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Abstract

We establish probabilistic small data global well-posedness of the energy-

critical Maxwell–Klein–Gordon equation relative to the Coulomb gauge for scaling

super-critical random initial data. The proof relies on an induction on frequency

procedure and a modified linear-nonlinear decomposition furnished by a delicate

“probabilistic” parametrix construction. This is the first global existence result for a

geometric wave equation for random initial data at scaling super-critical regularity.
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1. Introduction

The study of the local and global well-posedness of nonlinear dispersive and

hyperbolic PDEs for scaling super-criticial random initial data has seen an enor-

mous amount of progress in recent years. The goal of our work is to consider the

energy-critical Maxwell–Klein–Gordon equation, a prime example of a geomet-

ric semilinear wave equation, and to establish a probabilistic small data global

well-posedness result for scaling super-critical random initial data.

The energy-critical Maxwell–Klein–Gordon equation on (1 + 4)-dimensional

Minkowski space R1+4 models the interaction of an electromagnetic field with

a charged particle field. The electromagnetic field is described by a real-valued

connection 1-form Aα : R1+4 → R, α = 0, 1, . . . , 4, and the particle field in terms

of a complex-valued scalar function φ : R1+4 → C. Upon introducing the curvature

2-form

Fαβ = ∂α Aβ − ∂β Aα, 0 ≦ α, β ≦ 4,

and the covariant derivatives

Dα = ∂α + i Aα, 0 ≦ α ≦ 4,

the Maxwell–Klein–Gordon system of equations reads as

{
∂β Fαβ = Im

(
φDαφ

)
,

Dα Dαφ = 0.
(MKG)

Here we use the standard conventions of raising and lowering indices with respect

to the Minkowski metric diag[1,−1, . . . ,−1], and of summing over repeated upper

and lower indices.

The system of equations (MKG) is invariant under the scaling transformation

Aα(t, x) → λAα(λt, λx), φ(t, x) → λφ(λt, λx) for λ > 0.
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It also admits the conserved energy functional

E(A, φ) :=
∫

R4

(1

4

∑

α,β

F2
αβ + 1

2

∑

α

∣∣Dαφ
∣∣2

)
dx,

which is invariant under the above scaling. For this reason the Maxwell–Klein–

Gordon system of equations is referred to as energy-critical in four space dimen-

sions.

Another important feature of the (MKG) system of equations is its gauge in-

variance. If (Aα, φ) is a solution to (MKG), then so is (Aα − ∂αγ, eiγ φ) for any

suitably regular function γ : R1+4 → R. This yields an equivalence relation on

the set of pairs (Aα, φ) satisfying (MKG). In order to uniquely determine the solu-

tions to (MKG), we therefore have to add an additional set of constraints to fix the

ambiguity arising from this gauge invariance.

Imposing the global Coulomb gauge condition

∂ j A j = 0,

(MKG) becomes a system of wave equations in the dynamical variables φ and A j ,

j = 1, . . . , 4, coupled to an elliptic equation in the temporal component A0, given

by




�A j = −P j Im
(
φDxφ

)
,

Dα Dαφ = 0,

	A0 = −Im
(
φD0φ

)
,

(MKG-CG)

where P jv = v j − ∂ j	
−1∂ℓvℓ is the Leray projection to divergence-free vector

fields. In the formulation (MKG-CG), at any fixed time the temporal component A0

is uniquely determined in terms of the dynamical variables (Ax , φ) by the elliptic

equation. It therefore suffices to prescribe

Ax [0] := (Ax , ∂t Ax )(0) = (a, b), φ[0] := (φ, ∂tφ)(0) = (φ0, φ1)

as initial data for (MKG-CG) with a and b obeying the Coulomb gauge condition

∂ j a j = ∂ j b j = 0.

Relative to the Coulomb gauge, the nonlinearities in the wave equations for

the dynamical variables in (MKG-CG) have a favorable algebraic structure, the

so-called null structure, which damps the worst interactions. Schematically, the

system of equations (MKG-CG) is of the form





�A j = −P j Im
(
φ∇xφ

)
+ “cubic terms”,

�φ = −2i A j∂ jφ − 2i A0∂tφ + “cubic terms”,

	A0 = −Im
(
φ∂tφ

)
+ “cubic terms”,

where the quadratic terms in the wave equations for Ax and φ exhibit the null

structures

P j

(
φ∇xφ

)
= ∂k	−1Nk j

(
φ, φ

)
,
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A j∂ jφ = Nk j

(
∂k	−1 A j , φ

)
,

with Ni j (φ,ψ) = (∂iφ)(∂ jψ)−(∂ jφ)(∂iψ). The discovery of the presence of null

structure in the nonlinearities of (MKG-CG) is due to Klainerman–Machedon
[25] and marked the beginning of the study of low-regularity well-posedness of

solutions to the Maxwell–Klein–Gordon system of equations, which we briefly

review now. Finite energy global well-posedness of (MKG-CG) in energy sub-

critical d = 3 space dimensions was established by Klainerman–Machedon
[25]. Through a deep structural analysis of the (MKG-CG) equations, Machedon–

Sterbenz [34] obtained an almost optimal local existence result for (MKG-CG) for

d = 3. An analogous almost optimal local existence result was obtained by Selberg
[44] in d = 4 space dimensions. For small critical Sobolev data, Rodnianski–Tao
[43] proved global existence for (MKG-CG) in d ≧ 6 space dimensions. Their

approach was further advanced in joint work of the first author with Sterbenz and

Tataru [27] to show global existence for small energy data for the energy-critical

Maxwell–Klein–Gordon equation in d = 4 space dimensions. More recently, global

existence and scattering for arbitrary finite energy data was established for the

energy-critical Maxwell–Klein–Gordon equation independently by Oh–Tataru
[36–38] and by the first two authors [26].

1.1. Randomization Procedure

In this work we consider the Cauchy problem for (MKG-CG) in four space

dimensions for random initial data at scaling super-critical regularity, i.e. below

the energy regularity. Before stating our main theorem and putting it into per-

spective with prior random data results in the next subsection, we first describe

our randomization procedure for the initial data. It relies on a unit-scale decom-

position of frequency space and was introduced in [32,46]. This procedure was

subsequently coined “Wiener randomization” in [1,2] to emphasize its natural as-

sociation with the Wiener decomposition [45] and the modulation spaces introduced

by Feichtinger [19].

We pick an even, non-negative bump function ϕ ∈ C∞
c (R4) with supp(ϕ) ⊆

B(0, 1) and such that

∑

m∈Z4

ϕ(ξ − m) = 1 for all ξ ∈ R4.

Then we let {gm}m∈Z4 , {g̃m}m∈Z4 , {hm}m∈Z4 , and {h̃m}m∈Z4 be sequences of complex-

valued standard (zero-mean) Gaussian random variables on a probability space

(�,F , P). We assume the symmetry conditions g−m = gm and g̃−m = g̃m for all

m ∈ Z4. Moreover, we suppose that {g0, Re(gm), Im(gm)}m∈I are independent,

zero-mean, real-valued random variables, where I ⊂ Z4 is such that we have a

disjoint union Z4 = I ∪ (−I) ∪ {0}, and similarly for the g̃m . The Gaussians

{hm}m∈Z4 , and {h̃m}m∈Z4 are just assumed to be independent random variables

without any additional constraints. We remark that we could more generally work

with sequences of independent uniformly sub-Gaussian random variables with zero

mean.
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Let 0 < δ∗ ≪ 1 be some small absolute constant whose size will be specified

later on. For any regularity exponent 1 − δ∗ < s < 1, we consider a pair of

real-valued 1-forms obeying the Coulomb gauge condition

Ax [0] = (a, b) ∈ H s
x (R4) × H s−1

x (R4), ∂ j a j = ∂ j b j = 0,

and a pair of complex-valued functions

φ[0] = (φ0, φ1) ∈ H s
x × H s−1

x (R4).

Then we define the randomization of (a, b) and (φ0, φ1) by

Aω
x [0] = (aω, bω) :=

( ∑

m∈Z4

gm(ω)ϕ(D − m)a,
∑

m∈Z4

g̃m(ω)ϕ(D − m)b

)
,

φω[0] = (φω
0 , φω

1 ) :=
( ∑

m∈Z4

hm(ω)ϕ(D − m)φ0,
∑

m∈Z4

h̃m(ω)ϕ(D − m)φ1

)
.

(1.1)

These quantities are to be understood as Cauchy limits in L2
ω

(
�; H s

x (R4)×H s−1
x (R4)

)
.

