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Abstract

We establish probabilistic small data global well-posedness of the energy-
critical Maxwell-Klein—Gordon equation relative to the Coulomb gauge for scaling
super-critical random initial data. The proof relies on an induction on frequency
procedure and a modified linear-nonlinear decomposition furnished by a delicate
“probabilistic” parametrix construction. This is the first global existence result for a
geometric wave equation for random initial data at scaling super-critical regularity.
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1. Introduction

The study of the local and global well-posedness of nonlinear dispersive and
hyperbolic PDEs for scaling super-criticial random initial data has seen an enor-
mous amount of progress in recent years. The goal of our work is to consider the
energy-critical Maxwell-Klein—Gordon equation, a prime example of a geomet-
ric semilinear wave equation, and to establish a probabilistic small data global
well-posedness result for scaling super-critical random initial data.

The energy-critical Maxwell-Klein—Gordon equation on (1 + 4)-dimensional
Minkowski space R!™* models the interaction of an electromagnetic field with
a charged particle field. The electromagnetic field is described by a real-valued
connection 1-form Ay : R!™ — R,a =0, 1, ..., 4, and the particle field in terms
of a complex-valued scalar function ¢ : R!** — C. Upon introducing the curvature
2-form

FaﬂzaaAﬁ—aﬁAa, O§a1ﬁ§4v
and the covariant derivatives

Dy = 8y +iAq, 0Za <4,

the Maxwell-Klein—Gordon system of equations reads as

3F Fop = Im(¢ Dud),

MKG)
D*Dy¢p = 0.

Here we use the standard conventions of raising and lowering indices with respect
to the Minkowski metric diag[1, —1, ..., —1], and of summing over repeated upper
and lower indices.

The system of equations (MKG) is invariant under the scaling transformation

Aq(t, x) = A (AL, Ax), ¢, x) — Ap(At, Ax) for i > 0.



Arch. Rational Mech. Anal. (2023) 247:68 Page 3 of 109 68

It also admits the conserved energy functional
1 1 2
E(A, ¢) = /W <Z Y Fp+ 3 > |Dug] )dx,
a,p a

which is invariant under the above scaling. For this reason the Maxwell-Klein—
Gordon system of equations is referred to as energy-critical in four space dimen-
sions.

Another important feature of the (MKG) system of equations is its gauge in-
variance. If (A, ¢) is a solution to (MKG), then so is (A, — dyY, €'¥ ¢) for any
suitably regular function y : R!** — R. This yields an equivalence relation on
the set of pairs (A, ¢) satisfying (MKG). In order to uniquely determine the solu-
tions to (MKG), we therefore have to add an additional set of constraints to fix the
ambiguity arising from this gauge invariance.

Imposing the global Coulomb gauge condition

A} =0,
(MKG) becomes a system of wave equations in the dynamical variables ¢ and A ;,
j=1,...,4, coupled to an elliptic equation in the temporal component Ay, given
by

|:|Aj = —PjIm(q)qu)),
D*D,¢ =0, (MKG-CG)
AAg = —Im(¢Dog),
where Pjv = v; — 9, A~13%y is the Leray projection to divergence-free vector
fields. In the formulation (MKG-CG), at any fixed time the temporal component A

is uniquely determined in terms of the dynamical variables (Ay, ¢) by the elliptic
equation. It therefore suffices to prescribe

Ax[0] := (A, 8:A)(0) = (a,b), ¢[0] := (¢, 9,¢)(0) = (o, P1)
as initial data for (MKG-CG) with a and b obeying the Coulomb gauge condition
da; =8/b; =0.

Relative to the Coulomb gauge, the nonlinearities in the wave equations for
the dynamical variables in (MKG-CG) have a favorable algebraic structure, the
so-called null structure, which damps the worst interactions. Schematically, the
system of equations (MKG-CG) is of the form

OA; = —P;Im(¢V,¢) + “cubic terms”,
Op = —2iA78;¢ — 2i Agd;¢ + “cubic terms”,
AAp = —Im((pm + “cubic terms”,

where the quadratic terms in the wave equations for Ay and ¢ exhibit the null
structures

Pi(¢Ved) = 0" AT Nk (6, 9),
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A9 = Ny (05 A7" AT ),

with Mj (¢, V) = (3:9)(3;) — (9;¢)(9; ¥). The discovery of the presence of null
structure in the nonlinearities of (MKG-CG) is due to KLAINERMAN-MACHEDON
[25] and marked the beginning of the study of low-regularity well-posedness of
solutions to the Maxwell-Klein—Gordon system of equations, which we briefly
review now. Finite energy global well-posedness of (MKG-CG) in energy sub-
critical d = 3 space dimensions was established by KLAINERMAN—MACHEDON
[25]. Through a deep structural analysis of the (MKG-CG) equations, MACHEDON—
STERBENZ [34] obtained an almost optimal local existence result for (MKG-CG) for
d = 3. Ananalogous almost optimal local existence result was obtained by SELBERG
[44] in d = 4 space dimensions. For small critical Sobolev data, RODNIANSKI-TAO
[43] proved global existence for (MKG-CG) in d = 6 space dimensions. Their
approach was further advanced in joint work of the first author with STERBENZ and
TATARU [27] to show global existence for small energy data for the energy-critical
Maxwell-Klein—Gordon equationind = 4 space dimensions. More recently, global
existence and scattering for arbitrary finite energy data was established for the
energy-critical Maxwell-Klein—Gordon equation independently by OH—TATARU
[36-38] and by the first two authors [26].

1.1. Randomization Procedure

In this work we consider the Cauchy problem for (MKG-CG) in four space
dimensions for random initial data at scaling super-critical regularity, i.e. below
the energy regularity. Before stating our main theorem and putting it into per-
spective with prior random data results in the next subsection, we first describe
our randomization procedure for the initial data. It relies on a unit-scale decom-
position of frequency space and was introduced in [32,46]. This procedure was
subsequently coined “Wiener randomization” in [1,2] to emphasize its natural as-
sociation with the Wiener decomposition [45] and the modulation spaces introduced
by FEICHTINGER [19].

We pick an even, non-negative bump function ¢ € C° (R*) with supp(g) C
B(0, 1) and such that

> o —m)=1 forall¢ e R*.

meZ4

Thenwelet{g,},,cz4 {8m}mezs> {Nm}mezs,and {Bm }mez4 be sequences of complex-
valued standard (zero-mean) Gaussian random variables on a probability space

(2, F, P). We assume the symmetry conditions g_,, = g, and g_,, = g_m for all

m € Z*. Moreover, we suppose that {go, Re(g,), Im(g,)},ne7 are independent,

zero-mean, real-valued random variables, where Z C Z* is such that we have a

disjoint union Z* = 7 U (=7) U {0}, and similarly for the g,,. The Gaussians

{hm}mezs> and {Ay),cps are just assumed to be independent random variables

without any additional constraints. We remark that we could more generally work

with sequences of independent uniformly sub-Gaussian random variables with zero

mean.
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Let 0 < 8, < 1 be some small absolute constant whose size will be specified
later on. For any regularity exponent 1 — 8, < s < 1, we consider a pair of
real-valued 1-forms obeying the Coulomb gauge condition

A[0] = (a,b) € HS(RY) x HIT'(RY), 8/a; =3/b; =0,
and a pair of complex-valued functions
$L01 = (do. ¢1) € Hy x Hy™'(®R).

Then we define the randomization of (a, b) and (¢o, ¢1) by

A?[0] = (a®, b®) := ( > en(@@(D —ma, Y gn(@)p(D — m)b),

meZ* meZ4
7101 = (8. ¢7) = ( 3 b (@D = mygo, Y hn(@)p(D - m)¢1).
meZ* meZ4

(1.1)

These quantities are to be understood as Cauchy limitsin L2 (Q2; HS (R*) x HS =1 (RY)).
The randomization almost surely does not regularize at the level of Sobolev spaces,
see for instance [10, Lemma B.1]. It is crucial that the symmetry assumptions on the
random variables {g,, }mez, {&m}mez together with the assumption that the bump
function ¢ is even, ensure that the randomization of the pair of real-valued 1-forms
(a, b) is again real-valued and in Coulomb gauge.

We will frequently use the following truncation operators 7, defined for all
integers n = 1 by

T = D gm(@e(D—m)gy,

meZ*
2= 1< || <2n

with analogous definitions for 7,,¢¢, T,a®, and T,,b®, where we denote by |m| =

1 .
(m% + e+ m%)? the Euclidean norm of a vector m = (my, ..., ma) € Z*. In the
same manner we introduce the truncation operators T, for all integers n = 1 by

Tt == ) gm(@)p(D —m)do,

meZ*
|m|<2"
with corresponding definitions for T<n¢i‘), T_na®, and T_,b®. Moreover, we set
Togg = go(w)e(D)éo

with analogous definitions for Ty¢{, Toa®, and Tyb®. Finally, for every integer
n = 0 we denote by

F, = G(gm, Gy o o © I < 2")

the o -algebra generated by the Gaussians g, &m» fm., B with |m| < 2.
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1.2. Main Result

In recent years there has been enormous progress in the development of a
combination of probabilistic and deterministic techniques to prove the existence
of strong local-in-time or even global-in-time solutions to nonlinear wave and
Schrodinger equations almost surely (or with high probability) for random ini-
tial data of super-critical regularity. This approach was initiated in the pioneering
work of BOURGAIN [4,5] for the periodic nonlinear Schrodinger equation in di-
mensions one and two, building upon the constructions of invariant measures in
[20] and [31]. Subsequently, the influential papers of BUrRQ-TzVETKOV [10,11],
see also OH [39], led to a burst of activity in this line of research by introducing
a more general randomization method in the context of establishing almost sure
local and global well-posedness results at super-critical regularities for nonlinear
wave equations posed on compact Riemannian manifolds. We refer to a sample of
recent random data results, primarily for nonlinear wave equations [6-9,12,13,16—
18,22,24,32,33,41,42] that are most closely related to this work. This list is by
no means exhaustive and we also refer to the recent surveys [3,35] and references
therein. We point out that the large majority of random data results so far is for
equations with pure power-type nonlinearities.

Oversimplifying a bit here, in order to deal with the Cauchy problem for a
nonlinear wave equation with super-critical random initial data, one typically de-
composes the solution into the free wave evolution of the random data and into
an inhomogeneous component satisfying a nonlinear wave equation with forcing
terms. Using the randomization one then shows that almost surely (or with high
probability) the free wave evolution of the rough random data enjoys improved
(“redeeming”) space-time integrability properties that beat the scaling, and tend to
allow one to solve the equation for the inhomogeneous component at a critical or
sub-critical regularity. This type of linear-nonlinear decomposition can be attributed
to the work of BOURGAIN [5] in the field of dispersive PDEs, and is referred to as
the DA PRATO-DEBUSSCHE trick [14] in the field of stochastic parabolic PDEs.

In the context of the energy-critical Maxwell-Klein—Gordon system of equa-
tions, a semilinear geometric wave equation with derivative nonlinearities, this
standard linear-nonlinear decomposition is bound to fail due to certain low-high in-
teractions in the equation for the scalar field ¢ that do not exhibit a smoothing effect
when a rough input is at high frequency. Such a difficulty has already been observed
by BRINGMANN [7] in the context of a quadratic derivative nonlinear wave equation
in three space dimensions and was overcome by building the corresponding prob-
lematic low-high interactions into the definition of the rough linear evolution of the
random data. This step crucially relies on the fact that the high-frequency and the
low-frequency parts are independent. Similar ideas for dealing with problematic
low-high frequency interactions with the rough linear evolution at high frequency
play a major role in the development of the theory of random averaging operators
and of the theory of random tensors in the recent works of DENG-NAHMOD—YUE
[16,17], too. We also note that the treatment of related delicate low-high inter-
actions are a key feature of the theory of paracontrolled calculus developed by
GUBINELLI-IMKELLER—PERKOWSKI [21] to prove local well-posedness for singular



Arch. Rational Mech. Anal. (2023) 247:68 Page 7 of 109 68

parabolic stochastic PDEs, see also the theory of regularity structures put forth by
HAIRER [23], the work of KUPIAINEN [30] using renormalization group techniques,
and the approach of OTTO—WEBER [40].

In fact, already in the deterministic study of the Maxwell-Klein—Gordon equa-
tion at scaling-critical regularity, certain low-high interactions in the magnetic inter-
action term in the equation for ¢ are non-perturbative at scaling-critical regularity.
A key idea of RODNIANSKI-TAO [43] to overcome this issue was to incorporate
these low-high interactions into the linear magnetic wave operator of the ¢ equa-
tion and to construct a corresponding parametrix to solve that linear magnetic wave
equation.

The probabilistic small data global well-posedness problem for the energy-
critical Maxwell-Klein—Gordon equation relative to the Coulomb gauge for scaling
super-critical random data features all of the obstacles described above. Our proof
builds on the deterministic small data global existence results for the Maxwell-
Klein-Gordon equation [27,43] at scaling-critical regularity, on the first two au-
thors’ induction on frequency procedure for the finite energy global regularity
result for (MKG-CGQG) [26] (see also [28]), and on the recent progress on almost
sure well-posedness [7,16,17].

We are now in a position to present our main result. The spaces S' and ¥! in
the following statement are at energy regularity and their precise definitions are
provided in Sect. 3:

Theorem 1.1. There exist small absolute constants 0 < 8y K 1 and 0 < ¢ K 1
with the following properties: For any 1 — 8, < s < 1, let (a, b) € H} x H;fl be
a pair of real-valued 1-forms in Coulomb gauge, and let (¢po, $1) € H} X H)ffl.
Denote by (a“, b®) and by (9§, ¢7’) the associated random initial data as defined
in (1.1). Then there exists an event ¥ C 2 with

P(29) £ Cexp(=cD7?), D= 1@ D)l s, gt + @0, S g1+

for some absolute constant C 2 1 such that for any o € X, there exists a unique
global solution

(Ay, Ag, ) € (COHS + 8Y) x Y! x (COHS + 5Y)

to (MKG-CG) with initial data given by A;[0] = (a“, b®) and ¢[0] = (¢, ¢1§”).
Foreveryw € X, (Ayx, Ao, @) is defined as the unique limit in (C?Hg +Shxylx
(C?H;CY + SY) of the sequence of canonical smooth approximations {(AT", Ag",
O}, >0 to (MKG-CG) for frequency truncated random data {(T., A [0], T<,¢®
[O])}nzg, and (Ay, Ao, @) solves (MKG-CG) in the distributional sense.

1.3. Overview of Proof Ideas

We give an outline of the main aspects of the proof of Theorem 1.1.
Small energy global regularity for the energy-critical Maxwell-Klein—Gordon equa-
tion [27].
The proof of Theorem 1.1 relies on the functional framework, the multilinear esti-
mates, and a parametrix construction from the small energy global regularity result
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for (MKG-CGQG) established in joint work of the first author with STERBENZ and
TaTARU [27]. The key difficulty in the treatment of the Maxwell-Klein—Gordon
equation relative to the Coulomb gauge at scaling-critical regularity are low-high
interactions in the magnetic interaction term in the equation for the scalar field ¢
of the following schematic form, where the free wave evolution of the spatial part
of the connection form is at low frequency,

06 = Al Pnign + -

low

Even for small initial data, these low-high frequency interactions in the magnetic
interaction term turn out to be non-perturbative at scaling-critical regularity due
to a logarithmic divergence (the inhomogeneous part of A, turns out to satisfy an
improved ¢! bound and its contribution can therefore be treated perturbatively).
RobpniaNnsk1 and Tao [43] resolved this impasse in the context of proving critical
small data global regularity for (MKG-CG) in dimensions d = 6 by incorporating
the problematic low-high interactions into the linear wave operator and by deriving
Strichartz estimates via a parametrix construction for the resulting paradifferential
magnetic wave operator

Dh =042 Y Py A0, P,.
keZ

This approach was significantly further advanced in [27] through the realization that
the parametrix construction from [43] is also compatible with the more delicate X*-*
type and null frame spaces. In this work we have to slightly adapt the parametrix
construction from [27] to allow for a rough free wave evolution AJree which is
at scaling super-critical regularity, but enjoys redeeming space-time integrability
properties thanks to the randomization, see Sect.5 for the details. We also take the
parametrix construction from [27] into a novel modified “probabilistic” direction
as outlined in the next paragraphs.

Failure of the Bourgain—da Prato—Debussche linear-nonlinear decomposition and
induction on frequency.

If one tries to treat the Cauchy problem for the energy-critical Maxwell-Klein—
Gordon equation with (small) random initial data at scaling super-critical regularity,
the usual approach of decomposing the dynamical variables A, and ¢ into free wave
evolutions of the rough random data and into inhomogeneous nonlinear components
is bound to partially fail. Owing to the favorable null structure in the wave equation
for Ay, it suffices to just decompose the spatial part A, of the connection form
according to the standard Bourgain—da Prato—Debussche trick. However, in the

low-high frequency interactions in the magnetic interaction term Al] ow9j ¢,£rge; of
the ¢ equation, when the rough free wave evolution of the random data for ¢ is at
high frequency, despite the null structure one cannot gain regularity and treat the
term at the scaling-critical energy regularity. The way out is to build this low-high
interaction term into the definition of the rough linear evolution of the random data
for the scalar field ¢. This in turn requires to construct the solutions to (MKG-
CG) for (small) random initial data (A¢'[0], $“[0]) via an induction on frequency

procedure. More specifically, (on a suitable event) we construct the solutions as the
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limit of the sequence of solutions (A", Ag", ¢=") to (MKG-CG) for frequency
truncated random initial data (7, AY[0], T<,¢“[0]). To this end we derive uniform
bounds on the dyadic solution increments (A%, Afj, ®"), n = 0, defined by

A" = AT AT n20,
AS" = AN AR n20,
¢<n — ¢<n—1 + CI)n, n g 0’

where we set Af‘l = A(f_l = ¢=<~! = 0. For every n > 1, we decompose the
increments A} and ®" of the dynamical variables into

A= AL, + AL

" = Pl 4 DY,
where AY ., @} are the rough linear components and A7 ;, ® are the (“smooth”)
inhomogeneous components satisfying a forced Maxwell-Klein—Gordon system
of equations (fMKG-CG,,) stated precisely in Sect. 4.2. As alluded to above, it
suffices to define the rough part A" . as the free wave evolution of the (rough)

X,r

random initial data 7, A{[0], that is,

in(¢|V
SCIVD 7 o>,
V]

AL (1) := S(0)[Tha®, Tyb®] = cos(t|V ) Tha® +
Instead, the rough part @7 of the scalar field is defined as an approximate solution
to the linear magnetic wave equation

Di;”,’ﬁ‘fcb;' = <D + 2iP§(1_V),1A<”’1’°‘80,P,,)<I>? ~0, OO0~ T,¢°[0], n = 1.
Here, it is crucial that the entire connection form A<"~! from the prior induction
stages is built into the linear magnetic wave operator on the left-hand side. Moreover,
it is important for the whole argument that only the “strongly low-high” interactions
are incorporated into the modified magnetic wave operator, which is specified by the
small absolute constant 0 < y < 1. The precise linear-nonlinear decomposition
and the induction on frequency procedure are set up and explained in more detail
in Sects. 4.2-4.3.

Some care has to be taken to ensure that at every stage of the induction procedure
various smallness requirements on the rough linear evolutions and on the nonlinear
components (from prior stages of the induction) are satisfied. This is achieved by
working with suitable probabilistic cutoffs in the proof of Theorem 1.1 in Sect.7.
Their use is perhaps somewhat reminiscent of the truncation method of DE BOUARD
and DEBUSSCHE [15].

“Probabilistic” parametrix, redeeming functional framework, and generalized mul-
tilinear estimates.

A key difficulty in the proof of Theorem 1.1 is the construction of the adapted
linear evolution ®7 of the rough random data 7,,¢*[0] as a suitable approximate

solution to the modified paradifferential magnetic wave equation DZ’ﬁf’fcbf ~ 0.
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The adapted linear evolution ®? has to have two main properties. On the one
hand & has to satisfy suitable redeeming space-time integrability properties (on
a suitable event) in order to close all nonlinear estimates. On the other hand, the
accrued renormalization error estimate Dﬁ’fx‘f @7 has to gain regularity so that it
can be treated as a ““smooth” source term in the equation for ®7.

The subtle iterative definition of @7 in terms of a modified “probabilistic”
parametrix is carefully laid out in Sect. 6.1. Then we exploit the randomness and
derive redeeming space-time integrability properties (on a suitable event) of the
rough linear evolution @ in Sect. 6.3. Here a delicate point is that the connection
form A<"~! from the prior induction stages enters the definition of the parametrix
for ®” and is also a random function. The key point that makes this construction
work is that the random data 7;,¢“[0] for the rough linear evolution ®/ is inde-
pendent of the random data (T<,—1 A?[0], T<,—1¢“[0]) on which the connection
form A<"~! depends. Since @7 is only an approximate solution, we need to show
that the resulting data error 7,,¢“[0] — ®/'[0] in fact gains regularity (on a suitable
event) and that the resulting renormalization error Dﬁ’fffi’f ®” can be treated as a
“smooth” source term (on a suitable event). This is accomplished in Sects. 6.4 and
6.6.

The precise definitions of the “redeeming” space-time integrability properties
that the rough linear evolutions enjoy (on a suitable event) are provided in Sect. 3.2.
They are designed so that the relevant multilinear estimates from [27] can be gener-
alized to allow for rough inputs. These generalized multilinear estimates are derived
in Sect. 8.

2. Preliminaries

2.1. Global Small Constants
We work with a string of globally defined small constants satisfying
<Koy KK KK,

where

e § specifies the off-diagonal gain in multilinear estimates;

e &y is used for the sum _,_ 2°¢ in the definition of the redeeming Ry L?L%°,
RyL?LS, and Ry L° L norms;

e & is used for capturing the frequency localization to ~ 2" (up to tails) of the
smooth nonlinear components A% ¢ and @Y at dyadic frequency level n;

e y specifies the frequency restriction k < (1 — y)n to distinguish “moderately
low-high” and “strongly low-high” interactions, it therefore plays a key role in
the definition of the “probabilistic” phase function ¥/-"°? in Sect. 6;

e o is used for specifying the cutoff of small angle interactions in the definitions
of the “deterministic” and “probabilistic” phase functions;

e §, specifies the Sobolev regularity 1 — 8, < s < 1 of the random data.
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2.2. Probability Theory

The derivation of the redeeming space-time integrability properties of the linear
evolutions of the rough random data crucially relies on the classical Khintchine
inequality.

Lemma 2.1. (Khintchine’s inequality) For any choice of a positive integer N, a
sequence {X j} ;\;1 of independent standard zero-mean Gaussian random variables,

and a sequence {CJ'};V:I C C, we have for 1 < p < oo that

o) (o)’

j=1
We use the following lemma to estimate the probability of certain events. Its
proof is a simple consequence of Chebyshev’s inequality.

N

ZCij

j=1

Lemma 2.2. (Tail estimate) Let X be a real-valued random variable on a prob-
ablility space (2, F,P). Suppose that there exists D > 0 such that for every
1 £ p < oo we have

1
(E1X|”)7 < V/pD.
Then there exist absolute constants C, ¢ > 0 such that for every . = 0 it holds that

)LZ
P(X| > 2) < Cexp(—cﬁ).

2.3. Frequency and Sector Projections

In order to define several Littlewood—Paley projection operators, we pick a non-
negative even bump function xo € C*°(R) satisfying xo(y) = 1 for |y| < 1 and
xo(y) = 0 for |y|] > 2 and set x(y) = xo(y) — x0(2y). Then we introduce the
standard Littlewood—Paley projection operators for k € Z by

Pf ) = x(27FE) F©).

To measure proximity of the space-time Fourier support to the light cone we use
the concept of modulation. For j € Z we define the projection operators

F(Qj )@, &) = x (277 llel - E1l) F(F)(z, &),
F(Q7 ). &) = x 27/ 1It] = [£11) xpe=0) F ()T, £),

where F denotes the space-time Fourier transform. On occasion, we also need
multipliers S to restrict the space-time frequency and correspondingly setfor/ € Z,

F(Sif)(x &) = x 27z, &)1) F(f)(z, &).

Moreover, we use projection operators P/ to localize the homogeneous variable

% to caps k C S? of diameter ~ 2/ for integers [ < 0 via smooth cutoff functions.
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We assume that for each such [ < 0 these cutoffs form a smooth partition of
unity subordinate to a uniformly finitely overlapping covering of S® by caps « of
diameter ~ 2.

Finally, forany 7 € S° and any angle 0 < @ < 1, we define the sector projection
HZ@ in frequency space by the formula

2,7 = (1= (252 (1= 0(F5 1)) feo0

where Z(&, n) is the angle between £ and 5. Thus, l'[z o Testricts f smoothly (except
at the frequency origin) to the sector of frequencies & whose angle with both 1 and

—n is 2 6. Similarly, we define the Fourier multipliers IT;, 1" ;> and HZI>,>92.

3. Function Spaces

In this section we first recall the functional framework from [27] that we will use
throughout. We also set up some notation for function spaces that will be convenient
for the induction on frequency procedure in this work. Finally, we introduce the
redeeming space-time integrability properties that the rough linear evolutions of
the random data will enjoy and that beat the scaling.

3.1. Review of the Functional Framework from [27]

We use the same definitions and notations as in [27] for the spaces Sk, S LN, Yl
and Z. The (smooth) solutions of the nonlinear wave equations for the spatial part
of the connection form and for the scalar field will be placed in the scaling-critical
space S', while the inhomogeneous terms of the wave equations will be placed in
the space N. The (smooth) elliptic variable Ay will be measured in the Y space.

We begin by introducing the convention that, for any norm | - ||s and any
p € [l,00),

1
V4
IFlers = (Z ||PkF||§) :

kel
Then we define the X*” type norms applied to functions at spatial frequency ~ 2¥,
1
. P\P
”F”Xf;b =2’k <Z<2bj I QijF”LtzL%) )
=

for s, b € Rand p € [1, oo) with the obvious analogue for p = oo.
We will mainly use three function spaces N, N*, and S. Their dyadic subspaces
N, N and Sy satisfy
1
L ONF=LRLANX0E, X

=

gSng,j‘.
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Then it holds that

IFI% =Y NPFIR,. IFIF = Y IPF I,
keZ keZ

The space S is defined by

2 2 2 2
lolls, = lolgser + 1@l ane + P17 1
k k Xo’oz

where

1,4
=) 2L,
+22<

2 n 2
16112ums = sup S 1P Q k211,
k 1<0 7, k@

Q=
Bl

and the angular sector norms S Z (1) are defined below. The sum over n in the
definition of S is over a covering of S* by caps of diameter ~ 2! with uniformly
finite overlaps, and the symbols of Pl'7 form a smooth partition of unity subordinate
to this covering.

To introduce the angular sector norms S ,? () we first define the plane wave space

ol pyy = inf / 9" Il,2 o dff
PO o f e S Fartant

and the null energy space

I¢lIlne = sup [Vl o2
" n L

where the norms are with respect to Eni = t = n - x and the transverse variable,
while Y, denotes spatial differentiation in the (E;"’)J— plane. Then we set

2 _ 2 —2k 2 —3k + 02
I¢15 4y = 16155 + 27Dl g +2 ;uQ 1wz

2 ok 2

+ sup E <||Pck,(1’)¢||55tr+2 I Pe,, @iy e
KSKIS0, ¢ k

k420 Sk Sk+l

—2k'—k 2 =3k’ +I 2
+27 P a0l + 270D Zij I QiPck/(z/)fi’IIPWnﬂ,)),
where Pc,, () is a projection operator to a radially directed block Cy (/ ") of dimen-
sions 2K x (2K +1")3,
Now we define

IeN5 =D IV Pels + 10617

keZ OL2H,
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and the higher derivative norms

lpllgy = IVNpllgr. N =2.

Moreover, we introduce
el = 1Vl oz + 10uly,.

Occasionally we need to separate the two characteristic cones {t = =£|&|}, for
which we define

Ni,+, Nk = Np+ N Ni -

Sty Si=Si +S
kx> Yk k,+ k,—

Nfe Ni=Nj, +Nj_.

We will also use an auxiliary space of L}Lﬁ;o type,

Ipliz =D IPdliz, Nl = lsup} 2P Qur 2]y o
<C x
n

keZ

Finally, to control the component A, we define
2 2 2 2
140151 = 1V1.x Aol g2 + 14012, e + 101 Aol 11
and the higher derivative norms
A = |VN-'A N2>2
lAollyy = IV, Aollyr, 2 2.

