, we show
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A(P,U) is quasihereditary (Theorem 7.6) and Koszul (Theorem 7.13). In the non-
Euclidean setting, we prove Theorem 1.13 (Theorem 7.9), prove the Koszulity con-
dition on Hilbert series (Theorem 7.14) and show that Theorem 7.6 requires the
Euclidean assumption (Example 7.10). In Section 8, we study the derived cate-
gories of graded finitely-generated A(P, U)-modules for varying Euclidean P and
a fixed M and prove Theorem 1.16.
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the foundation of this paper.
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The second author was supported in part by a Simons Foundation Collabora-
tion Grant and NSF grant DMS-1802299. He would also like to thank the Mathe-
matics department at Dartmouth College for its hospitality.

2. COMBINATORIAL SETUP

In this section we briefly introduce the notation we will need to work with ori-
ented matroids, but assume some familiarity with the basic notions. To the uniniti-
ated reader, we recommend [BLVS™99] (particularly the first chapter) for a survey
and as a useful reference.

2.1. Generic oriented matroid programs. For an index set I and any function
Z:I — {0,+,—},let Z := {i | Z(i) # 0} C I be the support of Z and let
z(Z) := I\ Z be the zero set of Z.

Let M be an orientable matroid of rank d on the finite set £. Let M be an
oriented matroid such that M = M is its underlying unoriented matroid.

Let B denote the set of bases for M. We let C = C' (M) denote the set of signed
circuits and C* = C*(M) the set of signed cocircuits, both regarded as subsets
of the set of functions F — {0,+, —}. Note the unoriented matroid M = M has
circuits {X | X € C} and cocircuits {Y | Y € C*}. The dual oriented matroid MY
is given by switching the roles of the circuits and cocircuits (i.e. C(M") = C*(M)
and C*(MV) = C(M)), while the bases B of the underlying matroid MV = M"
are the complements in E of the elements of B.

Let S C E. Then the set

{XeCM) | X cE\S}

is the set of circuits of an oriented matroid M\S on E\S, called the deletion of S
from M. The set

{X|s:S5—={0,+,-}| X € C(M) and XNS is inclusion minimal and nonempty}

gives the set of circuits of an oriented matroid M /(E\S) on S, called the contraction
of M to S. Duality exchanges contraction and deletion:

(M/S)Y = MY\S and (M\S)" = MY/S.

An element i € E is a loop of M if {i} is the support of a circuit of M. Dually,
i € Eis a coloop of M if i is not contained in the support of any circuit of M.
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An oriented matroid program P = (M, g, f) is an oriented matroid M on the set
E U {f,g} such that (M\f)/g = M, g is not a loop and f is not a coloop. In
particular, the rank of M is d + 1, and this is defined to be the rank of P.

The deletion N’ = M\ f of f from M is called the corresponding affine oriented
matroid.

Remark 2.1. Our constructions will only depend on the contraction M /g, which

is a single element extension of M on E U {f}, and the deletion Mv\ f, which is
a single element lift of M on E U {g}. Thus for our purposes it would be more
natural to define an oriented matroid program as a pair, which we have taken to
affectionately calling an eft, of a single element extension and single element lift of
M. We will refrain from doing so in this paper as the original notion appears to
be standard in the field.

Definition 2.2. We say that the oriented matroid program P = (M, g, f)is generic
for M if

(1) for any cocircuit Y of N = M\, if |2(Y)| > d, then Y(g) = 0, and
(2) for any circuit X of M/g, if |2(X)| > n — d, then X (f) = 0.

Remark 2.3. As the rank of the oriented matroid M /g on EU{f}is d, for any
circuit X of M/g, |X| < d+ 1 and so X has at least n — d zero entries. In the case
of equality, X contains a basis of M /g and so z(X) is independent in (M/g)".

Dually, for any cocircuit Y of NV, |z(Y)| > d and if equality holds z(Y) is inde-
pendent in \V.

Example 2.4. As explained in Example 1.5, every polarized arrangement V =
(V,n,€) naturally gives rise to an oriented matroid program P. If  and & are
generic in the sense of Theorem 1.1, then P is generic as well.

We now deduce some simple consequences of genericity.

Lemma 2.5. Suppose P = (/\7 .9, [) is generic. Then N' = Mv\ f has no loops and M /g
has no coloops.

Proof. We prove the first statement and the second follows by duality. By our
assumption in the definition of an oriented matroid program, g is not a loop of
N, so g € Y for some cocircuit Y of . By Definition 2.2(1), |2(Y)| = d and so
Remark 2.3 implies z(Y) is independent. If there were a loop i of NV, then i € z(Y)
contradicting the fact that z(Y") is independent. O

Lemma 2.6. Assume P is generic. Then there is a natural bijection between the set B of
bases for M and the set of feasible cocircuits for N' = M\ f.

Proof. Consider the map that takes a feasible cocircuit Y for N to its zero set b :=
z(Y). AsY is feasible, Y(g) = + and so by condition (1), Y must have d zero
entries. Then Y has n + 1 — d non-zero entries and is a circuit of NV (which has
rank n — d), so any subset of Y of size n — d is a basis for A'V. In particular, Y\ {g}
is a basis for NV, so its complement b U {g} is basis for V. Thus b is a basis for
M=N/g.

To show that this is a bijection, suppose b is a basis for M. Then b U {g} is a
basis for AV, its complement E\b is a basis for N’V and so (E\b) U g must contain a
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cocircuit Y for V. By condition (1), either Y = (E\b)Ug or Y C E\b. But the latter
is not possible as E\b is a basis for /' V. We conclude that there is a unique choice
of feasible cocircuit Y with support Y = (E\b) U g. O

For b € B, we let Y}, be denote the corresponding feasible cocircuit.

We will often use three constructions to obtain new generic oriented matroid
programs from a generic oriented matroid program P: duality, deletion, and con-
traction. Recall that duality for oriented matroid programs takes the program

P = (M,g, f) to the program PV = (MY, f,g) with underlying oriented matroid
(MY\g)/f = (M/g)\f)" = M.

For any S C E, we denote the contraction and deletion of S by
P/S = (M/S,9.f) and P\S:=(M\S,g,f),

respectively.

Note that P is generic if and only if PV is generic. If P is generic and S C b
for some b € B, then P/S is generic and has rank d + 1 — |S|. If P is generic and
S Nb= @ for some b € B, then P\S is also generic of rank d + 1.

Lemma 2.7. For any oriented matroid M there exists a generic oriented matroid program
P = (M. g, f) such that (M/g)\f = M.

Proof. For example, for any order on E, consider the lexicographic extension M’ =
MIE] by a point f with respect to this order (Note that this is the same as taking
the extension M [byin] where by, is a lexicographically minimal basis of M). By
a Lemma of Todd [BLVS"99, Lemma 7.2.6], any circuit X of M’ with more than
n — d zero entries satisfies X (f) = 0. It then remains to define M as a single
element of lifting of M’ by a point g, such that A" = M\ f satisfies property (1)
above. This can be done via the dual construction: consider the colocalization T :
C(M’) — {+,—,0} defined for any X € C(M’) by 7(X) = X;, where i is the
minimal element of E such that X; # 0. Let M be the lexicographic lifting of
M’ defined by 7 (in other words the dual of the lexicographic extension of (M’)Y
associated to 7). |

For the rest of the paper we assume that P is generic.

2.2. Bounded feasible topes and sign vectors. In this section we recall the notions
of bounded and feasible topes and show in Corollary 2.15 that when P is generic
there is a natural bijection between bases B of M and bounded feasible topes for
P.

Let I be any index set. For any functions Z, Z’: I — {0, +, —}, their composition
ZoZ':I—{0,+,—}1is defined by

7o 7'(i) = Z() ifZ(3)#£0
| Z'(i) otherwise

We say that Zisafaceof Z'if Zo Z' = Z'.

The nonzero covectors of an oriented matroid on the set E are the functions
E — {0,+, —} which can be written as the composition of cocircuits. The set of
covectors of M is denoted by £(M), and includes the zero function 0. It has a
natural poset structure defined by ¥ < X if Y is a face of X. The poset L(M) is
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pure with minimal element 0, the zero function. The maximal elements of £(M)
are called topes, while the minimal elements of £(M)\{0} are the cocircuits of M.

The rank of Y € £(M) is given as p(Y) = d — r(2(Y)), where r is the rank
function of the underlying matroid M. For Y3,Y2 € L(M), the join Y1 V Y3 is the
minimal covector that has both Y7 and Y5 as faces, which only exists if there is a
tope T with both Y; and Y5 as faces. The meet Y; A Y5 is the maximal covector face
of both Y7 and Y>. Note that the meet of Y7,Y> € £(M) always exists, but is the
zero function when Y; and Y5 do not have a common cocircuit face.

Definition 2.8. (Feasible covectors and affine space) Let P = (/K/lv .9, ) be a generic
program and let £ = L(N') denote the set of covectors for N = M\ f. The affine
space of P is:
A={Y eL|Y(g9) =+}.
We call elements of A feasible covectors.
We say that the boundary of affine space is:

A = {Y € L] Y(g) = 0}

Notice that .A> defines an oriented matroid on £ U {g} which is equal to M
with g adjoined as a loop. Also, notice that the join of covectors in A is also in A if
it exists, while their meet is in A4 if and only if they share a common cocircuit face
in A; Otherwise, their meet is in A°.

Definition 2.9. (Feasible topes) Let 7(£) denote the set of topes of V. We let
F=ANT(L)
denote the set of feasible topes.
Notice that the definition of feasible topes does not depend on f.
Remark 2.10. By Lemma 2.5 the topes of N are the covectors 7" such that z(T) = @.

A sign vector is a function a: E — {+,—}, usually written as o € {+,—}%.
There is an obvious injective map from F to {+, —}¥ given by forgetting the value
at g (which is always +). We may refer to the sign vectors in the image as feasible
sign vectors, and in a slight abuse of notation we identify feasible topes with the
corresponding sign vectors. When there is a risk of confusion, we will write Ty, to
denote the feasible tope of \ corresponding to a sign vector a.

Definition 2.11. (Directions and optimality)

(1) We refer to covectors in the boundary of affine space Z € A> as directions
in A. We say that a direction is increasing (resp. decreasing or constant)
with respect to f if Z(f) = + (resp. Z(f) = —or Z(f) = 0).

(2) For a feasible tope T' € F and a feasible covector face Y of T, we say that
the direction Z € A is feasible for Y in T'if Y o Z is a face of T.

(3) A feasible covector Y that is a face of T € F is an optimal solution for T if
there is no feasible increasing direction for Y in T'.

Definition 2.12. (Bounded sign vectors) A sign vector a € {+, —}¥ is unbounded
if there exists a increasing direction Z € A> such that Z|g o @ = a. If no such Z
exists, we say « is bounded. Similarly, a tope T is bounded if the sign vector T'| g is
bounded.

Let B denote the set of bounded sign vectors and P = F N B denote the set of
bounded and feasible sign vectors.
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Remark 2.13. Let Y be a bounded, feasible tope. Note that if Y7, Y5 are optimal
solutions for Y, then so is Y7 o Y5. If Y7 is an optimal solution and Y, € A is a face
of Y1, then Y5 is also optimal. It follows that if Y has an optimal solution, then it
has an optimal cocircuit.

Theorem 2.14. Assume P is generic. Then every feasible, bounded tope Y has a unique
optimal solution (cocircuit) and the resulting map from P to the set of feasible cocircuits
for N is a bijection.

Proof. Let Y € P. Recall that an optimal solution exists, without any condition
on P, by Bland and Lawrence’s Main Theorem of Oriented Matroid Programming
(see [BLVS199,10.1.13] for a survey).

We first show that if P is generic, then such a solution is unique.

Suppose that Y has two distinct optimal cocircuits ¥; and Y. Then Y; oY, € A
must also be an optimal solution. Replacing Y5 by another cocircuit face of Y; oY5 if
necessary, without loss of generality, we may assume that Y7 and Y3 are joined by
an edge (i.e., the rank of Y7 0Y5 is 2). There then exist two cocircuits at the boundary
+Z € A* on the pseudoline Y;Ys such that Y 0Y; = YioZand Yi oY, = Yo0—-Z.
(The cocircuit Z can by obtained via elimination of g from the pair Y3, Y5 and this
elimination is unique up to sign as Y7, Y5 form a modular pair). By optimality of
Y7 and Y3, we conclude that +£7 must be constant directions. Note that z(Y; 0Y3) is
an independent set in M of cardinality d — 1. The contraction M/({g}Uz(Y10Y2))
is a rank 1 oriented matroid where f is a loop since the cocircuits are both zero on
f- Thus 2(Y; o Y5) U {f} contains a circuit X of Mv/g such that X(f) # 0. This
contradicts condition (2) since X is zero on at least n — d + 1 entries.

It remains to show that the map from P to feasible cocircuits is a bijection. Given
a cocircuit Y € A, we would like to show that Y is the optimal solution for a
unique tope 7' € P. We construct such a T as follows. For any i € z(Y), we
know that P; := P/(2(Y)\{i}) is a generic program whose affine space is one-
dimensional. There is a unique cocircuit Z; in P; such that Z;(f) = —, and this

cocircuit is the restriction of a cocircuit Z; in M /g. Then Z;(j) = 0forj € z2(Y)\{i},
while Z; (i) # 0 and Z,(f) = —. Then T is defined to be the composition Y o Z,
where Z is the composition of all Z;, i € z(Y'), taken in any order.

This T is feasible since T(g) = Y (g) = +, and unique since it agrees on z(Y")
with the unique bounded feasible tope of P\ (E\z(Y")). To show that 7" is bounded,
recall that an equivalent definition for a feasible tope to be bounded is that it must
be in the bounded cone of some b € B (see [BLVS'99, Definition 10.1.8.ii, Corollary
10.1.10.ii]), meaning that it agrees on b with a bounded tope of P\ (E\b) (see also
Definition 2.18). Since T is in the bounded cone of z(Y) € B, we have that T is
bounded. O

Combining the bijections of Lemma 2.6 and Theorem 2.14 we obtain our desired
correspondence.

Corollary 2.15. There is a natural bijection between the set B of bases for M and the set
P of bounded feasible topes:
uw:B =P,

which takes a basis b to the tope whose optimal cocircuit is Yy,. (Recall that Y, is the feasible
cocircuit with z(Y,) = b.)
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We conclude this section with a discussion of the effect of duality on the bijec-
tion p.
Recall the following result about duality for oriented matroid programs.