The randomization almost surely does not regularize at the level of Sobolev spaces,

see for instance [10, Lemma B.1]. It is crucial that the symmetry assumptions on the

random variables {gm}m∈Z, {g̃m}m∈Z together with the assumption that the bump

function ϕ is even, ensure that the randomization of the pair of real-valued 1-forms

(a, b) is again real-valued and in Coulomb gauge.

We will frequently use the following truncation operators Tn defined for all

integers n ≧ 1 by

Tnφ
ω
0 :=

∑

m∈Z
4

2n−1≦|m|<2n

gm(ω)ϕ(D − m)φ0,

with analogous definitions for Tnφ
ω
1 , Tnaω, and Tnbω, where we denote by |m| =

(m2
1 + · · · + m2

4)
1
2 the Euclidean norm of a vector m = (m1, . . . , m4) ∈ Z4. In the

same manner we introduce the truncation operators T<n for all integers n ≧ 1 by

T<nφω
0 :=

∑

m∈Z
4

|m|<2n

gm(ω)ϕ(D − m)φ0,

with corresponding definitions for T<nφω
1 , T<naω, and T<nbω. Moreover, we set

T0φ
ω
0 := g0(ω)ϕ(D)φ0

with analogous definitions for T0φ
ω
1 , T0aω, and T0bω. Finally, for every integer

n ≧ 0 we denote by

Fn := σ
(

gm, g̃m, hm, h̃m : |m| < 2n
)

the σ -algebra generated by the Gaussians gm , g̃m , hm , h̃m with |m| < 2n .



68 Page 6 of 109 Arch. Rational Mech. Anal. (2023) 247:68

1.2. Main Result

In recent years there has been enormous progress in the development of a

combination of probabilistic and deterministic techniques to prove the existence

of strong local-in-time or even global-in-time solutions to nonlinear wave and

Schrödinger equations almost surely (or with high probability) for random ini-

tial data of super-critical regularity. This approach was initiated in the pioneering

work of Bourgain [4,5] for the periodic nonlinear Schrödinger equation in di-

mensions one and two, building upon the constructions of invariant measures in

[20] and [31]. Subsequently, the influential papers of Burq–Tzvetkov [10,11],

see also Oh [39], led to a burst of activity in this line of research by introducing

a more general randomization method in the context of establishing almost sure

local and global well-posedness results at super-critical regularities for nonlinear

wave equations posed on compact Riemannian manifolds. We refer to a sample of

recent random data results, primarily for nonlinear wave equations [6–9,12,13,16–

18,22,24,32,33,41,42] that are most closely related to this work. This list is by

no means exhaustive and we also refer to the recent surveys [3,35] and references

therein. We point out that the large majority of random data results so far is for

equations with pure power-type nonlinearities.

Oversimplifying a bit here, in order to deal with the Cauchy problem for a

nonlinear wave equation with super-critical random initial data, one typically de-

composes the solution into the free wave evolution of the random data and into

an inhomogeneous component satisfying a nonlinear wave equation with forcing

terms. Using the randomization one then shows that almost surely (or with high

probability) the free wave evolution of the rough random data enjoys improved

(“redeeming”) space-time integrability properties that beat the scaling, and tend to

allow one to solve the equation for the inhomogeneous component at a critical or

sub-critical regularity. This type of linear-nonlinear decomposition can be attributed

to the work of Bourgain [5] in the field of dispersive PDEs, and is referred to as

the Da Prato–Debussche trick [14] in the field of stochastic parabolic PDEs.

In the context of the energy-critical Maxwell–Klein–Gordon system of equa-

tions, a semilinear geometric wave equation with derivative nonlinearities, this

standard linear-nonlinear decomposition is bound to fail due to certain low-high in-

teractions in the equation for the scalar field φ that do not exhibit a smoothing effect

when a rough input is at high frequency. Such a difficulty has already been observed

by Bringmann [7] in the context of a quadratic derivative nonlinear wave equation

in three space dimensions and was overcome by building the corresponding prob-

lematic low-high interactions into the definition of the rough linear evolution of the

random data. This step crucially relies on the fact that the high-frequency and the

low-frequency parts are independent. Similar ideas for dealing with problematic

low-high frequency interactions with the rough linear evolution at high frequency

play a major role in the development of the theory of random averaging operators

and of the theory of random tensors in the recent works of Deng–Nahmod–Yue
[16,17], too. We also note that the treatment of related delicate low-high inter-

actions are a key feature of the theory of paracontrolled calculus developed by

Gubinelli–Imkeller–Perkowski [21] to prove local well-posedness for singular
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parabolic stochastic PDEs, see also the theory of regularity structures put forth by

Hairer [23], the work of Kupiainen [30] using renormalization group techniques,

and the approach of Otto–Weber [40].

In fact, already in the deterministic study of the Maxwell–Klein–Gordon equa-

tion at scaling-critical regularity, certain low-high interactions in the magnetic inter-

action term in the equation for φ are non-perturbative at scaling-critical regularity.

A key idea of Rodnianski–Tao [43] to overcome this issue was to incorporate

these low-high interactions into the linear magnetic wave operator of the φ equa-

tion and to construct a corresponding parametrix to solve that linear magnetic wave

equation.

The probabilistic small data global well-posedness problem for the energy-

critical Maxwell–Klein–Gordon equation relative to the Coulomb gauge for scaling

super-critical random data features all of the obstacles described above. Our proof

builds on the deterministic small data global existence results for the Maxwell-

Klein-Gordon equation [27,43] at scaling-critical regularity, on the first two au-

thors’ induction on frequency procedure for the finite energy global regularity

result for (MKG-CG) [26] (see also [28]), and on the recent progress on almost

sure well-posedness [7,16,17].

We are now in a position to present our main result. The spaces S1 and Y 1 in

the following statement are at energy regularity and their precise definitions are

provided in Sect. 3:

Theorem 1.1. There exist small absolute constants 0 < δ∗ ≪ 1 and 0 < c ≪ 1

with the following properties: For any 1 − δ∗ < s < 1, let (a, b) ∈ H s
x × H s−1

x be

a pair of real-valued 1-forms in Coulomb gauge, and let (φ0, φ1) ∈ H s
x × H s−1

x .

Denote by (aω, bω) and by (φω
0 , φω

1 ) the associated random initial data as defined

in (1.1). Then there exists an event � ⊂ � with

P(�c) ≦ C exp
(
−cD−2

)
, D := ‖(a, b)‖

H s
x ×H s−1

x
+ ‖(φ0, φ1)‖H s

x ×H s−1
x

,

for some absolute constant C ≧ 1 such that for any ω ∈ �, there exists a unique

global solution

(Ax , A0, φ) ∈
(
C0

t H s
x + S1

)
× Y 1 ×

(
C0

t H s
x + S1

)

to (MKG-CG) with initial data given by Ax [0] = (aω, bω) and φ[0] = (φω
0 , φω

1 ).

For every ω ∈ �, (Ax , A0, φ) is defined as the unique limit in (C0
t H s

x + S1)×Y 1 ×
(C0

t H s
x + S1) of the sequence of canonical smooth approximations {(A<n

x , A<n
0 ,

φ<n)}n≧0 to (MKG-CG) for frequency truncated random data {(T<n Aω
x [0], T<nφω

[0])}n≧0, and (Ax , A0, φ) solves (MKG-CG) in the distributional sense.

1.3. Overview of Proof Ideas

We give an outline of the main aspects of the proof of Theorem 1.1.

Small energy global regularity for the energy-critical Maxwell–Klein–Gordon equa-

tion [27].

The proof of Theorem 1.1 relies on the functional framework, the multilinear esti-

mates, and a parametrix construction from the small energy global regularity result
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for (MKG-CG) established in joint work of the first author with Sterbenz and

Tataru [27]. The key difficulty in the treatment of the Maxwell–Klein–Gordon

equation relative to the Coulomb gauge at scaling-critical regularity are low-high

interactions in the magnetic interaction term in the equation for the scalar field φ

of the following schematic form, where the free wave evolution of the spatial part

of the connection form is at low frequency,

�φ = A
f ree, j
low ∂ jφhigh + · · ·

Even for small initial data, these low-high frequency interactions in the magnetic

interaction term turn out to be non-perturbative at scaling-critical regularity due

to a logarithmic divergence (the inhomogeneous part of Ax turns out to satisfy an

improved ℓ1 bound and its contribution can therefore be treated perturbatively).

Rodnianski and Tao [43] resolved this impasse in the context of proving critical

small data global regularity for (MKG-CG) in dimensions d ≧ 6 by incorporating

the problematic low-high interactions into the linear wave operator and by deriving

Strichartz estimates via a parametrix construction for the resulting paradifferential

magnetic wave operator

�
p
A ≡ � + 2i

∑

k∈Z

P≦k−C A f ree, j∂ j Pk .