The link between the S and N spaces is provided by the following energy
estimate from [27],

IVixdlls S 1Vixd Oz + 10¢lIn-
We will also use the notation
IPcllsy := IVe,x Pegplls,
and we set
@l g-s =27 Ve Pells, = 27l

Finally, in order to capture the frequency localization (up to tails) of the solution
increments in our induction on frequency procedure, we introduce for any n = 1
the norms

19151 = sup 272K Peg gy + 1PN _y),
kel ¢ LA, ?

Il Aolly 1 == sup 2P A P Ag 1.
kel
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3.2. The Redeeming “Probabilistic” Functional Framework

Here we introduce the “redeeming” function spaces capturing the improved
space-time integrability properties that the rough linear evolutions of the random
data will enjoy (on a suitable event). For any k = 1 we define the redeeming Ry
norm of a rough linear evolution localized to frequencies ~ 2% by

10llR, = 110, 27 Ve a0l g 20 + 10, 275 Vea0) g, 1216 o
+ 1@, 27 Ve lgeerse + 10, 27V ks + ollgiose.

where the components Ry L?L%°, Ry L?LS, R L®°L°, and Ry Str are given by

1
2
(3 —200)k 51 2. - pi 2
Il 200 = 22720743 02 (Z Y WD Py P Qe v |12y )
1<0 K K<k, 'S0 Cpl)
k421 SK 1 Sk+1
1 1

with y (K, 1) := (min{2"", 1})27 - (min(2¥+, 1}) 27,

1
2
Ivllg 218 = 2(3-2000k 226'1(2 HPIKQ<k+2lv”i,2L§> ,
K

1<0

7

lollgy o120 = 5(1-200)k Zzall(z(min{zéﬂ(kﬂ)’ 1})72 | pr ka”ixpo> ’
X 13 X
1<0 K

1
. ~(1-200)k 1k
vl Reser =2 > 27 ol gy -
+5 <

S
Blw

Let us briefly comment on the definition and the use of the different components of
the redeeming Rj norm. In the definitions of the Ry L%L;" and Ry L{° LY compo-
nents, for each / < 0 the sum over « refers to a sum over caps k C S° of diameter
~ 2! with uniformly finite overlaps and the symbols P/ form a corresponding
subordinate smooth partition of unity.

The Ry L?>L%° and R;L? LS components are designed to be used in conjunction
with the S,l*‘s* component to control rough linear evolution inputs in null form
estimates. The factor y (k/, 1) helps gain additional smallness for very thin and/or
short rectangular boxes Cy (I”), which come up many times in the null form estimates
in [27].

The Ry L{°LS° component incorporates a gain from frequency localization to
caps k C S? of diameter ~ 2. It plays an important role in L> estimates of the
“rough” parts of the “deterministic”” and the “probabilistic” phase functions, see
Lemma 5.3 and Lemma 6.2.

Finally, the Ry Str component consists of finitely many wave-admissible expo-
nent pairs and encompasses a Klainerman-Tataru gain from the unit-scale frequency
localization of the “atoms” of the Wiener randomization. The Ry Str bounds for the
rough linear evolutions are used in many places, in particular they suffice to estimate
all cubic nonlinearities in (MKG-CG) with rough linear evolutions as inputs.
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4. Induction on Frequency Procedure

In this section we begin with the construction of solutions (A, Ag, ¢) to
the (MKG-CG) system of equations for scaling super-critical random initial data
A[0] = AP[0], ¢[0] = #“[0] on an event with high probability. We will de-
fine the solutions (Ay, A, ¢) as the limitin (COHS + S') x Y! x (CYH? + S')
of a sequence {(A;”, Ag", ¢<”)}n20 of solutions to (MKG-CG) with frequency-
truncated data given by AS"[0] = T, AL10], ="[0] = T.,¢“[0]. Since the
frequency-truncated random data is smooth, we would in fact have global exis-
tence of the solutions (AF", Ag”, ¢=") for every n = 0, even for large data, by
the (deterministic) global regularity results [26,27,36-38] for the energy-critical
(MKG-CG) equation. However, in order to show the convergence of this sequence
on a suitable event, we need to establish refined uniform bounds on the sequence of
solutions. To this end we construct the sequence inductively, adding in one dyadic
frequency block of the random data at a time and decomposing the spatial parts of
the connection form as well as the scalar field into suitable rough linear components
and smooth nonlinear components.

The main result of this section is a (deterministic) global existence result for a
forced Maxwell-Klein—Gordon system of equations for the nonlinear components
of the solution increments at each induction step, assuming that certain smallness
assumptions on the forcing terms hold. The main work in the proof of Theorem 1.1
then goes into establishing the existence of an event with high probability on which
these smallness assumptions are satisfied at all induction stages so that the corre-
sponding sequence of solutions converges.

4.1. Decomposition of the Nonlinearity

We begin by examining the nonlinearities in the (MKG-CG) system of equations
more carefully and we introduce some notation that will be useful in the following.
Recall that the (MKG-CG) system is given by

OA; = —P;Im(¢ D ¢),
DO[DO(¢ = 09
AAg = —Im(¢Dog),

and that it suffices to prescribe initial data for A, [0] and ¢[0], because the temporal
component of the connection form Ay is at any time determined in terms of A, and
¢ by an elliptic equation.

The A, equation. We decompose A; into its free wave evolution part and its
nonlinear part

o free nl
Aj = Aj + Aj .
Then we write

Al =A@, ¢, A),
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where A ; is extended to a symmetric quadratic form in the first two variables
Aj(¢>(1),¢>(2), A) =A§(¢>(]),¢>(2)) +A§(¢(l),¢(2),A)
with
A", ¢?) = —%D‘%Im(q&mm + Vip(Dgp®@),
A9, 0%, A) = 4307 P (009D A, 4+ 5Tp2A,).

Recall that the quadratic part A? of the nonlinearity exhibits the favorable null
structure

Pi(9"Vi®) = 0" AN (9. 9?).
The A equation. Here we introduce the notation

Ap = Ao, 9, A),
0 Ap = 0/ Ap(9, ¢, A),

where we set

Ao(¢, ¢, A) = —A7'Im($3,0) + A (9P Ag) = A} (¢, ¢) + A (. ¢, Ap),
HAo(p, d, A) = —A"'3 Im(Pd;0) + A9/ (9P A)) = BA (D, ¢) + HAL (D, ¢, Ay).

In the following we think of Ag(¢, ¢, A) and 9;A0(¢, ¢, A) as being extended to
symmetric quadratic forms in the first two variables.

The ¢ equation. Expanding the covariant wave operator D D,, leads to the fol-
lowing equation for the scalar field

O = —2i A% + (9, A0)p + A Aggp.

In the Coulomb gauge the magnetic interaction term A/ ¢ exhibits the null struc-
ture

AV3ip = Nij (38 A1 AT ¢).

Even in the purely deterministic case, the low-high interactions in the magnetic
interaction term involving the free wave part of A, turn out to be non-perturbative
at energy regularity and have to be retained into the linear wave operator. In the
current setting with scaling super-critical random data, the low-high interactions in
the magnetic interaction term become even more problematic. In preparation for
a refined decomposition of the ¢ equation in the next subsection, we isolate the
low-high interactions in the magnetic interaction term A*9,¢ and correspondingly
rewrite D*Dy¢p = 0 as

(D420 Y (Pt c A" P ) = =20 Y (Pasoc A" Pt + (3 A0} + A" Aug
k k

=M'(A, ¢) + M*(Ag, ¢) + M>(A, A, ¢).
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Additionally, we decompose the nonlinear term M! (A, ¢) into
M'(A, §) = =20 Y (Por—cA“)0u P = =20 ) (P~k—cA")d, Pig
k k

=20 Y (Pot—cA)I; Prgp
k

= M) (A¢, ¢) + ML (A,, ¢).

4.2. Decomposition into Rough and Smooth Components

We now turn to setting up the precise construction of the sequence {(A AT,
¢=") }nz 0 of solutions to (MKG-CG) with frequency-truncated random initial data

given by
ATMO0] = T, AT[0],  ¢~="[0] = T, $“[O].

The sequence will be constructed inductively. To this end we introduce the dyadic
decompositions

AP = AT AT, n 20,
A0<n — Agn—l +An’ n z 0’
¢<n — ¢<n71 + (Dn’ n Z 0,

where we set Ax™! = A5 =¢="! = 0.

We let (A;O, Ago, #»=9) be the solution to (MKG-CG) with (smooth) random
initial data AT°[0] = THA2[0], ¢=<"[0] = Top“[0], which we obtain from the
small energy global regularity result by [27] if this frequency-truncated data has
sufficiently small energy.

Then having constructed (A)f"_1 , A(f"_l , <"1, we construct (AS", AG", ¢
by solving the (MKG-CG) difference equations for (A, Ajj, ") with random ini-
tial data sharply localized to frequencies ~ 2". Specifically, the random initial data
for the spatial parts of the connection forms A” is given by

AL[0] = T, A2[0] = (T,a®, T,b®), n 21,
and the random initial data for the scalar fields " is given by
@"[0] = (T8, Tugy). n = 1.

At each dyadic frequency level n = 1 we decompose the (spatial part of) the
connection form A" as well as the scalar field ®" into a rough (linear) component
and a smooth (nonlinear) component. In the following “smooth” refers to having
scaling-critical energy regularity. Crucially, on a suitable event the rough evolutions
will have redeeming space-time integrability properties that beat the scaling. It is
worth pointing out that such a decomposition is not necessary for the temporal
component A7}, because at any time it is determined by A% and ®” via an elliptic
equation.
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For the spatial part of the connection form we use the standard Bourgain—Da
Prato—Debussche decomposition and write

AZ = 'Azr + "4;,.97

where the rough part A7 , is just defined as the linear wave evolution of the (rough)
random initial data

sin(t|V])

AL (1) := S(0)[Tha®, Tyb®] = cos(t|V ) Tha® + Vi

T,b”, n=1.
We emphasize that A7 , is sharply localized to frequencies ~ 2".

Instead for the scalar field ®”, we introduce an adapted linear-nonlinear de-
composition

D" =P + P,

where the rough part @7 is defined as an approximate solution to the linear magnetic
wave equation

(D n 2iP§(1_V>nA<”*"“aaPn)cp'; ~0, @"'[0]~ T,¢°[0], n > 1.

Here, 0 < y <« 1 is a small constant that enacts a “strongly low-high” frequency
separation. This choice will emerge and will be explained further below as we
will derive the system of equations for the smooth components (A% 0 D).
Observe that the entire connection form A<"~! from the prior induction stages is
built into the linear magnetic wave operator on the left-hand side. While A<"~!
is a random function depending on the random initial data 7', A¢[0], T,¢*[0]
from the induction on frequency stages < n — 1, the key point that will make this
construction work is that the latter are independent of the random data 7,, A?[0],
T,¢“[0] at the induction on frequency stage n. The precise definition of ®” via a
parametrix will be given in Sect. 6. At this point we stress that by construction @/
will also be sharply localized to frequencies ~ 2". Moreover, it will follow from
Proposition 6.6 that the data error, i.e. the initial data for the nonlinear component
of the scalar field, gains smoothness and is at the better energy regularity (on a
suitable event)

»S?

101 = (T,98, Tng?) — @rI01 € H' x L2

In order to systematically use the subscripts s, respectively r, to indicate smooth,
respectively rough components, it will be convenient to denote the smooth solution
(A59, A5O, 9=0) to (MKG-CG) for the lowest frequency random initial data block
ToA2[01, Top*[0] by

(A) A, ) = (A0, A5G0, 070).

After these preparations, we are now in a position to derive the system of
“forced Maxwell-Klein—Gordon equations in Coulomb gauge” for the nonlinear
components (A} ;, Aj, ®}),n = 1. Subtracting the equations for A" and Azl
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from each other, we obtain that the nonlinear component AY | satisfies the forced
(wave) equation

AZ,S — Ax(¢<n7¢<n7 A<Vl) _AX(¢<VL—1’ ¢<n—l’ A<n—1)’ n Z 1
In the same manner, we find that A satisfies the forced (elliptic) equation
g =A0(¢<n’¢<n’ A(Tn) _A0(¢<n—l’¢<n—l’Agn—l)’ n z 1.

To determine the equation for &7, we first subtract the equations for ¢ =" and p=""1
from each other to obtain that

(D +20y) ng_cA<"'“8aPk>¢<" - (D +20) Py AT, Pk)¢<"_1
k k

— Ml (A<n’ ¢<n) _ Ml (A<n—l’ ¢<n—l)
+ MZ(A<n, ¢<Vl) _ MZ(A<VL71’ ¢<n71)
+M3(A<n, A<n7¢<n) —M3(A<n_l, A<n—l’¢<n—l).

Inserting the decompositions ¢=<" = ¢=<""! + ®" and A<" = A<"~! 4 A" this
gives

(D +20Y Py AT, Pk)d>"
k
=20 Y Pgy_c A" 0 Pip™"
k

+ MI(A<n, ¢<n) _ Ml (14<n—17 ¢<n—l)
+ M2(A<)’l ¢<I1) _ M2(A<n71 ¢<n71)
+ M3(A<n A" ¢<n) _ M3(A<n—l A<n—l ¢<n—l)
Next, we insert the presumptive decomposition of ®” into its rough and smooth

components ®" = @' 4 @, where the precise definition of @' will now emerge.
Then we find that ®7 is a solution to the following forced magnetic wave equation

(O+20 Y Py A=, P) @l = (0420 Y Py e A= 0, Py ) @)
k k

=2 ) Py A0, Prp™"
k

+M1(A<n ¢<n) _MI(A<n71 ¢<nfl)

+M2(A<n ¢<n) 7M2(A<n71 ¢<n71)

+M3(A<n A=H ¢<n)7M3(A<n71 A<n71 ¢<n71)
with initial data

{[0] = T,,¢“[0] — ®;[0].

In order to derive a priori bounds for @7, it is more favorable to only retain the free
wave evolution part of the spatial components of the connection form A<"~! in the
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linear magnetic wave operator on the left-hand side. The other parts can be treated
as perturbative nonlinear source terms at energy regularity. Keeping in mind that
@7 will be chosen such that it is sharply localized to frequencies ~ 2", this leads
to the equation

(D +20 Y P (AT AP )y Pk)cp;’
k

= —(O+2iPg, AT 0, P, ) 0

—2i Y Py ¢ A0 Pegp™"
k
. <n—1,j 0 j 7
Y Z ngfc(As n—1,j x’free'j)ajpkcbsl
k

+2i Z Py cAF" O PO}
k

+ MI(A<n ¢<n) _ Ml(A<n—l ¢<n—l)

+ MZ(A<n, ¢<n) _ MZ(A<n_1, ¢<n—l)

+ M3(A<n A<M ¢<n) _ M3(A<n—l A<n—1 ¢<n—1)
with initial data

OY[0] = T,¢”[0] — ®;[0].

For the paradifferential magnetic d’Alembertian on the left-hand side of the above
equation for @7, we introduce the convenient short-hand notation

0F =042y Pey (A7 + AP Yo, P
k

To derive a priori bounds for 7, in Sect. 5 we will establish linear estimates for the
inhomogeneous magnetic wave equation Dﬁ<n_1 u = F that are compatible with
the delicate functional framework of the S' and N spaces. This part will be based
on a “deterministic” parametrix construction.

It remains to examine the low-high magnetic interaction term P<, _~A<"~1:%,
P, ®! with the rough component ®7 at high frequency. We further decompose it
into a “strongly low-high” interaction term and a “moderately low-high” interaction

term
Pe, A9, P®) = Poy ), AT 0, PO + Pl yynn—c) A0, P O,

where 0 < y <« 1 is a suitable small constant. Using the redeeming space-time
integrability properties of @7, the “moderately low-high interactions” P{(1—y ) n—c]
A<n—Leg p, @7 will turn out to be still perturbative at energy regularity. However,
it is not possible for the “strongly low-high” interaction term to gain regularity and
become treatable at energy regularity. The way out is to build it into a modified
paradifferential magnetic d’Alembertian

Dzyfz(idl = |:| + 2l’P§(17V>nA<n_1’aaaPn
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that defines the rough linear evolution ®7. More precisely, we define 7 as an
approximate solution to the modified linear magnetic wave equation

016 =0, ¢l0] = T,¢°[0], n = 1. @.1)

The subtle iterative construction of ®” in terms of a “probabilistic” parametrix is
carried out in Sect. 6. Importantly, while ®” is not an exact solution to (4.1) and
thus does not completely remove the “strongly low-high” interaction term, it will

follow from Proposition 6.8 that the accrued renormalization error (17 mod

A<n—1 P} gains
regularity and can be treated as a smooth source term (on a suitable event). This
argument relies on a suitable control of a certain redeeming error control quantity
EC" defined in (6.34).

To summarize, we have arrived at the following system of forced MKG-CG

equations for (A7 (, A7, ®Y) at frequency level n = 1,

A’}',s =Aj(¢<n’¢<n, A<n) _Aj(¢<n71,¢<n71,A<nfl)
Ag =A0(¢<n’¢<n, A(Tn) _AO(¢<n—l,¢<n—l,A0<n71)
Pl = —DZ’:ZS?@? — 2iP[(l_y)n,n_C]A<n_1’a30[an3;[

—2i Z Py A0 ™"
k

P
DA<)171

oY Py A AN
k

+2i Z Py cAY" 0 P@)
k

+ Ml(A<n ¢<n) _ Ml(A<n—1 ¢<n—1)
+ M2(A<", ¢<n) _ MZ(A<n_1, ¢<n—l)

+M3(A<n, A<n’ ¢<n) _ M3(A<n_l, A<n—1, ¢<n—l)
(fMKG-CG,,)

with initial data for the scalar field @7 given by
®10] = T,¢°[0] — 0],

It is important to keep in mind that the nonlinearities in (fMKG-CG,,) contain
A==l g=n=l An and @ as forcing terms. Additionally, the right-hand side
of the magnetic wave equation for @7 features the “probabilistic”” renormalization

p,mod

error term L), ., 7

®” as another forcing term.

4.3. Global Existence for the Forced MKG-CG System of Equations

We now present two global existence results on which the iterative construction
of the sequence of (smooth) solutions {(AY (, Aj, ®Y)},>( relies. These should
be viewed and are formulated as purely deterministic global existence results at
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energy regularity under suitable smallness assumptions on the respective data and
forcing terms.

If the energy of the lowest frequency block (ToAL[0], Tog®[0]) of the random
data (A{[0], “[0]) is sufficiently small, we can invoke the small energy global reg-
ularity result for (MKG-CG) by [27] and start the induction on frequency procedure
by solving the standard Maxwell-Klein—Gordon system of equations (MKG-CG)
with (smooth) initial data given by (ToAL[0], To@®[0]). We denote this (smooth)
solution by (A? (, A), @) € ST x ¥! x S! and we set A? = @ = 0. In order
to capture the frequency localization of the solution (Agys, AY, CD(S)) to frequencies
|&] < 1 up to tails, we use the norms

1
2
142 Il 10y 1= (Z(max{ztszk’ DR pkAB,sngkl) + 1A g1,
k
1

2
I1AGlly11o) := (Z(max{zazk, 1})2||PkA8||2yl> :

k

2
1971151107 = (Z(max{zézk, 1}) ||PkA2,S||§]1)

k

1
2

Proposition 4.1. (Induction base case) There exist absolute constants 0 < ¢ < 1
and Cy 2 1 with the following property: If

IT0AZI0N 112 + I Tog 0N 112 < e,

then there exists a unique global solution (A ;, AJ, ®%) e S' x Y! x S! 1o

(MKG-CG) with initial data
AY [0] = ToAL[0],  DY[0] = Tog[O].

»S?

Moreover, it holds that
IAS 1o + 1Ay 10y + 19715110y £ Co(IToALION g1 12 + 1 Tod 101l 1 12)-

Proof. We may freely assume that the constant 0 < ¢ < 1 is sufficiently small
so that we can invoke the small energy global regularity result by STERBENZ—
TaTARU and the first author [27, Theorem 1]. From [27] we obtain the following
refined information about the solution (A? , A9, ®9). Let {ct}rez be an H! x L2

frequency envelope for the initial data (7o A”[0], To¢“[0]) defined by

= 30 2K Py AI0] g+ PT0d 10D )
Lel

Then it holds that

|y

2 0 0
,8 ||Sk Sckv ”Pchs ”Sl ricka ”P](A()’s”YI Sck'

In particular, it follows that
IAS 10y + 1Ay 10 + 17 1 5170) < Co(IIToAf[O]IIngLg + ||T0¢w[0]||ngL§)

for some absolute constant Cy = 1. |
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The main result of this section is the following (deterministic) induction step
global existence result at energy regularity for the system of forced MKG-CG
equations (fMKG-CG,) at stage n = 1. Note that the corresponding solution
(A} 5. A, @) to (fTMKG-CGy) is localized to frequencies ~ 2" up to tails, as
quantified by the estimate (4.5) below. The statement assumes smallness of the
redeeming error control quantity £C" defined in (6.34), which is used to bound the

mod
accrued renormalization error qu DI

Proposition 4.2. (Induction step) There exist absolute constants 0 < ¢ < 1 and
Co 2 1 with the following property: Let n 2 1 be arbitrary. Suppose that the linear
rough components from previous stages satisfy

n—1

Z 127 1, + Z LAY Ik, < (4.2)

and that the smooth components from previous stages satisfy

n—1

D NPT g1y + Z LAY sty + Z LA Iy pm) S Cos. (43)

m=0 m=0 m=0

Assume that

|93 100 1012 + 197 R, + 1AL DR, + 1 Tag 0N 150 gy s + EC" S .
“4.4)
Then there exists a unique global solution (.Aﬁ’s, 8, ) € Stx vl x St o
(fMKG — CGy) satisfying
NN sty + 1A s stpay + 1AG Iy
= Co(IIQi[O]I\HXleg 1R, + 1A IR, + 1T @101 15 e + EC”).
4.5)
For the proof of Theorem 1.1 it is crucial to observe that in view of the condi-
tions (4.2)~(4.4) and in view of the bound (4.5) on the solutions (A? (, Aj, ®Y), we

can invoke the induction base case Proposition 4.1 and keep iterating the induction
step Proposition 4.2 for all n = 1 on an event on which we have that

(0.¢] o)
I(ToAL 101, To¢”[OD 1,12 + Y I NIk, + Y 1AL, IR,

o0 o0 o0
+ Y N IO0N 12 + Y WTwd 00l it fyse + ) ECT Se.

m=1 m=1 m=1

We now outline the proof of Proposition 4.2 using the nonlinear estimates
established in the next Sect. 4.4
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Proof of Proposition 4.2. As in the proof of the small energy global regularity
result for (MKG-CG) in [27], the scheme of the proof is a Picard iteration. Here
it is important to keep in mind that in terms of estimates this is really a two-step
iteration, because to obtain good bounds, the equations for Aﬁ’x and Ag have to be
reinserted. The nonlinear estimates in Sect. 4.4 have to be understood in this sense.
In the following we use superscripts (£) to denote the Picard iterates.

We initialize the Picard iteration by setting

(ARO, A O 01 ©) = (0,0,0).

Then for any £ > 1, we define (Aﬁjie), Ag’(z), om® ) as the solution to the sys-

tem (fMKG-CG,) where (.A;S, 0 CDZ’) on the left-hand sides is replaced by

(A A O o) and (A%, A3, @) on the right-hand sides is replaced by
(A§:§E_l), Ag’(e_l), CD;"(Z_U), and with initial data for the scalar field

" O[0] = (T,08, Tupy) — PLO].
We first derive the bound

(1
102 D g1 gy + 1AL 10y + 1A 1)
< CL(IDF10M gy 2 + 19 1R, + 1AL R, + 17001001 10, e+ EC”)
(4.6)

for some absolute constant C; > 0 such that C1e¢ < 1. This bound follows from
the nonlinear estimates in the next Sect. 4.4 by observing that, since CD?’(O) =0

and Aﬁ;ﬁo) = 0 vanish on the right-hand sides of the equations for CD?’(D , Aﬁ:ﬁ“ ,

.Ag‘(l), all (non-vanishing) multilinear terms have at least one copy of @7 or A% ,
in one slot (while the forcing terms A<"~! or ¢<""! sitting in one or more of
the other slots just give an additional ¢ of smallness). The term ||} [0]]| 51, ;2 on

the right-hand side of (4.6) just comes from the initial data for ®"", while the

terms || 7,,¢“[0]]| I T and EC™" are a consequence of the bound provided
by Proposition 6.8 on the 'renormalization error term DZ’Zlﬁﬂi ®” on the right-hand
side of the equation for CD?’(O). In particular, by the assumptions in the statement
of Proposition 4.2 the bound (4.6) implies
198 Pl + 1AL sy + 145V llyip < Cre. (4.7)
Next, we establish that for all £ = 2 we have

- - ,(€ (-1
195 = @D lgigyy + 145 = APl + 1A = A5 g

4
< C.(2C1 (1920 iz + 197 IR, + 1AL I, + 17 ) = Ca2C10)"
(4.8)

for some absolute constant C,, = 1. The proof of (4.8) proceeds inductively. The
induction base case £ = 1 is provided by (4.6). To carry out the induction step
¢ —1 — ¢ we note that by summing up (4.6) and (4.8) we may add to our induction
hypothesis (as long as C1e < 1 is sufficiently small) that for (=1,2,...,0—1,
it holds that
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7 ) O
1™ O g1y + 1A% O N g1 + 145 Oy 1y

(4.9)
< 2C1 (1951011 71 2 + @Y I REn) + 1AL N REAy + 1 Ta O] 155 =50 + EC").

The bound (4.8) follows from the nonlinear estimates in Sect. 4.4 by observing
that the equations for " — @™ ¢~ AZ:EZ) — Aﬁ;&‘““, and Ag’(e) — Ag‘(lfl)
have zero initial data and do not involve forcing terms that come up to linear order
on the right-hand sides. Moreover, in all multilinear terms on the right-hand sides
there will be at least one copy of @ ™1 — @n (=2 gn=h _ pgn(t=2) o
Ag’(lfl) — Ag’(efz) in one slot, while the other slots at least give an additional &
of smallness.

Then (4.8) implies that the sequence {(AQ;E"), Ag’(e), CD?’(Z)) } >0

St x ¥! x S! to a solution (Aﬁ) s Ags @) to fMKG-CG,). Moreover, assuming

N
that 2Cy < Cy, from (4.9) it follows that this solution satisfies

converges in

||‘1>?||sl[n] + HAﬁ,s“sl[n] + ||A8||yl[n]
< Co(I RS 0N gy p2 + 19} IR, + AT NIk, + 1T L0 b0, e + ECT).

4.4. The Main Nonlinear Estimates

In this subsection we establish all estimates for the source terms that appear in
the forced MKG-CG system of equations (fMKG-CGy), n = 1. The derivations
rely on the frequency-localized multilinear estimates in [27, Section 12] and their
generalized versions established in Sect. 8, which allow for rough inputs satisfying
redeeming bounds.

We begin with the source terms of the A, equation.

Proposition 4.3. (The A, equation) For arbitrary n = 1 the following estimates
hold

sup o+dalk—n| ” PkD(A)Z((¢<n, ¢<n) _ A)Z((¢<n—1’ ¢<n—l)) ” - (410)
keZ NiNL7 Hy
n n
S (195 g1y + ||<I>':||Rn)<2 1D sty + D Hd>;"||Rm)
m=0 m=1

sup 2+32\k7n\||PkD(A)3:(¢<n!¢<n’ A;n) _A)3((¢<nfl’ ¢<n71’ A;nfl))H . .y
keZ NeNL2Hy 2

< (1o} Istpay + 1AL S listpy + 19T IR, + IAT IR, ) X

x (Z 1D sty + D AL Nstpmy + D 1D Ik, + Y ||A)’;€,.\\Rm>. (4.11)
m=0 m=0 m=1 m=1
Proof. We provide the details for the proof of (4.10). The proof of (4.11) for the
simpler cubic terms is analogous, only that it just relies on the core generic product
estimates from Lemma 8.1. Correspondingly, we omit the details for (4.11).
The proof of (4.10) can be further reduced to the following two bilinear estimates

_ 2
sup 272 POAT (@, @M 1 S (19 sy + 19} 11R,)7S (412)
2 2
keZ NyNL? H,
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) ._% 5 (||q)?||sl[n]
t Hx

sup 2+52\k—n| ” PkDA)ZC((Dn, ¢<n—1)“
keZ NgN
n—1

n—1
+ ||<I>;"||R,,)<Z 1D gy + ||¢:"||Rm). (4.13)
m=0 m=1

Their proofs are analogous and so we focus on (4.12), beginning with the Ny bounds.
Recall that the [JA2 term has the favorable null form structure

Pj(@"V, ") = 3FATIN; (0", 7).