Proposition 2.16. [BLVS'99, Corollary 10.1.11] Let F, BY, and PV respectively de-
note the sets of feasible, bounded, and bounded feasible sign vectors for the dual program

PV = (M, f,g). Then
FY=B and BY=F, andso PY =7P.
Let BY denote the set of bases of M". Then b + b¢ := E\b defines a bijection

B — BY. Let ¥ : BY — PV be the bijection for the dual program PV defined as
above. Recall that P¥ = P.

Proposition 2.17 (Complementary Slackness). Forany b € B, pu(b) = p (b°).

Proof. Recall that P is generic if and only if PV is generic. This is then the “Comple-
mentary Slackness” theorem of Bland applied to generic programs (cf. [BLVS™99,
Theorem 10.1.12]). |

2.3. Cone relation and Euclidean oriented matroid programs. In this section we
consider a binary relation on the set P of bounded feasible topes (or via i equiva-
lently on the set of bases B).

Definition 2.18. For any basis b € B we define the negative cone as

By ={B € {+ —}F | ub)(i) = B() for all i € b}.

Notice that this set of sign vectors depends on M and f but does not depend on g,
in the sense that the signs p(b)(¢) for i € b only depend on the cocircuits of M /g.
Proposition 2.19 (Complementary Slackness). For any b € B, let Xy be the feasible
cocircuit of PV with z(Xye) = b = E\b. Then for any o € P = PV, a € By, if and only
if Xye is a face of a.
Proof. By definition, the tope « is in the cone By if and only if

(i) = p(b)(i) forallieb.
By Proposition 2.17, we can rewrite the above condition as

a(i) = pY (b9)(i) foralli € b.

Under the bijection " from Corollary 2.15 for the dual program PV, we have that
pY (b°) (i) = Xpe(2) for all ¢ € b. Thus the previous condition becomes

at) = Xpe (i) foralli € b,
which in turn is equivalent to X, is a face of « in the affine space associated to
PVY. (]
Definition 2.20 (Cone relation). For «, 8 € P, we write 8 < « whenever 5 €
B#— 1(a)-

The binary relation < on P is reflexive and anti-symmetric, but not necessarily
transitive. Let < denote the transitive closure of <. In general, the binary relation
< on P does not define a poset, as the closure may no longer be anti-symmetric.

In the following sections we will define algebras associated to the program P.
To ensure that these algebras are quasi-hereditary, we will need the relation < to
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define a poset. It turns out that this is equivalent to a well-known condition on
the oriented matroid program P, namely we ask that P be Euclidean. To recall the
definition, we first define the following graph associated to P.

Definition 2.21. Let Gp be the graph whose vertices are vertices in A (i.e., the
feasible cocircuits for V') and whose edges are the edges in A (i.e., the feasible cov-
ectors of A of rank 2). By our genericity condition, the graph is naturally directed
by orienting each edge in increasing direction with respect to f.

Definition 2.22. For b,b’ € B, we write b < b’ if there is a directed path from Y}, to
Y} in the graph Gp.

Definition 2.23. The program P is Euclidean if the directed graph Gp contains
no directed cycles. Equivalently, P is Euclidean if the binary relation on B from
Definition 2.22 is anti-symmetric.

By a result of Edmonds and Fukuda, the Euclidean property is well-behaved
under duality:

Proposition 2.24. [BLVS'99, Corollary 10.5.9] An oriented matroid program P =
(M, g, f) is Euclidean if and only if its dual program PV = (MY, f, g) is Euclidean.

Importantly for us, for Euclidean programs, the transitive closure of the cone
relations is a poset. In fact these two conditions are equivalent:

Lemma 2.25. The oriented matroid program P = (M, g, f) is Euclidean if and only if
the transitive closure of the cone relation is anti-symmetric.

Proof. By Proposition 2.24, it suffices to show that the dual program PV is Eu-
clidean if and only if the transitive closure on the cone relation is anti-symmetric.
By definition, PV is Euclidean if and only if the binary relation (B, <) is anti-
symmetric.4

Thus it suffices to show that the bijection ;¥ : BY — P = P is order reversing.
In other words, we wish to show that for b1, by € B,

p(b1) > p(by) ifand only if b5 < b5.

As (P, <) is the transitive closure of <, without loss of generality we may sup-
pose ju(b1) = p(bz). Then u(b) € By, and by Proposition 2.19, Xje is a face of
p(ba) = pY (b5). As Xy is the (unique) optimal cocircuit of the tope ¥ (b5), there is
a directed path from Xpc to Xje. Thus bf < b as desired.

For the other direction, it suffices to consider the case where there is a directed
edge from Xy to Xpe. Then Xy is a cocircuit face of 1" (b5) = p(bz). By Propo-
sition 2.19 this implies pu(by) € By, and so p(b2) < u(by), which completes the
proof. O

2.4. On the existence of Euclidean generic programs. Unlike genericity, it is not
clear (at least to the authors) that any oriented matroid M can be extended to a

Euclidean generic oriented matroid program M.
On the other hand, we have already seen in Example 1.7 a non-realizable Eu-

clidean program (//\/lv , g, f) for which M = M /g\ [ is realizable. There also appear

“Here by (BY, <) we are referring to the binary relation on BV coming from the directed graph
Gpv.
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to be many examples for which the oriented matroid M is non-realizable, and so
our setting significantly generalizes that of [BLPW10].

In this section we first give such an example and then give a criterion on M for
the existence of a Euclidean generic oriented matroid program lifting and extend-
ing M.

Example 2.26. The Vamos matroid V (rank 4 on 8 elements) is not representable
over any field, but is orientable by [BV78]. We now define a Euclidean generic
program V by adjoining elements to ) as labelled and orientated in [BV78]. Let
(17, g, f) be the generic oriented matroid program obtained from V by adjoining g
using the lexicographic one-element lift defined by the cobasis {3, 6, 7,8}, and ad-
joining f by a lexicographic one-element extension defined by the basis {1, 2,4, 5}.
One can verify that the graph Gp of this program has no directed cycles, so this
program is Euclidean and generic.

We are grateful to Jim Lawrence for suggesting that we consider the following
statement.

Proposition 2.27. Let M be an oriented matroid. If one can adjoin elements g and f

to M to obtain a Euclidean generic oriented matroid program (M, g, f), then M has a
simplicial tope.

Before beginning the proof, we note that it is an open conjecture of Las Vergnas [LV80]
(see also [BLVS99, 7.3.10]) that any oriented matroid M should have a simplicial
tope. Thus, the proposition implies that if for any oriented matroid M there is a
Euclidean generic oriented matroid program (Mv , g, f) for which M Jo\f = M,
then Las Vergnas’ conjecture holds.

Proof. Suppose (Mv .9, f) is a Euclidean generic oriented matroid program such
that (M /g)\f = M.

As P is Euclidean, there exists a minimal vertex of Gp. Let Y,;, be the feasible
cocircuit of N corresponding to such a minimal vertex. Let T,;, be the tope whose
optimal cocircuit is Yin, which exists by Theorem 2.14. Then Yp, is the only
feasible cocircuit face of Tyiy, so for all other cocircuit faces Y, Y (g) = 0. Consider
the subtopes covered by T1,in. There are d such subtopes that have Y, as a face,
all of which are feasible. Any other subtope Z covered by T}, cannot be feasible
and as all non-feasible cocircuit faces Y of T satisfy Y (g) = 0, then 2(Z) = g.
There can be at most one such subtope covered by T,in. By [BLVST99, Exercise
4.4], any tope of M covers at least d + 1 subtopes, so there does exist a subtope Z
and Tnin covers exactly d + 1 subtopes. By the same exercise, it follows that Ty,
is simplicial, hence the subtope Z is as well, which is in turn a tope of M. O

2.5. Linear systems of parameters. Recall that M = M denotes the underlying
matroid of M. Consider the matroid complex A of M - the simplicial complex of
independent sets of M.

Fix a field k. Let k¥ be the standard n-dimensional vector space with basis
{t;|i € E}, so we may identify the symmetric algebra Sym k¥ with the polynomial
algebra k[t; | i € E].
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Definition 2.28. For any field k, the face ring of the matroid complex A of M is
defined as

k[M]:=Symk®/(ts | S & A)
=Symk®/(tx | X € C)

where tg = [[;cgti for any S C E. We give k[M] a Z>(-grading by setting
deg(t;) = 2 for all i.

Definition 2.29. Recall d denotes the rank of M. A linear system of parameters
(ls.o.p.) for k[M] is a set

Q= {wl,(.ug,...,wd} C kE

such that k[M] is a finitely-generated k[w;,ws, . . . , wg]-module. Equivalently k[M]/(Q)
is a zero-dimensional ring, where @ is the image of 2 in k[M]s.

Remark 2.30. Stanley [Sta04] defines an L.s.o.p. as a subset of k[M]s C k[M]. The
set {1 is a 1.s.0.p. in the sense we define above if its image in k[M]; is an 1.s.0.p. in
the sense used by Stanley.

We introduce the following perhaps non-standard definition:

Definition 2.31. We call a subspace U C k¥ a parameter space for k[M] if the com-
position U < k¥ — Span{t; | i € b} is an isomorphism for any basis b € B.

Example 2.32. If M is realizable as a hyperplane arrangement coming from a k-

vector subspace V' C k¥, then V is a parameter space for k[M].

Lemma 2.33. IfU C k¥ is a parameter space for k[M], then any basis of U is a l.s.0.p.
for k[M]. If Q is an Ls.o.p. for k[M), then its span Span(Q2) C k¥ is a parameter space for
k[M].
Proof. Suppose U is a parameter space. By definition

dimU = dimSpan{¢; | i € b} =d.
Suppose wy, .. .,wq is abasis of U. By [Sta04, Lemma 2.4(a)], w1, . . . ,wq is an Ls.o.p.

for k[M] if and only if for every facet of A, that is basis b € B, the list wy,...,wq €
kE projects to a spanning set of Span{t; | i € b}. This is true by the definition of U.

Similarly, if wq, ... ,wq € k¥ isan Ls.o.p., then for any basis b € B, the projections
to Span{t; | i € b} of wy,...,wy are a spanning set. Thus the projection from
Span(2) to Span{t; | ¢ € b} is an isomorphism and Span({) is a parameter space.

O

By the Noether Normalization Lemma, if & is an infinite field, then a l.s.0.p. for
k[M] exists. From now on, we assume that an Ls.o.p. exists and fix a choice of
Ls.o.p. Q and its span U.

2.6. Linear systems of parameters and duality. Let {u; | ¢ € E} be the basis of
(k¥)* dualto {t; | i € E}. It will be convenient for us to view the matroid complex
k[MV] of the dual matroid M" as the appropriate quotient of

Sym(kP)* = k[u; | i € E.
Let U~ be the kernel of the natural map (k¥)* — U*.

Lemma 2.34. U+ is a parameter space for the face ring of the dual matroid k[M"].
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Proof. For any b € B a basis for M, let b° := E\b be its complement, which is a
basis for M". It suffices to show that the projection U+ — Span{u; | i € b°} is
an isomorphism. As the two vector spaces have the same dimension, it suffices to
show the null space is trivial. Suppose z is in the null space, so

x € U+ NSpan{u; | i € b}.
Then for any u € U,
0= (z,u) = (z, pryu),
where pr, : U — Span{t; | ¢ € b} is the projection. As U is a parameter space for
k[M], the projection pr,, is an isomorphism and so (z,w) = 0 for any w € Span{¢; |
i € b}. Thus z = 0 and we may conclude that the projection U+ — Span{t; | i €
b°} is an isomorphism. O

We define the dual of the pair (P,U) tobe (P,U)* = (PV,U"1).

Proposition 2.35. k[M] is a free algebra over k[wy, .. .,wq) = SymU C Sym k¥, while
k[M"] is a free algebra over Sym U+ C Sym(k®)*. Both have rank |B|.

Proof. Recall that the face ring of a matroid complex is shellable (e.g., [Sta04, Propo-
sition I11.3.1]) and so the result follows [Sta04, Theorem III.2.5]. O

3. THE ALGEBRA A

3.1. The definition of A. Recall that P = (Mv .9, f) is a generic oriented matroid
program and U C k¥ is a parameter space for M = M.

Let () denote the quiver with vertex set F, the set of feasible topes, and arrows
between topes that differ by exactly one sign. We say that two topes «, 8 that differ
by exactly one sign are adjacent and write o <+ . If o <+ 3 and differ in the i-th
component, we write 3 = o'.

Let P(Q) denote the path algebra for @, which is generated by orthogonal idem-
potents {e, | @ € F} and edge paths {p(«, 5)} where o and § are adjacent and
p(a, B) is the path from « to 5. We write p(a, . . ., ay) for the element in the quiver
algebra obtained as the composition p(aq, as) - ... - p(ag—1, ak).

Definition 3.1. Let A = A(P) = A(M, g, f) be the quotient of P(Q)®;Sym(kF)* =
P(Q) ® klu; | i € E] by the two-sided ideal generated by the following relations:
(Al) e, =0fora ¢ P,
(A2) p(a,,B) = p(a,d, B) for any four distinct topes «, 3,7, € F where o and

{3 are each connected to v and ¢ by an edge, and
(43) p(a,a’,a) = equ; whenever a, o € F differ only in the sign of i € E.

Welet A = A(P,U) = A(M, g, f,U) be
A= A®gyery- Sym((F)*/(U)) = A @gypry- Sym U™,
or equivalently, the quotient of A by the additional relations
(A4) x =0forany x € U+ C Sym(k¥)*.
Remark 3.2. When the pair (P,U) comes from a polarized arrangement as in Ex-
amples 1.4 and 1.5, there is an equality A(P,U) = A(V,n,§).
Asin 2.6, for bookkeeping, we will use the dual coordinates for the dual matroid

program, so we view A(PY) and A(PY,U"') as the analogous quotients of P(Q)®y
Sym(k%) = P(Q) ®y klt; | i € EJ.
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3.2. Expressions for elements of A. We first introduce some terminology for paths
in the quiver Q. To distinguish between paths in () and their images in A, we will
use the notation ag = a1 — - - - — «, for a path of length r in the quiver Q.

A path ag — -+ = a, in Q is taut if ap and o, differ in exactly r coordinates.
To relate paths, we use the following notion.

Definition 3.3. Two paths P, P’ in Q are related by an elementary homotopy (a sym-
metric relation) if
(i) Pisthepathayg — --- = a; = aj41 — -+ — a, of length r while P’ is
thepathag = -+ = o; = 8 = o = a1 — -+ = a, of length r + 2 for
some (3 adjacent to «;, or
(ii) P is the pathay — -+ — aj-1 — a; — aj41 — --- = «, while P’ is
thepathag — -+ — a1 — 04;» — a1 — -+ = a, of the same length,
where we assume «;_; and o4, differ in exactly 2 coordinates.