This approach was significantly further advanced in [27] through the realization that

the parametrix construction from [43] is also compatible with the more delicate X s,b

type and null frame spaces. In this work we have to slightly adapt the parametrix

construction from [27] to allow for a rough free wave evolution A f ree, which is

at scaling super-critical regularity, but enjoys redeeming space-time integrability

properties thanks to the randomization, see Sect. 5 for the details. We also take the

parametrix construction from [27] into a novel modified “probabilistic” direction

as outlined in the next paragraphs.

Failure of the Bourgain–da Prato–Debussche linear-nonlinear decomposition and

induction on frequency.

If one tries to treat the Cauchy problem for the energy-critical Maxwell–Klein–

Gordon equation with (small) random initial data at scaling super-critical regularity,

the usual approach of decomposing the dynamical variables Ax and φ into free wave

evolutions of the rough random data and into inhomogeneous nonlinear components

is bound to partially fail. Owing to the favorable null structure in the wave equation

for Ax , it suffices to just decompose the spatial part Ax of the connection form

according to the standard Bourgain–da Prato–Debussche trick. However, in the

low-high frequency interactions in the magnetic interaction term A
j
low∂ jφ

f ree
high of

the φ equation, when the rough free wave evolution of the random data for φ is at

high frequency, despite the null structure one cannot gain regularity and treat the

term at the scaling-critical energy regularity. The way out is to build this low-high

interaction term into the definition of the rough linear evolution of the random data

for the scalar field φ. This in turn requires to construct the solutions to (MKG-

CG) for (small) random initial data (Aω
x [0], φω[0]) via an induction on frequency

procedure. More specifically, (on a suitable event) we construct the solutions as the
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limit of the sequence of solutions (A<n
x , A<n

0 , φ<n) to (MKG-CG) for frequency

truncated random initial data (T<n Aω
x [0], T<nφω[0]). To this end we derive uniform

bounds on the dyadic solution increments (An
x ,A

n
0,�n), n ≧ 0, defined by

A<n
x = A<n−1

x + An
x , n ≧ 0,

A<n
0 = A<n−1

0 + An
0, n ≧ 0,

φ<n = φ<n−1 + �n, n ≧ 0,

where we set A<−1
x = A<−1

0 = φ<−1 = 0. For every n ≧ 1, we decompose the

increments An
x and �n of the dynamical variables into

An
x = An

x,r + An
x,s,

�n = �n
r + �n

s ,

where An
x,r , �n

r are the rough linear components and An
x,s , �n

s are the (“smooth”)

inhomogeneous components satisfying a forced Maxwell–Klein–Gordon system

of equations (fMKG-CGn) stated precisely in Sect. 4.2. As alluded to above, it

suffices to define the rough part An
x,r as the free wave evolution of the (rough)

random initial data Tn Aω
x [0], that is,

An
x,r (t) := S(t)

[
Tnaω, Tnbω

]
= cos(t |∇|)Tnaω + sin(t |∇|)

|∇| Tnbω, n ≧ 1.

Instead, the rough part �n
r of the scalar field is defined as an approximate solution

to the linear magnetic wave equation

�
p,mod

A<n−1�
n
r ≡

(
� + 2i P≦(1−γ )n A<n−1,α∂α Pn

)
�n

r ≈ 0, �n
r [0] ≈ Tnφω[0], n ≧ 1.

Here, it is crucial that the entire connection form A<n−1 from the prior induction

stages is built into the linear magnetic wave operator on the left-hand side. Moreover,

it is important for the whole argument that only the “strongly low-high” interactions

are incorporated into the modified magnetic wave operator, which is specified by the

small absolute constant 0 < γ ≪ 1. The precise linear-nonlinear decomposition

and the induction on frequency procedure are set up and explained in more detail

in Sects. 4.2–4.3.

Some care has to be taken to ensure that at every stage of the induction procedure

various smallness requirements on the rough linear evolutions and on the nonlinear

components (from prior stages of the induction) are satisfied. This is achieved by

working with suitable probabilistic cutoffs in the proof of Theorem 1.1 in Sect. 7.

Their use is perhaps somewhat reminiscent of the truncation method of de Bouard
and Debussche [15].

“Probabilistic” parametrix, redeeming functional framework, and generalized mul-

tilinear estimates.

A key difficulty in the proof of Theorem 1.1 is the construction of the adapted

linear evolution �n
r of the rough random data Tnφω[0] as a suitable approximate

solution to the modified paradifferential magnetic wave equation �
p,mod

A<n−1�
n
r ≈ 0.
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The adapted linear evolution �n
r has to have two main properties. On the one

hand �n
r has to satisfy suitable redeeming space-time integrability properties (on

a suitable event) in order to close all nonlinear estimates. On the other hand, the

accrued renormalization error estimate �
p,mod

A<n−1�
n
r has to gain regularity so that it

can be treated as a “smooth” source term in the equation for �n
s .

The subtle iterative definition of �n
r in terms of a modified “probabilistic”

parametrix is carefully laid out in Sect. 6.1. Then we exploit the randomness and

derive redeeming space-time integrability properties (on a suitable event) of the

rough linear evolution �n
r in Sect. 6.3. Here a delicate point is that the connection

form A<n−1 from the prior induction stages enters the definition of the parametrix

for �n
r and is also a random function. The key point that makes this construction

work is that the random data Tnφω[0] for the rough linear evolution �n
r is inde-

pendent of the random data
(
T<n−1 Aω

x [0], T<n−1φ
ω[0]

)
on which the connection

form A<n−1 depends. Since �n
r is only an approximate solution, we need to show

that the resulting data error Tnφω[0] − �n
r [0] in fact gains regularity (on a suitable

event) and that the resulting renormalization error �
p,mod

A<n−1�
n
r can be treated as a

“smooth” source term (on a suitable event). This is accomplished in Sects. 6.4 and

6.6.

The precise definitions of the “redeeming” space-time integrability properties

that the rough linear evolutions enjoy (on a suitable event) are provided in Sect. 3.2.

They are designed so that the relevant multilinear estimates from [27] can be gener-

alized to allow for rough inputs. These generalized multilinear estimates are derived

in Sect. 8.

2. Preliminaries

2.1. Global Small Constants

We work with a string of globally defined small constants satisfying

0 < δ∗ ≪ σ ≪ γ ≪ δ2 ≪ δ1 ≪ δ ≪ 1,

where

• δ specifies the off-diagonal gain in multilinear estimates;

• δ1 is used for the sum
∑

ℓ<0 2δ1ℓ in the definition of the redeeming Rk L2
t L∞

x ,

Rk L2
t L6

x , and Rk L∞
t L∞

x norms;

• δ2 is used for capturing the frequency localization to ∼ 2n (up to tails) of the

smooth nonlinear components An
x,s and �n

s at dyadic frequency level n;

• γ specifies the frequency restriction k ≦ (1 − γ )n to distinguish “moderately

low-high” and “strongly low-high” interactions, it therefore plays a key role in

the definition of the “probabilistic” phase function ψ
n,mod
± in Sect. 6;

• σ is used for specifying the cutoff of small angle interactions in the definitions

of the “deterministic” and “probabilistic” phase functions;

• δ∗ specifies the Sobolev regularity 1 − δ∗ < s < 1 of the random data.
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2.2. Probability Theory

The derivation of the redeeming space-time integrability properties of the linear

evolutions of the rough random data crucially relies on the classical Khintchine

inequality.

Lemma 2.1. (Khintchine’s inequality) For any choice of a positive integer N, a

sequence {X j }N
j=1 of independent standard zero-mean Gaussian random variables,

and a sequence {c j }N
j=1 ⊂ C, we have for 1 ≦ p < ∞ that

(
E

∣∣∣∣
N∑

j=1

c j X j

∣∣∣∣
p) 1

p

�
√

p

( N∑

j=1

|c j |2
) 1

2

.

We use the following lemma to estimate the probability of certain events. Its

proof is a simple consequence of Chebyshev’s inequality.

Lemma 2.2. (Tail estimate) Let X be a real-valued random variable on a prob-

ablility space (�,F , P). Suppose that there exists D > 0 such that for every

1 ≦ p < ∞ we have

(
E |X |p

) 1
p �

√
pD.

Then there exist absolute constants C, c > 0 such that for every λ ≧ 0 it holds that

P
(
|X | > λ

)
≦ C exp

(
−c

λ2

D2

)
.

2.3. Frequency and Sector Projections

In order to define several Littlewood–Paley projection operators, we pick a non-

negative even bump function χ0 ∈ C∞(R) satisfying χ0(y) = 1 for |y| ≦ 1 and

χ0(y) = 0 for |y| > 2 and set χ(y) = χ0(y) − χ0(2y). Then we introduce the

standard Littlewood–Paley projection operators for k ∈ Z by

P̂k f (ξ) = χ
(
2−k |ξ |

)
f̂ (ξ).