Here we have to distinguish smooth-smooth, smooth-rough, and rough-rough in-
teractions. These cases can all be dealt with analogously using the generalized
bilinear null form estimate (8.5) and keeping in mind that the rough component
@7 is sharply localized to frequencies ~ 2", while the smooth component ®7 is
localized to frequencies || ~ 2" up to exponential tails captured by the S'[n]
norm. We also recall the smallness relations 0 < § < § < 1, which are important
here to close the estimates.

Smooth-smooth interactions: Let k € Z be arbitrary. In the high-low case we
obtain from the bilinear null form estimate (8.5) that

atelkenl N T | ROAL (P, P @)y,
ko <k-C
< Z p—8k—ka) (ptoalk—nl) py pn ||S£) | Py, D7 ||S]12
k<k—C
SIS,

The low-high case is the same and in the high-high case we find that

ool Y Y |POAS (P L, P @D,
ki Zk+0(1) ko=k1+0(1)
< y+dalk—n| —&(ky—k) n n
<2 > > 2 1P @5 llsy 1P @l
k1 Zk+0(1) ka=k1+0(1)
+85|k—n| —8(k1—k)n—82|n—k1| || agy71 112
$2 >, (AR
k1 Zk+0(1)
—(8—682) (k1 —k) ny2
S Y2 OO IG
klzk-l-o(l)
SN 50

Smooth-rough interactions: If k = n+C, only the following high-low interaction
is possible

22| POAY(PDY, Pa®)) |, < 252272 Py g1 197 Ik,

SRS sipn 1 PF N -, -
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Instead if k < n + C, we may have the high-high interaction
200 ROAL(P, @, Py @)y, S 212070270070 B o 51 ] R,
S 19551 1 97 M1 R,

and specifically for k = n + O(1) the low-high interaction

Y [ POAT (PG @), Pae)) ),
k<n-C

—8(n—k
S D0 2Pl 197 R, S 195 s 19 1R,
ki <n—C

Rough-rough interactions: Due to the sharp frequency localization of the rough
components, here the output frequency must satisfy k' < n + C and only the
following high-high interaction is possible

2P0 | POAL(P @7, Pa®)) ||y, S 2720702700700 g 107 IR, S 197 IR, -

The high-modulation bounds for (4.12) can be proved similarly using the core
generic product estimates from Lemma 8.1. O

The next proposition treats the source terms of the Ay equation.
Proposition 4.4. (The Ag equation) For any n = 1 we have that
sup 2+52|k—n| ” Pk(A0(¢<n, ¢<n’ A<n) _ A0(¢<n_l, ¢<n—1’ A<n—l))

kel
< (||q>?||sl[n] + 1AL sty + 1AG Iy 1y + 197 MR, + ||-A;,r||R,,)X

n n
x (Z 19 11510y + Z IAY s Il g1y (4.14)
m=0 m=0

n n n 2
+ Y AT Iy gy + D 197 IR, + D ||AT,,||Rm) :
m=0 m=1 m=1

Proof. The proof of (4.14) proceeds analgously to the one of Proposition 4.4, using
the generalized core product estimates from Lemma 8.1, see also Subsection 4.2 in
[27] and [27, Proposition 4.2]. O

[y

The ¢ equation. We now turn to the heart of the matter, namely the magnetic
wave equation for the scalar field. The derivation of a priori bounds for ®7 hinges
on the following linear estimate for the inhomogeneous magnetic wave equation
Di<n_l¢ = F. We recall the definition of the paradifferential magnetic wave
operator

0F =042y Pog_ (A7 + AP )a; Py,
k



Arch. Rational Mech. Anal. (2023) 247:68 Page 29 of 109 68

where A;’r’_l = an_:ll A% .. In Proposition 5.1 in Sect. 5 we use a “deterministic”
parametrix construction to establish the following main linear estimate that provides
the link between the S' and N spaces.

Main linear estimate: Let n 2 1 and assume that

n—1

0, e
> AT g, + 1AV lls110) < 2Coe.
m=1

1

For any (f, g) € Hx1 X L)% and any F € N N ¢! L%HX 2, there exists a unique
global solution to the linear magnetic wave equation Dz<n_]¢> = F with initial
data ¢[0] = (f, g) and it holds that

¢llst S IF g+ lgle2 + IFI 1 (4.15)
* ! NNe'L2H, 2
We now turn to estimating the terms on the right-hand side of the equation for

@7 in (fMKG-CG,). Here we first consider the most delicate terms, namely the error

term Dﬁ‘fﬁ‘f@;’ and the low-high magnetic interaction term —2i >, P<;_ A"

9y Pr¢ =", where the high-frequency input ¢ =" can be rough. Subsequently, we will
describe how to deal with the other terms on the right-hand side of the equation for
P

The error term (17 f;’i”llcbg acts as a forcing term (at linear order) on the right-
hand side of the equation for ®¥ and correspondingly has to be sufficiently small in

L1
N, N LtzHX % to run the induction step global existence Proposition 4.2. We defer

the treatment of [J fo,{i‘f @7 to Sect. 6.6 since it relies on the precise definition of the

adapted rough linear evolution @/ . There we show in Proposition 6.8 that the desired
smallness follows if || 7,¢“[0]]| , I=bi s gy and the redeeming error control quantity
EC™ are sufficiently small, which in turn gives rise to the corresponding smallness
assumptions in the statement of the induction step global existence Proposition 4.2.

The next proposition provides the bounds for the low-high interaction term
=20y P<j_c AV %0y Prop=".

Proposition 4.5. Let n 2 1 be arbitrary. Assume that A’}  and Aj are given by

Az’s — Ax(¢<n’¢<n’ A<n) _Ax(¢<n717¢<n71’A<n71)’ (416)
8 — A0(¢<n7¢<n’ AS}’Z) _A0(¢<n71’¢<n71’ A;n—l)‘ (417)
Then it holds that

sup 2 +Hd2ln—k| ” P o AY% 0y Prp™" ” 1
keZ = NkNL7H, 2

n n
S (148 st + 142, + ||A3||Y1[n])<2 1D iy + > ||<I>’,"||R,,,>
m=0 m=1
(4.18)
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+ (19 5100y + 19 R, + 1AL 51001 + 145 Dy + 145 11, )
n

x (Z(ncb;"nsu[m] 1AL Nty + ||Ag’||y1[m])

m=0
n 2
+ 3 (1 Ix, + ||Ax,r||R,,,)> .
m=1

Observe that one of the bounds on the right-hand side of (4.18) is in fact cubic.
The reason is that when A" is smooth, certain parts of this low-high interaction can
only be bounded by exploiting a subtle trilinear null form structure, which emerges
upon reinserting the Eqs. (4.16)—(4.17) for A | and Ajj.

Proof. The high-modulation bound is as usual a consequence of the generalized
generic product estimates from Lemma 8.1, so it suffices to discuss the delicate Ni
bound. We further expand this low-high term into

Py c A0y Pip™" = P<y ¢ A0 Prp™" + P<i_c Ajd Pip™" . (4.19)

Then we have to distinguish different types of interactions depending on whether
A and ¢ =" are rough or smooth. Recall that the entire temporal component Aj is
smooth in the sense that it belongs to the space ¥ '[n].

Rough-rough interactions: Due to the sharp frequency localization of the rough
evolution A" | tofrequencies |£| ~ 2" and of ¢,~" to frequencies |§| = 21101,

the first term on the RHS of (4.19) in fact vanishes P<;_ Ay 9; P = 0,k € Z,
in the case of rough-rough interactions. B

Rough-smooth interactions: In view of the sharp frequency localization of the
rough evolution A7, to frequencies |§| ~ 2", we have P<;_c.A;7/ 0 Prgs" =0
fork — C < nand a

Pey AP 3 Pops" = Pu A 0 Pegps™ fork 2 n + C.

In the latter case we use the generalized null form estimate (8.6) (and the fact that
A’ is just the free wave evolution of the random data (7,,a®, T,,b*)) to obtain for
any k > n + C that

[ PaA? 70 P [y, = IN(ATIV AL P,

SV2NAL Ik, Py

n
S AL g, (Z PR [ X ||51[m])

m=0
n
—8lk—
< 2%l ”'llAﬁ,r”Rn<Z ||c1>;?1||51[m]).
m=0

Smooth-smooth interactions: This case can be handled by proceeding as in
Steps 3-5 in [27, Subsection 4.3] using the generalized multilinear estimates from
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Sect. 8. The idea is to first “peel off” the good parts of P<;_As/9; Pr¢" and of
P<;_cApd; Prpy" that can be handled by bilinear (null form) estimates). Then we
reinsert the equations for A} | and Aj to unveil the core trilinear null forms, which
can be bounded using the generalized trilinear null form estimates (8.9)—(8.11).
Since we implement a version of this procedure in the treatment of the “strongly
low-high” case of the smooth-rough interactions below, we omit the details for the
smooth-smooth interactions.

Smooth-rough interactions: Due to the sharp frequency localization of ¢~ to fre-
quencies 1 < |€] < 2", we may assume that 0 < k < n. Then we distinguish “mod-
erately low-high interactions” P{(1—y)i k—c] A" % 0o Pr¢=" and “strongly low-high
interactions” P<j_,A™% 0o Pr¢=" where the small constant 0 < y < 11is cho-
sen sufficiently small (depending on the size of §, and o).

“Moderately low-high interactions”: the bound for Pj(j_yy x—c]As ™ 3; Pep~": We
decompose this term schematically according to the various possibilities for the
modulations, assuming for now that we are in the “elliptic situation” where all
modulations are less than (1 — y)k

Pla—ypyp—Cl A Prdjp" = Z 0 ci—10(Pla—yyek—c1 Q1 AT 3 PeQ ci—1097")

IS(1-y)k
+ Z 01 (Pii=p)i k=101 Q<i—10A457 95 Pt O <1—106™")
IS(1-y)k
+ Z 0 <1—10(Pi(1—y k=101 Q<i—10A5 3 P Qi ").
IS(1—-y)k

(4.20)

Observe that in all cases the angle between the inputs may be localized to size

1—k .
~ 277", where (1 — )k < k; £ k — C is the low frequency of the input A"/
Then using the null form, we can bound the first term on the right by

Z [ O <i—10(Pi1=ykk—c) Q1A 8, PO <i— 106, ") I L2
ISU-p)k

k—C e
S Y Y Y2 M Paw @A e Pr Qcim1087" | 2 e
ISA-pkki=(1-y)k «

Thanks to the redeeming bound and a simple application of Bernstein’s inequality

2 2 ke _
(Z | Peic @ <i—106" || L?L;”) <272 2000 Pk,
K
we obtain by Cauchy—Schwarz in « that

S ) . B
Z Z 272=2 ” Py, Q1A HL,ZL%Z 1 P N vy
IS (1—p)k ki=(1=)k ’

k—C
[ 1y _k
S Z Z 27— 21< k12 21(2k1 SUPZZI HPkl QI,A)”CJ ”L,ZLE)Z 2F ”Pk¢r<””Rk-
IS1—p)kki=(1—p)k !
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We can then complete the preceding estimate by Cauchy—Schwarz

k—10 n

k.
S Z 2782“{1 7n|2k*k1 2_ = ||AZ,S ” Sl[ﬂ] (Z ” q);n ” Rm)
k=(1—y)k m=0
n
2 g (S l0 1)
m=0

provided y + 8, < % The bound if I = (1 — y)k is similar except that one no

longer needs to localize to angular sectors.
The remaining terms above are bounded similarly. For example, consider the
last of the three terms in (4.20), again assuming [ < (1 — )k, i.e.

Y Qa10(Pra—y)k-101Q <104 0 P 017")
I<(1=y)n
k=10

= > > 0u10(Pu Qa—10A 9 P O,

I<(I=y)nki=(1—y)k

Here we place the large frequency term P, Q;¢,~" into LtzLi, and the low frequency

. . . . =Ky
term into L%LE. Precisely, we may localize the factors to caps k1 2 of radius ~ 272
and either aligned or anti-aligned,

k=10
Yo D Qaio(Py Qa10AT 3 PeQig")
I<(l=y)nki=(1-y)k
k=10

= Y Y > 0 10(PY Py Q104N 9T PR PO,

I<(1—=y)n ky=(1—y)k k1~FK2

and using interpolation we have the bound

1
1

. 2 1 2
(2 [/ P P01 ||im) <@F) @b me
K2

1

. i .
(Z Hpm P, 0 _1_10A"/ ”i?LE) < =82 k1 —n| ,2—%' . ||A?’j ||51[n]

K1

1—k
Observe that the null form gains ZTI, and we infer that

k—10

Z Z Z 0 1-10(P*' Py Q110427 37 P2 P 01p7")

I<(1—=y)n ky=(1—y)k K1~k

Ly}

k—10 N )
S D i AN i R Rl V] P Tl
[<(=ynki=(1-y)k
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n—1

S g (1o, )
m=0

The case of large modulations / > (1 — y )k is again handled in a simpler fashion,
without having to take recourse to angular decompositions.
“Moderately low-high interactions”: the bound for Pj(1 ), k_c]Ag 0 P In

view of the frequency localization of ¢=" to 1 < |£] < 2", we may assume
that 0 < k < n. Then we easily obtain that

n <n n <n
|Pa-pi-cr A Ped " | e S D0 IPaAT 22 I Pedrd™ 2,0
(I=p)k<ky Sk—C

_3 _ 1 _
< Y 2P ARl 252 R 7R P v, )
(1=y)k=ki k—C

3 1
,S Z 2751{1 2762“{17”‘”-Ag”Yl[n]zkziﬁk(zik”Pkat¢r<n||Rk)
(I=p)k =k Sk—C

S 272K ARy (27 PO k)

“Strongly low-high interactions”: Here the idea is to proceed analogously to the
treatment of the low-high interactions in [27, Subsection 4.3]. We first peel off
the “good parts” of Pg(l_y)kA?’]aijtj)f” and of P<(j_, - Ap0: Peg ™, using
generalized bilinear null form estimates. Then we reinsert the equations for AY | and
Aj to unveil the crucial trilinear null forms, which we bound using the generalized
trilinear null form estimates (8.9)—(8.11). However, in this approach we can only
place the rough high-frequency term Py¢,~" in S ,1 This costs 2% below, which we
can then compensate (for suitable choice of y depending on §., §,) using the off-
diagonal decay in all multilinear estimates combined with the off-diagonal decay
of Py Al s and Py A (and Py, @) away from frequency || ~ 2" and the fact that
we are in the strongly low-high case k; < (1 — y)k, k = 1. We now turn to the
details.

In what follows we try to closely mimic the notation in [27]. To decompose
the nonlinearity and to “peel off its good parts”, it will be useful to introduce the
following notation. For any bilinear operator M(D; «, D; y) we set

MM, ¥) = Y Q;PM(Q<j-c¢, Q<j—c¥),

Jj<k+C

HiM(@. )= Y QcjcM(QjPug, Qcjc¥).

j<k+C

Moreover, we introduce the following short-hand notation for the “strongly low-
high” interaction terms (for the spatial components of the connection form)

1h,k W
Nitr" (A5 87") 1= Py A 0, P

=D Nij(Vid™ Pyl P,
i
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where in the last line we recalled the null structure of this interaction term in the
Coulomb gauge. In order to decompose the “strongly low-high” interaction term
for the temporal component of the connection form, we introduce the short-hand
notation

Ih.k
Nowir (A5, 67 1= P< i @ <k—c Apds Prop™"

We can bound /\/Sl ,hr’k via a bilinear null form estimate for the most part, except for
high xlow — low modulation interactions. We group the latter into an expression
denoted by

HNG (AL L 07") = D HE NG (AL 7). .21
K <k—C

Then by the bilinear null form estimate (132) from [27] (and recalling that 1 < k <
n) we obtain for the difference that

Sylk— 1h,k 1h.k
2P NG (AL 97") = NG (AL 87 |y,
+83|k—n| n <n
<2t D IPaAL g 1P g
ki <(1-y)k
8y |k— —&2|k1— 8xk
AR W A V7 N [y 1Pyl g1+
ki <(1-y)k
—82vkndsk
5 2 ¥ 2 ”Aﬁ,gnsl[n]||Pk¢r<n”Rk’
which is of the desired form as long as we choose 6,y > ..

The remaining term H*N{j* (A” ,, ;") can for the most part be estimated
using the stronger Z norm except for the following delicate part of AY | given by

HA;%,S = Z Hk(A;(Pkl¢<n, Pk2¢<}’l) _A?(Pkl¢<n71, Pk2¢<n7])).
k,k;
k<min{k,kr}—C

Then by the bilinear null form estimate (133) from [27] we obtain for the difference
that

2+52\k7n\ ||H*-/vslthrk (Aﬁ KM ¢r<n) ,]_{)k'/\[blthrk(7_("4z s? "<n)

5 2+82|k7n| Z ” Pk] (An HA;’A)
ki S(—y)k

v

|2 1P g 422

In order to bound || Py, (A2 ( —H.A? ()|, we use the generalized bilinear null form
estimate (8.7) for the quadratic contributions to AY  and the generalized generic
product estimates from Lemma 8.1 for the cubic contributions to A7 (. Since at
least one of the inputs for the difference A} ; — H.AY ; must be ®" or A", their
localization around frequency ~ 2" combined with the off-diagonal decay of all
multilinear estimates involved as well as the “strongly low-high” separation, allows
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to compensate the factor 2% (as long as 8,y > 8). In this manner we can bound
the right-hand side of (4.22) by

(19 Ity + IPF IR, + AT s lsrpay + IAY IR, )

n
X (Z(||¢)?1”Sl[m] + ”AT,SHSI[M])

m=0

n
+ > (19 k, + ||Ax,,||Rm))||Pk¢f" IR

m=1

At this point we are left to bound the term H*J\/f,h,’k(HAﬁ,S, #""). This only
turns out to be possible after exploiting cancellations that occur by combining it
with an analogous contribution from the low-high interactions /\/’éh”kr(A”, o)
involving the temporal component of the connection form. Proceeding as in Step 4
of Subsection 4.3 in [27] and using the generalized generic product estimates from
Lemma 8.1 (as well as the more microlocal generalized product estimate (8.12)),
we may peel off the good parts of ./\/0

left with the following part

str in a similar manner as above, until we are

H*Nlh k (H.An ¢<n)

0,str

where

HNGN (HAG. 677) = > HENG sk (HAD 67).

OStr
k'<k—C
HAG = > Hi(A§(P¢™", Pi¢™")
k,k;

k<min{ky,kp}—C
A%(Pkl¢<l‘l—1 , Pk2¢<n_1))~

Finally, we collect the portion of A//* and the portion of Néh”kr that have not
been estimated yet, and combine them into the expression

N (HAL L 67") + HENGE (A, ¢7).

which exhibits a striking trilinear null structure. As detailed in the appendix of [27],
we may write

_A%(d)(l), ¢(2))aj¢(3) + A%((b(]), ¢(2))8t¢(3) — (Ql + O+ Q3)(¢(1), ¢(2)’ ¢(3))
with
9, ((1)(1)7 ¢(2)’ ¢(3)) — —D_llm(¢(l)aa¢(2)) . 3a¢(3),

(", 9, 9Y) = A7'D719,9,Im (4D 3%¢>) - 9,6,
Q3(¢(1), ¢(2)7 ¢(3)) — A—lm—laaajlm(¢(l)3j¢(3)) X 304¢(3).
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Using the generalized trilinear null form estimates (8.9)—(8.11), we then obtain for
1 £ k < n the desired bound

2 P (—HENG (HAL 5. 677) + HONG ot (HAG 97) |,

K 0,str
n n
S (19851 + ||<I>':||RH)<Z 1D 51y + Y ||¢;"||Rm>||Pk¢>f”||S;s*.
m=0 m=1

Here it is again crucial that while we place Py¢~" into S ,1 at a loss of a factor 25+,
we can compensate this loss using the off-diagonal decay in the trilinear estimates
along with the fact that at least one of the first two inputs of the trilinear expressions
must be ", which is localized around frequency ~ 2. O

It remains to describe how to deal with the other terms on the right-hand side of
the equation for ®} in (fMKG-CG,,). The “moderately low-high” interaction term
—2i P{(1—yyn.n—C]A<"" 1934 P, @ with the rough component ®” at high frequency
and the entire connection form A <"~ from prior induction stages at low frequency
can be estimated analogously to the “moderately low-high” interactions in the proof
of Proposition 4.5.

Proposition 4.6. For arbitrary n = 1 it holds that

n—1
| Pl —yyn—c1 A" 0, P, ®" ”Nnm,m;% < <mz_o(““4;n“‘“8'“” + IAG ly 1)

n—1
+> ||AT,,||R,,1)||<I>’;||RW
m=1

One more low-high interaction term appears on the right-hand side of the equa-
tion for ®¢ that only involves smooth-smooth interactions with the smooth com-
ponent @7 at high frequency and all smooth components of the connection form
A=<"=! from prior induction stages at low frequency. The treatment of this low-
high interaction term essentially exactly follows the approach in Subsection 4.3 of
[27]. First the good parts are peeled off using bilinear estimates, and then the equa-
tions for A;ﬁ_l and Ag"*l are inserted to unveil the crucial trilinear null forms.
(This scheme was basically detailed in the treatment of the “strongly low-high”
smooth-rough interactions in Proposition 4.5 above, although there additional work
is needed to compensate the derivative loss when placing the rough component ¢,~"
at high frequency into the critical space S'.)
Proposition 4.7. Let n 2 1. Assume that A;’S’_l — AE;{ ree
by

and Ag"_] are given

A;';_l _Agifree =Ax(¢<n—l’¢<n—l7A<n—l)’
Agl’l—l =A0(¢<n—l’¢<n—l’A5n—l)-
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Then it holds that
sup o+dalk—n]| H ngic (As<n—l.j _ Ag,free.j)aj qu)g + ngch(Tn_larqu)g ” L
keZ NeNL?H,y
n—1 n—1
< (Z(MAZ’,SHSI[,,,] + 1A i) + > HA;?’,,HR,,,) 197
m=0 m=1
n—1
+ (Z(nd%" 5101 + 1A Nt + 1A )
m=0

n—1 2
+ Z(ncbf’nkm + qu,rnR,,,)) I I span-
m=1

Finally, we dispose of the easier multilinear terms M!, M2, and M3,

Proposition 4.8. For any n = 1 we have

sup 2+52|1<—11| ” Pk (Ml (A<”, ¢<n) _ MI(A<H_1, ¢<n—l))” i
keZ NyNLZH, 2

< (H(D;l“s'[n] F AL sty + IAG Iy + 19 1R, + HA;r“Rn)X

(4.23)
n n
x (Z(ncbz" lsttmn + M sty + 145 Iy ) + D2 (197 12, + “““?r“Rm)>
m=0 m=1
sup 2+82|k—n| ” Py (MZ(A<”, ¢<n) _ MZ(A<r1—l’ ¢<n—1)) H , .7%
keZ NyNLZH,
n n
S (192 g1y + 1ADlyip + Hq):'||R,,)(Z<||‘I>gl“sl[m] + 1A i) + \|<1>:"||R,,,)
m=0 m=1
(4.24)
sup 2+52|k7n| ” Pk(MB(A<n, A<n’ ¢<n) _ MS(A<n71’ A<n71’ ¢<n71))H 1
her NyNLZH, 2
< (198 sty + 1A sty + 1AG Iy 1y + 197 1R, + 14T 118, (4.25)
n n 2
x (Z(nop;" lstpmy + 1AL sy + AT Hyl[m]) + Z(H@’r”llk,,, + IIA?,rIIRm)) :
m=0 m=1

Proof. The high-modulation bounds for (4.23)—(4.25) all follow readily using the
generalized generic product estimates from Lemma 8.1, and so it remains to discuss
the N bounds. The corresponding proof of (4.23) for the M. component follows
from the generalized core bilinear null form estimate (8.5), while the proof for
the M(l) component follows analogously to the proof of the estimate (56) in [27],
using the generalized generic product estimates from Lemma 8.1. Finally, the cor-
responding bounds for (4.24) and (4.25) just rely on Strichartz-type estimates and
Sobolev embeddings, and therefore follow using the generalized generic product
estimates from Lemma 8.1. O

5. The “Deterministic’’ Parametrix

The goal of this section is to establish a key linear estimate for the linear
magnetic wave equation qu,lq) = F, which establishes a link between the S'
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p

and N spaces. We recall that the paradifferential magnetic wave operator [ A<n1

is given by

. <n—1,j 0, J
Di“—l =+ 2i Z P§k—C(Ar =iy A9 free ’)8ij.
k
All results in this section are deterministic in the sense that they hold as long as
A;’r'_l and Ag’f " satisfy suitable smallness assumptions.

Proposition 5.1. (Main linear estimate for ¢ equation) Letn = 1 and assume that

n—1
0. f
S TIAT g, + IART g0 S &
m=1
. L1

Then for any (f, g) € Hx1 X L% andany F € NN ¢! L,sz 2, there exists a unique
global solution to the linear magnetic wave equation Dﬁq,ldb = F with initial
data ¢[0] = (f, g) and it holds that

@llst < 1f 1l g +|Ig||L§+I|F|INm -1 (5.1

eLPH, 2

The proof of Proposition 5.1 proceeds as in [27]. We first define an approximate
solution via a parametrix construction. Then we obtain an exact solution satisfying
the desired linear estimate by iterating away the error. To this end we build approx-
imate solutions ¢ k at each spatial frequency k € Z to the frequency localized
problems

(O+2i Py (AT + AYT7NN0,P)g = PoF. PuplO] = (P f. Prg)

(5.2)
and assemble these to a full approximate solution ¢upp = Y rcz Papp.k- The
approximate solution ¢ k at frequency k € Z is essentially defined as

1 Cn<k £iID| <k _
Bappi (1, ) 1= EZQ;‘{*C (tx. D) eHVE (D, y, 0)(il DIPLf + Prg)
T i|D|
(5.3)
1 —il//i'd( K= +i1//i'<k
+ 3 e__c (@t x, D)me<k76 (D, y,s)PF,
+

where the phase wi’<k (t, x, &) is defined in Sect. 5.1 below and where K*G are
the Duhamel terms

l .
KiG(t)zf T =IIPIG (5) ds.
0

. on,<k . on,<k
.. —iyy +ivy
The renormalization operators e_ kfc (t,x,D) and e_ kjc (D, y, s) denote the

. on,<k
left and right quantization of the symbol ei;;fic (t, x, &), where the subscript

< k — C denotes space-time (¢, x)-frequency localization to frequencies < k — C,
pointwise in &.
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n,<k

The definition of the phase function ¥~ (¢, x, §) in Sect. 5.1 below is the
exact analogue of the corresponding definition of the phase function introduced in
[27, Section 6]. However, here we build the rough free wave evolution A;’}’l into
the phase that does not belong to the critical S! space and only enjoys the redeeming
spacetime bounds of the Rj spaces. Despite the different (redeeming) bounds on
these rough components of the phase function, the construction from [27] turns out
to (largely) go through. Following Section 6 in [27] the proof of Proposition 5.1
reduces to establishing the following mapping properties of the frequency-localized

L n,<

. . + . .
renormalization operators eJi*C (t, x, D), which are the same as the ones in [27].

Proposition 5.2. Let n = 1 and assume that

n—1

o
S TIAT g, + AT 510 S &

m=1

) ) ) +i n,<k
Foreveryk € Z thefrequency-localized renormalization operators e <Zic (t,x, D)

have the following mapping properties with Z € {Ny, L?, NiY:

SV D) 2 — 2, (5.4)
a,effjfi;k (t.x.D): Z —> ¢Z, (5.5)
e:;:ﬁ%d (t, x, D)eijﬁ%d (D,y,s)—1:Z — ¢Z, (5.6)
e:i'f%<k(r, x, D)0 — Diiz,le:;‘f%<k (t,x,D): Nf y —> eNpa, (5.7
TV x D) S — s (5.8)

The proof of Proposition 5.2 proceeds exactly as in Sections 6—11 in [27]
once we have established certain pointwise and decomposable estimates for the
“deterministic” phase functions wi’<k(t, x, &). This is accomplished in Sect. 5.2
below. We remark that the proof of the conjugation estimate (5.7) is essentially
identical to the corresponding proof of the conjugation estimate (82) in [27], only

that we use the redeeming RL?L%° norm for the rough evolution A;’r'_l.