Remark 3.4. Under our assumption that (M, g, f) is generic, any feasible covector
for N' = M\ f of rank d — 1 has exactly two zero coordinates. Thus, in this setting,
this definition of elementary homotopy coincides with that given in [BLVS™99,
Section 4.4, page 184] for paths in the tope graph, because every elementary ho-
motopy of type (ii) in the sense of [BLVS™99] between feasible paths is of the form
above.

We will use the following result:

Proposition 3.5. Let P and P’ be any two taut paths in Q with the same start and end
points. Then P and P’ are related by a sequence of elementary homotopies of type (ii) such
that every intermediate path is also taut.

Proof. If we consider instead paths in the entire tope graph and the more general
notion of elementary homotopy, this is a result of Cordovil-Moreira [CM93] (see
also [BLVS'99, Proposition 4.4.7]). Recall that a subset R C T is T-convex if
it contains every shortest path between any two of its members and the set of
feasible topes is T-convex (see [BLVS™99, Definition 4.2.5] and the discussion that
follows). The result then follows for paths in Q. d

Proposition 3.6. Given a path P = (a9 — - -+ — «) in Q, let d; be the number of times
the i-th coordinate changes twice. Then for any taut path P' = (ag = o — -+ — Br =
as ), we have

p(Oé07...,Oés) :p(607 767’) : Hugl

i€E

in A.
Proof. Note that s — r > 0 with equality if and only if P is a taut path. We prove
the proposition by induction on s — r. If s = r, then both paths are taut, and so by
Proposition 3.5 they are related by a sequence of elementary homotopies of type
(ii). But an elementary homotopy of type (ii) descends to an equality in the path
algebra by definition, so

p(Oé(), .- .,OLT) = p(ﬂ()? B 5181”)7

as desired.
Assume that the statement holds whenever s — r < k for some positive integer
k. Suppose that s —r = k. There exists a minimal ¢ such that ag — - - - — oy is taut,
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while g — -+ — ap41 is not taut. Then o and a4, differ in £ — 1 coordinates
and for some i, ag (i) = p11(2) # au(i).

Notice that any taut path between o and «, will have length exactly one more
than the length of a taut path from «q to a41. Therefore, by Proposition 3.5, using
a sequence of elementary homotopies of type (ii) we can replace o9 — --- —
ay—1 — oy withataut pathag - af = -+ = o)_5 = ar1 — ap.

This gives an equality in the algebra A:

p(a07 al,...,00_2,0p_1,0y, a@-‘rl) = p(OZO, alla cee 7042—25 Qpy1, 0y, aé-‘rl)
= p(OZO, O/la s 7012_2, a€+1)ui~
We are then reduced to considering the path
Qp —> Q) = = Qg = Qi —> Quig = = Qg

of length s — 1 and the number of times the i-th coordinate changes twice is d; — 1,
while the number of times every j-th coordinate changes twice remains d; for all
J # i. We can then invoke the induction hypothesis to complete the proof. O

The following two corollaries are analogous to [BLPW10, Corollary 3.10].

Corollary 3.7. Consider an element
a=p- H uf € ﬁ,
=
where p is a taut path in Q) from « to B. Suppose ~ denotes a feasible tope such that if
(i) = B(i) and d; = 0, then (i) = a(i) = B(i). Then
a=a -m,
where a' is the concatenation of a taut path from « to ~y with a taut path from ~ to 3 and
m is a product of u;’s.
In particular, if v is not bounded, then a = 0 in both A and A.

Proof. For all j € E, either:

(1) a(i) # B(j) and the j-th coordinate changes in the concatenation a’ exactly

once.
(2) 7(j) = a(j) = B(j) and the j-th coordinate does not change in the concate-
nation a’.

(3) v(j) # a(j) = B(j) and so the j-th coordinate changes exactly twice in the
concatenation a’.

Proposition 3.6 then says:
d
a/ = p . H ui l’
i€E
where d; € {0,1} and by our assumption on y, we have d; > d;. Thus
a=a - H u;ii_d1'7
i€E
as desired. O

Corollary 3.8. Let b be the zero set of any feasible cocircuit face of o € P. Forany j € E,
eat; € A can be written as a k-linear combination of paths {p(a, o', @) | i € b}.

In particular, the image in A of the element a € A described in Corollary 3.7 can be
expressed a linear combination of paths in Q) that pass through .
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Proof. For j € b, the tope o/ is feasible, so e,u; = p(a, a’, «). On the other hand,
as U is a parameter space for k[M], the set {u;|i € b} restricts to a basis of U*. Thus
for any j ¢ b, u; € A can be expressed as a linear combination of {u; | ¢ € b}. O

3.3. Alternative description of A. We conclude this section with a slightly dif-
ferent description of our algebra A, which will make it easier to describe how A
changes when we modify the choice of generic oriented matroid program.

Let D be the path algebra over & of the quiver with two vertices labelled by +
and — and an arrow in each direction. Let D = D®¥ denote the E-fold tensor
product of D with itself. In particular, Dg is the path algebra on the quiver with
vertices labelled by the set {+, —}¥ of sign vectors, or equivalently vertices of an
|E|-cube, and edges connecting any two sign vectors that differ in exactly one
position, modulo the relations that whenever «, 3 € {+, —}¥ differ in exactly two
positions ¢ and j, we have an equivalence of paths in Dg:

p(a, aivﬂ) = p(aa ajvﬂ)'

(As before, o' € {+, —}¥ denotes the sign vector that differs from « in exactly the
i-th coordinate.)

For any sign vector a, we again let e, denote the idempotent defined as the
trivial path at the vertex labelled by a. Let ep = > p e, be the sum of idempo-
tents corresponding to bounded, feasible topes and ey = }_ . €4 be the sum of
idempotents corresponding to unbounded sign vectors.

For each 7 € E/, we consider the element §; € Dg defined as the sum

0; = Z p(a, o, ).

ae{“’"*}E

Note that the center Z(Dpg) of Dp, is a polynomial algebra with generators ;. Let
9 (kF)* — k{0, | i € E} be the isomorphism sending u; to 6;.

Lemma 3.9. The algebra A from Definition 3.1 is isomorphic to the quotient of ep Dpep
by the relation:

(A1) eq =0fora ¢ B,
and the algebra A is obtained by adding the additional relation:

(A4") I(z) =0forz € UL,

Equivalently, there are isomorphisms
A=epDpep/legep), A= epDpep/(esep) + (9(U)ep).

Proof. To distinguish between the two definitions, let El and A; denote the orig-
inal algebras and Ay and A, be the algebras defined as in the lemma. Note that
there is an injective homomorphism from A to A, uniquely defined by sending
a path in @ to the corresponding path in the cube quiver {+, —}¥ and sending
u; to 6;. To see that it is surjective, it suffices to observe that for any two topes
o, € P, there exists a taut path in @ from o to 8, which follows from [Cor82,
Lemme 3.7]. O
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4. THE QUADRATIC DUAL OF A

In this section we observe that A(P,U) is a quadratic algebra and that its qua-
dratic dual is isomorphic to A(PY,U"). To ease notational clutter, in this section
we will write A for A(P,U) and AY for A(PV,U%).

To state and prove the results of this section, we will need some additional
notation. Let Qp C @ be the full subquiver with vertices P C F. For o € P, we let

Jo={i| " € P},
I, :={i|a' € F},
K, :={i|a" € B}.

Lemma 4.1. The algebra A = A(P,U) is the quotient of the path algebra P(Qp) by the
following relations:

(A2") For distinct topes o, 8,y € P, 6 € F, where o and 5 are each connected to v and
0 by an edge,

pla,6,8) ifdeP
0 otherwise

pla,7,B8) = {

(A3/4") Forany o € Pand w € U NSpanf{u; | i € Lo}, if w =Y, wju; for some
w; € k, then
Z wip(a, o, a) = 0.
i€Jq
In particular, it follows that A is a quadratic algebra.

Proof. Note that there is a surjection from P(Q) to P(Qp) (by setting e, = 0 for all
a ¢ P) and that this map factors through the natural map from P(Q) to A.

We first show that the map from P(Q) to A (and hence from P(Qp) to A) is
surjective. To do so, it suffices to show that the image in A of any element of
w € U* is in the image of the map from P(Q) to A. In A, we can express w as the
sum w = ) . rWey, 0 it is enough to show that for any o € F, we, is in the
image.

Because « is feasible, there exists a feasible cocircuit face Y of o and z(Y)) is
a basis of M. Thus z(Y) C I, and so by our assumption that U is a parameter
space, the image of {u;|i € I,} D {w;|i € 2(Y)} is a spanning set of U*. For any
w € U*, we can therefore write we, as a linear combination of elements of the
form p(a, o', o) where o' € F. We conclude that map from P(Q) to A is surjective.

To identify the kernel, note that (A2") is simply the image of the relation (A2)
in P(Qp) and similarly the relations (A3) and (A4) combine to give (A3/4").

As P(Qp) is generated over its degree zero component by its degree one com-
ponent and the relations above are quadric, we conclude that A is a quadratic
algebra. O

Recall that A, is an Ap-bimodule. Since A is quadratic, A is a quotient of the
tensor algebra T'(A;) over Ay of the form
A= T(4)/T(Ar) - W - T(A)
where W C N := (T'(A1) ®a4, T'(A1))2 is the space of quadratic relations in A. The
quadratic dual of A is defined to be

A= T(AD)/T(AY) - W T(AY)
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where W+ C N* := (T(A}) ®a, T(A}))2 is the set of elements orthogonal to W.
Theorem 4.2. There is an isomorphism A(PY,U+) ~ A(P,U)".

Proof. Mimicking the proof of [BLPW10, Theorem 3.11], we define an isomor-
phism between (AY); and (A;)* and show that the space W" of quadratic rela-
tions in AV coincides with the space W+ of quadratic relations in A' under this
identification.

In degree zero, we have a canonical identification

AO = k{ea | o€ P = Pv} = (Av)o.
In degree one,
{p(e, B) | @, B € P such that a +> 8} C A,

is a natural basis for A;.

As P = PV, to distinguish elements of A and AY, we let p¥(«, 3) denote the
element of (AY); associated to the arrow o — 8 in PV.

We now identify (A"); with (A;)* as follows. First we attach a sign e(« <+ ) to
each pair « <+ 3 of adjacent topes in P such that for distinct topes «, o’, o/, (a)?,
an odd number of the edges of the square

o <—>at

]

o) <> (o)
are attached a negative sign.’
We then identify (AY); with (A;)* via the perfect pairing
(Av)l x A1 — k

clap) fa=0,p5="1,
0 otherwise.

(0" (v, B),p(7,6)) = {

For the remainder of the proof, we let
N L= Al ®A0 Al = T(A1)27
NY 1= (AY)1 @4, (A)1 =T((A")1)2.
We wish to show that our choice of perfect pairing induces an isomorphism be-
tween WY C NV and Wt c N*.
Note that the relations of type (A2”) lie in e,Weg and the relations of type

(A3/4”) lie in e, We,. As these relations are homogeneous with respect to the
idempotents e, for a € P, we have a direct sum decomposition

W = @ eaWeg.
a,BEP
Moreover, e,Weg and e, W "e; are orthogonal unless & = ¢ and 5 = +. Thus it
is enough to check that egW Ve, C egN"e, is the perpendicular complement to
eaWeg C eqNeg forany o, 5 € P.

5This can be done for the edges of the n-cube {+, —}¥ by identifying its vertices with monomials
in the exterior algebra Ak{ei, ..., e, } and then using the standard differential to attach signs to edges.
Restricting to P then gives a collection of signs as desired.
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Note that e, Neg, egN Ve, are zero unless a = /5 or a and f differ in exactly two
positions and there is a path from « to 3 in P.

We first deal with the latter case. Suppose the two elements of £ where o and
(3 differ are i # j. We must have that at least one of o’ or o is in P by assumption.
We can assume that a’ € P.

If ' € P, then we have that e, N eg is a two dimensional k-vector space with
basis {p(a, a’) @ p(a, B), p(e, &’ ) @ p(a?, B)} and

caWeg = k{p(a,a’) @ p(a’, B) — ple.o’) @ p(o’, B)} C eaNeg,, and
esW'ea = k{p’(B,0") @ p”(a’,0) —p"(B,0)) @ p"(a’, )} C esNVeq.
Pairing the two basis vectors together using the form defined above we get
ela & ae(a’ & B) +e(a & a?)e(a? « B).
By our choice of signs, the terms cancel and we conclude that e, Wtes = esWVe,.

If o/ ¢ P, then either o/ € F\Pand o/ ¢ B=F",ora’ € B\P = FY\P" and
ol ¢ F=BY. Assume that o/ € F\P and o’/ ¢ B = F". Then we have that

eaNeg = k{p(a,a’) @ p(a’, B)} = eaWeg

since p(a, at, ) = p(a,a’, 3) = 0in A. On the other hand, o/ ¢ FV means that
egNVe, = k{pV(B,a") @ p¥(a’,a)} and (A2) does not impose any relations, so
esWVe, = 0. Therefore egWre, = 0 = egWVe,. The case of € B\P = FV\PV
and o/ ¢ F = BY follows from the same argument on the dual side.

Finally, consider the case where oo = 3. Note that

eaNeo = k{p(a,a’) @ p(a’,a) | i € J,}.

We identify e, Ne, with k/> by regarding p(a, a’) @ p(a’, a) as the standard basis
element labelled by i € J,. We also use the standard pairing on k¥ to view U~
as a subspace of k¥. From the relations (A3/4”), we find that e,We, is given
by prj, (U+ N k') or equivalently by (prx, UL) N k7=, where prg denotes the
orthogonal projection from k¥ to k° for any S C E.

Taking the orthogonal complement of e, We, C e, Ne, using the first descrip-
tion gives:

(eawea)J— = (per(UJ_ n kla))l = (pT'[W U) N kja
= (prxyU)N ko = eaWVe,.

Here the second equality follows from the fact that (prgV)+ = V4 N k5, the third
equality uses the fact that I, = K and J, = J. (see Proposition 2.16) and the
final equality follows from the second description of W above. O

5. THE ALGEBRA B

Following Braden-Licata-Proudfoot-Webster, we define in this section another
algebra B = B(P,U) associated to the pair (P, U) and prove that B is isomorphic
to the quadratic dual A' of A(P,U). We also consider a deformed version B(P)
such that B(P) = A(PY). The algebras B and B defined in [BLPW10, Section
4.1] coincide with those defined here in the special case when (P, U) comes from
a linear subspace as in Example 2.4.
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5.1. A topological lemma. In this section we assume some familiarity with reg-
ular cell complexes, posets and their geometric realizations and refer the reader
to [BLVS 199, Section 4.7] for more on these topics.