To measure proximity of the space-time Fourier support to the light cone we use

the concept of modulation. For j ∈ Z we define the projection operators

F
(
Q j f

)
(τ, ξ) = χ

(
2− j ||τ | − |ξ ||

)
F( f )(τ, ξ),

F
(
Q±

j f
)
(τ, ξ) = χ

(
2− j ||τ | − |ξ ||

)
χ{±τ>0} F( f )(τ, ξ),

where F denotes the space-time Fourier transform. On occasion, we also need

multipliers Sl to restrict the space-time frequency and correspondingly set for l ∈ Z,

F
(
Sl f

)
(τ, ξ) = χ

(
2−l |(τ, ξ)|

)
F( f )(τ, ξ).

Moreover, we use projection operators Pκ
l to localize the homogeneous variable

ξ
|ξ | to caps κ ⊂ S3 of diameter ∼ 2l for integers l < 0 via smooth cutoff functions.
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We assume that for each such l < 0 these cutoffs form a smooth partition of

unity subordinate to a uniformly finitely overlapping covering of S3 by caps κ of

diameter ∼ 2l .

Finally, for any η ∈ S3 and any angle 0 < θ � 1, we define the sector projection

�
η
>θ in frequency space by the formula

�̂
η
>θ f (ξ) :=

(
1 − χ0

(∠(ξ, η)

θ

))(
1 − χ0

(∠(−ξ, η)

θ

))
f̂ (ξ),

where ∠(ξ, η) is the angle between ξ and η. Thus, �
η
>θ restricts f smoothly (except

at the frequency origin) to the sector of frequencies ξ whose angle with both η and

−η is � θ . Similarly, we define the Fourier multipliers �
η
θ , �

η

≦θ
, and �

η
θ1>·>θ2

.

3. Function Spaces

In this section we first recall the functional framework from [27] that we will use

throughout. We also set up some notation for function spaces that will be convenient

for the induction on frequency procedure in this work. Finally, we introduce the

redeeming space-time integrability properties that the rough linear evolutions of

the random data will enjoy and that beat the scaling.

3.1. Review of the Functional Framework from [27]

We use the same definitions and notations as in [27] for the spaces Sk , S1, N , Y 1,

and Z . The (smooth) solutions of the nonlinear wave equations for the spatial part

of the connection form and for the scalar field will be placed in the scaling-critical

space S1, while the inhomogeneous terms of the wave equations will be placed in

the space N . The (smooth) elliptic variable A0 will be measured in the Y space.

We begin by introducing the convention that, for any norm ‖ · ‖S and any

p ∈ [1,∞),

‖F‖ℓp S =
(∑

k∈Z

‖Pk F‖p
S

) 1
p

.

Then we define the X s,b type norms applied to functions at spatial frequency ∼ 2k ,

‖F‖
X

s,b
p

= 2sk

(∑

j∈Z

(
2bj‖Q j Pk F‖L2

t L2
x

)p
) 1

p

for s, b ∈ R and p ∈ [1,∞) with the obvious analogue for p = ∞.

We will mainly use three function spaces N , N∗, and S. Their dyadic subspaces

Nk, N∗
k and Sk satisfy

Nk = L1
t L2

x + X
0,− 1

2

1 , N∗
k = L∞

t L2
x ∩ X

0, 1
2∞ , X

0, 1
2

1 ⊆ Sk ⊆ N∗
k .
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Then it holds that

‖F‖2
N =

∑

k∈Z

‖Pk F‖2
Nk

, ‖F‖2
N∗ =

∑

k∈Z

‖Pk F‖2
N∗

k
.

The space Sk is defined by

‖φ‖2
Sk

= ‖φ‖2

SStr
k

+ ‖φ‖2
S

ang
k

+ ‖φ‖2

X
0, 1

2∞

,

where

SStr
k =

⋂

1
q
+ 3/2

r
≦ 3

4

2
( 1

q
+ 4

r
−2)k

L
q
t Lr

x ,

‖φ‖2
S

ang
k

= sup
l<0

∑

η

‖P
η
l Q<k+2lφ‖2

S
η
k (l)

,

and the angular sector norms S
η
k (l) are defined below. The sum over η in the

definition of S
ang

k is over a covering of S3 by caps of diameter ∼ 2l with uniformly

finite overlaps, and the symbols of P
η
l form a smooth partition of unity subordinate

to this covering.

To introduce the angular sector norms S
η
k (l) we first define the plane wave space

‖φ‖PW±
η (l) = inf

φ=
∫

φη′

∫

|η−η′|≦2l

‖φη′‖L2
±η′ L∞

(±η′)⊥
dη′

and the null energy space

‖φ‖N E = sup
η

‖ /∇ηφ‖L∞
η L2

η⊥
,

where the norms are with respect to ℓ±
η = t ± η · x and the transverse variable,

while /∇η denotes spatial differentiation in the (ℓ+
η )⊥ plane. Then we set

‖φ‖2
S

η
k (l)

= ‖φ‖2

SStr
k

+ 2−2k‖φ‖2
N E + 2−3k

∑

±
‖Q±φ‖2

PW∓
η (l)

+ sup
k′≦k,l ′≦0,

k+2l≦k′+l ′≦k+l

∑

Ck′ (l ′)

(
‖PCk′ (l ′)φ‖2

SStr
k

+ 2−2k‖PCk′ (l ′)φ‖2
N E

+ 2−2k′−k‖PCk′ (l ′)φ‖2

L2
t L∞

x
+ 2−3(k′+l ′)

∑

±
‖Q± PCk′ (l ′)φ‖2

PW∓
η (l)

)
,

where PCk′ (l ′) is a projection operator to a radially directed block Ck′(l ′) of dimen-

sions 2k′ × (2k′+l ′)3.

Now we define

‖φ‖2
S1 =

∑

k∈Z

‖∇t,x Pkφ‖2
Sk

+ ‖�φ‖2

ℓ1 L2
t Ḣ

− 1
2

x



68 Page 14 of 109 Arch. Rational Mech. Anal. (2023) 247:68

and the higher derivative norms

‖φ‖SN := ‖∇N−1
t,x φ‖S1 , N ≧ 2.

Moreover, we introduce

‖u‖
S

♯
k

= ‖∇t,x u‖L∞
t L2

x
+ ‖�u‖Nk

.

Occasionally we need to separate the two characteristic cones {τ = ±|ξ |}, for

which we define

Nk,±, Nk = Nk,+ ∩ Nk,−

S
♯
k,±, S

♯
k = S

♯
k,+ + S

♯
k,−

N∗
k,±, N∗

k = N∗
k,+ + N∗

k,−.

We will also use an auxiliary space of L1
t L∞

x type,

‖φ‖Z =
∑

k∈Z

‖Pkφ‖Zk
, ‖φ‖2

Zk
= sup

l<C

∑

η

2l‖P
η
l Qk+2lφ‖2

L1
t L∞

x
.

Finally, to control the component A0, we define

‖A0‖2
Y 1 = ‖∇t,x A0‖2

L∞
t L2

x
+ ‖A0‖2

L2
t Ḣ

3/2
x

+ ‖∂t A0‖2

L2
t Ḣ

1/2
x

and the higher derivative norms

‖A0‖Y N = ‖∇N−1
t,x A0‖Y 1 , N ≧ 2.

The link between the S and N spaces is provided by the following energy

estimate from [27],

‖∇t,xφ‖S � ‖∇t,xφ(0)‖L2
x
+ ‖�φ‖N .

We will also use the notation

‖Pkφ‖S1
k

:= ‖∇t,x Pkφ‖Sk
,

and we set

‖φ‖
S

1−δ∗
k

:= 2−δ∗k‖∇t,x Pkφ‖Sk
= 2−δ∗k‖φ‖S1

k
.

Finally, in order to capture the frequency localization (up to tails) of the solution

increments in our induction on frequency procedure, we introduce for any n ≧ 1

the norms

‖φ‖S1[n] := sup
k∈Z

2+δ2|n−k|
(
‖Pkφ‖S1

k
+ ‖Pk�φ‖

L2
t Ḣ

− 1
2

x

)
,

‖A0‖Y 1[n] := sup
k∈Z

2+δ2|n−k|‖Pk A0‖Y 1 .