5.1. The “Deterministic” Phase Function

We begin with a heuristic motivation for the choice of the phase function, see
[27, Section 6] or [43, Section 7] for a more detailed account. It is reasonable to
expect that a linear magnetic wave equation of the form (CJ 4+ 2i A/ )¢ = 0 can
be approximately conjugated to [J via some phase correction ¢!V with Vi &~ A.
To define an approximate solution to ((]+2i A7/ 9 )¢ = 0, let us therefore consider
distorted waves of the form

¢([, X) — e—ilﬁi(l,x)e:‘:i[‘s‘-‘rixf
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and compute

(O+2iA78;)¢ = 2(£IE1(@Ys) — & - (Vera) + Ay - §)
+ (=2Ax - (Vae¥r) + [ Vaya P — i (Oyrn) )¢

While the terms in the second parenthesis can be expected to be error terms, we
would ideally like to choose the phase correction ¥+ so that the expression in the
first parenthesis vanishes. Introducing the differential operators

§

LL =% 4n-Ve, Api=A—(0-V’ 5=

e S,
€]

we may formulate this requirement more succinctly as

§
L’;wi:Ax.EzAx.n.
Applying L., noting that L, L7 = —[0 — A, 1, and neglecting [J (since we may
assume that [JA, = 0), we obtain for fixed & that formally we would like to choose

Ye=—AILL(A: ). 0= é—|

Unfortunately, this symbol is too singular due to the degeneracy of A;ﬁ when ¢
and A have parallel frequencies. Nevertheless, a viable choice is to smoothly cut
off small angle interactions in the above expression for ¥+ and to observe that the
arising additional error terms turn out to be manageable, because one can gain from
the small interaction angle. For general initial data | e*é f (&) d&, we obtain by
linearity the approximate solution

(1, x) = / e IV ER RIS f () de,

in other words we apply the pseudodifferential renormalization operator e~'V+
(t,x, D).
Letus now turn to the exact choice of the phase correction for our magnetic wave

operator Df1<,1_] , where n 2 1 is arbitrary. In view of the above considerations, for

every frequency k € Z we are led to define the “deterministic” phase function by

pitex o= 3 vpiex e+ Y vt s,

0<j<k—C j<k—c

where its rough part is defined as
\<k, . -1 - .
YET(x 8) =~ LIA L] (n’;za(jk)PjA;’; ! .n>, ni=—¢e$,
and its smooth part is defined as

<k, - 0, §
I/flj S(tv x,8)=— L?I:A,,L] (szg(jk) Pj-Ax,{ree : 7}), ni=-—¢ S3.
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5.2. Pointwise and Decomposable Estimates for the “Deterministic” Phase
Function

First, we establish some L bounds on the “deterministic” phase function that
are used throughout this section. To this end it is helpful to introduce some notation
for the sector projection of wl’;k in frequency space for an angle 0 < 6 < 1,

wl";lig)(t’x’g) = ( le jk)(taxvg)a n .= %

Lemma 5.3. Let n = 1. For the rough part of the “deterministic” phase function
we have for any k € Z, any 0 < j <k — C, and forany 1 > 0 > 2°U=5 that

W x, ©)] < 27CT 00T min(627) 2, 1)1 P AT Ik,

+,j.(0)
(5.9)
|wn <kr(t X, %.)’ < 92— (1-200 — 81)]”]) A<n 1”ij (5.10)
Vet S e 8)] < 27072006715 min{(027)3 7, 1) P AT g,
(5.11)
|Vtan <k, r %.)| < 2+(200+51)]“P A<” l“R_j' (5.12)

For the smooth part of the “deterministic” phase function we have for any k € Z,
any j <k —C,andany 1 > 0 > 2705 thar

0,
ks . 8)] <032 P AL o, (5.13)
WS e x 6)] S 2701 Py AT N o2 (5.14)
Vel S 0, 6)] £ 0327 Ve AT ez, (5.15)

0, free

Ve 350, 2, 8)] S 21V PATT e 2 (5.16)

Finally, for derivatives of the rough part of the phase function with respect to the
frequency variable we have for any multi-index a with |o| = 1,anyl 2 0, any
keZ any0< j<k—C,andanyl >0 > 2°U=5 that

|0 05 vt S (1, x, §)] S 0717112 G200 P ATE T (5.17)
|8|$| wijk r(t X, $)| 20’(1+|Dt|)(k j)2 (2 200’)]||P A<”71||Rj, (518)

k,
|01 05 Ve WL T (0, x, 6)| S 671142200 pr A s (5.19)
|0l 08V, W S5 (2, 3, 8)| S 20 IHDG=Dp=(U=20000 y py g =n=Ty - (5.20)

Similarly, for derivatives of the smooth part of the phase function with respect to
the frequency variable we have for any multi-index o with |c| > 1,anyl = 0, any
keZ any j <k —C,andany1 >0 > 2°U=0 that

i 0,
ol w3 % )] S 0272 P AT e, (5.21)
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o 0yt 55 (1,3, 8)] S 200D ED P AL pep, (522)
1_ 0,
|9/;0 v,ij":_j(g)(z x, )| <2 212711V, . P; A f’“anLz, (5.23)

|00 08V W55 (1, x, )] < 200D ED2d v, Py AR LT

Proof. For the rough part I//l’;’;’gr) of the “deterministic” phase function we use
the Coulomb gauge condition to gain an additional factor of 6 and the redeeming
L° LY norm with angular gains from our R; space to obtain that

W5 x O S sup LA TP AT 0l ey
<g~227/ sup |mppyAst ’IHLchgo
So7'2 ’||P AL iere
<2 @200 g 151 min((92))G ), 1| P AT iz,

Then the other bounds on the rough part of the phase function follow upon summing
over the dyadic angles 1 > 6 > 2°U=K and upon taking an additional V; .
derivative.

Next, we turn to estimating the smooth part 1//1’;];’;) of the “deterministic” phase
function. We again exploit the Coulomb gauge condition to gain another factor of

o il :
6 and then use the Bernstein estimate T1) P; L2 — (6°2%/)2 L%° to obtain that

n,<k,s —1 0, free
EZSpCER IS Sup HLi LT (P AL HL;’CLgO

<6~ 22~ ]sup ||1'I"P .Ax{ree ||L§’°L°°

I AL
1 X

0, free
0227 | PAS LN oo 2

The other bounds on the smooth part of the phase function then again follow upon
summing over the dyadic angles 1 > 6 > 2°0U~% and upon taking an additional
V;.x derivative.

Finally, the estimates for 9, Ela“ derivatives of the phase function follow anal-

ogously, upon noting that differentiating with respect to n := é—‘ yields additional

6~! factors, while differentiating with respect to the radial frequency variable |£|
is harmless since the definition of the phase function only involves 7. In the cor-
responding estimates for the rough part of the phase function it suffices to just
use the standard redeeming L{°L{° Strichartz norm, because an additional gain
in the angle cannot ultimately compensate the additional #~! factors produced by
differentiating with respect to the angular frequency variable. O

Next we establish L® bounds for differences of two “deterministic” phase
functions. The following lemma is the analogue of Lemma 7.4 in [27].
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Lemma 5.4. (Additional symbol bounds for differences of “deterministic” phase
functions) Let n = 1 and assume that

n—1

0,
S IAT gy + IAR N0 S €

m=1

Then we have for any k € Z, any multi-index a with 1 < |a| + 1 < o1, and any
[ =2 0 that

Wi e, x, ) — vl s, v, ©)] Selog(1 4251 — 51+ 1x — yD).
(5.25)
1
|0l 92 (Wt 2. 8) — v (s, 3. ©) ] S e(1+ 25 — s+ lx — y)7 Y.
(5.26)
Proof. In the following we use the shorthand notation 7 := |x — y| + |t — s|. We

establish the first estimate (5.25) separately for the rough and the smooth part of
the phase function. Recall that the rough component AT~ I'is sharply localized to

frequencies 1 < |£] < 27!, It therefore suffices to con51der k = 0 for the rough
part and we just bound by

k, <k, k,
WO~y eyl D0 sup W w9
0Zj<k-C
1-21 1
S D 27U AT g,
0% )jSk-C
<e.

Instead, to bound the smooth part, for arbitrary k € Z we pick some jo < k — C
and decompose into

W2, 6) =y 6, 8)]
k,
< Z sup ”Vtan p S”L’OOL)?O('t _Sl + |X - yl)
iZio
+ Z Supr” <ks(tax7§)HLlOOL)cgo
JoSjSk—C
< j ) 0 free j 0, free
SO NP Ve Ay e T+ Y 2 INPAG Nl er2
<o jo<j<k—C
<2hTe 4 |k — jo|s.
Then choosing k — jo ~ log, (2XT) yields the desired estimate.
We also establish the second estimate (5.26) separately for the rough and the

smooth part of the phase function. For the rough part, we distinguish several cases.
If T < 27%, we bound by

| 0 (Wb (1, x, ) =y (5, v, 8))
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S > sup | Vedlg v | e (11 = 1 1x = 1)
0Sj<k—C

Z 2o (I+la)(k=j)y—(1-200) ) | P; A;’rl_l ||R.,~ T
0Sj<k—C
< golaltDkp,

A

<e.
Instead, if 27F « T < 1, we pick some 0 < jy < k — C and decompose into

o 05 (W =5 (1, %, 8) = w5 (s, 3, )|
S D sup [ Vel v T e e (10 = 51 4 1y = 1)

0<j<io "
n<kr
+ Z sup || 9 o5 ¥ ”L?OLgO
joSisk—c "
S Y oo Habhpy=(=200)) p, g<n=l T
0=j<jo
+ Y rUHaddm -0 p gty
JoSjSk—C

< polal+Dkp g 4 pollal+Dk—jo),
~ 9ol k—io) (20T 4 1),
Choosing 27/0 ~ T, we obtain the desired estimate. Finally, if 7 > 1, we just
bound by
|0t 0 (Wi =5 x, &) — w5, ©))|

n,<k,r
SEEDDIE ) LA [P
0<j<k—c
0=jSk=C

< golalthtg < (okg)7(lel+D,
For the smooth part we pick some jy < k — C and decompose into

|0l 02 (Wi = (1 x, 8) — T (s, . 8)|
< D sup| Vb v 3 [ oo (17 = 1+ 1x = y)

<o

SRR [T W PPN
joSisk—c "
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“YNa=i)ni 0,
S Z Zo(la\ 3)(k ])ZJ||Vt,xPij,{ree||Lt°0L§T

iZio
+ Z 20 (= ) (- 1)2]||P AO f’“”L?OL%
joSjSk—C
<y 20+ D) k=D g 4 3 20 (lal+5) (k=) o
<o jo<j<k-C

< 2G(|O¢|+%)(k*jo)(2joT +1)e.
Choosing 2-J0 ~ T we arrive at the desired estimate

1
o 0 (W™ 1 x, 8) — v 3, 8) | S (257) 71 e
0

Finally, we obtain certain decomposable estimates for the “deterministic’”’ phase
function. This is the analogue of Lemma 7.3 in [27], but here we have to restrict the
allowed ranges of Strichartz exponents slightly in order not to lose derivatives. We
first briefly recall the definition of decomposable function spaces from [27,29,43]
and the basic decomposable calculus.

Let c(t, x, D) be a pseudodifferential operator whose symbol c(¢, x, &) is ho-
mogeneous of degree 0 in £&. Assume that ¢ has a representation

c= Z @

pe2-N

Let 1 < ¢g,r < oo. Forevery 6 € 2N, we define

1/2
0 I
O = | (3 s 550009
1=0 Ty " T

’

L{(R)

where {I"j},cs3 is a uniformly finitely overlapping covering of S* by caps of di-
ameter ~ 0 and {by},cs3 is a smooth partition of unity subordinate to the covering
{T')},cs3- Then we define the decomposable norm

lellprag, = c«n Z 1N py 12 )
9

We will frequently use the following decomposability lemma from [27].

Lemma 5.5. (Decomposability lemma, [27, Lemma 7.1]) Let P(t,x, D) be a
pseudodifferential operator with symbol p(t, x, §). Suppose that P satisfies the
fixed-time estimate

sup [P(t,x, D)l 22 S 1.
teR
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< < 1_ 1,1 I_ 1,1
Let1 = q,q1,q2, 1,71 < 00 such that 7 o + = and - = + 5. Then for any

symbol c(t,x, &) € DL;“ L' that is zero homogeneous in &, we have
Iep)t % DIl S Nl prn 19122

We now turn to proving decomposable estimates for the “deterministic” phase
function.

Lemma 5.6. (Decomposable estimates for the “deterministic” phase function) Let
n 2 1 and assume that

n—1

0, free
E ||-A)rf,r||Rm + ALy ||sl[()] Se.
m=1

LetkeZandjgk—C.For2§q<ooand§+%§%wehavethat

. a4y 1
[ (‘pi’,;k(e)’2_]Vf»xwl’,7,]i9))||DL;’L; S at g, (5:27)

For 4+ < g < oo it holds that
[, 29 ) | o S 2707 (5.28)

Proof. We establish the decomposable estimate (5.27) separately for the rough and
the smooth part of the phase function. We begin with the rough part. As in [27,
Lemma 7.3], we interchange integration and the n summation to obtain that

. . 2
“ (‘pij]ier) 27/ Vix wijlzer)) ” DLIL S 6=%27 (Z ”HZP./' A;,Tl ’ nHigL;)
n

. 2
s (S Impaz )
n

where in the last step we used the Coulomb gauge to gain another factor of . Next
we pick an admissible Strichartz pair (¢, 7) with ¢ > ¢ and 7 < r such that an
interpolate between (g, ) and (2, 00) gives (g, r). Then we obtain for some p > 0
that
n,<k,r —j n,<k,r
” (I/fi,j,(e)’ 2 JVLX wi‘j,(e)) ” DLIL"
1

| : :
Sor (L Imeaz ) (S Imeas )
n n

Now let ry > 6 such that (g, ro) is a sharp admissible Strichartz pair in four space

dimensions, i.e. % + % = % Bernstein’s estimate on an angular sector of size 6
. . . 3L

gives the inequality HZ P; LY céo (g

R;L?L%° norm, we find that

“DdGE=Dj 7 7 -
77270 P LM Using also the redeeming



Arch. Rational Mech. Anal. (2023) 247:68 Page 47 of 109 68
n,<k,r H—j n,<k,r
” (I/Ii ju0) 2 VM‘/fi,j,(a)) ” DL L

se—lz—f(Z(e%-q-rz Az l”L?LZ-")z)

n

3

(2—( —200‘)]9 5|||P A<)’l 1” .)l_ﬂ

(2—( —200‘)]9 51”P A<}’l l” v)l_ﬂ
./

< B 1m8I= =2 g st (1200 —(1=u)j 9 =G+ .

Choosing 0 < u < 1 close to 1, gives the decomposable estimate (5.27) for the
rough part of the phase function.

For the smooth part of the phase function we remark that since Ax { "““ belongs
to the critical S! space, the corresponding bound follows exactly as in Lemma 7.3
in [27].

Finally, the second estimate (5.28) in the statement of the lemma follows imme-
diately for 44+ < g < oo from the first estimate (5.27) by summing over the dyadic
angles 2°U~0 < ¢ < 1. In the important case ¢ = oo the second estimate (5.28)
can be proved directly using the redeeming R; L{°L{° norm with angular gains to
bound the contributions of the rough part of the phase function. O

6. The “Probabilistic’’ Parametrix

In this section we turn to the precise definition of the adapted linear evolutions
®” of the rough random data 7,,¢“[0], n = 1, as approximate solutions to the
modified linear magnetic wave equation

OP @ = (0 + 2i P<(y ), A" 718, P,) @) ~ 0, ®"[0] ~ T,,¢°[0].
6.1)

We emphasize that A<"—1 ig the entire connection form of the solution (A<"_1,
A;"!, ¢=<"1) to (MKG-CG) with random initial data A" ~'[0] = T, A2[0],
¢<”_1 [0] = T-,—1¢*[0] that was constructed in the prior induction stages < n— 1.

We first carefully develop the iterative definition of @/ in terms of a modified
“probabilistic” parametrix and prove mapping properties of the associated modified
renormalization operators. Then we turn to the derivation of the redeeming space-
time integrability properties of the rough linear evolutions ®” of the random data

T,,¢“[0]. Finally, we discuss the delicate renormalization error estimate and show
p.,mod

that (on a suitable event) the error [ A<n1

a “smooth” source term.

@7 gains regularity and can be treated as
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6.1. Definition of the Adapted Rough Linear Evolution !

Similarly to the “deterministic” parametrix construction, our construction of the
adapted linear evolution ®/' will be based on modified renormalization operators

4 wi,mod

—n_c (t,x, D). We begin by motivating heuristically the choice of the modi-

fied phase function v/ mod in the context of the modified linear magnetic wave

equation (6.1). To this end let us again consider distorted waves of the form

¢(l, x) = e—il//i(l,x)e:tit\EHix-é}

and compute how a magnetic wave operator of the form (O + 2i A%d,) acts on
them. In what follows it is important to keep in mind that the spatial part A, of the
connection form is no longer a free wave, but that it also has inhomogeneous parts,
and that the temporal component A of the connection form is also built into the
magnetic wave operator. We find that

(O+2iA%0)¢ = 2(=§[(LEvx) + Ax - € F Aolé )¢
+ (24% @a¥x) — Bp)® + [Vxye? — i(Oyn))9.

The terms in the second parentheses are again expected to be error terms, while
we would like to achieve as much cancellation as possible in the first parentheses.
In order to largely cancel out the term FAg|&|, we would like to formally build a
component :F(L )~ Ag into the definition of the phase function. However, to deal
with the degeneracy of the symbol L., we have to refine this choice depending on
the size of the symbol of L’JF. This leads to an analogous choice to largely cancel
out the inhomogeneous part of the term A, - £. For the homogeneous (rough) part
we use the same definition as for the “deterministic” phase function.

To arrive at the precise definitions we need to introduce some additional nota-
tion. We denote by (t, ¢) space-time Fourier variables. For € S3 and |¢| ~ 2k
we introduce the space-time frequency regions

Sotep =HE 021> 2940, 0P},

+,
Somep = {1 ET+0-01 249400 0P}

+,n . .
Then we denote by 1'I>>2k‘ <P and by TI1 <okiup smooth projections to these space-

time frequency regions such that I'T 2 +1E <2k‘ = = 1. Additionally, for any

>>2A|4{
dyadic A € 2% we denote by n’ 3 T a smooth projection to the frequency region
{7 +n-&l~21}

Now we are in the position to define for every integer n = 1 the modified
“probabilistic” phase function

e RN R SR Al OF 3 5 R SR A O Y
0Sk<(1=y)n k<(1—y)n
(6.2)
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where its rough part is given by

d - §
wqu]:m J’(t’ X, %-) = Ln A (HZ2omm{k —n} kA;,’Z ! : 77)’ 77 = E € 837

while its smooth part is defined as

d, . §
1//1'[:“) ?(z X, %-) =+ (L ) n¥2k‘4‘2 ~.20 min{k,—n} (PkA<n . ) n:i= E € S%
—lFn I,
_LiA n<2k|£|2n>20mm(k —n} (PkA<n )
- F.1 1
:F (L ) n>>2k‘i‘2 ~ 20 min{k,—n} (PkA<n )
F.1 1
+ LiA n<2k|4|2 ~ 0 min{k,—n} (PkA<n )

For given initial conditions (f, g) and a given source term F, we define an
approximate solution to the linear magnetic wave equation DZ’Z’,T{M = F with
initial data u[0] = (f, g) by the parametrix

Dy

|D‘ €n—c

1 . n,mod
ol (g Fl =Y e Ve (6.x,D) (D, y, 0)(iIDIf + g)
+

2

n,mod

1 7i¢lnmd K* +llﬁi
+5 ;ie<n—c (@ x, D) |D| ¢cn—c

(D, y,s)F, (6.3)

where K*F are the Duhamel terms
t
K*F(1) = f T =PI E () ds.
0

We define the adapted rough linear evolution @/ as an infinite sum whose
components are defined iteratively

]

" = Z e, (6.4)

=0

The zeroth term CD?’[O] is defined in terms of the homogeneoux parametrix
P = g [Tgg. Tug's 0]

n,[0]

It would be desirable if it sufficed to take @, as our choice for an approximate
solution in the sense that CDf’[O] would be amenable to the probabilistic redeeming

bounds and that the entire error DZ?’”MIJ o 01 \ould gain regularity. However,
o’ ff,mf o 10 produces several types of error terms that we colloquially group into

mlld” “delicate”, and “rough” error terms

p,mod LJ[0] n,[0]
DA<)L I(Dn Smlld + Edel + 5 augh

These are defined precisely further below. Unfortunately, the “rough” error terms
do not gain regularity and therefore cannot be treated as smooth source terms. But
at least, they gain smallness. The way out is therefore to try to iterate these “rough”
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error terms away so that we end up with an infinite sum of “mild” and “delicate”
error terms that can all be treated as smooth source terms. Correspondingly, we
inductively define the £-th iterate @f’m, by

£—1]
@10 = gt [0.0; ) ez,

which produces an error of the form

n,[£—1] p,mod n,[£] n, [Z] n,[£]
grough + DA<" 1q>n gmtld J’_gdel 5rough’ t z L.

Then we have
P, mod [£] [€]
et Z e+ Z gntel. (6.5)

Our next goal is to arrive at the precise definitions of the higher iterates @) o1
To this end we first compute the errors accrued by the zeroth iterate

P10 = g [ ThgG . Tud?': 0]
1 _iwi,mad e:‘:iﬂDl +i‘l/;,mad )
- EZte_C (t,x, D) DI ¢<n-C (D, y,0)(i|D|T,f £ T,9?).
+

We obtain schematically that

EAE BRI DD ¥ [ AR ZS

k<(1-yn *

. n,mod
+ PkA<n 1 s :F PkA<ﬂ 1|E|)eflwi ] CR?,i,[O]
<n—

n,mod

Zza,e<n‘”c (i3, + [ERIEL
. n,mod
+ Z[(_(alwi,mod)2 + (axwi’mOd)z)eilwi ] R’rf’i’[ol
£

<n—C
. n,mod
+

. 1, de i n,mod +.[0
I e B
1,
+ DALl SRy

= Diff"! + - .- 4 Diff,!

with

+i wi mod

1 exitlDI
e e (D,y,0(i|DIT,¢5 £ T,97).

RrEON - 22
2 i|D|
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At this point we anticipate that the error terms Diff"! yeues Diff[60] will be manageable
since effectively a derivative falls on a low frequency term, which then allows to
gain regularity thanks to the frequency separation. The main error term Diffgo] in
the first line on the right-hand side of Diff‘f@" 17 can be further decomposed as
Diff! = 3 Y 2[(—lelLhylr)
kS(—yn £
+PAT T P e ] e
. n.mod
= Y Tfno(magtge ] e

0Zk< -y *

_ . nmod
+ Z 22[ngamm(k.ﬂ,)(PkA;’;*l £ F PAT T E])e ]( -

—C
K<A—pm = !
. nmod
Y D -OA ML o e (PATET € F PeAG )] RO
k< (—y)n + ="

[0] 0]
= Diffl’l, + Diffl’}, + Diff’ .

We emphasize that in view of the definition of the modified “probabilistic” phase
function ¥}’ mod " a crucial cancellation of the large angle part occurs so that the
first two error terms come with tight angle cutoffs. We anticipate that owing to the
tighter angle cutoffs I1<,—on and I1<5o minik,-n}, the errors lef 1.(a) and Diffl"! 1.(b) will
turn out to gain regularity. Correspondingly, we group together all the error terms

Di ffl (@)’ lef1 ()’ and D1ff5 ,2 < j < 6, into the collection of “mild” error terms
6
0] 0] - ecl0]
&yl = Diffi’ |+ Diffl’}, + > Diffl"]. (6.6)
j=2

Unfortunately, only certain parts of the error term Diff[lol ough €N gain regularity

(which we will call “delicate” errors and which we will denote by £7:1°)), while the
remaining parts will have to be iterated away. In order to arrive at precise definitions,
it is helpful to first also determine the structure of the errors accrued by the higher
iterates

n,mod

1 s n,mod :E
om0, x) = EZ:I:e WA e Dy Rt
+

<n—C |D| €_,—C (D,y,S)( gn e 1J>, Zzl

rough

Here we compute that schematically

n,[0—1] p.mod xn (0]
grough DA<” ICD

= Y Y (-l + AT g F PAG gl AT Ryt
<

n—C
kS(1-yn *

+223t€<n ra (iB,:I:lSl)R:”i'm

<n—C

+ Z[(_(atwimod)z + (axwi,mod)Z)e_iwl,mad] R:l.i-[@]
+
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n.mod
0 n,mody —iyl ] Rn'i’[z]
+Z[ i@y e LR
. 1. Ao _jynmod
—szzzl_;;,,[<aw1mv ettt
+ L A[AZ Samclar 1

nmod <n—1 nmod
gnle=11 il 0 £i|D| +2iAg +iylh n,[e—1]
rough + 5 Ze<n C (t,x, D) lIDI € n—cC (D, Ys z)(_Srough )

} RME
<n—C "

= Diff) + ... + Diffg‘J + Diffl/],

where

1 K _Hwnmad
=N . Je—-1]
R;L []_i |D| €n iC (D, y, S)< fough )

We anticipate that the error terms lef[e] e Diff[;] will again be manageable and
gain regularity since effectively a derlvatlve falls on a low frequency term. The
additional error term Diffge] arising for the inhomogeneous parametrix will also
be manageable since we can gain regularity from the difference to the previous

error é'r o ghl], see Proposition 6.6. Then we may again further decompose the

main error term Diff[e] in the first line on the right-hand side of the accrued error
gn ,[e—1] + Dp mod n [é]

rough A<n— |
pifff! = )" Zz[(—m(L;w;p;””")
kS(=ym *

+ o nomod
+ PkAfn—] ET PkAgn—llgl)eﬂwi ] CRryz.i,[Z]
<n—

= Y Yofnga(man g rp

<n—C
0ZkS(—yn £

. nmod
+ Y Y2 Mgpmen (RATT £ F PAG )] R

k<A-ym *+

1 1 . nmod ey

£ D OA L o e (PATE 6 F PaG )] R
kS(-ym *

— Diffld seele]
= piffl'] | + Diffl'}, +Diffl],, ..

As in the treatment of the error (7 mod g [0]

anticipate that the errors lef[1 ]( ) and D1ff1 ) gain regularity thanks to the tighter

accrued by the zeroth iterate, we

angle cutoff. Then we again group together the terms lef[1 (@)’ lef[la( py» and Diffg.z],
1 < j <7, into the collection of “mild” error terms

,1e] ¢ flel el
Epd = Diff\"} |+ Diff\'}, + Z Diff} (6.7)
j=2

It remains to systematically define the “delicate” errors Sséy] at every stage £ = 0,
which are those parts of Diff%’f]r ough that gain regularity.
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To this end we need to introduce some more notation and terminology. We shall
call a “string of frequencies of length £”, £ = 0, an expression

(k) = (kikaks ... kzeq1k3e42k3043),

where each k;, 1 < j < 3¢+ 3, is either a positive integer < (1 — y)n or the
symbol < 0. Given a string of frequencies (k) of length £ = 1, we denote by

(k') = (kikaks . .. k3p—2k3o—1k3e)

the associated “truncated string”. Moreover, if a string of frequencies (k) of length
¢ = 0 has all frequencies k; < 3on, 1 £ j < 3¢+ 3, then we call (k) a “small
string of length £”.