Recall from Section 2.2 that £ = L(N) denotes the poset of covectors for N' =
M \f. This poset is pure with a unique minimal element 0 and a rank function p.
Every covector is uniquely determined by its cocircuit faces.

We will define the algebra B(P, U) from the poset structure of £, using an affine
version of the following notion [BLVS ™99, Definition 4.1.2(ii)]:

Definition 5.1. For any covector Y € L, the Edmonds—Mandel face lattice of Y,
denoted Fm(Y), is the set of all faces of Y in £. The opposite poset §;,(Y) =
Fem (Y)°P is called the Las Vergnas face lattice of Y.

Both §e, (YY) and ., (Y) are graded posets and by theorems of Folkman-Lawrence
and Edmonds-Mandel, they have the following topological interpretation [BLVS™99,
Theorem 4.3.5]:

Theorem 5.2. The lattices Fep, (Y) and §1.,(Y') are each isomorphic to the face lattices (or
augmented face posets) of PL reqular cell decompositions of the (p(Y') — 2)-sphere.

We will use the following affine (or feasible) version of the Edmonds-Mandel
and Las Vergnas face lattice.

Definition 5.3. Let Y € A. The feasible Edmonds—Mandel face lattice of Y is
Fon(Y) = Fem(Y) N A) U {0},
while the feasible Las Vergnas face lattice of Y is
F1o(Y) = Fln(Y)P.

For any feasible covector Y € A, let Y*° € A be the unique maximal face of Y’
in the boundary. The face Y*° is equal to the composition of all cocircuit faces of
Y in A%.

Note that A does not have a cellular interpretation, since the faces of a feasible
covector need not be feasible. The same is true of 7, (Y) when Y>° # 0. On the
other hand, 37, (Y) will always have a cellular interpretation, even if the program
P is not generic. The assumption that g is generic implies §7, (V) is the face lattice
of a pure simplicial complex, whose vertices correspond to the feasible facets of ¥
and whose maximal simplices correspond to the feasible cocircuits faces of Y.

We will use the following lemma on the topology of §7; (Y) to show that the al-
gebra B(P, U) we define below is finite-dimensional (which will imply that A(P, U)
is finite dimensional as well).

Lemma5.4. LetY € A.

o If Y = 0, then the geometric realization |7, (Y )\{0,Y }| of the proper part of
the feasible Las Vergnas face lattice of Y is a PL (p(Y') — 2)-sphere.
o IfY™ £0, then ||F], (Y)\{0,Y}|| isa PL (p(Y) — 2)-ball.

Proof. If Y = 0, then §7,(Y) = F1,(Y) and so the statement reduces to Theo-
rem 5.2.
Assume that Y*>° # 0, and let

A=FL0\0, Y}
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denote the proper part of the feasible Las Vergnas face lattice of Y.

The geometric realization ||Al| of A is homeomorphic to the geometric realiza-
tion [|Aora(A)]| of the order complex Agq(A) of A (which is a subdivision of the
former). Further, using the canonical identification Aypq(A) =2 Agg(AP), we find
that [|Al| is homeomorphic to || Ay (AP)].

It will thus suffice to prove that ||Ayq(A°P)| is a PL ball. By restricting to
P/z(Y) if necessary, we may assume that Y is a tope, so p(Y) = d + 1 and
Aora(A°P) is a (d — 1)-dimensional simplicial complex.

We first note that Ay q(A°P) = A,q(A) is pure because A is the face poset
of a pure simplicial complex. By [BLVS"99, Proposition 4.5.4], the graded poset
&7, (Y) admits a recursive coatom ordering, which implies by [BLVS*99, Lemma
4.7.19] that its open interval A°®* = (0,Y") is shellable (meaning that the order
complex Ay,q(A°P) is shellable).

To conclude that the shellable (d—1)-dimensional simplicial complex Aq.q(A°P)
isa PL (d—1)-ball we use the criterion of [BLVS™99, Proposition 4.7.22(ii)]: namely
we must show that every (d — 2)-simplex is the face of one or two (d — 1)-simplices
and at least one (d — 2)-simplex is the face of exactly one (d — 1)-simplex.

Note that a (d — 1)-simplex of Aq.q(A) is a maximal chain 2y < 21 < -+ <
xq—1 of feasible covector faces of Y, where z; < x,4; means that z; is a proper
face of z;11. Now consider any (d — 2)-simplex of Agyq(A°P). It will similarly be a
chain of the form zg < x1 < -+ < zj—1 < 341 < -+ < xq—1 for some i between 0
and d — 1.

If 7 > 0, then the chain can be completed to a maximal chain in exactly two
ways because A is a pure simplicial complex.

If i = 0, then the feasible edge x; either has one or two feasible cocircuit faces
and so the (d — 2)-simplex can be completed to either one or two (d — 1)-simplices.
As Y™ # 0, there exists an edge x; of Y with only one feasible cocircuit face and
thus a (d — 2)-simplex of Ay.q(A°P) that is the face of a unique (d — 1)-simplex.

We conclude that || Aoq(A°P)|| = ||A]l isa PL (d — 1)-ball. O

5.2. The algebra B. Recall that the face ring of a simplicial complex A is defined
as

kK[A] = k[ti | i € E]/(ts | S ¢ A) = Symk®/(ts | S ¢ A),

where here and in what follows tg = Hz‘e g t; with the convention t5 = 1. As
before, we let k[M] denote the face ring of the matroid complex of M.

For any bounded feasible topes a1, ...,a, € P,letY = a; A--- A o, denote the
unique maximal common feasible covector face of all oy, ..., a,. Then

§ln (V) = () §2 ().
=1

We define
Auya = S (Y)\{0}
and
2(Agya.) :={SCE|SCzX)forsome X € A,, ..o}

Note that z(Ag,...q,.) is a simplicial complex and A, ..o, can be realized as the
face poset of a simplicial complex.
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Definition 5.5. For aq,...,a, € P, let

Ra,.a, = k[2(Aq; . a,)]-

Remark 5.6. When (P,U) comes from a linear subspace as in Example 2.4, then
each feasible tope a corresponds to a bounded feasible chamber in the the corre-

sponding hyperplane arrangement and the ring Eal...ar defined here agrees with
the corresponding ones defined in [BLPW10, Definition 4.1].

For any feasible covector Y, the zero set z(Y') C E is an independent set of M, so
there are natural quotient maps k[M]| — Ral...%. Notice that for any S € F there
is also a natural quotient map Rq, ..o, — Ra, ..o, 3 compatible with the maps from
k[M]. Furthermore, the quotient k[M] — Rq, ..., makes Ry, ..o, a Sym U-module.

Lemma 5.7. For ay,...,a, € P, let Y = a3 A--- A . The ring Eal...ar is a free
Sym U-module whose rank is equal to the number of feasible cocircuit faces of Y.

Proof. Lemma 5.4 tells us that |37, (Y)\{0,Y}|| = [|Aa; .0, | isa (p(Y) — 2)-sphere
or (p(Y) —2)-ball. If 2(Y') = @, then the posets z(Aq,...q,.) and A, ...q, are isomor-
phic. More generally, the geometric realization ||2(Aq, ...q,.) || is the |2(Y")|-fold cone
over ||Ag, ..., |- Inany case, ||2(Aq; ... )| is either a (d — 1)-ball or (d — 1)-sphere.

By results of Hochster, Reisner, and Munkres (cf [Sta04, Section 11.4]) it follows
that Ry,...a, = k[2(Aq,..0,)] is a Cohen-Macaulay ring. Hence [Sta04, Theorem
1.5.10] implies that Ry, ..., is a free module of finite rank over the symmetric al-
gebra of any parameter space. Here U is a parameter space for Ry, ..., by [Sta04,
Lemma I11.2.4] because the composition U — k¥ — k*X) is an isomorphism for
any cocircuit X € 52, (Y). Also by [Sta04, Lemma II1.2.4], the rank is equal to
the number of maximal simplices of z(Ag,...a,.), which are in bijection with the
cocircuits of §Z,, (V). O

Remark 5.8. While we will not need it in what follows, we note that if P is Eu-
clidean one can prove that z(A,, ..., ) is in fact shellable and then [Sta04, Theorem
I11.2.5] gives an explicit basis of Ry, ..o, as a free Sym U-module.

For any «, 8 € P, we let

dag := [{i | a(i) # B()},
which coincides with the length of any taut path from « to 5. For «, 53,7, we let

Say = {i | ali) = 7(i) # B()},

which is the set of i € E such that the concatenation of a taut path « to 5 and a
taut path /5 to v changes the i-th coordinate exactly twice.

For a graded vector space (or module) M and integer k, we write M (k) to de-
note the graded vector space shifted down by k, thatis (M (k)); = M;tx.

Definition 5.9. Let B = B(P), as a graded vector space in non-negative degree,
be defined as

E = @ §a5<7d(,[3>

(a,8)EPXP
where the variables ¢; are given degree 2.
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Following [BLPW10] we define a multiplication x: B® B — B as zero on R,s ®
Rs if 8 # 6 and for «, 5, € P, by the composition

> fapy 3
Rap ® Rgy = Rapy ® Ragy = Rapy 3" Ray
where the first map is the product of the restrictions, the second is multiplication
in Ry, and the third map fs, is induced by multiplication by ¢ s .
ay

Lemma 5.10. The map fap~ is well-defined.

Proof. 1t suffices to check thatif tg = 0 in R, g+, then ¢ Sfjth =0in ]A%M. In other
words, we want to show if S ¢ z(Y') forall Y € A,3,, then SU Sgﬂ{ ¢ z(Y") for all
Y’ € Ayy. Suppose Y’ € A, and either: (1) Y’ ¢ Agor (2) Y’ € Ag.

In the first case, Y’ ¢ A means that there exists an 7 such that Y’ (i) = —5(i),
in particular Y'(i) # O and ¢ ¢ z(Y'). As Y’ is a face of a and ~, it follows that
Y'(i) = a(i) = y(i) and so i € S5. Thus SUSE 7 =(Y").

In the second case, we have Y’ € A3, hence by assumption S ¢ z(Y”) and so
again SU S ¢ 2(Y'). O

Proposition 5.11. The multiplication x gives B the structure of a graded ring.

Proof. We need to check associativity and compatibility with grading. For associa-
tivity, the map Rop ® Rﬁv ® RW; — Rys givenby 2 @ y @ z — (2 % y) * 2 is equal
to the map given by restricting each of the components to Ro, 85, multiplying in
order, and then multiplying by ¢ g ~tsy, toget back into R,s. For o x (y x z), the
only change is that we multiply by ¢57 -1 S8 - To show
bs, 182, = Usys Usay
note that the power of ¢; appearing on each side is equal to the number of times
a path given by the concatenation of taut paths from « to 5, 8 to 7, and v to §
changes the i-th coordinate twice.
For the compatibility of gradings, note that
dop + dgy — day = 2|55 |.
It follows that multiplication % gives a graded preserving map

Rap(=dag) O Ry (=da) = Ra(~das)-
(Recall that deg(t;) = 2 for all 4.) O
Note that the map ¢: Sym(k”) — B given by the composition
Sym(k%) — @ Sym (k%) — @ Roa < B
aEP aEP

makes B into a graded Sym(k)-algebra. Moreover, this map factors through the
projection Sym(k¥) — k[M] and so we may also view B as a graded k[M]-algebra.
Let
Ra,..a, == Ray.a, @symu k= Rq,..q, QM) k[M]/(U)
We define B = B(P,U) via

B = B ®symuv k = B @y k[M]/(U).
Note, B is itself a graded ring whose multiplication we will also denote by *.
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Theorem 5.12. There is a natural isomorphism A(PV) — B(P) as graded Sym(k¥)-
algebras, and this induces an isomorphism A(PV,U+) ~ B(P,U) as graded rings.

In particular the theorem implies that A(PV)is in fact a k[M]-module.

Proof. We define a map ¢: A(PY) — B(P) by
(1) eq — 1ga € Eaa foralla € P,
) p¥(a,B) = lag € Rap(—1) for adjacent a, 3 € P, and
(3) fr C(f) forall f € Sym(k¥) =k[t; | i € E].
We will first show that this gives a well-defined homomorphism. We then prove
surjectivity and conclude with injectivity.
We must check that the image of the relations (A2) and (A3) for A(PV) hold in
B(P).
For (A2), we consider o« € PV = P and i # j in E such that y = (o)’ € PV and
a',ad € FV. This means that Sg‘; =g= Sgi, so that toas = 1.
If o and o are both in PV = P, then we have
loai * Loty = Loy = Toai * Lass-
Otherwise, by relabelling i and j if necessary, we may assume without loss of
generality that o’ ¢ PV. This means that in A(PV), we have

0= pv(a7ai7’7) = Pv(a»aja7)~
On the other hand it also means that o’ € FY\PY = B\F. But any common face
of a and  must also be a face of of, which is infeasible, hence a and ~ have no
common feasible faces and so ﬁav = 0, which means both products 1,4: * 14,
and 1,45 * 1,5, must be zero.
We now check the relation (43). Let « € PY and o’ € FV.
If o € PV, we have that

¢(eati) = ]-aa * C(tz) = (tz € -R/aoz)
= (tSai S Eaa)
= 104(0477) * 1(ai)a = (ZS(p(O@ ai7 O[))

If i ¢ PV, then of € FY\PY and s0 eat; = eap" (o, &', a) = 0in A(PV). On the
other hand, o’ € B\P implies that i is not in the zero set of any feasible face of the
feasible tope « of N' = M\ f, so t; = 0 € R,,. This completes the proof that the
relation (A3) is satisfied.

Thus, the homomorphism ¢ is well-defined.

To see that ¢ is surjective, note that ¢(eqt;) = laat; foralli € EFand o € PV =
P. This means that @, R.. C B is contained in the image of ¢. Since the natural
quotient Ryo — Raap = Rap is given by multiplication by 1.5 = ¢(py, 5) for any
B € P and p,;, 4 representing a taut path from a to 3 in the quiver Q" associated to
PV, we have that ¢ is surjective.

Finally, we must prove that ¢ is injective. It suffices to show that the dimension
of R, in each degree is at least the dimension of the corresponding graded part
of e A(PY)es. To do so, we construct a surjection of graded Sym(k%)-modules

Raﬁ — €QA(PV)€ﬁ.
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Let x : Sym(k®) = k[t; | i € E] — eag(PV)eg be the map that takes 1 to a
taut path p from a to 8 in the quiver QY. By Proposition 3.6 and Proposition 3.5
this map is surjective. It remains to show that x factors through R,s, which is
equivalent to showing that for any S ¢ z(Y) forall Y € A,3, we have x(ts) =
p-ts = 0. Notice that S ¢ 2(Y) forall Y € A,p if and only if SU SZ, ¢ 2(Y) for
allY € A,, so we may reduce to the case o = J3 if we replace S with SU S# .