Arch. Rational Mech. Anal. (2023) 247:68 Page 15 of 109 68

3.2. The Redeeming “Probabilistic” Functional Framework

Here we introduce the “redeeming” function spaces capturing the improved

space-time integrability properties that the rough linear evolutions of the random

data will enjoy (on a suitable event). For any k ≧ 1 we define the redeeming Rk

norm of a rough linear evolution localized to frequencies ∼ 2k by

‖v‖Rk
:= ‖(v, 2−k∇t,xv)‖Rk L2

t L∞
x

+ ‖(v, 2−k∇t,xv)‖Rk L2
t L6

x

+ ‖(v, 2−k∇t,xv)‖Rk L∞
t L∞

x
+ ‖(v, 2−k∇t,xv)‖Rk Str + ‖v‖

S
1−δ∗
k

,
(3.1)

where the components Rk L2
t L∞

x , Rk L2
t L6

x , Rk L∞
t L∞

x , and Rk Str are given by

‖v‖Rk L2
t L∞

x
:= 2( 1

2 −20σ)k
∑

l<0

2δ1l

(∑

κ

∑

k′≦k, l ′≦0

k+2l≦k′+l ′≦k+l

∑

Ck′ (l ′)

γ −2(k′, l ′)
∥∥PCk′ (l ′) Pκ

l Q<k+2lv
∥∥2

L2
t L∞

x

) 1
2

,

with γ (k′, l ′) :=
(
min{2k′

, 1}
) 1

2 − ·
(
min{2k′+l ′ , 1}

) 1
2 −

,

‖v‖Rk L2
t L6

x
:= 2( 1

2 −20σ)k
∑

l<0

2δ1l

(∑

κ

∥∥Pκ
l Q<k+2lv

∥∥2

L2
t L6

x

) 1
2

,

‖v‖Rk L∞
t L∞

x
:= 2(1−20σ)k

∑

l<0

2δ1l

(∑

κ

(
min{2( 3

2 −)(k+l), 1}
)−2∥∥Pκ

l Pkv
∥∥2

L∞
t L∞

x

) 1
2

,

‖v‖Rk Str := 2(1−20σ)k
∑

1
q
+ 3

2r
≦ 3

4

2
− 1

q
k‖v‖L

q
t Lr

x
.

Let us briefly comment on the definition and the use of the different components of

the redeeming Rk norm. In the definitions of the Rk L2
t L∞

x and Rk L∞
t L∞

x compo-

nents, for each l < 0 the sum over κ refers to a sum over caps κ ⊂ S3 of diameter

∼ 2l with uniformly finite overlaps and the symbols Pκ
l form a corresponding

subordinate smooth partition of unity.

The Rk L2
t L∞

x and Rk L2
t L6

x components are designed to be used in conjunction

with the S
1−δ∗
k component to control rough linear evolution inputs in null form

estimates. The factor γ (k′, l ′) helps gain additional smallness for very thin and/or

short rectangular boxes Ck′(l ′), which come up many times in the null form estimates

in [27].

The Rk L∞
t L∞

x component incorporates a gain from frequency localization to

caps κ ⊂ S3 of diameter ∼ 2l . It plays an important role in L∞ estimates of the

“rough” parts of the “deterministic” and the “probabilistic” phase functions, see

Lemma 5.3 and Lemma 6.2.

Finally, the Rk Str component consists of finitely many wave-admissible expo-

nent pairs and encompasses a Klainerman-Tataru gain from the unit-scale frequency

localization of the “atoms” of the Wiener randomization. The Rk Str bounds for the

rough linear evolutions are used in many places, in particular they suffice to estimate

all cubic nonlinearities in (MKG-CG) with rough linear evolutions as inputs.
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4. Induction on Frequency Procedure

In this section we begin with the construction of solutions (Ax , A0, φ) to

the (MKG-CG) system of equations for scaling super-critical random initial data

Ax [0] = Aω
x [0], φ[0] = φω[0] on an event with high probability. We will de-

fine the solutions (Ax , A0, φ) as the limit in (C0
t H s

x + S1) × Y 1 × (C0
t H s

x + S1)

of a sequence
{
(A<n

x , A<n
0 , φ<n)

}
n≧0

of solutions to (MKG-CG) with frequency-

truncated data given by A<n
x [0] = T<n Aω

x [0], φ<n[0] = T<nφω[0]. Since the

frequency-truncated random data is smooth, we would in fact have global exis-

tence of the solutions (A<n
x , A<n

0 , φ<n) for every n ≧ 0, even for large data, by

the (deterministic) global regularity results [26,27,36–38] for the energy-critical

(MKG-CG) equation. However, in order to show the convergence of this sequence

on a suitable event, we need to establish refined uniform bounds on the sequence of

solutions. To this end we construct the sequence inductively, adding in one dyadic

frequency block of the random data at a time and decomposing the spatial parts of

the connection form as well as the scalar field into suitable rough linear components

and smooth nonlinear components.

The main result of this section is a (deterministic) global existence result for a

forced Maxwell–Klein–Gordon system of equations for the nonlinear components

of the solution increments at each induction step, assuming that certain smallness

assumptions on the forcing terms hold. The main work in the proof of Theorem 1.1

then goes into establishing the existence of an event with high probability on which

these smallness assumptions are satisfied at all induction stages so that the corre-

sponding sequence of solutions converges.

4.1. Decomposition of the Nonlinearity

We begin by examining the nonlinearities in the (MKG-CG) system of equations

more carefully and we introduce some notation that will be useful in the following.

Recall that the (MKG-CG) system is given by





�A j = −P j Im(φDxφ),

Dα Dαφ = 0,

	A0 = −Im(φD0φ),

and that it suffices to prescribe initial data for Ax [0] and φ[0], because the temporal

component of the connection form A0 is at any time determined in terms of Ax and

φ by an elliptic equation.

The Ax equation. We decompose A j into its free wave evolution part and its

nonlinear part

A j = A
f ree
j + Anl

j .

Then we write

Anl
j = A j (φ, φ, A),
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where A j is extended to a symmetric quadratic form in the first two variables

A j (φ
(1), φ(2), A) = A2

j (φ
(1), φ(2)) + A3

j (φ
(1), φ(2), A)

with

A2
j (φ

(1), φ(2)) = −1

2
�−1P j Im

(
φ(1)∇xφ(2) + ∇xφ(1)φ(2)

)
,

A3
j (φ

(1), φ(2), A) = +1

2
�−1P j

(
φ(1)φ(2) Ax + φ(1)φ(2) Ax

)
.

Recall that the quadratic part A2
j of the nonlinearity exhibits the favorable null

structure

P j

(
φ(1)∇xφ(2)

)
= ∂k	−1Nk j

(
φ(1), φ(2)

)
.

The A0 equation. Here we introduce the notation

A0 = A0(φ, φ, A),

∂t A0 = ∂t A0(φ, φ, A),

where we set

A0(φ, φ, A) = −	−1Im(φ∂tφ) + 	−1(φφ A0) ≡ A2
0(φ, φ) + A3

0(φ, φ, A0),

∂t A0(φ, φ, A) = −	−1∂ j Im(φ∂ jφ) + 	−1∂ j (φφ A j ) ≡ ∂t A
2
0(φ, φ) + ∂t A

3
0(φ, φ, Ax ).

In the following we think of A0(φ, φ, A) and ∂t A0(φ, φ, A) as being extended to

symmetric quadratic forms in the first two variables.

The φ equation. Expanding the covariant wave operator Dα Dα leads to the fol-

lowing equation for the scalar field

�φ = −2i Aα∂αφ + i(∂t A0)φ + Aα Aαφ.

In the Coulomb gauge the magnetic interaction term A j∂ jφ exhibits the null struc-

ture

A j∂ jφ = Nk j

(
∂k	−1 A j , φ

)
.

Even in the purely deterministic case, the low-high interactions in the magnetic

interaction term involving the free wave part of Ax turn out to be non-perturbative

at energy regularity and have to be retained into the linear wave operator. In the

current setting with scaling super-critical random data, the low-high interactions in

the magnetic interaction term become even more problematic. In preparation for

a refined decomposition of the φ equation in the next subsection, we isolate the

low-high interactions in the magnetic interaction term Aα∂αφ and correspondingly

rewrite Dα Dαφ = 0 as
(
� + 2i

∑

k

(P≦k−C Aα)∂α Pk

)
φ = −2i

∑

k

(P>k−C Aα)∂α Pkφ + i(∂t A0)φ + Aα Aαφ

≡ M1(A, φ) + M2(A0, φ) + M3(A, A, φ).
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Additionally, we decompose the nonlinear term M1(A, φ) into

M1(A, φ) = −2i
∑

k

(P>k−C Aα)∂α Pkφ = −2i
∑

k

(P>k−C A0)∂t Pkφ

− 2i
∑

k

(P>k−C A j )∂ j Pkφ

≡ M1
0(A0, φ) + M1

x (Ax , φ).