We also introduce the concept of an ascending sequence of “dominating fre-
quencies” associated with a small string of frequencies. Specifically, given a small
string of frequencies (k) = (k1kak3 ... k3er1k3e+2k3¢43), we select an ascending
sequence of “dominating frequencies” r; < rp < ... < r, as follows: We set
r1 = ky if k; > 0 and r; = 0 otherwise. Then we let 7, be the first frequency
among k», k3, ..., k3g4+3 that is larger1 than 7. Then if v, = k,, we let r3 be the
first frequency among kp41,kp42, ..., k3gy3 that is larger than r, and so on. Fi-
nally, we denote by b;, 1 < j < g, the length of the string starting® at r ; and
ending right before r; 3 Then we say that the small string (k) with dominating
frequencies r; < ... < ry4 consists of segments of length by, ba, ..., by, and we
have 3¢ +3 =0 - In addition, we introduce the notation

n,F . —1+Fn n
Zk = _DA H<2k‘4|2n>20mm(k —n}*

Then we set
\Pn s(kikaks) . ZZ Pk3A<f:,71 EF P Ag”_] |€\)><

oEitID]

i|D]

n,mod

% Poy (672" 0, x. DY Py (7" ) (DL v, 0) (i1 DI T8 & Toh?)

and for a given string (k) of length ¢ = 1, we define inductively

k _ _
v Ziz” (Pears AT 6 F Proyy A 1D x

k3g43

K* ;
. n,mod k
Py ("34_”0i )( N0 .

X Py e_”/’i’ (t, x, D)
31{+2( ) |D|

Moreover, for a given string (k) of length £ and a given W, ® , we also introduce
the notation
+

n.m

+, - n,mod L on, 14
e N (s T D)= Pm,(e*”% )(D y,wh® (6.8)

1 By definition any positive frequency dominates the symbol < 0.

2qf r1 = 0 we mean by this the string starting at k.

3 For the last dominating frequency rg, we let b; be the length of the string starting at rq
and ending with k3,4 3. Hence, if r4 = k3443, we have rg = 1.
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We may from now on suppress the space-time localizations [...]-,—¢c, since
they are given by convolution with L'-bounded kernels and all spaces used are
translation invariant. Using the above notation, we may then schematically write
the worst part Diff[l(?]ou o Of the error (1 mod o101 g ecrued at the zeroth stage as

r A<n—1 r
Diffl”! Yoo kb,

Jrough =
ki,ko,k3 §(l—)/)n

A key observation will be that whenever (at least) one of the frequencies k1, k2, or

k3 is > 3on, the corresponding frequency localized error W, ® gains smoothness
and we can treat it as a smooth source term, see the proof of Proposition 6.8. We
refer to such a situation as a “terminating situation”. This means that W, ® 45 only
arough error term for “small strings” (k1, k2, k3), and these rough error terms have
to be iterated away by applying the inhomogeneous parametrix to them again.

Thus, since only “small strings” have to be iterated away, at this point we
anticipate that at stage £ > 1 the worst part Diffgz]wu o Of the error Di’fﬁ’i‘f@f’[e]
accrued at the £-th stage is approximately of the schematic form

<ol ] ~ F -1 —1
lefl,mugh ~ Z Z Z :l:ZZ_wH (Pk3i+3 A;’; : S + Pk3g+3 A(Tn |s |)

k<(1—y)n  small strings (k') =+
304+1<i<3¢+3 of length £—1

i mmod K* - nmod %
X Proeaa (¢7V%) (115, D) 2 Pl (7127 (D, vy,
Then at stage £ a “terminating event” occurs whenever (at least) one of the frequen-
cies k3g+1, kagt2, or k3g43 is at a higher frequency = 3on. Correspondingly, the

rough error terms accrued at the £th stage are approximately W, ‘® for all small
strings (k) of length ¢.

In fact, we have to refine this definition by taking into account the angular cutoffs
in the operators Z;"* and in the phases !4 What makes this somewhat delicate
is that we do not carry out this refinement one function at a time, but only for the
collection of all of them. To this end we introduce the notation for 0 < k < 3on
and integer-valued —on < o < 0,

I I N e n
zy g =-0A M5, LT,

and then expand ZZ‘ZF as

nF _ n,+
Zk - Z Zk,ot .

—onSa<0

Keeping in mind that the inductive definition of W,’ “® fora string (k) of length ¢
implies the presence of £ 4 1 such operators ZZ;F, and expanding each of these

out, we encounter a string of operators Zl?ﬁxo’ el ZZ;L «,- Freezing the angles

aj, we denote the corresponding contribution by [\ "®-@ We will see that if the
sum of the angles is sufficiently small >, &; < —f, the corresponding term
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gains regularity and does not have to be passed on to the next iteration stage, see
the proof of Proposition 6.8.

. n,mod .
Similarly, we also reduce the phases in the exponentials e™*V+ " to sufficiently
large angular separation from the Fourier support of the high frequency factor. To
this end we use the decomposition
eiiwimad _ eiin>—101//i'm0d + (eiiw’i”m)d _ eiin>—10winmd)

4Tl 1//n.mud -10 .
e >—10¥Y+ :F i —
on O

where we recall that I1- , denotes a smooth cutoff localizing the angular separation
of the Fourier support to direction n := é—l to an angle 2> 2¢. We substitute this

. n,mod
(H>h1//i,mod)e:|:11'[>h1/fi dh,

. on.mod | .
formula for each instance of e™V+" " in W, ®-@ 1 we use the integral part

—-10 8 d . n.mod

?/ — (Moo =0V dpy
—on on

in m instances of these exponentials in W, ®.@

expression as an iterated integral of the form

—-10 p-10 -10
/ / / .. dhidhy ... dhy

and we denote it by W ®-@-(") We anticipate that the contribution of the integral

-10 ~-10 -10
/ / / {Zhjé—%n}”-dh]dhz...dhm

is a smooth source term, see the proof of Proposition 6.8.
Hence, we arrive at the following precise definition of the “rough” error accrued
at every stage £ = 0

g:lz;l[ﬁg]h — Z Z Z \IJf k), (), (h) ’ (6.9)

SN ohi 2=y > small strings (k)
i 10 i ] 0 of length ¢

, we can write the corresponding

which then gets iterated away by applying the inhomogeneous parametrix again.
Correspondingly, the “delicate” error terms accrued at stage £ = 0 are precisely
defined by

(€] €]
5:1" - leﬂl Jrough — Il‘qough' (6.10)

In what follows we will frequently make use of the short-hand notation

n—1 n—1

ino1 = (1AL M-, + 1901 R,) + D (1AL Nty + 1AG vty + 197 1511 -

m=1 m=0

(6.11)
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6.2. The “Probabilistic” Phase Function

We now turn to establishing mapping properties of the associated “probabilistic”

+i n,mod . .
<iic (t, x, D). It is helpful to recall that the spatial

and temporal parts of the connection form A<"~! are composed of

renormalization operators e

n—1 n—1
At ZA Y AL AT =) A
m=1 m=0
and that the rough evolution AF"~! = Y~ A" is sharply localized to fre-
quencies 1 < || < 2”1 The next proposmon on the mapping properties of
+iylpm? . C e . . .
<:Kic (t, x, D) is purely deterministic in the sense that it only relies on certain

smallness assumptions about the components of A<"~! and that their randomness
does not play a role here.

Proposition 6.1. Let n = 1. Assume that

Z AT &, + Z AT ([l 51y + Z 1AG 11

4 n,mod

Then the frequency-localized “probabilistic” renormalization operator e_, "~

(t, x, D) has the following mapping properties with Z € {N,,, L?, N}

. n,mod
i]/iic (t,x,D): Z — Z, (6.12)
4 n,mod
e V= (1, x, D) Z —> €2, (6.13)
. n.mod n,mod
QKJLC (, x, D)einwic (D,y,s)—1:Z — ¢Z, (6.14)
_ .y n,mod
€<ﬁf/iic (t,x,D): S§ —> Sp. (6.15)

The proof of the mapping properties in Proposition 6.1 again proceeds as in Sec-
tions 6-11 in [27] once we have established certain pointwise and decomposable
estimates for the “probabilistic” phase functions ¥’ m”d(t, x, £) in Lemma 6.2,
Lemma 6.3, and Lemma 6.4 below. The proofs of the latter are also just deter-
ministic in the sense that they only rely on certain smallness assumptions about
the components of A<"~!. We note that the delicate proof of the error estimate
for 07" mOdd)" is deferred to Sect. 6.6 below. We start off with L° bounds on the

A<n—1
pl"ObablllSth phase function.

Lemma 6.2. Let n = 1. For the rough part of the “probabilistic” phase function
we have for any 0 < k < n and for any 1 > 6 > 20 ™intk.=n} gy

WL @ x, ©)] < 27 kg1 min{ (02537, 11| PATE

d, _
|wnmo r(t X, E)| <2 ((1—)—2684 51)k||PkA<n 1||Rk’
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|Vea R @, x, )| < 27 k2 ek =181 ming (9243, 1| PATE .

ivt an mod, r(t X, §)| <92~ (0+)k2+(25*+51)k”PkA<n 1||Rk'

For the smooth part of the “probabilistic” phase function we have for any k € Z
and for any 1 > 6 > 20 ™intk.=n} gy

et 6, 6)| S 03 @I PAT ez + 231 PAT 1 212).
Wl (1, £)] S 2N PATE N pers + 231 PAT 2
Ve VLRG0 2. 0] S 072 (Ve PATT ez + 2251V PAT" 1212).
g mods (¢ v )] < Zk(”Vt’kaA;';_IHL?oL% +z%kIIVz,kaA(T"_lllL,ng)-

Finally, for derivatives of the rough part of the phase function with respect to the
Jfrequency variable we have for any multi-index o with |c| = 1l,anyl 2 0, any
0<k<n, andany 1 > 6 > 20 minlk.=n} g4y

d, i A _

|3|;=| Wi’rl'cwd’r(f% £)| < 20+ =2k + 28k OHK) p g <=1
d,r,(0 il -
|0l 92V LR O e, x, £)] S o7 TR PRk Ok g
}a‘s‘an Vi mod”(t x, 6|5 g0 (I+lany— k2+26*k2(0+)k”PkA<n Uik

Similarly, for derivatives of the smooth part of the phase function with respect to
the frequency variable we have for any multi-index o with |o| = 1,anyl 2 0, any
keZ andanyl 2 6 > 2° min{k,—n} pat

d, 1 _ 3 _
[ofs 05 Wik Gy @ 2, O S 02T M@ NPAT e 2 + 221 PAT" 2 12)s
d, _1 3 —
|l 0 LR 0, x, )] < 20 b DR (K P A s 4 23K PeAG T 20),
1_ — 1 _
|0l 3% Vi W 20 (1 x, 6)] < 0272 (19, PATE e + 235 Vi PAG" D 21).

_1 _ _ 1 —_
|0l 99V W LR 2, x, )] S 27l D Mk ok (17, P AT | o2 + 22KV PRAG T e 2).

Proof. The rough part of the “probabilistic” phase function coincides with the
rough part of the “deterministic” phase function up to the tighter angle cut-off in the
“probabilistic” phase. For this reason the proofs of the bounds for lﬁi"rsﬁo(z;r (t, x, £)
with localization to an angle 6 is identical to the proof of the corresponding bounds
for the “deterministic” phase function. We then obtain slightly different bounds for
the rough component /" mod.r' (4 x. &) upon summing over the angles 1 > 0 >

20 mintk, =1} que to the tlghter angle cut-off in the definition of the “probabilistic”

phase function.

While the smooth part of the “deterministic” phase function only contains the
free wave evolution A% Y™ of the lowest frequency block, the smooth part of the
“probabilistic” phase function incorporates the homogeneous and inhomogeneous

spatial components of the connection form AT\~ ! (from frequency stages up to
n — 1) as well as the temporal components of the connection form A;" ~! (from
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frequency stages up to n — 1). Correspondingly, the bounds for the smooth part of
the “probabilistic” phase function require more explanations.

In order to estimate the contribution of the spatial component of the connection
form A;’;’l we again exploit the Coulomb gauge condition to gain another factor

of  and use the Bernstein estimate 1) P, L2 — (632%) 3 L. Specifically, we find
that

>2k1 42

sup H (L;) g+ HZ(PkA;rsl_l 1) H Lop o
n t X

< =22k sup HnngAf"j_l : '7” L®L®
7] X
<gTlak sup [ HZPkAzz_l ”L,OCLgo

SO PATT e 2
as well as

sup HL A Hiznkmzn (PAT"™ 1 n)HLOOLOO
n t X

< 9227k sup HH"PkA<” L. nHL?OLOO
<glak sup | PeAs"™ 1||L°°L°°
50%2’<||PkA;’§* lper2-

In order to estimate the contribution of the temporal component A" ~! of the con-
nection form, we dyadically decompose the size of the symbolof L2 ,i.e. [t Fn-¢| ~
XA € 2L, Using the Bernstein estimate njﬂ’"ng PkLtzL)% — (A 9324k)%Lt°°L§°,
we then find that

P @™ 0% 2T (Peas™ )| LeLy

S Y sup [T I (PAG"T ) o

as2kg2

< Z 0324k)2||P A<n ||L,2L2

X
A>2k02
13

< Z 30392k <n—1

~ 272022 ”PkA() ”erL;Zc
A>2kp2

1.3 _
S 022 PA"
as well as

sup ”Li Hiznk\égpng(PkAgnil)”L,OOL;?O

N Z sup ||L'7iAn_jHiF’"Hg(PkA§”_l)||L?OL;,O
a<akez
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. 1
S Z 2/{9—22—2] ()\’ 9324/{)2 ”PkAgn_IHL%LZ_
A<2kg2 ’

11 —
< D0 2202 PAT g
A<2kp2 '

L3 -
<0222 PAG 22

Putting the above estimates together we arrive at the following bound on the smooth
part of the “deterministic” phase function

,mod, 1 — 3 -
iR xS0 QN PATL 2 + 228 IPAG" 2 12)-
Then the other bounds on the smooth part of the phase function again follow upon
summing over the dyadic angles 1 > @ > 2° ™intk, =} and upon taking an additional
V;.x derivative.

Finally, the estimates for a(s | 8,‘;‘ derivatives of the “probabilistic”’ phase function

are proved similarly, noting that differentiating with respect to n := é_l yields

additional ! factors, while differentiating with respect to the radial frequency
variable |£] is harmless since the definition of the phase function only involves 7.
0

Next, we establish L°° bounds for differences of two “probabilistic” phase
functions.

Lemma 6.3. (Additional symbol bounds for differences of “probabilistic” phase
functions) Letn = 1 and assume that

n—1 n—I1 n—1
S OIAT MR, + > NAZ st + Y AT Iy S &
m=0 m=0

m=1
Then we have for any multi-index o with 1 < |a| < 5= + % and any [ 2 0 that

[, x, ) — w5, 3, €)| S elog(1+ 2" (It — s| + 1x — ), (6.16)

20 (gl 1
|9l 02 (W2 (1, %, ) — " 5, v, ©))] S e (142"t — 51 + e — yD) ¥ DL (6.17)

Proof. In the following we again use the shorthand notation 7" := |x — y|+ |t —s]|.
The proof of the first estimate (6.16) is very similar to the corresponding proof of
the estimate (5.25) for the “deterministic” phase function.

In the proof of the second estimate (6.17) we treat the rough and the smooth part
of the phase function separately. The treatment of the rough part proceeds similarly
to the treatment of the contribution of the rough part of the “deterministic” phase
function in the proof of the estimate (5.26). The contributions of the smooth part
of the “probabilistic” phase function have to be discussed more carefully here. We
distinguish several cases depending on the size of 7. Throughout we make use
of the L°° bounds on the “probabilistic”” phase function from Lemma 6.2 without
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further mentioning. If 2~ =" < 7 < 27 we pick some —n < jo < (1 — y)n
and decompose into
d d
|0/ 9% (W™ (0, x, &) — YL (s, v, 6))
,mod,s
S D sup | Vexdlg a5 v oo (I = 51+ | = ¥])
i<io "
1 n,mod,s
+ D sup o e
JoSjS(1=y)n
<y o (al=p)ymax(—jnlni e + 3 20 (lorl—3) max{—j.n}
i< JoSiS=y)n
< gollel=pny=ngg 4 3 poal=ngiTe 4 3 20 (lal=pn g
—n<j< o JoSjS(—=y)n
Using that j < (I — y)n we may further bound the last line by
pollal=3my=np, | 3 25— =Dnjpe o+ 3 25 (lel=Hn—))
-n<j< o JoSiS(=y)n
a 1 . .
< max{1, @"T)°(=Dye 427 @=20=i0) o 4 1y,
Then choosing 27/0 ~ T yields the desired bound. If T > 2" the argument proceeds
similarly by decomposing with respect to a suitably chosen jo < —n. Finally, if
T < 27(0=7)" we bound by
,mod, ,mod,
|0/ 9% (W (0, x, &) — YL (s, v, 6))|
mod,
S D s Vel oy v | oo e (11 = 51+ 1x = y)
U=y

< ollel=mp—ynynyg,

Then if 2"T < 2%7’”, we may just bound by ¢ as long as o (Ja| — %) < %y, while
20 1
if 227 < 2"T < 2Y" we can obtain a bound in terms of (2" T)7(‘a|_§)8. O

Finally, we record decomposable estimates for the “probabilistic” phase func-
tion.

Lemma 6.4. (Decomposable estimates for the “probabilistic” phase function) Let
n 2 1 and assume that

n—1 n—1 n—1
DAY MR+ D AT lispmr + D Ay S e
m=1 m=0 m=0

Letk < (1 —y)n. For2 < g < ooand%—i—% < %wehavethat

(1,4 1
H(Wl','/??gyszVz,xlﬁi’,’f,ig))”DL?L; St eTiTre. (6.18)
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Moreover, for 44+ < q < oo it holds that

_ 1
<27 q%g, (6.19)

” (Wn ,mod 2” kvt“//n mod)” prise S

Proof. The proofs of (6.18)—(6.19) for the rough part of the “probabilistic” phase
function and for the contributions of the spatial components of the connection form
A;’S”l to the smooth part of the “probabilistic” phase function closely resemble
the corresponding proofs of (5.27)—(5.28) for the “deterministic” phase function.
It therefore only remains to discuss the contributions of the temporal component
Ag" ~! Here it is straightforward to obtain the desired estimates. Interchanging
integration and the n summation as in [27, Lemma 7.3] we find that

2
(S hen'nzs ey ., )
n

<(Z( X Iy nrmeai )

n a»2ke2

1
2

1

2\ 2
(A iz )

A

(Z( > audieni
o a»2ke?
1

< i ity Gt >k23k<2 15 (P Ag”])Him)z

tx
_72—<a+?)"27k||PkA§n_l”L?LZ
oIy Gk

and that
1

_ —1y2 2
(I8 Mz oz s, )
n

2
(2( > leta e, ) )

1Z2k02

1
2

1

S (Z( Z 2k9722721‘x%*5(0324k)%7% HZ(PkAgn_l)”L2L2>2>2
no a<2kg2 -
2
Sel % e ( +4 )k22k<z Hl‘[g(PkAg’l—l)iﬁtzL«zr)
n
< g1~ 71~ (gtDky 3k | PcAy" ! ||L,2L%

1_2_3 1,4
p27a TGtk

A
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6.3. Probabilistic Strichartz Estimates for the Adapted Rough Linear
Evolution @7

We now turn to the derivation of the redeeming probabilistic space-time inte-
grability properties (on a suitable event) of the adapted rough linear evolution @7
of the random data T,¢“[0], n = 1. These are a consequence of moment bounds
for the redeeming R, norm of the evolution @’ established in the next proposition.
At its core the proof is based on a combination of Bernstein’s inequality, (refined)
Strichartz estimates, Minkowski’s integral inequality, and Khintchine’s inequality,
which allows one to decouple the “atoms” of the Wiener randomization and gain
from their unit-sized frequency supports to beat the scaling. This idea was first used
in [32,46] for the Wiener randomization.

However, in our setting ® is not the free wave evolution of the random data
T,,$“[0], but a modified linear evolution defined as an infinite sum in terms of
iterative applications of the “probabilistic” parametrix (6.3). This comes with two
main difficulties. First, the “probabilistic” parametrix (6.3) is defined in terms of
the modified phase functions v/>"°?. The definition of the latter involves the con-
nection form A<"~! from the prior induction stages, which however depends in a
highly nonlinear manner on the random initial data 7,1 A¢[0] and T—,—1¢[0].
Crucially, these are independent of the random data 7,,¢“[0] for the adapted linear
evolution ®7. One can therefore still decouple the “atoms” of the random data
T,¢[0] for the adapted linear evolution ®7 via Khintchine’s inequality by con-
ditioning on the o-algebra F,_; generated by the Gaussians {gm, &m, Am, im
m € Z*, |m| < 2"~1}. This type of argument first appeared in [7] for the Wiener
randomization and we refer to [7, Proposition 4.4] for a nice illustration of this
circle of ideas within a simpler functional framework.

A second difficulty is that the higher iterates @f’[e] in the definition of ® =
Yo dD'rq’[z] are defined in terms of iterative applications of the “probabilistic”
parametrix (6.3). This could potentially more and more “smear out” the unit-sized
frequency support of the “atoms” of the Wiener randomization and the desired gain
from their unit-sized frequency support would eventually break down. However,
this is prevented by the careful definition of the rough errors (6.9) accrued at every
stage in terms of “small strings of frequencies”. It allows to essentially offset the
loss due to the smearing out of the frequency supports by the gain in smallness of
the higher iterates, at the expense of a very small regularity loss that is built into
the definition of our redeeming norms.

Proposition 6.5. Let n = 1. Assume that the functions { A} }m b (AL }m -0

{AY }m o (@I 11, and {CDg"}fn_:lO are measurable with respect to the o-algebra

Fun—1 and that we have almost surely

n—1 n—1

S AT gy + 197 1R,) + D (AT sty + 1AG Ty 1y + 192 1 51707) < 00

m=1 m=0
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Let 110,2¢cy¢] be the characteristic function of the interval [0, 2Coe] and set

n—1
1= ]1[0,26061(2(”“4%”’?»1 1 I,
m=1
n—1
+ 2 (A sty + AT Ty 1y + ll‘b?“sl[ml))'

m=0

Let @7 be defined as in (6.4). Then we have for all 1 < p < oo that
-1
15" D 1 k) S VP [ (Pao, Padb))| 10 gy (6.20)
with an analogous bound for 27"V, , ®7.

Observe that the presence of the cutoff 1 j"’l on the left-hand side of (6.20) is of
utmost importance in the proof of Proposition 6.5. It enforces the necessary small-

4 ¢n,mod
. . . . . i
ness to invoke the mapping properties of the renormalization operators e_, "~

from Proposition 5.2 and it ensures sufficient smallness to sum up all higher iterates
@7V in the definition of the adapted linear evolution ®7.

Proof of Proposition 6.5. We first note that

17

o0
gy S 2N k)
=0

In what follows we will conclude for every stage £ = 0 the moment bound

LZ(Q;Rn) 5 10@(’(”_1)2Zﬁ ||(Pn¢07 Pn¢1) ” Hxl_a*xH;‘S* 3
(6.21)

17 o)

where we recall the definition of k,_1 in (6.11). Thanks to the cutoff ]1;”’1 we
may assume that x,,_; < 1 so that the asserted moment bound (6.20) follows from
summing the previous estimate (6.21) over all £ = 0.

We begin with a careful treatment of the moment bound (6.21) for the zeroth
iterate. To this end it suffices to only consider the homogeneous parametrix

=5.10] 1 —iyl"! +it|p| V" w
&0, x) = 5 Zeqﬁc (t,x, D)e el % (D, y,0) T,
+
for the random initial condition
Tupy = Y. hu(@e(D—m)o (6.22)

201 < | <2n

and to establish the bound corresponding to (6.21) for £ = 0, i.e. to show for all
1 £ p < oo that

12130

Loy S VP | Pado] gy (6.23)



68 Page 64 of 109 Arch. Rational Mech. Anal. (2023) 247:68

‘We now establish (6.23) separately for each component of our redeeming R, norm.
Here it suffices to prove the corresponding bounds for o [O], noting that the bounds
for 27"V, x 5?’[0] follow analogously.

Moment bounds for R,L?L%°: Recall that the Gaussians {h,, : m € Z*,2"~! <
|m| < 2"} are 1ndependent of the o-algebra F,,_; generated by the Gaussians
{gm, gm,hm,h cm e Z m| < 2" 1} (from the prior induction stages) and
that the functions { A7}~ 11, {A’”}m _o» and {AZC”S}ZJO entering the definition of
the phase functions ¥/’ mod are assumed to be measurable with respect to Fj,—1.
Conditioning on F,_1 and using Bernstein’s estimate to go down to L{°~, we have

(amy At LO(Q: Ry LAL)

:( [( [z, &0) ‘F‘D])

< 20932000 (E[(E[( > 2“11( Z y (', 1) (6.24)
1<0

n, 'S0
n+21<k +1’<n+1

~ NP
X Z Z HPCkr(l/)PlKQ<n+21(:ﬂ-g<nilpn®:l’[0])”i%LfQ*)2)

PR

1

Y-

where we recall from the definition of the redeeming space RnLtnggO that

Y1) = (minf2¥, 1)) (min{28+ 1)

We distinguish summation in k', I’ over the frequency ranges n +21 < k' +1' <
min{n+1, 0} and over max{n+21, 0} < k' +1" < n+1. We start with the first case.
For any p 2 oo— we now use Minkowski’s integral inequality and Khintchine’s
inequality (with respect to the conditional expectation), while for 1 < p < co—
we first apply Holder’s inequality in @. Then we can bound the last line (6.24) by

2(0+)n2(%7200)n (E[( Z 281l ( Z e l/)fz
<0 K<n 'S0
n+20 Sk +' Sn+l

DIDY

P /l: 2 % p %
wa)) ] )) )
LILY

<E[ ‘Z he(@)Pey @y P Q <y (15" P, 10MO)
p

© o (6.25)
HI2(5—190)n223 (Z Z Y12
1<0 c kK <n 14 <()
n+2l<k +1’<0

1

- ) 2
x> IPeyan PEQena (15" P, @1 10MO) in;w)
K Cul)

»
Lo

Here, ) ", denotes the sum over a covering of the annulus || ~ 2" by unit-sized balls
with associated frequency projections P. (coming from the unit-scale frequency
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projections in the definition of the Wiener randomization) and where the parametrix
applied to the (deterministic) initial datum P,y is denoted by

~ 1 _iwn,mod +i 1/’
0L 4 x) = 3 Ze<nfc (t,x, D)e*Ple ic (D, y, 0) Peg.
+

Note that we tacitly changed the notation of the Gaussians and the unit-scale pro-
jections associated with the Wiener randomization to /. (w), respectively to P, to
better distinguish the latter from the standard dyadic Littlewood—Paley projections
P, within this proof. Our goal is now to bound the integrand inside the L% norm
on the right-hand side of (6.25) by ./pll P, ol e At that point the L norm can

be trivially dropped. To this end we have to distinguish several cases depending

. n,mod .
on the frequency localization of the symbols etV (t, x, £). We introduce the
corresponding short-hand notations

0 v Fiytmod
191 x) = fZ W . Dyl (D, y, 0) Pego,
n [0].(¢) i l//l.nwd <Dl + Il/l mod
oy = Y Z ¢ (t,x,Dye (D, y,0) Pego,
—C<£2<n C
nmmi mod
0 y +iyh
=Y Z e (tox, D)FPITET (D, y, 0) P,
—C<ll<n C
n [0],(c) 1 —iljll'mod +it|D| +i1//l'm”d
n 0= D S e x. D Pl T (D, y, 0)Pegy.