By Corollary 3.7 it suffices to prove the existence of v € FV\PY = B\P such
that v(i) = a(i) forall i ¢ S. Since S ¢ z(Y) for any Y € A,, the image @ of
ainP/S = (M/S, g, f) is not feasible. However, @ is bounded in P/ since any
cocircuit face X € A>(P/S) of @ comes from a cocircuit face X € A>(P) of a, and
therefore has X (f) = X (f) = —. Hence @ is a feasible but unbounded sign vector
in PV\ S, and lifts to at least one v € FV\PV with y(i) = a(i) foralli € S. O

6. THE CENTER OF B

We continue to assume P = (/W .9, f) is a generic oriented matroid program
and U C kP is a parameter space for M = M. In this section we compute the
centers of B := B(P) and B := B(P,U).

Let ¢ be the composition

k[M] — P k[M] = €D Roo — B
acP acP

and recall that this map makes B a graded k[M]-algebra.

Theorem 6.1. The map C: k[M] — B(P) is injective, and its image is the center of
B(P). Furthermore, the quotient B(P) — B(P,U) induces a surjection of centers and
the center of B(P,U) is isomorphic to k[M]/(U).

This is the natural generalization of [BLPW10, Theorem 4.16] and we imitate
the structure of their proof, which makes use of the extended algebras:

Eext = Eext (P) = @ ]:j;oz6<_doz6> and Bext = Bext (P7 U) = Eext@)Sym Uk7
(a,B)EFXF

where the product * is defined as before but we use all feasible topes, not just the
bounded feasible topes. Braden-Licata-Proudfoot-Webster first prove their result
is true when B and B are replaced by the extended algebras Bext and Bey. This is
done by studying a chain complex whose homology is the center Z(Bey). To get
the theorem for B and B, they then use a categorical limit argument.

This section is split into two subsections. In the first subsection we define the
necessary notation and lay the topological foundation for the proof. In the second
subsection we adapt the arguments of [BLPW10] to our setting.

6.1. The topology of affine space and feasible Edmonds—Mandel face lattices.
When P realizable by a polarized arrangement (V, n, €), it is possible to view A as
the cells of the coordinate hyperplane arrangement in n + V' C R™. This allows
one to find tubular neighborhoods of intersections of hyperplanes, and compute
the relative cellular Borel-Moore homology of these tubular neighborhoods using
the decomposition by cells. In this section we recall definitions and notation to
generalize these notions to our setting.
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Recall that A and .A*° were defined respectively in Definition 2.8 as the feasible
and boundary covectors. We also define the core of A to be

AV ={y e A|Y>™ =0}
Foranyi€ Fand S C E, let

H ={X € A[X(i)=0} and H{:=()H.
i€s
Our genericity assumption on g implies that H # @ if and only if S is indepen-
dent in the underlying matroid M of M, in which case any maximal covector in
H7 has rank d + 1 — |S|. Note that HZ does not have a cellular interpretation®
unless S is a basis of M, in which case H consists of a single feasible cocircuit.

It is known [BLVST99, Theorem 4.5.7.i] that || A,:q(A)]| is a shellable d-ball. Thus
its boundary [|Aora(A\A%)| is a PL (d — 1)-sphere. In [|Aoa(A)||, we have that
| Aora(HZ )|l is a (d — |S|)-ball (when nonempty), with boundary ||Aoa(HZ \A%)||.

Forany Y € A, let

oy = || Bora (§7m (VOO € | Aora(A)ll-

Lemma 6.2. ForanyY € A, the order complex Aopa (T2, (Y)\{0}) is a shellable (p(Y')—
1)-ball.

Proof. Recalling the notation from the proof of Lemma 5.4, note that Ao,q (37, (Y)\{0})
is the cone on A,,q(A°P) with vertex Y. If Y = 0, then A,.q(A°P) is a shellable
sphere (see [BLVS'99, Theorem 4.3.5(i)]) and if Y>° # 0, then in the proof of
Lemma 5.4 we showed that A,,4(A°P) is a shellable ball. In both cases, the cone is
a shellable ball as claimed. O

The boundary of each oy is the union of cells o x for the proper faces X of Y and
the geometric simplices in Agpq(FZ,,(Y)\{0}) corresponding to chains that do not
begin with a cocircuit. Let = be the regular cell complex of cells {oy }ye 4 together
with the set of (geometric) simplices {7 },ca,,,(4\.40). In particular, Ayq(A) is a
subdivision of =. The cells oy for Y € A° define a subcomplex of =, as do those
for Y € HL N A° when S is independent in M.

Remark 6.3. Figure 3 shows an example to illustrate some of these definitions. The
reason we consider A,q(A) and E is because A does not have a cellular interpre-
tation unless we include a boundary. The natural boundary would be A%, but this
gives us undesirable topology at the boundary. By introducing A,.q(A) and = we
resolve this issue.

Definition 6.4. For an independent set S C E of M, we define
Yg={AcApa(A)|AC (zo<z1 <--- <) € Agra(A) and z; € HZ for some j}

and let Ng := ||3g||° be the interior of ||Xg|. In particular:

Ng :={A € Apa(A)A = (z0 <21 < -+~ < ;) and z; € HE N A° for some j}

®As was discussed in the case of H. 2 = A following Definition 5.3.
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S

FIGURE 3. [[AUA>®||, |Aora(A)|l, |IZ]|

Proposition 6.5. The Borel-Moore homology of Ng is

Z m=d

HBM(N.-7) —
m (NsiZ) {o m # d

and can be computed in ||Z|| using the relative cellular Borel-Moore homology of Ns via
the decomposition by cells Ng N oy for Y € A. These Ng N oy are nonempty exactly
when §L,,(Y)NHL + .

Proof. We first show that Ng is a d-ball, from which the first statement follows.

By [BLVST99, Theorem 4.5.7(i)], || Aora(HZ )| is a shellable ball. In particular,
| Aora(HZ )|| is collapsible (i.e., it collapses to a point).

Now Nj is a regular neighborhood of ||Aoq(HZ )|l in the d-ball || Aoa(A)| and
so by [RS72, Corollary 3.27], N is a d-ball.

To see that each intersection Ng N oy for Y € Ais a cell, note that Ng N oy is a
regular neighborhood of the shellable ball Hg N oy in oy. The same collapsibility
argument from above then implies Ng N oy is a ball.

The cells Ng N oy provide a cellular decomposition of Ng modulo its boundary
and the space N N oy is nonempty if and only if a face of Y is contained in HZ or
equivalently, §7, (Y) N HZ # @. O

Proposition 6.6. Let Y € A\ A such that Y has a face in HZ N A°. Then
HBM(NsNoy;Z) =0

for all m. This can be computed in ||Z| using the decomposition of Ng N oy by cells
NsNox for X € §2.(Y), which are nonempty exactly for X which have a face in HZ .

Proof. The idea of this proof is to again use relative homology, this time on the
pair (oy, oy \Ng). Recall that oy is a PL (p(Y") — 1)-ball by Lemma 6.2. Then oy is
contractible, so we are done if we can prove the same for oy \ Ng.

There is a unique maximal element of HZ N A°NF7,,(Y), which we call X. The
complement of Ng in oy is ||Al|, where

A= ord(§7, (V\HE N A)) C ord(§,(V)).

Notice that A is nonempty since Y # 0, and A is equivalent to the cone over
ord(§Z,, (Y)\§Z,,(X)) with cone point Y. Thus ||A| is contractible, and we are
done. O

6.2. The proof of Theorem 6.1. We will construct a chain complex with homology

isomorphic to the center Z(Bexy).
Let
A, ={Y e AlplY)-1=r}={Y € A|dim(oy) =7},
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where, as in Section 2.2, p is the poset rank of Y in £ and by Lemma 6.2, oy =
| ord(FZ,.(Y))|| C [|Z]| is a ball. For example, A, is the set of feasible topes F and
Ay is the set of feasible cocircuits.

ForallY € A,, the space of orientations of oy is a one-dimensional vector space

or(Y) := HEM (65.: k),

where oy denotes the interior of oy. There is a natural boundary map

Oy : or(Y)— @ or(X).
XEA_1nFE, (V)

em

Assembling all such maps, we obtain a chain complex on @y 4 or(Y'), graded by
dim(oy ), which computes the cellular Borel-Moore homology of ||Z||°. As ||E| is
a closed PL d-ball, this homology is one-dimensional in degree d and zero in all
other degrees.

ForY € A,, let

Ry = k[z35(Y)NO0})] = Ray .o
for any choice of oy, ..., a0 € F such thatY = agy A --- A ap. We define a chain
complex C, such that
C, = @ Ry @ or(Y)
YeA,
with differentials for each Y € A,

fiy R OT‘(Y) — @ EX Ok OT(X)
XeA,—1nFZL, (V)

induced by the natural boundary maps or(Y) — or(X) and the quotients Ry —
Rx for each facet X of Y.

Lemma 6.7. Fix an orientation class Q € HPM(||Z||°; k), and let Q, € or(a) be the
restriction of Q) for any o € F. Let ¢ : k[M] — R, denote the natural quotient map.
Then the homology of C, is zero outside of degree d and k[M] ~ H4(Cl) via the map

€T Z Ya(2) @ Qg

acF

Proof. Following the proof of [BLPW10, Lemma 4.17], for a monomial m = [], ¢;*,
let S ={i|s; >0} and C}"* C C, be the subcomplex consisting of all images of m,
namely
om = $H or(Y).
Y € A,
HI ngl () #o

Note that the complex Cs decomposes as a direct sum @,,,C;* of subcomplexes
because the terms of C, are direct sums of quotients of Symk® = k[t;|i € E]
by monomial ideals, while the differentials are induced by the identity map on
k[t;|i € E], up to sign.

If the set S = {i | s; > 0} is dependent in M, then Hs = @ and so CJ* = 0. If
S is independent in M, then C}" is the cellular Borel-Moore complex of the neigh-
borhood Ng C ||Z]|, the homology of which is one-dimensional and concentrated
in degree d by Proposition 6.5. O
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Proposition 6.8. The obvious map ., : k[M] — Bex: is injective, and its image is the

center of Eext. The quotient homomorphism Eext — Bext induces a surjection of centers,
and yields an isomorphism Z(Bext) = k[M]/(U).

Proof. As in the proof of [BLPW10, Proposition 4.18], for an element z € éext to be
in the center, it must commute with each idempotent 1,, and thus be of the form
2=, cF %a Where z, € R,. Similarly, using the fact that 2 must commute with
14 for a and § adjacent, we find that

Yap(2a) = Ypa(zp)

where ¢o5 : Ro — Ras and ¢, : Rz — Ras denote the canonical quotient
homomorphisms. As Bey is generated by the elements 1, and 1,4 for adjacent
@, B and the image of (., it follows that:

ext”s

(6.1)  Z(Bew) = {(za) € P Ra | Yap(2a) = Vpalzs) forall a < B € ]—'} :

aeF
On the other hand,

Hd(C.):{y:Zya®Qa€Cd8y:0}

aEF
and the cycle condition dy = 0 is equivalent to ¥ 3(ya) = ¥pa(yp) forall a <+ 8 €
F. We conclude that (., induces an isomorphism

k[M] = Hy(Cy) = Z(Begt).

Finally, we can define a chain complex C. of free Sym U-modules with Cn =
C, for0 < m < dand éd+1 = ker(dq) = k[M]. This is acyclic, and thus so is
Ce ®sym v k. Arguments analogous to above prove that

k[M]/(U) = Hd(Co ®Sme k) = Z(Bext>

through an isomorphism compatible with the quotient Bext — Boxt. a

We now include boundedness into our considerations. Define

AP = | §L.0),

YePCAy

and notice that we have a chain of proper inclusions A° ¢ A” C A.

Note that the description of Z (Eext) in (6.1) can be rewritten as asking that
Yap(2a) = Vsa(zp) forall o, B € F, not necessarily adjacent. This can be rephrased
as a limit:

62) Z(Bext) = Jm Ry.
XecA

By the same sort of argument, we find

(63)  Z(Bew)= lim Ry, Z(B)= lim Ry, and Z(B)= lim Rx.
XeA XeAP XeAP

The next lemma allows us to conclude that these centers only depend on A°.
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Lemma 6.9. Forany Y € A" and any subcomplex ® C §7,, (V) with §2,,(Y) N A° C
D, the restrictions

(6.4) Jim Ry — Jim Ry and lim Ry — lim Ry
XeFr (Y) XeD XeFr, (Y) XeD

are isomorphisms.

Proof. This proof is simply a rephrasing of [BLPW10, Lemma 4.20] in our setting.

This is trivial if Y € §Z,,(Y) N A° (equivalently Y = 0), which includes the
case where Y is a feasible cocircuit. So we may assume Y # 0, and we may also
inductively assume the statement is true if Y is replaced by any X € §7, (Y)\{YV}.

We will prove the statement first for ® = 7 (Y)\{Y}. Let C} be the sub-
complex of C, consisting only of the summands Rx @ or(X) for X € §7, (V).
As in the proof of Lemma 6.7, this complex splits into a direct sum of complexes
C&™ = CY N O for each monomial m = [], 2% . The summand Ca""™ computes
the cellular Borel-Moore homology of Ng N oy C oy, for S = {i | s; > 0}. By
Proposition 6.6, this Borel-Moore homology is trivial, so every C’z/ ™ is acyclic and
sois CY.

We have that lim Rx is isomorphic to the kernel of the boundary map
CY | — CY,. Since CY is acyclic, the first map of (6.4) is therefore an isomor-
phism. Similarly, the second map is an isomorphism since C? is an acyclic com-
plex of free Sym U-modules, which implies CY ®sym v k is an acyclic complex of
vector spaces.

For a general © containing §7,,(Y) N A° pick an ordering Xi,..., X, of the
elements of Fe,, (Y)\D such that their ranks are nondecreasing, and let ©, = D U
{X1,...,X¢}. Then for 1 < ¢ < r, we have §7, (X,)\{X,} C Dy_1, so an identical
argument shows that

lh&néxé l&n EX and @Rx% 1&1 Rx
XeD, XeDp1 XeD, XeDyp_1

are isomorphisms. O

Proof of Theorem 6.1. Put the equations (6.2) and (6.3) together with Lemma 6.9 to
get

Z(Bex) = lim Rx = lim Ry = Z(B)
XeA X€eAP

and

Z(Bes) = lim Rx = lim Ry = Z(B).