4.2. Decomposition into Rough and Smooth Components

We now turn to setting up the precise construction of the sequence
{
(A<n

x , A<n
0 ,

φ<n)
}

n≧0
of solutions to (MKG-CG) with frequency-truncated random initial data

given by

A<n
x [0] = T<n Aω

x [0], φ<n[0] = T<nφω[0].

The sequence will be constructed inductively. To this end we introduce the dyadic

decompositions

A<n
x = A<n−1

x + An
x , n ≧ 0,

A<n
0 = A<n−1

0 + An
0, n ≧ 0,

φ<n = φ<n−1 + �n, n ≧ 0,

where we set A<−1
x = A<−1

0 = φ<−1 = 0.

We let (A<0
x , A<0

0 , φ<0) be the solution to (MKG-CG) with (smooth) random

initial data A<0
x [0] = T0 Aω

x [0], φ<0[0] = T0φ
ω[0], which we obtain from the

small energy global regularity result by [27] if this frequency-truncated data has

sufficiently small energy.

Then having constructed (A<n−1
x , A<n−1

0 , φ<n−1), we construct (A<n
x , A<n

0 , φ<n)

by solving the (MKG-CG) difference equations for (An
x ,A

n
0,�n) with random ini-

tial data sharply localized to frequencies ∼ 2n . Specifically, the random initial data

for the spatial parts of the connection forms An
x is given by

An
x [0] = Tn Aω

x [0] =
(
Tnaω, Tnbω

)
, n ≧ 1,

and the random initial data for the scalar fields �n is given by

�n[0] =
(
Tnφω

0 , Tnφω
1

)
, n ≧ 1.

At each dyadic frequency level n ≧ 1 we decompose the (spatial part of) the

connection form An
x as well as the scalar field �n into a rough (linear) component

and a smooth (nonlinear) component. In the following “smooth” refers to having

scaling-critical energy regularity. Crucially, on a suitable event the rough evolutions

will have redeeming space-time integrability properties that beat the scaling. It is

worth pointing out that such a decomposition is not necessary for the temporal

component An
0 , because at any time it is determined by An

x and �n via an elliptic

equation.
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For the spatial part of the connection form we use the standard Bourgain–Da

Prato–Debussche decomposition and write

An
x = An

x,r + An
x,s,

where the rough part An
x,r is just defined as the linear wave evolution of the (rough)

random initial data

An
x,r (t) := S(t)

[
Tnaω, Tnbω

]
= cos(t |∇|)Tnaω + sin(t |∇|)

|∇| Tnbω, n ≧ 1.

We emphasize that An
x,r is sharply localized to frequencies ∼ 2n .

Instead for the scalar field �n , we introduce an adapted linear-nonlinear de-

composition

�n = �n
r + �n

s ,

where the rough part �n
r is defined as an approximate solution to the linear magnetic

wave equation

(
� + 2i P≦(1−γ )n A<n−1,α∂α Pn

)
�n

r ≈ 0, �n
r [0] ≈ Tnφω[0], n ≧ 1.

Here, 0 < γ ≪ 1 is a small constant that enacts a “strongly low-high” frequency

separation. This choice will emerge and will be explained further below as we

will derive the system of equations for the smooth components (An
x,s,A

n
0,�n

s ).

Observe that the entire connection form A<n−1 from the prior induction stages is

built into the linear magnetic wave operator on the left-hand side. While A<n−1

is a random function depending on the random initial data T<n Aω
x [0], T<nφω[0]

from the induction on frequency stages ≦ n − 1, the key point that will make this

construction work is that the latter are independent of the random data Tn Aω
x [0],

Tnφω[0] at the induction on frequency stage n. The precise definition of �n
r via a

parametrix will be given in Sect. 6. At this point we stress that by construction �n
r

will also be sharply localized to frequencies ∼ 2n . Moreover, it will follow from

Proposition 6.6 that the data error, i.e. the initial data for the nonlinear component

of the scalar field, gains smoothness and is at the better energy regularity (on a

suitable event)

�n
s [0] =

(
Tnφω

0 , Tnφω
1

)
− �n

r [0] ∈ Ḣ1 × L2.

In order to systematically use the subscripts s, respectively r , to indicate smooth,

respectively rough components, it will be convenient to denote the smooth solution

(A<0
x , A<0

0 , φ<0) to (MKG-CG) for the lowest frequency random initial data block

T0 Aω
x [0], T0φ

ω[0] by

(A0
x,s,A

0
0,�

0
s ) ≡ (A<0

x , A<0
0 , φ<0).

After these preparations, we are now in a position to derive the system of

“forced Maxwell–Klein–Gordon equations in Coulomb gauge” for the nonlinear

components (An
x,s,A

n
0,�n

s ), n ≧ 1. Subtracting the equations for A<n
x and A<n−1

x
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from each other, we obtain that the nonlinear component An
x,s satisfies the forced

(wave) equation

An
x,s = Ax (φ

<n, φ<n, A<n) − Ax (φ
<n−1, φ<n−1, A<n−1), n ≧ 1.

In the same manner, we find that An
0 satisfies the forced (elliptic) equation

An
0 = A0(φ

<n, φ<n, A<n
0 ) − A0(φ

<n−1, φ<n−1, A<n−1
0 ), n ≧ 1.

To determine the equation for �n
s , we first subtract the equations for φ<n and φ<n−1

from each other to obtain that
(
� + 2i

∑

k

P≦k−C A<n,α∂α Pk

)
φ<n −

(
� + 2i

∑

k

P≦k−C A<n−1,α∂α Pk

)
φ<n−1

= M1(A<n, φ<n) − M1(A<n−1, φ<n−1)

+ M2(A<n, φ<n) − M2(A<n−1, φ<n−1)

+ M3(A<n, A<n, φ<n) − M3(A<n−1, A<n−1, φ<n−1).

Inserting the decompositions φ<n = φ<n−1 + �n and A<n = A<n−1 + An , this

gives

(
� + 2i

∑

k

P≦k−C A<n−1,α∂α Pk

)
�n

= −2i
∑

k

P≦k−CAn,α∂α Pkφ
<n

+ M1(A<n, φ<n) − M1(A<n−1, φ<n−1)

+ M2(A<n, φ<n) − M2(A<n−1, φ<n−1)

+ M3(A<n, A<n, φ<n) − M3(A<n−1, A<n−1, φ<n−1).

Next, we insert the presumptive decomposition of �n into its rough and smooth

components �n = �n
r + �n

s , where the precise definition of �n
r will now emerge.

Then we find that �n
s is a solution to the following forced magnetic wave equation

(
� + 2i

∑

k

P≦k−C A<n−1,α∂α Pk

)
�n

s = −
(
� + 2i

∑

k

P≦k−C A<n−1,α∂α Pk

)
�n

r

− 2i
∑

k

P≦k−CA
n,α∂α Pkφ

<n

+ M1(A<n, φ<n) − M1(A<n−1, φ<n−1)

+ M2(A<n, φ<n) − M2(A<n−1, φ<n−1)

+ M3(A<n, A<n, φ<n) − M3(A<n−1, A<n−1, φ<n−1)

with initial data

�n
s [0] = Tnφω[0] − �n

r [0].

In order to derive a priori bounds for �n
s , it is more favorable to only retain the free

wave evolution part of the spatial components of the connection form A<n−1 in the
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linear magnetic wave operator on the left-hand side. The other parts can be treated

as perturbative nonlinear source terms at energy regularity. Keeping in mind that

�n
r will be chosen such that it is sharply localized to frequencies ∼ 2n , this leads

to the equation
(
� + 2i

∑

k

P≦k−C

(
A

<n−1, j
r + A

0, f ree, j
s

)
∂ j Pk

)
�n

s

= −
(
� + 2i P≦n−C A<n−1,α∂α Pn

)
�n

r

− 2i
∑

k

P≦k−CAn,α∂α Pkφ
<n

− 2i
∑

k

P≦k−C

(
A

<n−1, j
s − A

0, f ree, j
s

)
∂ j Pk�

n
s

+ 2i
∑

k

P≦k−C A<n−1
0 ∂t Pk�

n
s

+ M1(A<n, φ<n) − M1(A<n−1, φ<n−1)

+ M2(A<n, φ<n) − M2(A<n−1, φ<n−1)

+ M3(A<n, A<n, φ<n) − M3(A<n−1, A<n−1, φ<n−1)

with initial data

�n
s [0] = Tnφω[0] − �n

r [0].

For the paradifferential magnetic d’Alembertian on the left-hand side of the above

equation for �n
s , we introduce the convenient short-hand notation

�
p

A<n−1 := � + 2i
∑

k

P≦k−C

(
A

<n−1, j
r + A

0, f ree, j
s

)
∂ j Pk .