—Cc<0,<n-Cc E

Case 1: Bounding the contribution of 5?’3}’(0): Here the frequency projection P,
can essentially be moved through the parametrix to the outside (up to passing to a
slight enlargement P.), and we reduce to bounding

ﬁz(%—l‘)a)n Z 81l

1<0
1
~ 2
<Z > @ TS e PP Qe (15 P BLT) ”i,szc’) :
¢ K<n, 'S0 Kk Cph)

n+2 <K +1'S0

(6.26)

Then for fixed choice of k’, I’ (with k¥’ + 1’ < 0) we first use the Bernstein estimate
Pe,n PLS — 3+ minf2¥, 1})s~ L~ to bound

Z Z HPck,a’)FcP/KQ<n+2l(]ls<"71Pna’:l.’gg’(ﬁ))Hi}Lx*
x Cul

Iy / 1_
S((Zs(ﬂ”min{z’(,l})ﬁ ) 2 IPewan PePf Qi (15" P ) [
© o

Then we invoke that by the mapping properties of the renormalization operator

. n,mod
e <l_wci (t, x, D) as in Proposition 6.1, we have a square-summed L,ZLE Strichartz

estimate with a gain from frequency localization to a ball of diameter ~ min{2¥', 1}
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(at distance ~ 2" from the origin of frequency space) for the wave operator
. n,mod X . n,mod
eVE T (1 x, D)1l VT (D y 0) P, (see Section 11 in [27]). Thus, we
can further estimate the previous line by
2
((Zz(kﬂ)ml“{zk 1)e ) Yo IPeyar PP Qs (177 P15 ) [ 216
< Cu(l
oy P 1 2
< ((23<’<+’>min{2’<,1})6 (minf2"’, 1)2 )?22") I Pedol,
1
~ (2( =)' +l)(mm{2k 1})7 % ) | Pe ¢0”L2

Then we use a small portion of the factor 2GOEH) (o sum over K’ , 1" in the
indicated range. Square-summing over the unit-sized cubes ¢, we find that (6.26)
is safely bounded by ,/p | Prcpoll 515 -

Case 2: Bounding the contribution of CT)"’L[OI]I’ ©. In this case we first observe that

n,mod
for —C < £ < n— C the operator ez £ (D, v, 0) P, has the mapping property
" Dy 0y Pas 12 o> 210y 2 6.27
0 v, 0)Pe: LY — 3 (6.27)

This follows from a crude decomposable estimate [|//;" '"Od | procp2 S 2100m2-26
and the unit-scale Bernstein estimate P, : L% — L;O. Moreover, we note that the
evolution

. n,mod n,mod
—iyy | vy

e ¢ (t,x, D) Ple, (D,y,0)P.¢9, —C <t <n-C,

has spatial Fourier support in a ball of diameter ~ 2¢2 (located at distance ~ 2"
from the origin of frequency space). We may therefore freely insert outside a cor-
responding frequency projection P,¢,. adapted to a slight enlargement of that
ball. Then we proceed analogously to Case 1 and use the Bernstein estimate
Pck/(g/)ﬁzlchg — (23K H) min(2K 252})%_L§°_ and subsequently a square-
summed L%Lf’c Strichartz estimate with gain from frequency localization to a ball

of diameter ~ min{2¥’, 2¢2} together with the mapping property (6.27) to find for
fixed choice of X/, I’ (with k¥’ + 1" < 0) that

Z Z “ Pck’ %) PIK Q<n+2l (]lg<n71 Py &3:’,,,[[‘0[]1’(6)) ”i,zL;’O_
K Ck/(l’)

2
| I / =]
< 3 2GOEH) (mine 2%2))?2 2(2“0")”2‘2‘52||Pc¢o|ILg)-
—C<h<n—C

Thus, we have at least a gain of 2_%62, which can be summed over —C < ¢, <
n — C. Then, again using a small fraction of the factor 2(%_)("/”/) tosumover k’, I’
in the indicated range and square-summing over the unit-sized cubes ¢, we obtain
that the contribution of &1} to (6.25) is safely bounded by /7 || Pabol| .
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Case 3: Bounding the contribution of CD" [0] ©: We begin by noting that the evolu-
tion

_ - n.mod . . n,mod
er " (x, D)FIPIE (D, y, 0) Py
has spatial Fourier support in a ball of diameter ~ 2¢! (located at distance ~ 2"
from the origin of frequency space). We may therefore freely insert a corresponding
frequency projection Py, . adapted to a slight enlargement of that ball. Hence,
~ / / / 1

using the Bernstein estimate Pc,, ) Pye, .1 L3 — (2°* ) min{2k, 261})27 L3~
and square-summing over the caps « and boxes Cy/(I’), we obtain for fixed choice
of k', I’ (with k¥’ + I’ £ 0) that

D> 1Pepan P Qensa (15" Py d’fﬁ?L(c))”imcf
K Cul)
-l/llJnotl

S ( Z (Z Z “ﬁZ‘ZlcPCk/(l/)PIKQ<n+21(1[5<n_16;11
—C<<n—C N K Cull)
1

1.2
+iylpmod 2 ’
(t,x, D)e"IPle " (D»yvO)PC‘ﬁO)”L%L;’C) )

., n,mod
S < Z (23(k’+l') min{2k/, 2[1 }) %_ ” ]l:"_lee_]“//i
—c<En—C

2
~ . +i1//n4mod
(t,x, D)Pceilt|D|e<—; (D’y’O)PC(pO”LtzL%) .

In the last line we already indicated that (a slight enlargement of) the frequency
projection P, can be moved through to the outside of the renormalization operator

. n,mod n,mod
+ivy iy

e__~ (D,y,0). Since the operator ee (t, x, D)ﬁc is essentially smooth

at the scale of the unit-scale projection PL, we obtain from crude decomposability
estimates the operator bound

iy t x. DVP.: Lo° 5 2100ny=261 12
€y, (t,x,D)P.: L — -
By the mapping properties of the renormalization operator as in Proposition 6.1,

. n,mod
. ~ +iylh . .
it follows that the wave operator Pcei” 1Dl <l_vlci (D, vy, 0) satisfies an improved

Strichartz estimate L> — 23"L?L% with gain from frequency localization to a
ball of diameter ~ 1 (at distance ~ 2" from the origin of frequency space). Hence,
the previous line can be further bounded by

2
/ ’ / l_
(210“” » 2GIEH (mingak 261})2 2—”12$"||PC¢0||L§).
—c<<n—C

. . _3 .
Again, we have at least a gain of 2722, which can be summed over —C < ¢ <

3 I gt
n — C, and subsequently we can use a small portion of the factor 2(2 *+) to
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sum over k’, !’ in the indicated range. After square-summing over the unit-sized

cubes ¢, we obtain that the contribution of CD:’ 5) T Rt (6.25) is also safely bounded

by /P [ Padboll fy1-s.

Case 4: Bounding the contribution of " P H H(C) This case can be treated by com-
bining the arguments from the previous two cases.

To conclude the discussion of the derivation of the redeeming R,, L L° bounds,
it remains to describe how to deal with the frequency range max{n + 21,0} <
k' + 1" < n+ 1. We proceed as above for the other frequency range, but in this
regime we can only exploit the unit-scale frequency localization and cannot further
gain from the radially directed frequency blocks Cy/(I"). The summation over k', I’
in this frequency range comes at the expense of a factor 20" that can be safely
compensated.

Moment bounds for R, Lt2 Lg : This is effectively just a special case of the derivation
of the moment bounds for the R, L?L%° norm, we therefore omit the details.

Moment bounds for R, L7°L%°: We proceed analogously to the derivation of the
moment bounds for the redeeming RnL,zLj?O norm. First, we use Bernstein’s in-
equality and fractional Sobolev embedding in time to go down to L{°~ L$°™ at the
expense of picking up a factor 2. Then we condition on F,,_ 1, use Minkowski’s
integral inequality together with Khintchine’s inequality as above, and distinguish
the same four cases depending on the frequency localization of the renormalization
operator symbols. In order to estimate the contribution of the main term CI>" [O] © ),

we use the Bernstein estimate Pf P.: L2+ — (min{23¢+0), 1}) “ L% and sub-
sequently a square-summed L~ L,%* Strichartz estimate. In the other three cases
we proceed analogously to the treatment of the R,,L%L;O norm and play out the
mismatched frequency localizations.

Moment bounds for R, Str: This bound is also very analogous to the derivation of
the moment bounds for the redeeming R,, L? L>° norm above. For a given admissible
Strichartz pair (g, r), we first condition on F,,_; and use Minkowski’s integral
inequality together with Khintchine’s inequality (after possibly going down to LY~
or LY~ at the expense of a factor 205 Then we again distinguish the same
four cases depending on the frequency localization of the renormalization operator
symbols. For the contribution of the main term CD" [O] © (1), we first use the unit-

scale Bernstein estimate Pc (LY — L’ where (q, ro) is sharp-admissible and then
apply a Strichartz estimate with gain from the frequency localization to a unit-sized
ball (at distance ~ 2" from the origin of frequency space). In the other cases we
take advantage of the mismatched frequency localizations.

Moment bounds for S,i_‘s*: Here we do not look for a gain from probabilistic
decoupling of the unit-scale frequency localized pieces. By the mapping properties
from Proposition 6.1, we right away have an S,% ~% norm bound for the homoge-
neous parametrix CD?’[O] (as in Section 11 in [27]), and only subsequently apply
Khintchine’s inequality and square-sum over the unit-scale frequency localized
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pieces to find for any p = 2 that

H]l;n_IQ:l HL{j(Q;S,l‘% S ”(Tn‘p((f’ Tn¢(f))|‘L5(Q;HJ‘5*xH;5*)

S VP | (Padbo. Padb))| 1o, pye-

In the case 1 £ p < 2 we first use Holder’s inequality in w.

This finishes the proof of the moment bound (6.21) for the zeroth iterate and it
now remains to discuss the derivation of the moment bounds (6.21) for all higher
iterates £ = 1. Recall that the higher iterates CDf’m, £ = 1, are defined as the

inhomogeneous parametrix applied to the error —Er[ﬁ;gl ;]l

the derivation of the redeeming bounds work for all higher iterates CD;"[”, £=1,is

that the error Er[f);gl }]l

of length £ — 17 that are all at frequencies < 237" Thus, the Fourier support of the

The key point that makes
defined in (6.9) consists only of “small strings of frequencies

£-th iterate QJ;"[E]’ © applied to a single unit-sized frequency localized piece smears
out by at most < 10¢23°”. Moreover, the error Er[ﬁ;g]}]l gains smallness and is of
size (k,_1)%¢. This smallness gain stems from repeatedly estimating the schematic

magnetic potential terms

ZPT(PATT & F PAG g
using the equations for A7'{™ and A;"_l (whose nonlinearities are at least quadratic).
See the proof of Proposition 6.8 for more details).

In the proof of the moment bound for the redeeming norms of CDf’[l], L2 1,we
then only once have to argue analogously to the zeroth iterate above, namely for the
inhomogeneoux parametrix applied to the error —Er[f;;gl ,]l, which costs some 21077,
Since we built enough room of size 272%" into the definition of our redeeming
spaces, we can easily absorb the additional factor of 2°™ arising due to the smearing
out of the frequency support. Overall, we therefore obtain the desired bound

|25 R b gy S 10°Gn-0* /P || (Padbo, Putp) | y1-se -

6.4. Probabilistic Energy Bounds for the Data Error ®7[0]

Next, we present a new type of moment bound, which ensures that the data error
generated by the modified rough linear evolution @ in fact gains smoothness (on
a suitable event).

Proposition 6.6. Let n = 1. Assume that we have almost surely

n—1 n—1

D AT gy + 19 1R,) + D (AT sty + 1AG Ty 1y + 192 I s1007) < 00

m=1 m=0
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Let 110,2¢cy¢] be the characteristic function of the interval [0, 2Co¢e] and set

n—1
177 = ]1[0,2C0£]<Z(”-’4T,r”1?m + 1127 1%,
m=1
n—1
+ ) (LA Dty + 1AG Iy + ll‘DT”sl[mD)'
m=0

Let @ be defined as in (6.4). For every 1 < p < oo it holds that

[ (97100 = 7610 | g wry S VP I Puo. Pugn) | yp-se, e
(6.28)

We emphasize that the presence of the cut-off 1 j"’l on the left-hand side

of (6.28) is again crucial to enforce the necessary smallness to invoke the mapping
. n,mod

properties of the renormalization operators e<;_ic from Proposition 5.2, which

enter the definition of ®'. Moreover, it guarantees the necessary smallness to sum

up all higher iterates in the definition of ®7.

Proof of Proposition 6.6. Here the main work actually goes into proving that al-
most surely we have

|11 (@101 = T LON) | 1 2 S 15" Tugp” 101 -, oo (6:29)

Then the asserted bound (6.28) is a simple consequence of (6.29) and a subse-
quent application of Khintchine’s inequality (so that no conditioning on F;_1 is
necessary). We begin with the Hx1 bound. By definition of ®}, we have that

OP0) — Tupy = @1 1%0) — T, 98

. 1 _iw;n,mud 0 _H-l//;n.mad 0 1 o
_ EZ(Q%C ©0.x, D)e "= (D, y, 0) - )anso.
+
(6.30)
Correspondingly, we need to show that
_jypsnmod jyy<nmod B

11;"*1(e<n‘ﬁic ©.x. D)2 (D, y. 0) - I)T"WHH} <275 T -

(6.31)

To this end we introduce the kernel

. . <n,mod . <n,mod
e:(x—y)‘s(e—zwi R e (R 1>X($)d§»

Kn(x,y) =171 / o

R4

where x (z) is a suitable bump function supported around |z| ~ 1. Then by av-
eraging arguments such as in Proposition 8.2 in [27] and by the decomposable
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estimate ||V, 5"l p rere <2871 from (6.19), the bound (6.31) reduces
to proving that

H/R Kalr B f)0)dy| 27 B fl e

L3
which in turn follows from Schur’s test upon establishing that

sup || K, (x,y) ”Ll + sup || K,(x,y) ||L1‘ < 2= (6.32)
y ’ x J

We only estimate the first term on the left-hand side, the estimate for the second
term being analogous. By non-stationary phase arguments using (6.17), we have

1Ko, )] Sn 272" (x — y) 7N, forany 1 SN <« 21
o

This decay estimate easily yields the desired bound for |x — y| > 27078 gince
we have for N > 1 that

sup / |Ky(x, y)| dy 27 N=%n < p=dun,
{lx—y|Z2-(1=80m)

y
If |x — y| < 2707397 we use that by Lemma 6.2 we have the bound
d _
|KnCe DS 29 [ Ve b2 oo b = 31 S 272077 2 — ye,

and hence,

sup f 1K (x, y)]dy S 242071 qup f lx — yldy
{lx—y|<2-(=80m) {lx—y|<2-(=80m)

y y

< 24)1 2(1 —y)n 275(1 —d)n
T

This yields the desired estimate (6.32) since 1 >> y > 8, > 0.
The proof of the L% bound for the time derivative in (6.29) proceeds analogously.
We note that here the time derivative produces additional terms when it falls onto

the phase functions v'>"°¢ (also of the higher iterates). However, these terms gain

regularity easily by decomposable estimates such as ||V, x W;n’mOdHDL;’OL;O S

~

20=¥)ng from (6.19). O

6.5. Probabilistic Strichartz Estimates for the Rough Linear Evolution A% ,

We also record moment bounds for the redeeming R, norm of the rough linear
evolution A;r of therandom data 7, A“[0],n = 1. Since AL = SOITha®, T,b%)
is just the free wave evolution of 7, A{[0] = (T,a®, T,b®), the proof is a (very
simple) special case of the proof of Proposition 6.5 for the zeroth iterate @f’[o]
with the renormalization operators replaced by the identity (and no necessity for a

probabilistic cutoff 17~ 1).

Proposition 6.7. Let n = 1. Then we have for all 1 < p < 0o that
H‘A;VHLZ(Q;R,,) SVp “(Pna* Pyb) ”HQ*‘;*xH;‘S*' (6.33)
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p.mod gn

6.6. The Renormalization Error Estimate for L1, _,~, @}

In this section we turn to the subtle treatment of the error term Df\’ffﬁgf P
produced by the rough linear evolution ®/. We need to establish that it gains
regularity and acts as a (small) “smooth” source term in the equation for ®¥ in the
system of forced MKG-CG equations (fMKG-CGy) at dyadic level n.

Recall from (6.5) that by construction of ' the overall accrued error Dz’ﬂfgf o7
consists of “mild” and “delicate” error terms. To handle the “mild” error terms and
show that they gain regularity we primarily rely on the tighter angle cutoff and
the “strongly low-high” frequency separation. For the treatment of the “delicate”
error terms (that do not enjoy tight angular localizations) we have to invoke as an
additional key ingredient probabilistic redeeming bounds for the following error
control quantity

gcr=>yecm nz1, (6.34)
20
with

gcn,[é] = 2—0n2—5*n2—vn Z Z Z 2,%

> hi>=55 X >~ fg small strings (k)
of length £

n,=%,(k),(h), (@)
Vix @ lpeer

where M >> 1 is sufficiently large, 0 < v = v(M) < 1 is sufficiently small with
limp— o0 V(M) = 0, and for each small string (k) of length £ we denote by r,
its largest dominating frequency. We derive moment bounds for £C" in Proposi-
tion 6.10 below. First, we turn to the treatment of the error estimate for Di’ffﬁcf ol
in the following proposition (which should be regarded as an entirely deterministic
estimate).

Proposition 6.8. (Renormalization error estimate) Letn = 1. Let (Ag’s, A, CD?)
be the solution to (MKG-CG) with initial data (To A, To¢“)[0] and let {(AY ¢, AY',
CID;")}”_1 be the solutions to (fMKG-CGy,), 1 £ m < n — 1, satisfying

m=0

n—1

n—1 n—1
S 1A stpny + D AT Iyt + Y 1@ gty S e
m=0 m=0

m=0

Moreover, assume that the corresponding rough linear evolutions satisfy

n—1 n—1
S AT R, + > IO IR, S &

and that the error control quantity satisfies EC" < oc. Let O} be defined as in (6.4).
Then we have

p.,mod .y
IO (Dl”NmelL%Hﬁ S [ Tugp? 101 1o gy o0 + EC™ (6.35)

A<n—] r
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Proof. By construction of the rough linear evolution ®”, the error is given by
P, mod e [Z] e [€]
0 A<n— 1 Z lld del :

We treat the “mild” and “delicate” error terms separately, starting with the former.
We only focus on estimating the more difficult N, norm and omit the details for
the high-modulation bound.

“Mild” error terms: Our goal is to show that for all £ = 0,

&t

S (1) | T ]“HJ"S*XH?S*

Thanks to the smallness assumptions this then gives sufficient control for all “mild”
error terms

n,
zld

S Z(K” 0¥ T0” [O]HH' T HE S T O]HH‘ T H
=0

n

We describe in detail the estimates of the “mild” error Er':l’i[l(zi] for the zeroth iterate
and afterwards explain how to deal with the higher order iterates. Recall from (6.4)
that

#ﬂ—mm@+mm@+2mﬁﬂ

m
Jj=2

The estimate for leflloi ): Here we essentially argue exactly as in the treatment of the
term Diff; in [27, Subsectlon 10 2], only that we use the redeeming L2L°° norm

for A;’ﬁ’l and place R} ! into Sn 1= . Importantly, the frequency separation
k < (1 — y)n ensures that we will gain a negative power in n that compensates for
n,+,[0] 1-5,

the loss of 2%+" caused by placing R}’ into S,

The estimate for lef[ 1.(b): Next, we consider the contribution of the smooth part.

For the contribution of the spatial part AZ(™ ! we generate the error term

Z Z 2[“;20 min{k,—n} (PkA;zil . g)eiiwim()d:l R:.l’:t’lol

<n—C
kS(—y)n *

This term is of course a microlocal version of the interaction term A;,';_l’j d; and
needs to be handled in analogy to it, but obtaining an extra exponential gain in
—n, thanks to the additional tight angular localization. This additional gain allows
to compensate a loss of 2%" caused by placing R;”i’[o] into S,r's*. However, this
will only be possible after re-iterating the equation for A ;’}’1 and exploiting the
subtle cancellation against the corresponding temporal contribution coming from
the equation for A;"_l. Since this is a recapitulation of the estimates in [27] with
one extra observation, we shall be relatively brief:
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(i) By translation invariance of all spaces involved, we can first dispose of the
frequency localization [...]-,. As in [27], the goal shall be to reduce the
contribution of the spatial part AT~ ! of the connection form to an expression
of the schematic form

Z H H<2amm{k —n} (HkA<n 1 E)e_i‘//l’mOd]Rl:,:t,[O]’
kS(1=y)n

where H*[. . .]is defined analogously to (4.21) and is understood as an operator
acting on the frequency ~ 2" function Rf’i’[o]. The above expression will
then be combined with the corresponding one from Ag"_l to result in the
desired null form type cancellation.

(ii) Reduction to H*[.. IR Consider

Z (1 _H )[H<2rrmmk —n} (A<I’L 1 g)efiwi’mOd]Rf,ﬂ:,[O]
kS(1—y)n

/
= 2 ZQZJ—C[ngvmm«krm(QijAf.'}_l'5)6_"'/’1””]735”’[0]

kS(A=y)n J

/
+ 3 S [Megrmine i (Q) AT £) 05 ;e VE™ RIS,

kS(=y)n J
where the inner sum is over % < —on. For the first term on the right, we
.. 0,—
place the whole expressioninto X For this we place IT< o mink,-m Q j PL AT~ !

into DL?LS°, while e~V REEI gets placed into L®L2. Due the the
null structure we gain Z%k < 277, which is enough. The second term on
the right is handled similarly by placing the full expression into Ll1 L% and the
function Q> ;_ce VA" RIF I into 1212,

(iii) Reduction to H* [l'[ <20 minfk, —n) VHAZ™ Lo ]Rf’i’[olz Consider the schematic
expression

mod

Z H*[Hézn minfk,—n} (1 — 'Hk)(Af’?fl -S)eiiwi’mOd]R;“i‘[o].
kE(1—y)n

Iterating the equation, write this term as
! d
2. 2
kS(1=y)n J
. n,mod
[H<20mmk —n} PkQ]D N(Q>] C¢<”l 1 ¢<n 1) . Ee*llpi ]R;l,i,[o],

where N\ denotes the null form which appears in the equation for AT/(™ ! Then

place the null form into L} L )? and pass from here to L! L% via Bernstein’s
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inequality. Keeping track of the outer null form coming from the inner product
with &, we gain a total of

. j—k 2 j—k j—k
p-i—k pht 933 ir ot %

and we can use the first factor to gain 2_%", as desired.
(iv) Dealing with the reduced term H*[H <0 min(k,—n)HA?ﬁil .. .]’R;”i’[o]: This

requires combination with the corresponding contribution from Ag”*l , which
can be similarly reduced, and we omit the details for that. In order to deal
with the combined term the idea is to argue precisely as in [27], using the
generalized versions (8.9)—(8.11) of the core trilinear null form estimates
(136)—(138) from [27, Theorem 12.1], except that here the structure is slightly
different due to the microlocal formulation. To get rid of this obstacle, we first
observe that the multiplication with £ can be replaced by d,, and similarly for
the contribution from Ay where multiplication with |£| gets replaced by 0;.
Moreover, localizing HA;?‘I to P Q jHA;ﬁ_l as in the proof of Theorem
12.1 in [27], the angular cut-off IT<,o ming,—n) 1S smooth at the angular scale
=k

2°7 < 279" Thus, we can expand the cut-off into a discrete Fourier series and
decouple P, Q HA;E_I from the rest of the expression, i.e. we are formally
allowed to replace the original expression

H*[Hézo minf{k,—n} Pk Q]H(A;"Z_l . é)e_il'/fim(}d]R;l’i’[O]

H* (P QjHA;’;_I 9y (e—"wl’m"dR:ui,[O])).

But this term, combined with its analogue coming from A(f"_l ,isnow amenable

to the generalized trilinear null form estimates (8.9)—(8.11). Moreover, we
—k

have 27 < 279" whence the fact that all estimates in the proofs of (8.9)—

(8.11) gain a small power of j — k translates to an exponential gain in —n.

This concludes the estimate for the term Diff[lo](b).

The estimate for DiffE.O], 2 < j < 6. In all these terms there is an extra derivative

falling on the low frequency term wi’m(’d, and so the analogous estimates as in

[27, Theorem 12.1] furnish an exponential gain in —n due to the separation of the
frequency support of " from n.
Since by the mapping properties of the renormalization operators we have

,£,[0
IR =N g5 S | Tug® 101 y1-oe gy
we obtain from the above that

|t

N, S | Tag?10] ||H3‘5*xH;5*.
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The treatment of the “mild” error terms 8 l d generated by all higher iterates

£, €
R;l [€]

£ = 1 proceeds analogously, placing into S,, ~_Then we gain additional

smallness from the bound

[ R s < Gen1)* [ T ”101] . ez

wHD
which follows from the mapping properties of the renormalization operators and
the definition of £ fm gl }]l (note that each magnetic potential term ZZ’ZF( Py A;’;—l .
EF PkA(f”_ |& |) produces a smallness factor («,_1)?, because to estimate these
terms we insert the equations for A;’;_l and Ag”fl, which are at least quadratic
in the unknowns). We remark that the additional error term Diffgo] that arises in
the case of the inhomogeneous parametrix gains regularity from the difference to
the error from the previous stage (see also the proof of the data error estimate in
Proposition 6.6).

“Delicate” error terms: Let £ = 0. Recall that

] L]
5(1 - lef[1 ,rough gfough (6.36)

with

gl = Y Z S @@ 637

hj >_7 o small strings (k)
Z] ZI 2 100 of length ¢

In order to estimate all “delicate” error terms we first dispose of the “small angle”
on on . S

cases ) ;o; = —Jgand ) h; §. — 95 - Then we consider terminating situations,

where (at least) one of the frequencies k343, k3¢+2, Or k3¢41 1S greater than = 3on.

Once we have taken care of all these smoother parts of lef[l rough» W€ are left
n,
exactly with Er ou g h and we are done.
H . on

We begin with the small angle case ) oS —1p0- We split lef] rough into

two parts
(K LK),
XY o wt- y Xy wee
ki <(1—y)n  small strings (k') YjeiS—{p ki=(l—y)n smallstrings (k')
36+1<5i <3043 of length £—1 3¢+1<i<3¢43 of length €—1

+ Z Z Z Ly;l,(k)-(g).

Yjej>—15 ki<(—y)n smallstrings (k')
30+15i<3043 of length £—1

For the small angle case we infer the following bound

H 2 > Y g

Y S—f% kiS(l—y)n smallstrings (k")
3¢+1<i <3043 of length (—

| Tu101]] 15 gy

Nl'l

3
< 271000 () 220"
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whence this term is in the smooth source space. To see this, observe that we get an
1 .

exponential gain from the small angles at each stage, gaining 24 29 (by proceed-

ing as in the treatment of the milder error term Diff[logb) above). Moreover, at each

stage we gain a power (k,_1)?, resulting in an overall smallness gain of («,_1)%¢.
Now. fixing th.e (il?teger) value of 755 = > j ol < fon and summing over all
possible combinations of angles costs

< (Bl ) < (2 < (222)%-03

Combining this with a fractional power (x ("_1))%5 of the overall smallness gain
results in

. ¢ 1 1
22 lejl) () < P gl < pCla)E T la]
01 n—1 = ~ .

1 ) .
Thus, the total effect of combining the gain 24 )i and the smallness gain (k,_1)%
with the loss due to counting all possible combinations and due to summing over

o6 = 2_j leej| = £on is bounded by

1 , i ,
Con2 7 jleilpCla-n® ‘“’l(Kn—l)%ZZH*n | T.9101]| H{

><H;5*

3
< 271000 (g, ) 2200

| T 101 sy

It follows that we can reduce to considering

Z Z Z \y;z,(&),(g)'

>jej>—15 ki<(1—y)n smallstrings (k")
30+15i<3043 of length £—1

Next, we argue that we can further dispose of the error terms

> > > 3 MRCRONE

Yihj<—95 X;%i>—1g ki<(l—y)n smallstrings (k")
! ! 304+1<i<30+3 of length £—1

where \IJ;”@ (@B Gands for the iterated integral expression when m instances of

. n,mod . . .
the exponentials e™V+" " are replaced by the integral expressions in the decom-
position

ei“/[l,mod _ eiin>710‘/f§:’m0d + (eiiwi,mad _ eiin>7lowi,mad)

. ,mod
_ e:l:ln>—lOW:é”w - ;2
on O

—10 8 . n,mod
(Mot 04) e =0V g,
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We recall that 1., denotes a smooth cutoff localizing the angular separation of the
Fourier support to direction 1 := é—‘ to an angle > 2¢. To see this, observe that for

a < —10 the integral

—10 a d . n,mod
/ XhNaa_h(H>hwi’mo )e:ttl_l>h¢:t dh
—on

defines a map L2 — L2 with norm < 22k, ;. This is a consequence of the
bound

0 a
o n,mod ” <294 1.
HXh aah( Shy ) pLeLe ™ Kn—1

We can then iteratively bound the L! L2 norm of the contribution to

Z Z Z \I,;t,@,(g),(ﬁ),

>jej>—15 kS(—y)n smallstrings (k)
30+15i<3043 of length £—1

. n,mod . .
where m exponentials e® V% “ are replaced by the integral expression above, by
invoking the schematic bound

) _ - L+, (K),
N 2T (Pl ADNTE T P AT )0

k343,00

1
k3gpz<(1—y)n LiL3
n,+ <n—1 E <n—1
S Z S"ip H [T, Zk3[+3,01[ (Pk3e+3 ALy - El F Praeis Ay )HDLlLoo
kg3 <(1=y)n e
E,.0), (@)
[Vx@r ™= e
- ),
<27 % ey} Ve T O
t X
in conjunction with schematic bounds of the form
—10 8 . n,mod K:t . n,mod
‘Vx </ Xh~a—(n>h1ﬂl’m0d)€_ln>wi dh> ._e-HI/f;t H
—on ah 1 | D| L?OL)ZC

<2 |,y 0

It follows that the contribution to

Z Z Z \I,;L(k),(g),@

>jej>—15 ki<(1—y)n smallstrings (k")
36+15i<3043 of length (—1

. n,mod
coming from those terms in the iterated expansion, where m exponentials eV
are replaced by the integral expression above and where we impose the additional

constraint
>ohi <15
- 10
J
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for the integration variables, can be bounded with respect to || - || 172 by

2~ Z_/ C(jz% Z_[ hj (Kn_1)2525*n

| Tn ¢w [O] ” HXI —3x XHX_S*

(L1 20A8
< 27T (1) X2 | T 01| 1 e
This easily allows us to place this contribution into the smooth source space, even
after summation over all possible «; as well as m < 2¢.