H
XeA XeAP

1%

All of these isomorphisms are compatible with (.., ¢ and the natural quotients
Bext — Bext and B — B, so we are done. O

7. THE MODULE CATEGORY OF A

In this section, we study the simple modules for A = A(P,U) and their projec-
tive covers using a class of standard modules.
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Definition 7.1. For any a € P, let
L, :=A/(eg | B # a).

Then L, is the simple one-dimensional A-module supported at o and each simple
A-module is isomorphic to L, for some o € P. Let

P,:=c,A
be the projective cover of L. We also define V,, to be P, /K, where

K, := Zp(oz,ozi) “ACP,
i€b
and b is the basis of M such that ;(b) = a under the bijection of Corollary 2.15. We
refer to V,, as the standard module and L, as the simple module associated to o.

Lemma 7.2. Let o € P. The standard module V., has a basis consisting of a taut path
from o to each § < a.

Proof. We simply copy the argument from [BLPW10, Lemma 5.21]. It is clear that
the collection of such taut paths is linearly independent. We now show that the
image of any other path is trivial in V.

Letb = u~!(a) € B.

Suppose p is a taut path from o to v € F and v Z «. Then for some i € b,
v(i) # «a(i) and o' € F. By Corollary 3.7 p can be replaced by one of the form
p(a,at) -z € K,. Thus p = 0 as an element of V,.

If p is a non-taut path, then by Proposition 3.6, we can write

p= p/ . Hu?i = <H eau?i> . p/
i i
where p/ is taut (with the same endpoint as p) and a; > 0 for some 7. Corollary 3.8
implies that for all i € E and some ¢; ; € k, we have

eqll; = Zci7jp(a,aj,a) € K,.
jED
Thus, p € K, and we are done. O

Corollary 7.3. The kernel of V., — L, has a filtration with subquotients isomorphic to
Lg for 5 < «, each appearing exactly once.

7.1. A is a quasi-hereditary algebra when P is Euclidean. Recall that a finite-
dimensional algebra is quasi-hereditary if its category of finitely generated modules
is highest weight in the following sense.

Definition 7.4. Let C be an abelian, artinian k-linear category and let Z be the set
indexing the isomorphism classes of simple objects {L,, | a € T} and indecom-
posable projective objects {P, | a € Z}. Then C is a highest weight category if the
set Z can be endowed with a partial order < and there exists a collection of objects
{Va | @ € I} with surjections

Py = Vo — Ly
that satisfy:

(i) the kernel of V,, — L, has a filtration for which each subquotient is iso-
morphic to L, for some v < «, and
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(ii) The kernel of P, — V, has a filtration for which each subquotient is iso-
morphic to V3 for some 5 > a.

Now consider the category of finitely generated A(P,U)-modules. As dis-
cussed above, the isomorphism classes of simple modules are indexed by the set
P of bounded feasible topes. For A = A(P,U) to be a quasi-hereditary algebra,
we will assume that the oriented matroid program P is Euclidean. Recall from
Section 2.3, that this implies there is partial order < on P defined by: o < 5 when
there exists a directed sequence of edges from p~'(a) to p=!(3) in the graph Gp
of the program. By Lemma 2.25, this is the same partial order as that defined by
the transitive closure of the cone relation <.

Suppose P is Euclidean. Then the category of A(P,U)-modules and the poset
7 = (P, <) satisfies condition (i) of Definition 7.4 by Corollary 7.3. To show that A
is quasi-hereditary it remains to show condition (ii).

We will use the following simple lemma.

Lemma 7.5. Suppose 3 € P and i € u=*(B). Then the feasible sign vector 3' is either
unbounded or B > B.

Proof. Suppose 3 is bounded. As ¢(j) = B(j) forall j # i,if i ¢ u=1(5?), then for
all j € p=1(8Y), B°(j) = B(j). Thus 3 € B,-1(4:) or equivalently 8 < 3°.

If 3¢ is bounded and i € p~!(3%), then the optimal solutions of 3 and j3* are
also optimal solutions of their common subtope Y = 3 A 3. But Y is a tope of
P/{i} and so Y has a unique optimal solution. Thus p~1(3) = p~1(3"), which
contradicts the fact that p is bijection. O

Theorem 7.6. Assume P is Euclidean. Then the kernel of the quotient homomorphism
P, — V, has a filtration with each successive subquotient isomorphic to Vs for § >~ «.
Each of these standard modules appears exactly once.

In particular, A is quasihereditary.

Proof. For any v € P, we define P) C P, to be the submodule generated by paths
which pass through +. For any 5 € P, let

K§:=>"Py.
v>B8

After choosing a total order on {3 € P | a < 3} refining <, the set of submodules
P? + KP with 8 > o forms a filtration of K, with successive subquotients

MP = (P} +KP) /K.

We pause to note that to make the definitions above, it is essential that P is
Euclidean, for if P were not Euclidean there would be no partial (or total) order
refining the cone relation on P.

Our goal now is to prove that M/ is zero if 8 # «, and is isomorphic to Vj if
B = a. Notice that M$ = V,.

If 3 # «, then there is an index i € u~!(8) such that a(i) # 3(i). By Proposition
3.6, any path starting at o and passing through 3 can be written as p, 5 - 7 in P25,
where p, g represents a taut path from o to 8 and r represents a path starting at
. We may then apply Corollary 3.7 to the taut path p, s and v = /3%, to show that
Pa,s can be chosen to pass through ' € F. By Lemma 7.5, P? ¢ P c K7, so
Mp =o.
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On the other hand, assume that 3 = a. There is a natural map P — P? given
by composing any element of Pz with a fixed taut path p, g from « to 5. This
induces a homomorphism Vs — M} that we wish to show is an isomorphism.

By Proposition 3.6, any path starting at o and passing through § can be ex-
pressed as a product of an element in P3 with some taut path from « to 8 and by
Proposition 3.5 the taut path can be chosen to be the one we have fixed. It fol-
lows that the map P3 — P? is surjective and thus the induced map V3 — M£ is
surjective as well.

Finally, we need to show that V3 — M/ is injective. We proceed by showing
that they have the same dimension. The surjectivity of the map implies

dimg MP < dimy, Vs = |{y € P | v 2 B},

so that
dimy P, = Z dimy M2 < |{(7,8) € P x P | o,y < B}
B
We're done if we can show this is an equality. As A = )" _, P, it suffices to prove
that
dimg A =Y dimy, P = {(@,7,8) € P x P x P | a,v < B}.

aeP
But recall that
A=APU)~BPV. U= & R
(a,y)EPY x PV
and so by Lemma 5.7
dim, B(PV,Ut) = Z |[{common feasible cocircuit faces of « and ~v}|.

(e, y)EPY x PV

We are then reduced to showing that the number of common feasible cocircuit
faces in PV of « and v is equal to the number of bounded feasible topes 5 of P
such that o < g and v = 3. This follows from Complementary Slackness (Propo-
sition 2.19). O

7.2. The structure of projectives when P is not Euclidean. Note that the defini-
tion of the standard modules makes sense for any P and Lemma 7.2 holds even in
the non-Euclidean case. However, when P is not Euclidean, the transitive closure
of the cone relation is not a poset and so the standard modules are not part of a
highest weight structure.

Nonetheless, one might still hope for a version of Theorem 7.6: that the kernel of
P, — V, has a filtration with successive subquotients isomorphic to Vj for § > a.

In this section we observe that this is too optimistic a hope, but that it does hold
on the level of graded Grothendieck groups.

Recall from Lemma 5.7, that for any « € P, the dimension dimy, R, is equal to
the number of feasible cocircuit faces of «. We begin with a graded refinement of
this statement.

Lemma 7.7. Let (ho, hi...,hq—1) denote the h-vector of z(A,) or equivalently h; is
equal to the dimension of the graded piece of R, of degree 2i. Then h; is equal to the
number of feasible vertices of « with i outgoing edges.
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Proof. We proceed by showing that z(A,,) is partitionable. Recall that a pure sim-
plicial complex A is partitionable, if it can be expressed as a disjoint union of closed
intervals of the form

A =[Gy, Fi)U...U[Gs, F,
where each F; is a facet of A. By [Sta04, Proposition II1.2.3] the h-polynomial of
such a simplicial complex is given by

hi = #{j : |G| = i}.

Recall that z(a) = @ and 2(A,,) is isomorphic as a poset to §7, («)\{0}. Thus we
may identify a face of a with the faces of the abstract simplicial complex z(A,).

The facets Fy, ..., Fs of z(A,) are the zero sets of the feasible vertices (i.e., fea-
sible cocircuit faces) of . If F; = z(X;) for a feasible vertex X;, let G; be (the zero
set of) the meet in A, of the incoming edges of X;.

Recall that each face of a has a unique optimal solution (this follows from The-
orem 2.14). For each feasible face Y of «, the face z(Y) € A, is in the interval
[G;, F;] if and only if X is the optimal solution of Y. Thus [G1, Fi] U ... U [Gs, F]
is a partition of z(A,). Note that

|G| = d — #{incoming edges to X} = #{outgoing edges from X;}.
We conclude that
hi = #{j : |G;| = i} = #{feasible vertices of Y with i outgoing edges}.
O

Corollary 7.8. Let (ho, hi ..., hq—1) denote the h-vector of z(Anp) or equivalently h;
is equal to the dimension of the graded piece of R of degree 2i. Then h; is equal to the
number of feasible vertices of o A B with i outgoing edges of o A B.

Proof. Let -y be the tope in P/z(a A 3) given by the restriction of oo A 8. Then the
simplicial complex z(A,p) is equal to the simplicial join z(A, ) *I" of z(A,) with the
(dap—1)-simplex I on the set z(aA3). By standard properties of the h-polynomial,
we have:

B(=(Dap),2) = h(2(A) # T, ) = h(2(A,), ) (T, @) = h(z(A,), ).

We conclude that the h-vector of z(A,p) is equal to that of z(A,). The result then
follows from Lemma 7.7. O

For an A-module M, let [M] denote the class of M in the Grothendieck group
of A-modules. We will consider the Grothendieck group of the category of graded
A-modules as a Z|q, ¢~ !]-module, where

[M(=k)] = q"[M].
For a graded vector space V = @;V;, we denote the graded dimension of V' by

grdimV = Z(dim Vi) q'.

Theorem 7.9. For any generic oriented matroid program P and any o € P, the class of
the indecomposable projective P, in the Grothendieck group can be expressed as the sum:

[Pa] =Y V],

o fe’
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Proof. For any 8 € P the graded composition series multiplicity of the simple Lg
in the projective P, is equal to the graded dimension of the space of paths in A
that start at o and end at 3. In other words we have:

[P.] = Z(grdim Pueg) - [Lg|l = Z(grdim eqAeg) - [Lgl.
BEP BEP

By Theorem 5.12,
grdim e, Aeg = grdim R;//j(—daﬁ) = g% . grdim Rxﬂ.
By Corollary 7.8, we can express the graded dimension of R ; as

d
grdim R(\x/,é’ = Z #{feasible vertices of a A §in PV with i outgoing edges} - ¢**.
i=0

Observe that by Proposition 2.19 the feasible vertices of a A §in PV (i.e., com-
mon feasible vertices of both o and ) are in bijection with the bounded feasible
topes 0 of P such that o < § and 5 < §. We claim that the number of outgoing
edges of a A 3 of the feasible vertex corresponding to 4 is equal to |SJ4]. As in
the proof of Corollary 7.8, let v be the bounded feasible tope (o A 5)|anp in the
contraction PV/z(a A ). Then the number of outgoing edges of the vertex of
corresponding to d is equal to the distance between v and the restriction & of § to
aAB. ButaAB = {i € E|a(i) = B(i)} and so the distance between v and J is
equal to the cardinality of the difference set

S(,0) = {i € E | a(i) = B(i) # 8(i)} = Sap.
Rewriting the sum over topes ¢ of P such that &« < ¢ and 8 < § and using the
formula dos + dsg = dap + 2|Siﬂ|, we find:

: . S5
. grdim e, = B Vo = q sl — q )
(7.1) d Aeg = ¢%#grdim R § dap+2]S04 E : das+dsg

o, oo,
Putting it all together,
Po] =2 > ™o (L]
B drap
= q" Yy " [Lg]
Sra B=s
= Z qda5 [VW]’
plate’
as we wished to show. O

We conclude this section with an example of a generic non-Euclidean program
and sign vector « for which the kernel of P, — V,, does not admit a filtration with
successive standard subquotients.

Example 7.10. Let P = (EFM(8), g, f) be the generic non-Euclidean program de-
fined in [BLVST99, Section 10.4]. Then M = EFM(8)/g\ f is the uniform matroid
of rank 3 on Es. As short hand, we simply write ijk for the basis {1, j, k} of M.
We denote the sign vector of a bounded feasible tope o : Eg — {0, 4, —} using the
string of signs

a(a(2)a(3)a(4)a(5)a(6).
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The bijection 1 between B and P can described as follows, where we have listed
the pairs (b, 11(b)) € B x P for P:

(123, 4+ + + +++) (124, + ++ — +—) (123, 4 + — + ++) (126, + — + + +—)
(134, + —++++) (135, -+ ++ —+) (136, + +++ ——) (145, — ++ — ——)
(146, + — + — 4+—) (156, + + 4+ + +—) (234, + + — — ++) (235, + + + — —+)
(236, — + 4+ + ++) (245, + + — — —+) (246, + + + — ++) (256, + — + — ——)
(345, 4+ 4+ 4+ + —+) (346, + + — — ——) (356, — + + + ——) (456, + + + — ——).

Using this table one can deduce the cone relation < on P from the fact that p(b) <
w(b') if p(b)(i) = wu(b')(3) for any i € ¥'. For example, if pu(b) < p(456), then
b = 346, 145 or 256.

Let @ = + + + — —— € P. Recall the notation o denoting the sign vector of a
tope which differs from « on exactly the set S C Eg. Using the above list, we find
that

Suppose there were a filtration 0 C F; C ... C Fs C K, of the kernel K, :=
ey Pl at) - Aof P, — V,, with nonzero successive standard subquotients {V, |
v € Co\{a}} as in the proof of Theorem 7.6. Let V, = K, /F§s be the final standard
subquotient and suppose that v = .

Let p be a taut path from « to a®. If p € Fs, then (K, /Fs)e,s = 0, which is
a contradiction. Thus we may assume that p ¢ Fs. Forany i € S, p = p(a, a)q
where ¢ is a taut path from o’ to a®. As p & Fg, it follows that p(a, a?) ¢ Fs and
L,: is a quotient of V,,. This is a contradiction unless S = {i}. Thus S is either
{4}, {5} or {6}.