To derive a priori bounds for �n
s , in Sect. 5 we will establish linear estimates for the

inhomogeneous magnetic wave equation �
p

A<n−1 u = F that are compatible with

the delicate functional framework of the S1 and N spaces. This part will be based

on a “deterministic” parametrix construction.

It remains to examine the low-high magnetic interaction term P≦n−C A<n−1,α∂α

Pn�n
r with the rough component �n

r at high frequency. We further decompose it

into a “strongly low-high” interaction term and a “moderately low-high” interaction

term

P≦n−C A<n−1,α∂α Pn�n
r = P≦(1−γ )n A<n−1,α∂α Pn�n

r + P[(1−γ )n,n−C] A<n−1,α∂α Pn�n
r ,

where 0 < γ ≪ 1 is a suitable small constant. Using the redeeming space-time

integrability properties of�n
r , the “moderately low-high interactions” P[(1−γ )n,n−C]

A<n−1,α∂α Pn�n
r will turn out to be still perturbative at energy regularity. However,

it is not possible for the “strongly low-high” interaction term to gain regularity and

become treatable at energy regularity. The way out is to build it into a modified

paradifferential magnetic d’Alembertian

�
p,mod

A<n−1 := � + 2i P≦(1−γ )n A<n−1,α∂α Pn
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that defines the rough linear evolution �n
r . More precisely, we define �n

r as an

approximate solution to the modified linear magnetic wave equation

�
p,mod

A<n−1φ = 0, φ[0] = Tnφ
ω[0], n ≧ 1. (4.1)

The subtle iterative construction of �n
r in terms of a “probabilistic” parametrix is

carried out in Sect. 6. Importantly, while �n
r is not an exact solution to (4.1) and

thus does not completely remove the “strongly low-high” interaction term, it will

follow from Proposition 6.8 that the accrued renormalization error �
p,mod

A<n−1�
n
r gains

regularity and can be treated as a smooth source term (on a suitable event). This

argument relies on a suitable control of a certain redeeming error control quantity

ECn defined in (6.34).

To summarize, we have arrived at the following system of forced MKG-CG

equations for (An
x,s,A

n
0,�n

s ) at frequency level n ≧ 1,





An
j,s = A j (φ

<n, φ<n, A<n) − A j (φ
<n−1, φ<n−1, A<n−1)

An
0 = A0(φ

<n, φ<n, A<n
0 ) − A0(φ

<n−1, φ<n−1, A<n−1
0 )

�
p

A<n−1�
n
s = −�

p,mod

A<n−1�
n
r − 2i P[(1−γ )n,n−C] A<n−1,α∂α Pn�n

r

− 2i
∑

k

P≦k−CAn,α∂α Pkφ
<n

− 2i
∑

k

P≦k−C

(
A

<n−1, j
s − A

0, f ree, j
s

)
∂ j Pk�

n
s

+ 2i
∑

k

P≦k−C A<n−1
0 ∂t Pk�

n
s

+ M1(A<n, φ<n) − M1(A<n−1, φ<n−1)

+ M2(A<n, φ<n) − M2(A<n−1, φ<n−1)

+ M3(A<n, A<n, φ<n) − M3(A<n−1, A<n−1, φ<n−1)

(fMKG-CGn)

with initial data for the scalar field �n
s given by

�n
s [0] = Tnφω[0] − �n

r [0].

It is important to keep in mind that the nonlinearities in (fMKG-CGn) contain

A<n−1, φ<n−1, An
x,r , and �n

r as forcing terms. Additionally, the right-hand side

of the magnetic wave equation for �n
s features the “probabilistic” renormalization

error term �
p,mod

A<n−1�
n
r as another forcing term.

4.3. Global Existence for the Forced MKG-CG System of Equations

We now present two global existence results on which the iterative construction

of the sequence of (smooth) solutions {(An
x,s,A

n
0,�n

s )}n≧0 relies. These should

be viewed and are formulated as purely deterministic global existence results at
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energy regularity under suitable smallness assumptions on the respective data and

forcing terms.

If the energy of the lowest frequency block (T0 Aω
x [0], T0φ

ω[0]) of the random

data (Aω
x [0], φω[0]) is sufficiently small, we can invoke the small energy global reg-

ularity result for (MKG-CG) by [27] and start the induction on frequency procedure

by solving the standard Maxwell–Klein–Gordon system of equations (MKG-CG)

with (smooth) initial data given by (T0 Aω
x [0], T0φ

ω[0]). We denote this (smooth)

solution by (A0
x,s,A

0
0,�

0
s ) ∈ S1 × Y 1 × S1 and we set A0

r = �0
r = 0. In order

to capture the frequency localization of the solution (A0
x,s,A

0
0,�

0
s ) to frequencies

|ξ | � 1 up to tails, we use the norms

‖A0
x,s‖S1[0] :=

(∑

k

(
max{2δ2k, 1}

)2‖PkA
0
x,s‖2

S1
k

) 1
2

+ ‖A0,nl
x,s ‖ℓ1 S1 ,

‖A0
0‖Y 1[0] :=

(∑

k

(
max{2δ2k, 1}

)2‖PkA
0
0‖2

Y 1

) 1
2

,

‖�0
s ‖S1[0] :=

(∑

k

(
max{2δ2k, 1}

)2‖PkA
0
x,s‖2

S1
k

) 1
2

.

Proposition 4.1. (Induction base case) There exist absolute constants 0 < ε ≪ 1

and C0 ≧ 1 with the following property: If

‖T0 Aω
x [0]‖Ḣ1

x ×L2
x
+ ‖T0φ

ω[0]‖Ḣ1
x ×L2

x
≦ ε,

then there exists a unique global solution (A0
x,s,A

0
0,�

0
s ) ∈ S1 × Y 1 × S1 to

(MKG-CG) with initial data

A0
x,s[0] = T0 Aω

x [0], �0
s [0] = T0φ

ω[0].
Moreover, it holds that

‖A0
x,s‖S1[0] + ‖A0

0‖Y 1[0] + ‖�0
s ‖S1[0] ≦ C0

(
‖T0 Aω

x [0]‖Ḣ1
x ×L2

x
+ ‖T0φ

ω[0]‖Ḣ1
x ×L2

x

)
.

Proof. We may freely assume that the constant 0 < ε ≦ 1 is sufficiently small

so that we can invoke the small energy global regularity result by Sterbenz–

Tataru and the first author [27, Theorem 1]. From [27] we obtain the following

refined information about the solution (A0
x,s,A

0
0,�

0
s ). Let {ck}k∈Z be an Ḣ1

x × L2
x

frequency envelope for the initial data (T0 Aω[0], T0φ
ω[0]) defined by

ck :=
∑

ℓ∈Z

2−2δ2|k−ℓ|
(∥∥PℓT0 Aω[0]

∥∥
Ḣ1

x ×L2
x
+

∥∥PℓT0φ
ω[0]

)∥∥
Ḣ1

x ×L2
x

)
.

Then it holds that
∥∥PkA

0,nl
x,s

∥∥
Sk

� c2
k , ‖Pk�

0
s ‖S1 � ck, ‖PkA

0
0,s‖Y 1 � ck .

In particular, it follows that

‖A0
x,s‖S1[0] + ‖A0

0‖Y 1[0] + ‖�0
s ‖S1[0] ≦ C0

(
‖T0 Aω

x [0]‖Ḣ1
x ×L2

x
+ ‖T0φ

ω[0]‖Ḣ1
x ×L2

x

)

for some absolute constant C0 ≧ 1. ⊓⊔
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The main result of this section is the following (deterministic) induction step

global existence result at energy regularity for the system of forced MKG-CG

equations (fMKG-CGn) at stage n ≧ 1. Note that the corresponding solution

(An
x,s,A

n
0,�n

s ) to (fMKG-CGn) is localized to frequencies ∼ 2n up to tails, as

quantified by the estimate (4.5) below. The statement assumes smallness of the

redeeming error control quantity ECn defined in (6.34), which is used to bound the

accrued renormalization error �
p,mod

A<n−1�
n
r .

Proposition 4.2. (Induction step) There exist absolute constants 0 < ε ≪ 1 and

C0 ≧ 1 with the following property: Let n ≧ 1 be arbitrary. Suppose that the linear

rough components from previous stages satisfy

n−1∑

m=1

‖�m
r ‖Rm +

n−1∑

m=1

‖Am
x,r‖Rm ≦ ε (4.2)

and that the smooth components from previous stages satisfy

n−1∑

m=0

‖�m
s ‖S1[m] +

n−1∑

m=0

‖Am
x,s‖S1[m] +

n−1∑

m=0

‖Am
0 ‖Y 1[m] ≦ C0ε. (4.3)

Assume that

∥∥�n
s [0]

∥∥
Ḣ1

x ×L2
x
+ ‖�n

r ‖Rn + ‖An
x,r‖Rn + ‖Tnφ

ω[0]‖
H

1−δ∗
x ×H

−δ∗
x

+ ECn ≦ ε.