It now follows that we may assume for the angular scales /; occurring in the

. n,mod .. .
phases in the exponentials e™¥+" " the additional constraint
on
IR
- 10
J

and we can henceforth omit the effect of the singular operator An_ll due to the

angular degeneracy in the phases 1//1""0’1 up to paying a factor 270 at the end.

This is analogous to the restriction } ;& > — {5 that we impose on the angles
occurring in the definition of the magnetic potential terms

2y T (PATy & F PAG gD,

‘We shall henceforth suppress these angular losses, and replace all operators Anll by

A~ it being understood that at the end of the day we always have to have enough
margin to absorb a loss of 2707 . 200",

At this point we are left to consider “terminating situations” where at least one
of the frequencies k3¢13, k3¢42, or k3gy1 is greater than = 3on. We describe in
detail how to treat a “delicate” error term where the frequencies k3¢13 are greater
than 3o n, noting that all other “delicate” error terms can be treated analogously.
This error term is of the schematic form

, - - e
Yo 2 (Prsn AT € F Pogg, AT BN R,

small strings (k)
of length ¢

where we suppress the explicit notations («) and (%) for the angular restrictions,
and where we recall that then

+

_joomod K . n,mod (K
= Pryn (e V5" (0, x, DY Pagy, (eTVE N (D, y, )0 ).

n,%, k) |
' ' i|D|

P

In order to show that this error term gains regularity and can be treated as a smooth
source term, we bring in the crucial redeeming “error control” quantity EC™*1,
Suppressing the angular localizations, it reads

D DI Rl P
t X

small strings (k)
of length ¢
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where M > 1 is sufficiently large, 0 < v = v(M) < 1 with limy;_, o V(M) = 0,
and for each small string (k) of length ¢ we denote by r, its largest dominating
frequency. Then we claim the following “terminating bound”

' - +
> 28T (Poaan AT £ F Pasg, AT g @Y

small strings (k) Lzl L}
of length ¢
< 2—(3—)an20n25*n2vngcn,[£]7 (6.38)

with analogous bounds for all other “terminating situations”. Since o >> v + §, we
have ample room to ensure the margin required to handle the losses arising from
the angular degeneracies that we have suppressed. It follows that we can bound all
“delicate” error terms accrued in the course of all inductive stages by

o [£]
del

o0
<M gl = gen.
12 ~ Z

It remains to prove (6.38). To see this we bound schematically

1253 (Poaon AT € F Poso, AT 1EN OO Ly
3

1,
< sup ”l'[ Z>30’1(P;3MA;§ |§|

<n— 1
T P>3"”A HDL,”Lg

1

2
(Z |, v, o =® ||i,MLg>
K

‘We show below that we can estimate

£
€]

sup Hn 207 (Poyy AT < =Uone Y2

>%an( 2 + P>3rmA<n I)H

5

(6.39)

where we suppressed any losses arising from angular degeneracies. Then taking
advantage of the probabilistic error control quantity EC™Yl and suppressing any
losses due to summations over angular caps, we obtain the desired bound

DLITL3 S

R

n,F <n—1 <n—1
Z ZZ3Un(P§30nAx,s EF P>?anA |E|)
small strings (k)
of length ¢

< 2_(4—)an(Kn_l)22‘7" Z 2% || Vix cb:’l’i’@) ”L?”L;‘C

small strings (k)
of length ¢

g 2—(3—)011 aon 26*n2vngcn,[ﬁ] )

LiL}

In order to derive the estimate (6.39), we insert the equations for A;ﬁ_l and A" -1
Here we have very schematically that (ignoring angular localizations and replacing
An_f by A1)

5

11

n,F <n—1
I, Z23an P>3‘7”A
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~ —A_le%nIm 3kA_lM<j (¢<n—l’qm) : é_|
_ A_l P230n((¢<n—1)2A<n—1) . %.

In the key quadratic term we can effectively ignore the high x high — low case,
then we obtain by just placing the inputs into Ltng and L[2+ Lg that schematically
4

| A7 PasyIm 0 A NG (97, =) - %Hm;u; $27 0 e )?

with analogous bounds for the cubic contribution to the equation for A;”_l and

for the equation for Ag"‘l. i

Finally, we turn to the proof of the derivation of moment bounds for the redeem-
ing energy control quantity, for which we need the following technical refinement
of certain decomposable bounds from [27].

Lemma 6.9. Let 0 < k < n — C be a positive integer or else k equals the symbol
< 0. Then the operators

P (eii'//i'nlod) : Sg — s

with mapping norms bounded by constants a,E") satisfy

Zalin) S+ k-1
k

Moreover, we have the bound

” Pk(eiinzwimm)”DLtooLg < 2—2k2—halin)7

where T1>, localizes the scale of the angle between é—l and the Fourier support of

the phase to size > 2", with say h < —10.

Proof. This follows by writing schematically

n,mod

Py (eii¢i‘z11od) _ 2—k Py (i v, Ipi,mod ) eii‘pi )
= Z—kPk (iVx P<kicw;l:,mod ) eiiwi,mad)

_ . d . n,mod
+ 275 P (i Vi Pl—c i ™00 - €51V

4 Strictly speaking, this bound is only valid provided the input frequencies in the null-form
are at most comparable to the output frequencies. However, in case of high x high — low
situations with frequency differences = I%—On, one can again easily place the corresponding
contributions into the smooth space, and one reduces to strings with only small frequency
differences by reasoning as for the angles « ;.
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., n,mod
+ 27 P (i Vs P;k+cl/fi’m0d eFVETT
=1+11+111.

Then we use that

D2 Ve PV o + D 27 Ve P e W | e S senm
k ,

to handle 7 and /7. To estimate /71, we expand further

. n,mod

2K BV P W - )

. n,mod
Z 2= kPk iV, Pklwn ,mod Pk1+C[e:|:”//i ])
k12k+C

n,mod

Z 2—k klPk(lV Pklw:rlz:ma Pk1+c[lv wn mod izl/f ])
ki1 Zk+C

and then reiterate the splitting /—/11 for the inner parentheses. Then we close
the cases I-I1 by using DL®LS" for both factors V, ¢! mod and Bernstein’s
inequality. The remaining case / I I is treated by again expanding. We note that
this infinite re-iteration procedure is required if we make no assumptions on the
angular localisations of the phases /2", However, in the present setting, we in
fact assume that the angles are bounded from below, in which case one can conclude
after two-fold expansion, taking into account the loss from the degenerate operator
An in the definition of ¥-"°?_ The final estimate is proved similarly. O

We are now in the position to establish moment bounds for the redeeming error
control quantity.

.. . -1 -1
Pr0p0s1t10n 6.10. Let n =1 Assume that the functions {AY' .} {AY o

m=1
{AY }m _o 1PN }m 1 and {dD’"} o are measurable with respect to the o -algebra
Fn—1 and that we have almost surely

n—1 n—1

> AT gy + 19 1R,) + D (AT sty + 1A Ty 1y + 192 [ 51707) < 00
m=0

m=1

Let 1[0,2cy¢] be the characteristic function of the interval [0, 2Cye] and set

n—1 n—1
-1
17" = 11[0,2005]< > (A7 MR, + 197 R,) + D (1AL sy
m=1 m=0

+||Af'f ||Y1[m] + ||q>;n||sl[m])>~

Let EC" be defined as in (6.34). Then we have for all 1 < p < oo that

”]ljn_lgcn ”L[;(Q) SVP
|(Pudpo, Pucp1) || 150, 55 - (6.40)
H, x Hy
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Proof. Recall from (6.34) that the redeeming error control quantity is defined as
=50 EC™H with

comlll . g—ony—dsny—vn Z Z Z *Ta “V <I>” +,(k),(h), (@) ”L L
)75 = s

where M > 1 is sufficiently large, 0 < v = v(M) < 1 with limp;_. o, v(M) =0,
and for each small string (k) of length ¢ we denote by r, its largest dominating
frequency.

Thanks to the angular restrictions ) ; o > — {5 and }; h; > —5, in what

0>
follows we can omit the effect of the singular operator A_l due to the angular

n,mod

degeneracy in the phases ¥y as well as in the operators z) X a/ up to paying a

factor 270" - 210" at the end. We shall henceforth suppress these angular losses,
and replace all operators A;ﬂ by A~L, it being understood that at the end of the

day we always have to have enough margin to absorb a loss of 216" . 210", This is
the purpose of the factor 27°" in the definition of £C". Correspondingly, we omit
the explicit notations («) and (/) from now on.

=+, (k)

We let CDf’i’@’(C) be defined inductively like ®,"~"'~, only that the the data
(Twoy, Thg?) arereplaced by (Pe¢po, Pc¢1), where P is a frequency projection to a
unit-sized cube at distance ~ 2" from the origin of frequency space. Analogously,
we define \I/;l’(k)’(c). Conditioning on F,_; and using a conditional expectation
version of Khintchine’s inequality (as in the proof of Proposition 6.5), the asserted
moment bound (6.40) follows immediately from the following (deterministic) es-
timate

1

ra 2
DENERI O ML RTE

small strings (k) c 6.41
of length £ ( )

5 E%CZ (Kn—] )2@25“’!21)" || (Pn¢0’ Pn¢1) || Hxl—s* XH;S* )

where C = 1 is some absolute constant. Indeed, thanks to the cutoff ]1;”_l we

4
may assume k,—1 < 1 so that we can sum up Z;‘;o e3ct (K,,_l)ze < 1. Then we
obtain that

oo
”1:"_156” ”Lg(sz) S Z ”11:"_156”’[“ ”Lg(sz) SVrP ”(Pn¢07 P"¢1)‘|HJ_5*XHX_5*
=0

Let us therefore turn to the derivation of (6.41). Fix a small string of frequencies
(k) of length ¢ with dominating frequencies r; < r» < --- < r, and associated
segments by, . . ., b,. Note that for a fixed cube ¢, the Fourier support of @, +®.©
is contained in a ball of radius ~ b2t 4+ br2"2 + ... + b,2"«. Let 2+ be such that

(M, 2+) is a sharp Strichartz admissible pair at regularity v(M). Using Bernstein’s
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inequality to go down from Lg to LJZC+ and using the fact that 27: 1bj =30+3,

we infer that
1

2_% <Z Hvt,x(bfi’(@’(o ”ings)z <27 %(blzn 4. ..buzra)%_
Cc

1

2
(Z 170t 0 0 )
c
1

S_, Z%Zr" <Z || Vz,x (D’rl’:t’(@’(cl) H i{WLE‘F) ’ .
c
(6.42)

For1 < j < aletd; be such thatr; € {k3a;» k3d; > k3a;,,} and denote (ryr;) =
(ky... k3dj +2). Then by Strichartz estimates, the multilinear estimates from Sect. 8,
and Lemma 6.9 we have that

Ve @7 OO o

_ . numod K* nmod (),
= ‘ Vix Piyr (e Wi ) iD| Pry (e Y )\P:l ©-© i
(K, (©)
< 2"a 15'31()+2 IEZ#)H H\p” ‘ HLI
+, (k) (c)
S 2" Ly B [Vex®r ™
<.
¢ ¢ ) n +,(r1ra),(c)
17a
<2 TT a2 a2, )( TT A) 1ol

I=d,+1 T=d,+1
(6.43)
where ﬁk ") denotes a bound for the estimate of the frequency-localized magnetic

potential term
ZET (P AT & F P AG" D)
and is such that

Z :3(>n) S (Kn— 1)2

k3[§3an

(n)

We also recall that the factors a, \ denote bounds on the mapping norms of

. n,mod ..
szm( eFVETY) SE s §Sr satlsfymg stm ag’;ﬂ < 1+ kp—1, and similarly

for the factors a,ﬁ}l_) - Then we claim that for all 1 £ j < a it holds that
+

1
,x,(r1rj),(c) 2
(S lwuer ™)
‘ (6.44)

J= .
s cr (Ha“;iz (ZL,)(W”’) | P P
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Using (6.44) with j = a, combining with (6.43), and square-summing over all
cubes ¢, we conclude that

2
(X170 = )
se(ITe e, ) (T )oeom

Combining the previous estimate with (6.42) and summing over all small strings
(k) yields (6.41).

It now remains to prove (6.44). Recall that for 1 < j < a we let d; be such that
rj € {k3dj, k3dj+1, k3dj+2} and that we use the notation (r17;) = (k ...k3dj+2).
We distinguish the cases r; = k3dj, rj= k3dj+1, andr; = k3dj 2.

We begin with the case r; = k3d].. For a fixed cube ¢ we use Lemma 6.9 to
schematically estimate

| (Padpo. Pudp)| 15y

HV, . rt +, (rlr]) (c)

(n) (n)
ade +Zal\3d +1

” LPL2
nmod . KE

) n, (ki ...k3d;),(c)
i|D|

- nomod
Pkw +1 (e+lwi )ql"

( —iyy

Vix Py 2
J LooLZ

%, (k1..k3d; -1),(¢)

ZIE (P AT e F P AT EN) D,

rj
1 &
a(") a® sule'I,(Z;’ﬁ<P,jA;§ ! |f\:FP’]A<n 1>HDL'L3X
=X

L2

(6.45)

K3d;+2" k3a;+1

n,=E, (ky...k3q,-1),(c)

1
[ 19ameor™ )

Sal a2 (b 25+ e+ 52) |V,

K3d;+2" k3a;+1

Ly
., (ki k3d 1), (c)
||L,°°L§,'

In order to achieve the last step, we bounded®

n,F <n—1.i <n—1
sup [z (P AT 1 # Pas™™ )|

using the equations for A7 <”_1 and A<” , where for the key quadratic contribution
to DA;’;_ we just place both inputs into the Ltng Strichartz space, and suppressing

the errors accruing because of the angular localization. Moreover, we used that by
n,%, (ky...k3q;-1),(c) . . . .
construction @, ! has Fourier support contained in a ball of radius

bj_12"=1 4 ... 4 b12"" so that we can estimate

1
(2 1m0

Ly

5 Recall from the preceding footnote that we can again effectively ignore high x high —
low interactions here.
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by Bernstein to go from Lg down to L}%, where we can then square-sum over the
caps.

Square-summing the estimate (6.45) over the cubes c, and then repeatedly using
the multilinear estimates from Sect. 8 along with Lemma 6.9 until we reach the next
dominating frequency r;_1, we obtain that

1
n,=£,(r1rj),(c) 2
(th@ 2z
c

1

4 ) 4 o £, (k1. k3d ;1) (€) 2
8 g2 ) (D e lis2)
T W w 4 3
< g =3B (b (20 4 .- )3
- <~ l_[ ak31”+2ak31”+1)2 ﬂ’j (b1_12 te b2 )
I=d;_1+1

"i(kl k3d;_y+2),(¢) 12 :
ZII liwr2) -

At this point we restart the process.
If instead say r;j = k34,+2, we obtain for a fixed cube c the schematic bound

1, (rirj),(c)

[Vea®r ™ e

n,mod K +iwi‘mod)q]n,(k1.‘.kgd./),(c)
r

= Hvt,xprj(e”p )I|D|Pk3dj+1 (e

LL3

< sup [T Py (75" | oo
K X

Ki ., n,mod n,(ky...k3q;),(c)
HVt,xZ M7 Pl (€772) 0 '
K

5 Sup ” HK Pr]( lwn nmd)
K

LPLEe

||DL°°L2 (bj12771 + - +b12r1)2x

I(i . n,mod n,(ky...kzg.),(c)
+ .

Vt,x Z HKmPde-j+l (6 vy )\I’r !

K

9
LL}

where we used Bernstein’s inequality to go down from L$° to L%. Then we may
invoke from Lemma 6.9 the following bound

n mod

)“DLOOLZ ~ (n)2 2rj

sup ||1'I P (

where we exploit the assumption about the angular localizations of the Fourier
support of the phases and we adhere to the convention of suppressing the accrued
errors. Similarly to above we may estimate

. n,mod n,(ky...k3q.),(c)
vaxz [T, I\DIPksd Jrl(e-’_”//i )\y" !

LYL3
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n =+, (kj.. k3dj—|),(c)

Gy, i, [ 912 ®

k3d +1 ” L®L2:

Combining the preceding bounds and square-summing over the cubes ¢, and then
repeatedly using the multilinear estimates from Sect. 8 along with Lemma 6.9 until
we reach the next dominating frequency r;_1, we obtain analogously to above that

1
ENGUING) 2
(S 1ol ™)
c

dj
S (n) (n) —2rjgn)(p. rji—1 r\2
M<~ 1_[ k%/+2 k3z'+1 2 j’Br,' (bj,]2f + + b2 )
I=dj_1+1

n *,(k1-k3a;_y+2),(0) 2
= lisz) "

At this point we restart the process. The case rj = k34,41 is similar.
Re-iterating the above procedure, we arrive at the bound

1
n,%£,(rirj),(c) 2 2
(3 190y Hm;)
C
dj

i1
<(TTa o 2 atas (b, 274 4.
~ (~ %1+2 K37 H'Bky 1_[] 2 et (qu 7+

+ b2 )Vf'>2’I 25

| (Pugpo, Padp) | 1o o+

where y, € {%, 2} for 1 £ g < j — 1. In order to further estimate the third product
we observe that

j—1 j—1
) b2 4+ -+ b2\
- 12 - - q
] e | (e

q=1 g=1
and that
Jj—1 Jj—1
bq2r‘1 + -4+ b2
Z rg S qu'
g=1 g=1

Hence, by invoking the inequality of arithmetic and geometric means, we infer (for
Jj = 2) that

ﬁ by24 + -+ b2" Vq<ﬁ by2" + -+ -+ b12" 2
2'q = 2'q

g=1 g=1
2(j=1) i
- (CXi < cTinn
= i 1
This gives (6.44) and thus finishes the proof of Proposition 6.10. O
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7. Proof of Theorem 1.1

After the preparations in the previous sections, the main work to prove The-
orem 1.1 at this point goes into establishing the existence of an event ¥ C
(with high probability) so that for all @ € X, we can obtain the corresponding
solution to (MKG-CG) with random initial data A{[0], ¢“[0] as the limit of the
sequence (A", A", ¢=") of solutions to (MKG-CG) with frequency truncated
random initial data T, A[0], T<,¢®[0], as described in Sects. 4.2—4.3. Since it
is not possible for the rough linear evolutions and the smooth nonlinear solution
increments to almost surely satisfy the necessary smallness assumptions to apply
the induction step Proposition 4.2 at every stage of the construction, we have to
incorporate probabilistic cutoffs into the precise construction procedure.

More specifically, in the following we iteratively construct a sequence
{ (.Aﬁj [ Y )}n> , of (possibly “eventually cut off”) rough linear evolutions and
a sequence {(Aﬁ’,é(, Ag’x, CD?’X)}n>O of (possibly “eventually cut off”) smooth
solutions to the sequence of systems of forced (fMKG-CG,) equations. The su-
perscript x shall indicate this cutoff feature of the construction procedure. At the
end we ensure that there exists an event ¥ C €2 (with high probability) so that for
every o € X, the triples (AY'Y, Ag*, @) are (non-trivial) solutions to the sys-
tem of forced MKG-CG equations (fMKG-CGy,) at dyadic level n for every n = 1.
Moreover, for every w € X, the corresponding triple (A, Ao, ¢) defined by

oo
Ay =Y AVE+ ZA% e COH + 5!
n=1
Ag = ZAS’X ey!
o0 oo
pi= DAY DL e CPHS + 5"

is then a solution to (MKG-CG) with random initial data A [0] = (a®, b®), ¢[0] =
(95, P7)-

We begin by introducing various cutoff functions that will play a crucial role in
the definition of the sequences {(AY 7, ®}” X)}n>1 and {(AVT, AY"L @00 5,
in what follows. To this end we denote by 1o, for any ; > 0 the characteristic
function of the interval [0, ©]. Then we set

10 = 0.1 (IT0ALION 12 + I T08° 101 1,2 ). 7.
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and for every integer n = 1 we define

X5<n_1 — 1[0,&‘] (”TOA()’:[O]”HYI L2 + ||T0¢w[0]“H)} x L2
n—1 n—1
+ Z AT Ny + 3 197 I,
m=1
o n—1 (72)
+ 3 IR0 gz + Z VT T00 50y ZEC"”)
m=1 =t
n—1 n—l -l
oo X 14T L + 3 145t + 3 197 s
m=0 m=0 m=0
as well as

Xe = ]1[0»8]<“Aﬁ:£(”Rn + 19X 1R, + 1P [0 g1 12
(1.3)
T R [ — 5cw).

Stage n = 0: We define (.AX L Ag X %%y as the smooth solution to (MKG-CG)
with smooth initial data

(ARF101, @F710]) = X' (THAT[0], Tog[0]) € Hy x L

provided by the induction base case Proposition 4.1. Observe that the cutoff Xf
ensures the necessary smallness of the data to apply Proposition 4.1. In particular,
it then holds almost surely that

0,
1AL X i0y + 14 llyrjo) + 190X Nl g1y < co(ll

1112 + ” s

pst2) (7.4)
< Co([|70ALI01 | gy + 1706101 gy 1)

Clearly, on an event with non-zero probability the initial data Xg (ToAL[0], Top“[0])

vanishes and in those cases, (,42’,?, Ag’x, d>?’x ) is just the zero solution.
Stage n = 1: Here we are given the smooth inhomogeneous parts (AT, .Am’x,

QX )}’;l_ and the rough linear evolutions {(A;" XL ok )}m | from the previous
stages 0, 1, ..., n — 1 of the construction. Importantly, these are measurable with
respect to the o -algebra F,,_; (see for instance [7, Appendix A]). Then we define
the rough free wave evolution Ay X by

sin(¢| D)

Apt = ) SO Tha®, Tub®] = 7" 1(cos<r|D|>Tnaw ST

T,,b“’)

and the rough adapted linear evolution ®;"* as in (6.4), where the modified phase
function ¥/ is deﬁned in terms of A;"" bx = = Y Ag X and AT =
Sl ALY 4T AR Similarly, the redeeming error control quantity EC™X
is deﬁned in terms of Afﬁ LX and A" L% Moreover, we define

OTA0] = x " (T, [0] — @X[0]).
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Observe that thanks to the cutoff x ;"‘1 , we are in the position to invoke the moment

bounds from Proposition 6.5, Proposition 6.6, Proposition 6.7, and Proposition 6.10.
Hence, for any 1 < p < oo it holds that

[AZK U, [ < VP [ Pacs Pab)] sy
11977118, 1 < VP I CPao. Pad)) ] 1-se g0
[N %100 3112 S VP [ (Padbo. Padbi) | -1 gy
[€C™ )| p S /P [ (Pado. Pagpi)| 10 gy

(7.5)

Now we use the induction step Proposition 4.2 to define (AY{, Ag”, ®§%) as
the (smooth) solution to the system of forced Maxwell-Klein—-Gordon equations
(fMKG-CGy) at dyadic stage n with forcing terms given by

n—1

n—1 n—1
A5n71 — XgX:n—l(Z A'O”YX)’ A;n—l — XgX:n—l<Z Azl,rx 4 ZAZ’;;()v

m=0 m=1 m=0

n—1 n—1
¢<n—l _ XgX;n—l (Z (Dtrn,x + Z (D;"’X),
m=1 m=0
XX A
K O e
and initial data for the scalar field given by

XE xS @ 0].

Note that the cutoffs x/” x,~"~! guarantee that the necessary smallness conditions
in the statement of the induction step Proposition 4.2 are satisfied. Importantly,
Proposition 4.2 also yields a bound on the § 11n] and Y![n] norms of the solution
(AL, Ag’x, @Y%), Specifically, we have almost surely that

H-Azf HSl[n] + ||«48X ”Y'[n] + I\d)?’x ||sl[n]

< Co(Ilx a7 AL R, + X O, + I D100 112
n., <n—1 w n,<n—1gcpon,x (76)
I T O oo e + 220 ECTY)

< Co(IAL R, + 19 IR, + 19X 101 112 + 1T 10N s, s + ECX).

Again, the cutoff clearly x/ X;”_l vanishes on an event with non-zero probability,
and correspondingly (Aﬁjﬁ(, AS’X, oy %) is just the zero solution in those cases.

We carry out this construction for every integer n = 1. Then it remains to prove:
(i) The series of rough linear evolutions of the random data

o0 oo
ZAzf and Z@;”X converge in L2 COH¥,

n=1 n=1



Arch. Rational Mech. Anal. (2023) 247:68 Page 91 of 109 68

and the series of smooth nonlinear solution increments
o0
D (ABE AGT, @) convergesin Ly (S' x ¥! x s1).
n=0

Hence, for almost every w € 2 these series converge in C,0 H}, respectively in
Stx vyl x st
(i) There exists a small constant 0 < ¢ < 1 and an event ¥ C 2 with

P() 21— Cexp(—eD2), D i= 1@ D)l gy, st + 10, S0l s pyer»

sothat forevery w € X none of the elements of the sequence { (A;l £ X ) }n >

and of the sequence {(Ax 5 .Ag’x, CID?’X)}n>0 are trivially set to zero in the

above construction procedure In particular, then for every w € ¥ and for every
n = 1 the triple (A}, Ay”, ®5%) is a (non-trivial) solution to the system of
forced Maxwell-Klein- Gordon equations (fMKG-CGy) at dyadic stage n (with
non-trivial forcing terms). Moreover, for every w € X the triple (A, Ao, ¢)
given by

o0 o0
Ay =) ARK 4D ALY e COHS + 8!
o0
Ay = ZAS’X ey!
oo o0
pi=) DL Y D e COH? + 5!

isasolution to (MKG-CG) withinitial data A [0] = (a®, b®),¢[0] = (o7, 7).

Proof of (i): We begin with the rough linear evolutions. For any n = 1 the energy
estimate for the free wave evolution implies that almost surely

HAgﬁ( ”COHr ~ “ (Tha®, T,b”) ” H;xH}"l .