Suppose S = {4}, 50y = a* = + + + + ——. Note that a® < a?, s0 (V,4)eqs =
(Kao/Fs)eas # 0and thus p(a, af) ¢ Fg. But this would mean that L s is a quotient
of V4, which is a contradiction.

After permuting indices, the same argument shows that neither V,s nor Ve
is a quotient of K,. We conclude that P, does not have the expected filtration.
More generally, we will see below in the proof of Theorem 7.14 that the change of
basis matrix between the standard and simple bases for the Grothendieck group is
invertible, so [P, ] cannot be expressed as a different sum of standard classes. Thus
P, does not admit a filtration by standards.

7.3. A is a Koszul algebra when P is Euclidean. Recall the notion of a Koszul
algebra:

Definition 7.11. Let M = P, , M, be a graded k-algebra. A complex
i. > P3P, — P —> B

of graded projective right M-modules is linear if each P, is generated in degree
£. We say that M is Koszul if every simple right M-module has a linear projective
resolution.

Theorem 7.12. Assume P is Euclidean. Then for all oo € P, the standard module V,, has
a linear projective resolution.

Proof. We follow the proof of [BLPW10, Theorem 5.24].
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Let @ be the basis corresponding to the optimal cocircuit for o. We will define
the promised resolution as the total complex of the following multicomplex.

For any S C a, let o € {+, -} be the sign vector which disagrees with a on
exactly the entries in S. For example, «? = a, and !’} = o’ for any i € a. Notice
thatifi € S C a and o, a%\! € P, then there is a degree one map

¢S,i: P(xs — P-as\'i,
g = p®V,a%)q

We extend this to all S C a and i € a by declaring that P,s = 0if o® ¢ P and
¢s; =0if i ¢ S. Consider the module

I, :@Ps

SCa

which we view as being graded by the free abelian group Z{e; | i € a} where
the summand P,s is given degree €5 := ), g&;. For each i € a, consider the
differential 0;: I, — II, of degree —¢; defined as the sum

=) ¢si-

SCa

Observe that 9,0; = 0;0; for any ¢, j € a by relation (A2) and so we can view 1I,,
as a multi-complex with differentials 0; for each i € a.

Let IT?, denote the total complex of II,. Then IT?, is a linear complex of projec-
tive modules and Hy(II?) = V,. It remains to show that the complex IT?, is exact
in positive degrees.

To do so, we will filter the multicomplex II,,. For each 5 € P, let (I1,)? c 1, be
the submodule whose e g-graded part is defined as

Z P C Pys,

v>B,a

that is, the submodule consisting of all paths from o passing through some v € P
where v > o® and v > 3. Observe that the differentials J; for i € a are compatible
with the submodules (11, )” and so we have defined a filtration of II,, by the poset
P.

Computing the associated graded of this filtration yields a multi-complex

I, = P I.)"/(1.)>° = P (GB M&) :
BeP BeP
where M” s is the subquotient of P,s defined as in the proof of Theorem 7.6.

Consider the resulting quotient multi-complexes for each § € P. Let b =
p~1(B). Recall from the proof of Theorem 7.6 that M fj s is non-zero if and only
if o € By.

If = o, then M ('f s = M2 = 0 for any non-empty S C a = b. Thus the only
non-zero summand of the a-subquotient is M$ = V,, in total degree zero.

If 8 # «, choose an element i € a such that i ¢ b. Consider those subsets S C a
such that i ¢ S. Then we have o € B, if and only if oS e By If o € By,
then M 5 sus @ Vg M 5 s and the differential induced by 0; is the isomorphism
given by left multiplication with p(a®, a5Y{#}). On the other hand, if o ¢ By,
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then M f s = 0=M 5 s. In particular, the differential induced by 9; on the j-
component of the associated graded multi-complex is exact.

Recall that if any differential of a multi-complex is exact then the total com-
plex of the multi-complex is also exact. We conclude that the total complex of
the associated graded multi-complex is exact in positive degree. It then follows
that the total complex of the original multi-complex must also be exact in positive
degrees. O

Theorem 7.13. Assume P is Euclidean. Then A and B are Koszul algebras and A is
Koszul dual to B.

Proof. By [ADL03, Theorem 1] a quasi-hereditary algebra is Koszul if the standard
modules have linear projective resolutions. Such resolutions exist for A by the pre-
vious theorem. Theorem 5.12 implies that B =2 A(PY,U~) must also be Koszul.
Finally the Koszul duality follows from the quadratic duality statement of Theo-
rem 4.2. O

7.4. Numerical identity for Hilbert polynomials. We do not know whether or
not the Euclidean condition on P is necessary for A to be Koszul. In this section
we prove that for any generic oriented matroid program P the Hilbert polynomial
of the algebra A = A(P, U) satisfies the following numerical identity.

Let H(A, ¢q) denote the Hilbert polynomial of 4, which is the P x P-matrix with
entries

H(A,q)ap = grdim ey Aeg.
Recall [BGS96, Lemma 2.11.1] that if A is Koszul, then there is an equality of ma-
trices
H(A,q)H(A', —q)" = 1.

Theorem 7.14. For any generic oriented matroid program P, the algebra A = A(P,U)

satisfies the numerical identity above, that is, the Hilbert polynomials of A and its qua-
dratic dual A" satisfy the matrix equation

H(A7 q)H(A|7 7Q)T =1

Remark 7.15. This identity does not necessarily imply that A is Koszul. See [P0os95]
for an example of a non-Koszul quadratic algebra whose Hilbert series satisfies
the numerical identity.

Proof. Using equation (7.1) in the proof of Theorem 7.9, the («, 8)-entry of H (A4, q)
is given by
H(A,q)ap =grdim e, Aeg = Z qlertde,
Ri=CHE
In particular, H (A, q) factors as the product H(A4, ¢) = X XT, where X is the P x P-
matrix with (o, §)-entry given by

v . _Jar iffra
o 0 otherwise.

Dually, using Proposition 2.19 we find that the (, 3)-entry of H(A', —q) is given
by

H(A!7 _q)a,,@ = Z(_q)l dim eaA;eB = Z (_q)da'y"l‘d-yﬁ’

i 1Y —1(ay Y u-1(p)
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in other words the sum runs over all v € P for which the optimal solution (cocir-
cuit) of both a and § are faces of v. Again this factors as a product H (A", —q) =
YY7, where Y is the P x P-matrix with («, 3)-entry given by

(—q)%# if Y,-1(5) is a face of a
Yo = _
0 otherwise.

We wish to show that
H(A,QHA, —q)" = XXTYyYyT =1.

Note that it suffices to show X7Y = I.
Computing the product X7Y, we find that its («, 3)-entry is given by

(XY )ap =D ¢* (—g)"?,
YEQ
where @ is the set of all v € P such that a = v and Y},-1 () is a face of ~. In other
words, @) consists of all v € P such that
72 A =a@)ificp o) and ()= B6)iti ¢ u(B).
We wish to show that
1 ifa=p
0 otherwise.

(XTY)ap = {

If a = 3, then @ = {a} and the sum is equal to g%e (—g)dee = 1.
Now assume that « #  and let

Ji=p @\ @) and I = p @)\ (B)
so that
JUJ = (= (@) Up T (B)\ (e (@) N (B)).
As we have assumed that « # 3, J and J’ are nonempty.
Note that if a(i) # 8(i) for some i € J', then by the conditions (7.2) Q is empty
and (X7Y),.5 = 0 as desired. Thus we will assume that a(i) = (i) for alli € J'.
Let
K :={iep(a)nu='(B) | ali) # B)}.
For § € P, Y,-1(s) is a face of § if and only if § = 5" for some subset W C
u_l(ﬁ). On the other hand, § = % < aifand only if K UJ D> W D K. Thus
={(B¥)%|ScJ}and

(XTY)ap = Z ¢ 3508 (—g) )58 = (—1) K] Z 1)I8lgda. sy Tdsr)s 5
scJ scJ
(ﬂ )3 BS
|K| Z |S| daf1+2|5 | — (,1)\K\qda,ﬁ Z( )lSI 2|5, \
scJ scJ
S
where in the last line we have used S(ﬁﬁ ) B ={ie S|a()=p(i)} Wewill

need the following lemma to finish this proof

Lemma 7.16. Assume as above that o # [ and a(i) = B(i) for all i € J'. Then there
exists an element t € J such that a(t) # 5(t).
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Proof. Suppose for the sake of contradiction that «(i) = S(¢) for all i € J, then
a(i) = B(t) forall : € J U J'. In the deletion-contraction program

(P/(u" )= (B))\ (u™ o) U= 1(B))°

defined on the set J LI J’, the restrictions of the sign vectors of o and 3 are then

equal and so describe the same tope 7. Now Y),-1(4) is the optimal solution for «

and Y),-1(g) is the optimal solution for 3, so the restrictions Y, and Y of Y},-1(q)

and Y),-1(g) to J U J" should both be the unique optimal solution of the tope 7". But

z2(Yy) = J' # J = 2(Ys), which is a contradiction. Thus there exists a t € J such

that a(t) # B(t) as desired. O

su{t s

In particular if S C J\{t}, we have Sg’ﬁ = 55’5.
Using this fact we rewrite the sum above:

(XTY)as = (—1)Flgdes 37 (—1)l8] 2\5‘*
ScJ
= (—1)IKl g Z <( 1)l 2\5%\ +(—1)suie zlsaﬁ“}|>
SCJ\{t}
ELRYES (( 1181218850 _ (Zq)ls] 2saﬂ|):0
ScJ\{t}

7.5. Self-dual projectives. Consider the duality functor
d: A-mod — A-mod

defined by composing the equivalence A°?-mod ~ A-mod induced by the isomor-
phism A = A given by reversing the arrows of the quiver D in Section 3.3 with
the induced functor A°’-mod— A-mod coming from vector space duality.

In the following result, for a fixed sign vector & € P = PY we will need to
refer to both the corresponding bounded feasible tope in the affine space of P and
the corresponding bounded feasible tope in the affine space of PV. To distinguish
these two topes, we write T, to denote the tope in P and 7} for the tope in PV.

Theorem 7.17. For any generic oriented matroid program P and o € 'P. The following
are equivalent:
(1) The projective P, is injective.
(2) The projective P, is self-dual.
(3) The simple Ly, is contained in the socle of some standard module V.
(4) The bounded feasible tope T,, covers an infeasible subtope X, meaning X (g) = 0.
(5) The bounded feasible tope T, in the dual program PV is in the core of the affine
space for PV In other words (T )>° = 0 or equivalently the cocircuit faces of the
tope T, are all feasible.

When P is Euclidean, and so A is quasi-hereditary by Theorem 7.6, then the statements
above are also equivalent to the following:

(6) The projective P, is tilting.
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Proof. The implications (1) < (2) ( < (6), if A is quasi-hereditary) are standard
facts.

(2) = (3) :If P, is self-dual, then the socle of P, is isomorphic to the cosocle
of P,, which is L,. Therefore when expressing [P,] as a sum of simple classes
times powers of ¢ in the Grothendieck group, L, is the only simple to appear in
the top degree. On the other hand, by Theorem 7.9,

[Pa] = a® V3],

BeCaq

so the unique simple class appearing in the highest degree must also appear as the
highest degree term of some [Vj]. We conclude that L, is the socle of V.

(3) = (4) : Letb = p~'(B). Lemma 7.2 says that Vj is spanned as a vector
space by taut paths p, from 3 to v < 8. A taut path p, is in the socle of Vj if
there does not exist a longer taut path p, that factors through p,. Note that this is
equivalent to the condition: if i ¢ b and « has a feasible face Y such that Y(i) = 0,
then «(i) # 8(3).

Recall that Y, € A denotes the feasible cocircuit of A' = M\ f that is the opti-
mal solution of the tope T3. By the covector axioms of an oriented matroid, the
composition 7' := (—Y}) o T, is also a covector of A" and in particular an infeasible
tope such that T'(¢) = «a(i) for all i € b and for all ¢ which are zero on a feasible
face of a.. A taut path p from T, to T exists in the tope graph of M\ f, and this
path cannot change the sign corresponding to any feasible facet of 7,,. Thus the
first sign change of the path p must be infeasible, which means that T}, covers a
subtope X with X (g) = 0.

(4) = (5): If the bounded tope T, in Mv\f covers a subtope X with X(g) =0
then « is a bounded feasible sign vector for both the original program P as well as
the reoriented program _,P = (_ gﬂ , —¢, f). Dually, this means that the tope T}

in MY \g = (_gﬂv)\(— g) is bounded and feasible in both dual programs P and

_gPY = (_gMY, f,—g). In particular, the tope a € PV does not have any cocircuit
face Y with Y'(f) = 0, since this would imply 7Y was unbounded in one of these
generic programs.

(5) = (2): If (TY)>® = 0, then e, Ae, ~ RY = k[z(A))]/(UL), where AY =
S (TY)\{0}. By Lemma 5.4, |AY| = ||§1(T.Y)\{0}| is homeomorphic to a (n —
d — 1)-sphere and so a result of Munkres (see [Sta04, Theorem I1.4.3]) implies that
RY is Gorenstein, meaning that there is an isomorphism f s (eadeq)n—d—1 — k
such that (z,y) = [ zy defines a perfect pairing on e, Ae,,.

We wish to produce an isomorphism of A-modules d(P,) = P,. To do so, we
will show that the map

(—, =) 1 eq A X Aey — k

(p,q) H/pq

defines a perfect pairing and so it will follow that d(P,) = (eqA)* = Ae, = P, as
right A-modules.

To prove that (—, —) is perfect, we first observe that it suffices to show that the
map -pg,a : eadeg — eqAe, is injective for some taut path pg, from 3 to o. This
is because for any nonzero x € egAe,, if - pgo # 0, then there exists y € e, Ae,
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such that [(zp)y = [ z(py) = (z,py) # 0. On the B side, this means showing that
'us(ﬂxa : R(\)t/ﬁ — R(\l/

is injective. We proceed by showing

RYs — RY

.usﬂ

aa

is the injective map in a split short exact sequence of Sym U+-modules, which
proves the claim by applying the functor — ®gy, 71 k.

The claim is obvious if & = B or T)Y /\Tﬁv is not feasible, so we assume « # 3 and
T, AT} is a proper non-empty face of T,y . To see the monomial map -ugs : RY 5=
RY is injective and to determine its cokernel, consider the image of any non-zero
monomial m = [[;cqu;* in RY4, where s; > 0 for any i € S. As m is non-zero in
]szﬁ, there exists Y € AY; such that S C z(Y). Note that S5, = (T ATY) C 2(X)
forany X € AY ;. Thus SU S5, C 2(Y) and the product m - ugs = [];c g9 ult,
where ¢; > 0 fori € S U SP_, is non-zero in RY.

The computation above also shows that the cokernel of the map -ugs : Rl —
RY is the face ring k[A] of

A={SCE|SczY)forsomeY € A, and S?, ¢ S}.

= 2(A)\{S € 2(Aa) | S5, C S}

Recall from Lemma 5.4 that the geometric realization of the simplicial complex
z(A,) is a PL (d — 1)-sphere. The subset of simplices {S € 2(A,) | S5, C S} is
the open star of the simplex on the set S? and thus its complement A in z(A,)
isa PL (d — 1)-ball. It follows that k[A] is Cohen-Macaulay, again with parameter
space U+. Thus, k[A] is a free Sym U+ -module, and therefore the exact sequence

RYg < RY — k[A]

splits. O

8. DERIVED MORITA EQUIVALENCE

We conclude with a proof of Theorem 1.16. Recall that M is an oriented ma-
troid, U a parameter space for M = M, and Py = (M1, g1, f1), P2 = (M2, g2, fo)
and Pig = (Mmid, g2, f1) are Euclidean generic oriented matroid programs such
that

M= (Mi/g)\fi = (Ma/g2)\f2
and
Mumia/g2 = Mi/g1,  Mmig\fi = M2\ fo.
We wish to show there is an equivalence of categories
D(A(P1,U)) = D(A(P2,U)),

where D(A) denotes the bounded derived category of graded finitely generated
A-modules.
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Remark 8.1. Note that if P, and P, are Euclidean, it is not automatic that P ;g will
be Euclidean as well. For example, one could take EFM(8) (see Example 7.10) and
then change the choice of g and f separately to obtain two realizable (and hence
Euclidean) generic oriented matroid programs P; and Ps such that P4 is the
non-Euclidean program EFM(8).

We will prove Theorem 1.16 by reducing it to the following claim.

Proposition 8.2. Suppose P; = (/K/lvl, g1, f) and Py = (/\72, g2, f) are generic Eu-
clidean programs extending M such that My /g1 = Ma/go. Then there is an equivalence
of categories

D(A(P1,U)) ~ D(A(P2,U)).

Before giving a proof of this Proposition, we will use it to deduce Theorem 1.16.

Proof that Proposition 8.2 implies Theorem 1.16. Under the assumptions of Theorem 1.16,
Mmia/g2 = M1/g1. Then by Proposition 8.2 it follows that

(8.1) D(A(P1,U)) = D(A(Pmig, U).-
On the other side, duality together with the assumptions of Theorem 1.16 give:
Ml fr = Mumia\f1)" = (Mz2\f2)" = M5/ fo.

Viewing f1 and f2 as playing the role of g in the Euclidean programs Mrvr\id and
My respectively, we can again apply Proposition 8.2 to find:

(8.2) D(APY,U*)) ~ D(A(PY.y,U™b)).

mid>
Putting these equivalences (8.1) and (8.2) together with the equivalences from
Koszul duality:

D(A(Pmia,U)) = D(A(Pyyq,U™)) and  D(A(P2,U)) ~ D(A(PY,U")),

mid>
gives the desired result:
O

8.1. The definition and properties of the functor. It remains to prove Proposition
8.2. For the remainder of the paper we will let

P, = (le»gl,f) and P = (Mv2a92,f)

be two Euclidean generic oriented matroid programs such that M, /g1 = Ma/ga.

For ¢ = 1,2 let A, = A(P,,U), By = B(P,,U) and P, be the set of bounded,
feasible sign vectors of P,. Note that the set of bounded sign vectors B is the same
for P, and P-.

As in [BLPW10, Section 6], the desired equivalence will come from a derived
tensor product with a certain bimodule N.

It is slightly easier to define the bimodule N on the B-side, using the isomor-
phisms A, ~ B} of Theorem 5.12 for £ = 1,2. Namely, let

N= @ Risl-dag
(a,B)EP1 X P2

with the natural left By -action and right By -action given by the * operation.
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To translate this to the A-side, recall the following the alternative definition of
A from Section 3.3,

A(P,U) = epDgep/{esep) + (9(UT)ep).
We consider an extended version of A that only depends on M/g by replacing ep
by es =, cpca- Thatis, let
Aext(Pa U) = BBDE63/<€f€B> + <7‘9(UL)€B>
As Aext(P,U) only depends on M /g and we have assumed that M 1/ =
Mg/gg, let
Aext = Aext (Pla U) == Aext (P27 U)
When viewed as an (A, A2)-bimodule, N can be described as
N = €g1 ACXtegw
where ey, =3 p, eq for £ =1,2.
To check that these definitions of NV coincide, consider the graded vector space
Bet(P,U)= @  Rapl—dagl,
(a,B)EFXF

made into an algebra via *, as in the definition of B(P, U) from Section 5.2. Then
an easy extension of the proof of Theorem 5.12 gives us the following lemma.

Lemma 8.3. There is an isomorphism Aext(P,U) ~ Bext(PY,U L. Combining this
isomorphism with the isomorphisms Ay, ~ B/, we obtain an equivalence between the two
definitions of N.

We define the functor ® : D(A;) — D(Az) via
L
O(M) =M ®4, N.
For ¢ = 1,2 and any a € Py, let PS and V! be the corresponding projective and
standard A;-modules. Define v : P; — P» to be the composition
-1

P1 M;) B £> Po.
Proposition 8.4. If & € Py NPy, then ®(P.) = P2.
Proof. Consider the natural map

[': P2 =eaAy — eqA1 ®a, €, Aextg, = Py ®a, N = ®(P,)
taking e, to e, ® g4, €4,. For paths p, ¢ in the quiver @ with p only passing through
nodes in P, the equality of the simple tensors
€ap @ €g,q€g, = €a & €aPEq g, = €a & €g, €g, * €aPEg, (Cq,

implies that I is an isomorphism. O

Remark 8.5. Note that the proposition above and its proof are valid without the
assumption that P; and P be Euclidean.

Lemma 8.6. For any o € Py, the Ax-module ®(P) has a filtration with standard sub-

quotients. For b € B, if a € By, then the standard module Viz(b) appears with multiplicity

1 in the associated graded, and otherwise it does not appear.”

7Recall that the set 13, defined in Definition 2.18 only depends on M /9.
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Proof. We have
(I)(P;) = Po1¢ ®A1 N = eaAl ®A1 eglAextegQ,

so elements of ®(P.) can be represented as linear combinations of paths in B which
begin at o and end at elements of P, = BN F,. For 8 € Py, let ®(PL)s be the
submodule generated by paths p such that 3 is the maximal element of P, (with
respect to the ordering <, on P, coming from our Euclidean assumption on P5)
through which p passes. Then let

B(Psss= | ®(FY, and Pz, 5= | @),
v>2 B =22 B
We then obtain a filtration
o(Py) = |J (P, s
BEP2

Suppose b € Band let 8 = us(b). It suffices to show that the quotient ®(P2)>, 5/®(P
is isomorphic to V3 if o € By, and is zero otherwise.
Our argument follows the proof of Theorem 7.6.
If o & By, then for some i € b, a(i) # [(i). Thus any path from « to 5 can be
represented by one passing through 3. By Lemma 7.5, 3° >, 3 and therefore
q)(P(i)Z2 5/@(P(1)>2 s =0.

Otherwise, precomposition with a taut path from « to 3 gives a surjective map

VB H*CI)( )>2 ﬁ/q)( )>26

Thus
dim Vﬁ > dim (I)(Pl)>2 ﬁ/q)( )>2 B

and it suffices to show equality holds. After summing over all 3 € Ps:

dim(® Z dim ®(P2)>, 3/®(Ph)>, s
BEP2
< Z dimV, 2(5 = #{(7,0) € P2 x B| o,y € By}
a€By

It suffices to show that equality holds after summing over all &« € P;. As N =
Bacp, P(PL), we have
> dim®(P) =dimN= >  dimRY,
aEPy (a,y)EP1 X P2
= #{(aa’%b) €P1xPyxB | a,y € Bb}
Here we are using Lemma 5.7 and Proposition 2.19 on each (c,y) € P1 x Po. O

Remark 8.7. Notice that Theorem 7.6 can be viewed as the special case P; = P».

Remark 8.8. We note that the above proof does not use the assumption that P
is Euclidean, and so for this result we need only assume that P is Euclidean.
More generally, when P is not Euclidean one can prove the result on the level of
Grothendieck groups with a nearly identical proof as was given for the analogous
Theorem 7.9.

)>2 B
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Proposition 8.9. For all a € Py, we have [®(V,)] = [V} )] in the Grothendieck group
of (ungraded) right As-modules. Thus ® induces an isomorphism of Grothendieck groups.

Proof. For any a € P;, the equalities

Y WViwl=12E)] =Y 12V )

follow from Lemma 8.6 and its special case Theorem 7.6, where both sums are
taken over
{beB|aecbB}.
The first claim then follows by induction on the poset P; with base case o € P;
maximal, so
Py=V, and ®(P,)=VJ,.

The second statement follows from the fact that the classes of standard modules
in a highest weight category form a Z-basis for the Grothendieck group. O

Remark 8.10. One can show that this result holds without the Euclidean condition
on P; and P, by the second part of Remark 8.8 and the fact that the matrix X from
the proof of Theorem 7.14 is invertible.

Proposition 8.11. Let o € Py. Then ®(V}) is the quotient of ®(PL) by the submodule
generated by all paths changing their i-th coordinate for some i € py (). In particular,
Tori (V.1, N) = 0 for all m > 0.

Proof. Apply @ to the linear projective resolution of V! of Theorem 7.12. The de-
gree zero homology of the resulting complex is the quotient promised. We wish
to show that the resulting complex is a resolution of V! ®4, N. This claim fol-
lows from argument is analogous to the proof of Theorem 7.12, where for each
S C pi ' () we filter each Ay-module ®(PLs) = P! ®4, N by standards as in the
proof of Lemma 8.6. O

Corollary 8.12. If a right Ai-module M admits a filtration by standard modules, we have
Tor{* (M, N) = 0 and therefore

O(M)=M ®a, N.

8.2. Ringel duality and composition of functors. Suppose that P = (Mv .9, f)isa
generic Euclidean extension of M. Consider the program P = _ ;P = (_ gﬂ =9, f)
obtained from P by reorientation of g. In other words P is the program on the
oriented matroid M with feasible cocircuits equal to the negative of the feasible
cocircuits of P. This program is also generic and Euclidean. We let A = A(P,U)
and denote by
@~ : D(A) — D(A),

the functor ® for P; = P and P, = P. We will prove that ®~ is an equivalence
and relate it to Ringel duality.

Theorem 8.13. ®~ is an equivalence, the algebras A and A are Ringel dual, and the
Ringel duality functorisd o ®~ = &~ od.

Proof. Notice that for any o € P, we have that the B-side description of ®~ gives

O~ (Pa) = D RY51-d 3.
BeP
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Then we have that the tope corresponding to the restrictions of both a and 3 in
the oriented matroid M"Y /5?2, on E U {f} has all cocircuit faces taking the value
+ on f. As in the proof of Theorem 7.17, this implies that R;/E is Gorenstein and

&~ (P,) is self-dual. By Lemma 8.6 it follows that ®~(P,) is tilting.
It remains to show that &~ is an equivalence. With Proposition 8.4 and Theorem
7.17 in hand, one can repeat the proof of [BLPW10, Theorem 6.10] word for word.
t

To complete the proof of Proposition 8.2 in the general case, we will need to
study the composition of functors.
Let Pl - (Mlagla f)/ P2 = (M2a92a f)r and P3 = (M37g37 f) be generic Eu-

clidean programs extending M for which M;/g; = Mvz /g2 = Mg /g3. We can
then define the three functors

D(A;) 213 D(A,) 223 D(A43) and D(A;) 23 D(As)

as before. We would like to compare ®;3 with the composition @33 0 1,.
Notice that
Niz = ®12(41) = P 012(P))
acPy

has a filtration by standard modules as a right A;-module by Lemma 8.6. Then

L L L
Doz 0 P1o(M) = (M ®a, N12) ®a, Naz = M @4, (N12 @4, Nag)

by Corollary 8.12. The natural map Nis ® 4, Naz — Ni3 given by concatenation
of paths induces a natural transformation ®93 0 &5 — ®;3. We also have that
®y3 0 15 and P35 induce the same map on Grothendieck groups by Proposition
8.9. This implies that

dimy Ni2 ® 4, Naz = dimy, Ni3

since the classes of Ni2 ®4, N2z and Ni3 agree in the Grothendieck group of As-
modules.

We now combine this discussion with the equivalence we have already proved.
Let P; = P, so that

(1)13 =0 : D(Al) — D(E) and (1323 = ®2T : D(Ag) — D(E)
Lemma 8.14. &~ = ®,7 0 $ys.

Proof. The conclusion follows from the discussion above if we can show that the
map Nis ®4, No7 — N7 is an isomorphism. We have already observed that the
source and target have the same dimension, so it will suffice to show that this map
is surjective. This means showing that for any (¢, §) € P1 X P, every path from «
to B in e, Aextes can be represented as a path that passes through some sign vector
v in Ps. It suffices to do this for a taut path from «a to 5. Translating this to the
B-side, we wish to show that 1Z/3 = 1X7 * 1Y{ﬁ for some v € Ps.

Let (o, B8) € Py % P; and suppose that RX 5 is nonzero. This means the maximal
common covector face T,y A T of the topes T,/ and T}’ in

MY = MY\gi = (Mi/g1)" = (My/g7)" = M \gr
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is nonzero and all of its nonzero cocircuit faces are feasible, i.e. they take the value
+ on f. Together with the fact that 2(T,Y A Ty) = SJ,, this implies that T,/ A T

oo’

restricts to a bounded feasible tope in the oriented matroid program
P8l = (M"/Sla f.02).
Let Y be the optimal cocircuit face of 7)Y A T viewed as a covector in Py /S5 ,.
Then Y lifts to a unique feasible cocircuit of Py and let v € Py = P, be the

corresponding sign vector. By construction, T,y A T} is a face of T)'.
Thus Ry, 5 = RY3,S,5 = @ and

Vo qv v
lop = lay x 155
O

Proof of Proposition 8.2. We can set up everything as in Lemma 8.14, and we know
that &~ is an equivalence by Theorem 8.13. This gives us that &1 : D(4;) —
D(A,) is faithful while ®,7 is full and essentially surjective.

Note that P is Euclidean if P is Euclidean. Appealing to the same arguments
as before, @15 o @5, is an equivalence. We conclude that ®45 is also full and essen-
tially surjective and thus an equivalence. O
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