Moreover, for any n = 1 we obtain from the mapping properties of the renormal-
ization operators in Proposition 6.1 that almost surely

|2 N cony S 1Tad Tud?) | a1
Note that these bounds are trivial on the event where the cutoff x,~"~! vanishes.
Thus, we have for any No = N; = 1 by the almost orthogonality of the frequency
supports that

Ny N>
An x + P
n; o L2,COH; gl " L2COH
N> 1
(S 1stzn) [+ (2 o2 )
n=N n=N LZ)
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N> 1 %
< (ZH(TM Tub) g - ) <Z||<T¢0,T,,¢1)|H;Xﬂs )
n=N} ® n=N

L2 ‘

L2

®

1

00 ) % 0 5 2
(X1 20 ) + (X Bt Pat0 )
n=N| ! n=N ) ’

which converges to zero as Ny — oco. Thus, the series Y oo | Ay ¥ and Y 0o | @;'%
are Cauchy in L2 CYH?.
Next, we turn to the smooth nonlinear components. Using the key bounds (7.6)

on the solutions (A% x5 s Ag X, @y %), n > 1, along with the moment bounds (7.5),
we have for any Ny = Nj = 1 that

N>
(AL A, @)
n=N, LZ(STxYlxsSh)
N
S D A A @ i |,
n=N;
N
S Z @5 N grpy + AT N sy + IIAS’X llyi[n 12
n=N;
N
<y (HIICD?’X[O]IIH; O g, |2 + |IA%L IR,
n=N;
T 10 s 2 + € )
Na
S <||(Pn¢o, Pud))| gy1-5e g 5e + || (Puat, Pub) ||H;—6*XH;8*)-
n=N

Since 1 — 8, < s < 1 by assumption, we may sum up the last line and bound it by

> 3
< > (Padbo. Pugr) ||2;.XH;71 + | (Paa, Pub) ||ngH;1> ,

n=N1

which converges to zero as N ' — 00. Thus, the series Y oo o (Ay¥, Ay %, &%)
converges in L2 (S! x Y1 x S,

Proof of (ii): We need to show that there exists an event ¥ C 2 (with high prob-
ability) on which none of the elements of the sequence of rough linear evolutions
{(.Aﬁ L, onk )} are trivially set to zero and on which none of the elements of the
sequence of smooth nonlinear components { (AY{, .Ag Xy X)} are trivial. In
view of the definitions (7.1)—(7.3) of the cutoffs Xs s xS I and Xs as well as in
view of the crucial bound (7.6) on the smooth nonlinear components, this is the
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case on the event ¥ C 2 defined by the property that for all w € % it holds that

o0 oo
IToAL 0N 12 + 1T0@ 100l 12 + D ALK IR, + D 1) X Ik,

=1 =1
00 [ee) ! noo (7'7)
+ ) IR0 g2 + Y NTadT0M yr-sa oo + ) ECTX e
n=1 n=1 n=1

Here the main point is that (7.7) together with the key bounds (7.4) and (7.6) on
the solutions automatically ensure that the cutoff 1 c,.1(-) in the definition (7.2)
of X;”_l does not vanish on ¥ at every stage n. To determine a lower bound on
the probability of the event ¥ we now establish L bounds for the expression on
the left-hand side of (7.7) and then invoke the tail estimate from Lemma 2.2. By
the moment bounds (7.5) from above we have for all 1 £ p < oo that

o0 o0
H IToALION 12 + 1T0¢” 10N 12 + Y IATF IR, + D 19} Ik,

n=1 n=1

oo [e°] oo
+ D NP0 g1 g2 + D I Tud 100 1o, o0 + ) EC™
n=1

n=1 n=1

LY

o0 o0
ST ALION L2 s 12) + 1T0@ 0N L wrzy + D WA g, + D NP5 pzg,

n=l1 n=1

o0 o0 o0
+ D NREION 2 1 r2y + Y ITadTOMl o gy1-se s gyey + D NEC X2
n=1

n=1 n=l1

SVp (ll(Pgoa, P<oD)ll g1z + I1(P<obo. P<obD 12

[e¢] o]
+ ) Paa, Pab) 1o yyove + D 11 (Pudbo, Padbi)l 15 XH;a*)

n=1 n=1

S VPG D)l gyt + 1@0, 8D g 1)

where in the last line we again used the assumption that 1 — 8, < s < 1 in order
to sum up in n. By the tail estimate from Lemma 2.2, it follows that there exists a
small constant 0 < ¢ < 1 (whose size depends on the size of the small constant
0 < & <« 1) such that

P(5) £ Cexp(—eD™), D= 1@, b)ll gyt + 160, S0y, et

This finishes the proof of Theorem 1.1.

8. Multilinear Estimates

In this section we establish generalized versions of the multilinear estimates
from [27] that allow for one or more rough inputs with redeeming space-time
integrability properties.
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8.1. Core Generic Product Estimates

We begin with several generic product estimates that are immediate conse-
quences of Holder’s inequality and Bernstein estimates.

Lemma 8.1. We have that

T e A P I 19, el

TH WY +Rk2

(8.1)

1 () 8(k— ki})A—8lki—k (1) (2)
| Peg g )” d A e im0 ) iy,
(8.2)

1 2 — ; — — 1 2
| Pl oy >>|| S ppemaxtiab =l gDy o gl g
’ LiW, O +Ry,

(8.3)

2['1)(2

1 2 — ) y— _ 2
| PeVeagy och] |y S 2tk maxtkibg o=kl oty o g2 )n
L x +Rk2

(8.4)

Proof of (8.1). We may assume that ¢, is rough and that k; = 1. Otherwise, the
estimate follows from (64) in [27]. We begin with the low-high case k; < ky — C.
Then we obtain by Holder’s inequality and Bernstein estimates that

“ Py (Ak1¢k2) ”L}L;zc S ”Alq ”L;ZL% ||¢k2 ”Ltng

1 1
<k —(5—200)k;
SR AL 27T R gy IRy, sir
L?H?

t X

— L ky—k
S22 @A ks Ny, sir-
L?H2

X

In the high-low case k» < k; — C we obtain in an analogous manner that

ki —k
” Pk(Ak|¢k2)”L}L§ S, ||Ak1 ||L%L§||¢k2||L%L§C 5 2" ( " 2)”Ak || Hl ”¢k2”L[2L§

X

k1—k:
Samzhi—kja | 2 196 5o

x

Finally, in the high-high case k1 = k> + O(1) > k we bound by
” Py (Ak1¢k2) ”L}L2 N 22k ” Py (Ak1¢k2) ”
< 2541 Al 212 s ||L;L§_
Lih—
S22 ONAL kg Ny, sir-
L2H?

t Hx

Proof of (8.2). By symmetry considerations and the estimate (67) from [27], it
suffices to consider the two cases
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(i) ¢y is rough (k1 = 1) and ¢ is rough (ks 2 1),
(i1) qb,ill) isrough (k; = 1) and ¢Ig) is smooth.

We begin with the first case (i). For high-low interactions ky < kj — C, we estimate
1) () Yy || (1) 4 (2)
IPePoDl 1 5 2 1000

(L — 1 2
Pl [N e PSP Yl Y

—(A=8,) (k1 —k 1-8, (1 2
A [ PR s PPy

(L — 1 2
S 2O s g Ry sir-
1

For low-high interactions we can proceed in the same manner by symmetry. For
high-high interactions k1 = k2 + O(1) > k we bound by

1 2 1 2
Tl S 2740 00 | 21
LpA—(1— — 1 2
522k2 A=k 91 = oo 2 i W2
A 1 2
<272 0 o 107 LRy, -
ky

Now we turn to the second case (ii). For the high-low interactions k» < k| — C, we
bound

]6 1T

HP<¢£})¢(Z>>H S22l ,||¢”||76

24
X

1 2
2246, I %248"2”«;% Iy

—Bki—k) (n Bk
Bk 2)(248 g, || ;1‘)|I<l>k2||s1

A

A

19
p—ix ki) (2 35k 2~ (36 - 200 w5 )19 s

19
— 5z (ki—ka) (1)
<2TmTR ”¢k1 ||Rk1Str||¢k2 ”Sliz.

The bounds for the low-high interactions and the high-high interactions are more
of the same. o

Proof of (8.3) and (8.4). These are generalizations of the estimate (65) in [27].
The proofs are similar to the proofs of (8.1)—(8.2). |

8.2. Core Bilinear Null Form Estimates

Here we present several generalized bilinear null form estimates. We begin with
the generalization of the multilinear estimate (131) from [27].
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Lemma 8.2. It holds that

2 3 2 3
H PklN(¢( ) ( ))HNk < k198 (ki —max{ky.k3}) o —8lk2 kzIH¢( )||S£2+Rk2 ||¢I(<3)”S,}2+Rk3

(8.5)

Proof. This follows from Lemma 8.4 and Lemma 8.5 below after localizing the
modulations. m]

Similarly, we have the following generalized version of the multilinear estimate
(132) from [27].

Lemma 8.3. The following holds

(D (2) k (D (2)
|7 =HE DN @ 80y, S 28 sy wr 196 sy T She = C
(8.6)
Proof. We write

I =HIN @Y 62 = > 055 cN Qo). ¢

Jj<ki+C
2
+ Y 04N 05 ct)
j<ki+C
=7/+11.

Due to the multilinear estimate (131) in [27], we may assume that ¢,$) € Ry,,and
in particular that k1 > 0.

Estimate for I: Freezing the output modulation to j; = j — C and summing over
Jj £ ji1 — C, we may localize the factors Q<]1+c¢(l) ¢]£2) to caps k1,2 of diameter

j—k
~2"7" and aligned or anti-aligned. Then for j; < k1 + O(1) estimate

| > NP 0jiicdl). Pt

K1~=ky
j1—k
<2 %"t > | PoQcjiscay) ”L%Lg@ | Potiy) ”L?OL%
K1~*tKp »
. 1
k j1—k ’ z
S 277]2” 7 gkl <Z || VX PK] Q<4/1+C¢I£:) ”i%LE) (Z || VX PK2¢]E§) ||i?OL)2()
K2

J1=k1

LIRS S
2729 Gk o) 66" 1s; -

N

which can be summed over j; < k; + O(1) to give (more than) the desired bound.

1=k, .
Note that the factor 2”2 in the second line comes from the null-structure, and

7" in the third line comes from Bernstein’s inequality passing from
L2L% to L?L%° and exploiting the angular localization. When j; > kj + C one
argues similarly but without angular localizations.
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Estimate for I1: This is handled by placing the second factor Q> ;_ Cqﬁ(z) into Ltz, .

and the first factor Q; ¢(1) into L2L%°, thus placing the output into L!L2. The
details are similar to the precedmg case. O

The following is a variant of Lemma 12.4 in [27], which follows easily from
the formulation there in case all factors are in the space S,lj, and which suffices for
the purposes of the core multilinear estimates in [27].

Lemma 8.4. (Core modulation estimates) The following estimate holds uniformly
in the indices j;, ki, where jp, j3 = j1 + O(1):
1 3
(2t N (Q<piy)- Q<)

S I IRY T P 1 POv

In addition, when j > kyin + C, we have the improved bound

|<Q]1¢(1) N(¢(2) ¢(3))|

S 2ot 0] 102 108
o0 3

Proof. By symmetry we may assume k» = k3. Then we may assume that ky > 0,
since else the estimate coincides with the one from [27]. To begin with, assume that

¢(2) € Rx,. By duality, it suffices to place the null-form P, Q j N (Q < ]2¢>(2) 0
_1
¢kj)) into X (1)’ 2. We verify this for the different frequency interactions.

High-High interactions k = k3 + O(1) = k; + O(1): Assume first that j; <
k1 + O(1). Localizing the inputs further to the upper or lower half-space, we can
further write this as

+ (2 3)y 2 + 40
Py QN (02,0, 02,80 = D PuQiN(0Z,00 0T, i)
Kkp~=tk3
j1+k
where the caps k2 3 range over the collections of spherical caps of diameter 2 ke
Then we bound the expression by

273 Py 0N (0F 00 0% 0] 2.
<272 Y 05,00 e

Ko~k

+ (3)
Q<j3 VP ”L?CLf

1
k

<240 (0% ) (Shoz, vt lirss)
K2

on account of the Cauchy—Schwarz inequality. Note that

1

2 81—kl (L
(Zh020@ulins) sz imbiz by,
K2
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1

2 2
<Z ” Qi:jz de)lg,)l(s ||L§’°L}) 5 26*k3 ”¢IE:3)’)K3 ” S,l3+Rk3 .
K3

The desired bound follows easily from this, if we choose ¢ and §, sufficiently small.
The estimate when j; > k; 4 C is similar, except that it suffices to localize to caps
of diameter ~ 2K1—%2,

High-Low interactions ky = ki + O(1) 2 k3 + O(1): Assume ﬁrst that j; <

k3 + O(1). Then we can localize the factors to discs of radius ~ 2 , and either
aligned or anti-aligned. If k3 > 0, we use the same bounds as in the precedlng case,
which gives

271‘7] ” Pkl leN(Q<J2¢(2) Q</3¢(3)) ||L,2_x

_J1JiTks + 2) + @3)
$2722 Z ”Q<jzvx¢k2,f(z ”L,ZL;?O ||Q<j3vx¢k3.K3||Lr°oL§
Ka~=EK3
1

_k 2
sty ||Qi[,-z¢,£§?m||L,zL.so> (Z |0, %o i)
K2

Combining with the bounds from the preceding case, we infer the bound

27F | Py 0, N (0%, 62, 0%, 6 Iz,

< ok 2—3 9=blj1—kaln—(} —400)k2 s

Ol 20108

k3.k3 | Siy Ry
which is (more than) the required bound. In case k3 < 0, we use the same bound

provided |k3| < oka, while we place the high frequency term Qf i Vﬂ&,ﬁ?xz into

L?OLJZC and the low frequency term Qﬁ i Vy ¢1S’,)K’; into L%Lio, provided |k3| = ok».
The low frequency gain neutralises the loss of 2%¥2 coming from the high frequency
term.

If j1 > k3 + C, one argues similarly but without the angular localizations.
Low-High interactions ks = k; + O(1) = kp + O(1): This can be handled by
using identical estimates to the preceding case, changing the roles of ¢>(2) ¢(3) if
necessary. m]

Lemma 8.5. The following estimate holds uniformly in all indices:

” Q<j1—CPk1N(Q11¢(2) Q<4/1+C¢Ig)) ||Nk|

SJ 2k1 2—5\]'1 —kz\25(k1—max{kz,k3})2_5\k2—k3‘ ”(p’g) ” S/}2+Rk2 qu]((:) ” Sﬁ3+Rk3 .

2 ¢(3)

Proof. We consider the case when at least one of by, is in the space Ry, j =

2, 3. To begin with, assume ¢k2 € Ry,.
Low-High interactions ky < ks, ki = k3 + O(1): Of course we may assume
k3 > 0 since else the estimate is covered by those in [27]. If ji < k» + O(1), we
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. . . j1=ko
may localize the Fourier supports of ¢y, , ¢, to caps k2 3 of diameter ~ 272 and

aligned or anti-aligned. Then we get

1
(ZIveraosos; ) 52 4210,
K2

1

2
(Z19Pa0so 1) 202 20 g2
K2

Interpolating gives

1

2 LS
(Z ||VxPK2Q,1¢k2) ||L2L3> < 233 +200)k 5~ 5 5k ”¢<2> ” .
K2

Furthermore, we have

1

2 2 _ s
(Z 1920 0380 i32g)” 2010 g o,
K3 .

Since we gain 2 * from the null- structure, we infer the bound
(2 3
| Q<ji-cPaN(Qjidr Q<jivcdiy )y,
@) (3)
s ”Q<J'|*CP’<1N(QJ'I¢I<2 ) Q<j1+C¢k3 )HL}L§

. 1
—k 2 ’
(D1 ) (15210 s )
KD 3

Since k1 = k3 + O(1), the above bounds allow us to bound the preceding by

by, ka
Sk L) ”‘P}E? ||Rk ||¢1£ ”5113-|-Rk3,

which is as desired if o, 8, are sufﬁciently small. If j; = ky, we can proceed

k
similarly without the extra factor 2" from the angular gain before.
High-Low interactions ky 2 k3, ki = ko + O(1): Here 1f ]1 < k3 + O(1) we can

localize the two factors ¢(’ )

preceding, we bound

to caps of diameter ~ 2”57 Then similarly to the

||Q<./'1—CP1<1 (Q/1¢(2) Q<j1+C¢IS))||Nk|
= HQ<j.—cPk1N(Qj|¢1g)» Q<j|+C¢1g))”L}L§

| 1
ik 2 :
s2' (Z VP 08 Uim) (Z V<P 0591 Hi?L?)
K2 3

J1=k

S r &l L] 17l P
3 D
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The preceding can be rearranged as

j1—k ks —k
2 ]4 2 2(10(f+5* )k22 2

||¢;Ef) ” Ry, H ¢IS) ” Se, Ry

again acceptable if o, 8, are sufficiently small. In case j; = k3 we argue similarly
without the angular gain.
High-High interactions k, = k3 + O(1) = ki + O(1): Here we can localize the

factors ¢(] ) to caps «; of radius 272 : k2 either aligned or anti-aligned. Then we
estimate

| Q<ii—c PuN (08 Q<ji+cdyy) I,
= ||Q<j1-cPk.N(le¢;§)v Q<]'1+C¢I(cj))HL,1L§

k k
52712/14—1 —ka Z ||VXPK2le¢]E§)||L2LI,T2||VXPK3Q<j1+C¢I£z)||Lr2L2
1 Lx

Ky~+K3

by Bernstein’s inequality as well as the gain from the angular alignment and the
null-structure. Using interpolation we get

3
| VP, Q100 I " < |lvxPK2le¢,£§)||z;J ||VXPK2Q,1¢,Q’||L2L6,

and square summing over k3, we get

1

O S e N LT P
o LiLy

while we have directly from the definition of Ry, that

1

2 4
<Z |V Py Q<j1+C¢12) “Lng) S 242 ||¢1S) Is; Sk+Ri
K3

Combining these estimates and also using Cauchy—Schwarz to reduce to square-
summation over the caps, we infer the desired bound by also observing that neces-
sarily j; < k1 + O(1):

” Q<j17CPk]N(Qj1¢(2)’ Q<J.1+C¢]§3)) “Nk

K
S27

2( +3 8*+5‘7)k2277”¢k2) ||Rk ”d’]ﬁ ||S’:3+Rk3

JL Sk
—=2%27% 20~ A+ 38,4+50)k ||¢/£ ”sz H¢/§f) ”S,§3+Rk3’

which is easily seen to be of the desired form if §, o are sufficiently small, recalling
that j; < k; + O(1).
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To conclude the proof, we also need to deal with the case when qﬁ,g) belongs
to S,iz but (;5(3) is in Ry,. This case is much easier though, because then it suffices

to place Q ,lqﬁ(z) in L2 and exploit the redeeming bounds for ¢(3) We omit the
details. |

Finally, we present the following generalizations of the multilinear estimates
(134) and (135) in [27].

Proposition 8.6. We have that

|4 =) PN @2 D) o

k1 ~8(ky —max{kz,k3}) n—8lka—k3 | (2) 3)
PV 2 183" st + o, 105 15t 4Ry

8.7)

2 3
M N @ 8102
S 2hptmmatla Dyl Kl gD G e g sy ok, k> maxtkeks) = €. (8.8)
2 - 3 b

Proof. We start with the first estimate (8.7). To this end we observe the identity

A= HIN (B b)) = Y. QiN(Q<jcti. Q<jcty))

JjZk+C

2 3
+ Z Q<j+0(1)N(Qj¢;E2), Q<j+0(1)¢1£3))

+ Z Q<]+0(1)N(Q<]+0(1)¢k2 Qﬂbm)

The first term on the right-hand side does not contribute to the norm || - ||gz due to
the definition. Consider then the most delicate case where kp = k3 + O (1) > k.
We only need to consider the case where at least one factor is in the space Ry;. By
symmetry, it suffices to bound the term

2 3
>, Q<j+0(1)N(Qj¢;E2), Q<j+0(1)¢;£3))
J

We may assume that ¢(2) € Ry,. Hereif r > ki + 2l and [ > ky — ko, we use the
estimate

2
2% ( Z || Pe e Qk1+2/+0(1>N(Qr¢;g), Q<r+0(1)¢g))||2mn§c>

keK;
1

2
( Z Z | Py Qk1+21+0(1)N(Qr¢;g?C2, Q<r+0(1)¢1§?C3) ||2DL,‘L};°>

k€K Cr~C3eCy (1)
k(Ca)€e2k

N\

1 1

2 2
S2k|+l—k22%k1 Z HQrvx¢]g?C2”i,2LE> ( Z HQ<r+0(l)Vx¢]2?C3Hi'ZL(é> s

CreCyy (D) C3eCyy (D
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3
where we have used Bernstein’s inequality to pass from L} to L% and we used the
fact that

1
22 Py« Ok +2+0mLy Ly € OLJ LY.
Then use the estimate
1
(2) 2 k1+21 r k1+ 8ok 2)
(X 10vaeliy;) 52 a2,
C2eC ()

while we also have the improved Strichartz type estimate

1

1=k
(X 10esonTeteling) 2028255 o2y
x 3

C3€Ck1 )

Combining the preceding estimates we infer the first bound we need

1

2
25(2 | Pe e Qk1+2l+0(l)N(Qr¢lg)’ Q<’+0(1)¢’g))”é”w)
KkekK;

1+2[ r ki —k3

< 2t g ptaglon= RN [ )]
3

Using the assumption k» = k3 4+ O(1), the preceding simplifies to

< kG~ Dy T

521 161,

This is good in terms of the decay in k; but bad since overall we leak d, in terms of
the frequencies; this is as expected since we have not used the redeeming features
of ¢(2) which we do next. Using interpolation between L2L°o and L? _, we obtain

1,x°
the bound

1
+2

2 1
(2 10veleling) s @ortomie ki),

CreCry (D)

‘We then infer the second bound

1

2
21 (Z | Pér e Ot rars 0y N (Qr 2 Q<’+O(“¢’g))||2m"”°>
KeK]
. 1

2 2
SEA (D DI A RTINS I () SR IO 9

CreCyy 0] C36Ckl(l)

SR e R o 10f)
2 3

This simplifies to

1 _1
< 2ki1939@x—3)k2 ||¢/g) “sz chzg) ”sle‘
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Interpolating between this bound and the preceding one results beyond the factor
2k in exponential gains in [, k; + 21 — r, as well as —kp, which is more than what
we need.

Consider next the second estimate (8.8). For symmetry reasons, we may assume
that k; = ko + O(1). We need to bound

Z P, QiN(Q<j- c¢k2 O<j- C¢(3))

i<k+140(1)

0z

We can further restrict the summation to ] < k3 + O(1), and we can localize q)(] )

J =2, 3, to angular caps «; of size ~ ZT and either aligned or anti-aligned. The
whole expression then also has Fourier support on Ck>, and square summation over
caps is handled by using the square-summation over caps inherent in the definitions
of the norms || - || ]12 and | - || Ry, - Then taking advantage of Bernstein’s inequality,

we have the bound (for « a cap of radius ~ 2%)
| P, KQjN(Q<j—CPk2 quﬁg) Q<j—c P, mab,ﬁ?) o,
<2 2 ki— 12 23k1 ||Q<] CPk2K2¢k2 “L2L6”Q<J CPk3K3¢k% ”L2L°°

Square-summing over the caps results in the bound

i~k k.
SPAVIES 3+ ||¢k ||sk +Riy ||¢’k3)Hsk13+Rk3’

which can then be summed over j < k3 + O(1) to result in the desired bound. O

8.3. Core Quadrilinear Null Form Bounds

Here we present the generalized versions of the key quadrilinear null form
bounds (136)—(138) in [27].

Proposition 8.7. The following quadrilinear form bounds hold under the condition
k<ki—C:

(O He (b)) a0 Hk (0701 V)|

S P o P g PP 1 PV )
O M (0 0 ). s (380 Vi) |
1 3
=~ < 2°(k-mintki) ”‘PS)”S‘ TR ||¢’/§f) H 5,12+sz ||¢/$) ||s,§3 ” Vky “N* (8.10)

(O8) ™ Ha Vi (0, Vi), Hicde (9901 V)|
S2CmED g e 166 st vrg 196 st [l @10
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Proof. We present the details for the derivation of the first estimate (8.9). The
remaining estimates (8.10)—(8.11) can be handled analogously.

We microlocalize as in (148) in [27]. In partlcular the modulation of Hk( )
is restricted to ~ 2/ and we set 2/ 1= 2° 5 . We may assume that at least one of

the inputs qﬁ(l) or ¢(2) are in the space Ry, j = 1 or j = 2, and in particular that
ki > 0. Fol]owmg the argument in the proof of (136) in [27], we consider various

situations depending on the angle between ¢ ) and ¢(3)
Case 1: Z(¢?, p3) mod 7w < 212k=k2 Agin [27] we obtain the bound

S b Z ” PCk(l)Q<j_C¢/(c:) ”L,ZLgo ” P*Ck(l)Q<j—C¢lg) ”L}Lgo
Cr ()

x sup Y 1PeeiyQ<j-cey) |2 P-cotr @<i-c ¥l 2-
Cp (D)

By symmetry, we may assume that the first factor q&,g) € Ry,, while we use control
over || - || s for the second factor, potentially with a 2%+%2_]oss. Then we can bound
2

270 3 | Py 0<j-cdi, | 21| P-cey @ et | 121
Ce(l)

ko Kk
<27 kan 2+2 222 26*k2 ||¢1£11)”Rk ||¢’£ ||S112+Rk2.

Completing the estimate as in [27], we arrive at a bound that is indeed much better
than what is required, due to additional exponential gains in —k.

Case 2: Z(¢?, $3) mod 7 < 212k=k3 Here we may assume k3 < kp, in light of the
previous case. This time we use the fixed-time bound

2978 Y | Pow Q<i-cdi, | | P-cor Q<= | 2
C)

x Y |Peyw@<j- C¢k3)HL°O | P-cpayQ<j- CI/fk4”L2
Cy ()

Applying Cauchy—Schwarz in the second sum over rectangular boxes in order to
reduce to || Yk, || 2 and then integrating in time and using Holder’s inequality, we can
estimate things as before by using the L2L°° based norm for the factors ¢>(1) ¢(3)

and L{® L% for ¢k2)(m0re precisely, we use square sums over pieces microlocalized

to rectangular boxes). Note that if the other high-frequency factor d),g) is in Ry,
and not the first one, we simply interchange the roles of these factors. Then the
preceding expression can further be bounded by

<2k - E bk ik 2k gtk ||¢;§})||Rk s Hsk Ry, vk, HN* .

This can again be summed over all relevant parameters to give (more than) the
required bound.
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Case 3: 2! > Z(¢?, ) mod 7w > 2/2k—min{k23} - Again we may assume that ¢,£11)
is in Ry, , since both ¢,§}) and qb,g) form an angle >> 2/2Kk—mintk23} mod 7 with ¢Ig).

Set Z(¢?, ¢3) ~ 2 In analogy with [27], and specifically Case 3 in the proof of
estimate (148) there, we infer the bound

< 2~2kp=2pl pminlk.0}p— 5% pkaths 1, 11y I 5 ¥ |

* 9
Ny,
where we have

Ia(l') 230020 g | Ry, s “Sk1 '
3

It is then straightforward to sum over I’ < [+ C < O(1) to infer the desired bound.
O

We conclude with a generalized version of the multilinear estimate (141) in
[27].

Proposition 8.8. (Additional core product estimate) We have that

H (I — Hp,) Py, (¢;§§)3r¢g)) HD% INY

_ 2 3
SN L, 190 st sk, K1 Ske=Co (812)

Proof. From the definition, we have

2

(I = Hi) P, (8 01y

3
"0,5

)) = Z Pkl Qj(Q<j—C¢]g)atQ<j—C¢]£3

jZki+C

+ Z PklQ,-(Q;jfc@ﬁf)arQ<./—c¢1$))

Jj<ki+C
2 3
+ > P00 %05 o)
j<ki+C
=1+11+111.

)

Recall that we have
2 2
17, = sup 2 P Qura 1o

In particular, the term 7 does not contribute. We treat the term /7, the remaining
term /11 being similar. Consider then the term /7. We need to estimate (with

_ J=k

2
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1
-

i ik 2 2
2420k (E | P Py, Q,-(Q;,,cdnﬁf)&tQ<j7c¢,£f))||L;L§,c)
K
1

2
SRS VDS (Z | 2 P, Q]<leP%i”azQ<jch“3¢£?>lli;Lse> ’

lej C Ka~EK3 K

. Jitk
where the caps k7 3 are of diameter ~ 22 %2 Then from the proof of Lemma 8.5
recall the estimate

J 3 1 1
> (Slesralll, Lz) sty g,
and furthermore that we have

1

2 5 3
(Z100<s-cPotlizss) <2100 g
K3 -

Then use that

1 1

2 3 2
(Zierrerls) <222 (S raesrliy.)
K
522 2k1”P’<1QJfHL 12

and apply the Cauchy—Schwarz inequality to ) as well as Bernstein’s in-

- Ky~=k3°
equality to pass from L,1 L/ to L,1 L%. It follows that
1

i 2
22’ (ZHPI Py 0(Q3 oy, a;Q<,~_c¢>,£§>>||i;Lio)

3k

< - DY L DL IR DI (27725*1(2)}(2( +200)k2)4 l6C

S1o8 1 n,

Nz 2*ﬁ2(5*+20r17 )k2||¢]g)HRk2 ||¢IS)HS,".3+R;<3’

which is good provided that ¢(2) € Ry, and k; = 0. If k; < 0, one places
Q>j C¢ ) into L2 and 0,0 - C¢( ) into L2L6 since the gain of 2_%3 is then
enough to neutralize the loss of 2%+k2 The case when ¢>(2) € Sk2 but ¢>(3) € Ry, is
simpler since one only needs to place Q> j—C¢k2 in Ltz’x while using the redeeming

version of L2L6 for 9, Q- C¢(3) o
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