(4.4)

Then there exists a unique global solution (An
x,s,A

n
0,�n

s ) ∈ S1 × Y 1 × S1 to

( f M K G − CGn) satisfying

‖�n
s ‖S1[n] + ‖A

n
x,s‖S1[n] + ‖A

n
0‖Y 1[n]

≦ C0

(
‖�s

n[0]‖Ḣ1
x ×L2

x
+ ‖�n

r ‖Rn + ‖A
n
x,r ‖Rn + ‖Tnφω[0]‖

H
1−δ∗
x ×H

−δ∗
x

+ EC
n
)
.

(4.5)

For the proof of Theorem 1.1 it is crucial to observe that in view of the condi-

tions (4.2)–(4.4) and in view of the bound (4.5) on the solutions (An
x,s,A

n
0,�n

s ), we

can invoke the induction base case Proposition 4.1 and keep iterating the induction

step Proposition 4.2 for all n ≧ 1 on an event on which we have that

‖(T0 Aω
x [0], T0φ

ω[0])‖Ḣ1
x ×L2

x
+

∞∑

m=1

‖�m
r ‖Rm +

∞∑

m=1

‖Am
x,r‖Rm

+
∞∑

m=1

‖�m
s [0]‖Ḣ1×L2

x
+

∞∑

m=1

‖Tmφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

+
∞∑

m=1

ECm ≦ ε.

We now outline the proof of Proposition 4.2 using the nonlinear estimates

established in the next Sect. 4.4
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Proof of Proposition 4.2. As in the proof of the small energy global regularity

result for (MKG-CG) in [27], the scheme of the proof is a Picard iteration. Here

it is important to keep in mind that in terms of estimates this is really a two-step

iteration, because to obtain good bounds, the equations for An
x,s and An

0 have to be

reinserted. The nonlinear estimates in Sect. 4.4 have to be understood in this sense.

In the following we use superscripts (ℓ) to denote the Picard iterates.

We initialize the Picard iteration by setting
(
An,(0)

x,s ,A
n,(0)
0 ,�n,(0)

s

)
= (0, 0, 0).

Then for any ℓ ≧ 1, we define
(
A

n,(ℓ)
x,s ,A

n,(ℓ)
0 ,�

n,(ℓ)
s

)
as the solution to the sys-

tem (fMKG-CGn) where
(
An

x,s,A
n
0,�n

s

)
on the left-hand sides is replaced by(

A
n,(ℓ)
x,s ,A

n,(ℓ)
0 ,�

n,(ℓ)
s

)
and

(
An

x,s,A
n
0,�n

s

)
on the right-hand sides is replaced by(

A
n,(ℓ−1)
x,s ,A

n,(ℓ−1)
0 ,�

n,(ℓ−1)
s

)
, and with initial data for the scalar field

�n,(ℓ)
s [0] = (Tnφ

ω
0 , Tnφω

1 ) − �n
r [0].

We first derive the bound

‖�n,(1)
s ‖S1[n] + ‖An,(1)

x,s ‖S1[n] + ‖An,(1)
0 ‖Y 1[n]

≦ C1

(
‖�n

s [0]‖Ḣ1
x ×L2

x
+ ‖�n

r ‖Rn + ‖An
x,r ‖Rn + ‖Tnφω[0]‖

H
1−δ∗
x ×H

−δ∗
x

+ EC
n
)

(4.6)

for some absolute constant C1 > 0 such that C1ε ≪ 1. This bound follows from

the nonlinear estimates in the next Sect. 4.4 by observing that, since �
n,(0)
s = 0

and A
n,(0)
x,s = 0 vanish on the right-hand sides of the equations for �

n,(1)
s , A

n,(1)
x,s ,

A
n,(1)
0 , all (non-vanishing) multilinear terms have at least one copy of �n

r or An
x,r

in one slot (while the forcing terms A<n−1 or φ<n−1 sitting in one or more of

the other slots just give an additional ε of smallness). The term ‖�n
s [0]‖Ḣ1

x ×L2
x

on

the right-hand side of (4.6) just comes from the initial data for �
n,(1)
s , while the

terms ‖Tnφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

and ECn are a consequence of the bound provided

by Proposition 6.8 on the renormalization error term �
p,mod

A<n−1�
n
r on the right-hand

side of the equation for �
n,(0)
s . In particular, by the assumptions in the statement

of Proposition 4.2 the bound (4.6) implies

‖�n,(1)
s ‖S1[n] + ‖An,(1)

x,s ‖S1[n] + ‖An,(1)
0 ‖Y 1[n] ≦ C1ε. (4.7)

Next, we establish that for all ℓ ≧ 2 we have

‖�n,(ℓ)
s − �n,(ℓ−1)

s ‖S1[n] + ‖An,(ℓ)
x,s − A

n,(ℓ−1)
x,s ‖S1[n] + ‖An,(ℓ)

0 − A
n,(ℓ−1)
0 ‖Y 1[n]

≦ C∗
(

2C1

(
‖�n

s [0]‖Ḣ1
x ×L2

x
+ ‖�n

r ‖Rn + ‖An
x,r ‖Rn + ‖�n,±

r ‖
S

1−δ∗
n

))ℓ

≦ C∗(2C1ε)
ℓ

(4.8)

for some absolute constant C∗ ≧ 1. The proof of (4.8) proceeds inductively. The

induction base case ℓ = 1 is provided by (4.6). To carry out the induction step

ℓ−1 → ℓ we note that by summing up (4.6) and (4.8) we may add to our induction

hypothesis (as long as C1ε ≪ 1 is sufficiently small) that for ℓ̃ = 1, 2, . . . , ℓ − 1,

it holds that
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‖�n,(ℓ̃)
s ‖S1[n] + ‖A

n,(ℓ̃)
x,s ‖S1[n] + ‖A

n,(ℓ̃)
0 ‖Y 1[n]

≦ 2C1

(
‖�n

s [0]‖Ḣ1
x ×L2

x
+ ‖�n

r ‖R[n] + ‖A
n
x,r ‖R[n] + ‖Tnφω[0]‖

H
1−δ∗
x ×H

−δ∗
x

+ EC
n
)
.
(4.9)

The bound (4.8) follows from the nonlinear estimates in Sect. 4.4 by observing

that the equations for �
n,(ℓ)
s − �

n,(ℓ−1)
s , A

n,(ℓ)
x,s − A

n,(ℓ−1)
x,s , and A

n,(ℓ)
0 − A

n,(ℓ−1)
0

have zero initial data and do not involve forcing terms that come up to linear order

on the right-hand sides. Moreover, in all multilinear terms on the right-hand sides

there will be at least one copy of �
n,(ℓ−1)
s − �

n,(ℓ−2)
s , A

n,(ℓ−1)
x,s − A

n,(ℓ−2)
x,s , or

A
n,(ℓ−1)
0 − A

n,(ℓ−2)
0 in one slot, while the other slots at least give an additional ε

of smallness.

Then (4.8) implies that the sequence
{
(A

n,(ℓ)
x,s ,A

n,(ℓ)
0 ,�

n,(ℓ)
s )

}
ℓ≧0

converges in

S1 × Y 1 × S1 to a solution (An
x,s,A

n
0,�n

s ) to (fMKG-CGn). Moreover, assuming

that 2C1 ≦ C0, from (4.9) it follows that this solution satisfies

‖�n
s ‖S1[n] + ‖A

n
x,s‖S1[n] + ‖A

n
0‖Y 1[n]

≦ C0

(
‖�n

s [0]‖Ḣ1
x ×L2

x
+ ‖�n

r ‖Rn + ‖A
n
x,r ‖Rn + ‖Tnφω[0]‖

H
1−δ∗
x ×H

−δ∗
x

+ EC
n
)
.

⊓⊔

4.4. The Main Nonlinear Estimates

In this subsection we establish all estimates for the source terms that appear in

the forced MKG-CG system of equations (fMKG-CGn), n ≧ 1. The derivations

rely on the frequency-localized multilinear estimates in [27, Section 12] and their

generalized versions established in Sect. 8, which allow for rough inputs satisfying

redeeming bounds.

We begin with the source terms of the Ax equation.

Proposition 4.3. (The Ax equation) For arbitrary n ≧ 1 the following estimates

hold

sup
k∈Z

2+δ2|k−n|∥∥Pk�
(
A2

x (φ<n, φ<n) − A2
x (φ<n−1, φ<n−1)

)∥∥
Nk∩L2

t Ḣ
− 1

2
x

(4.10)

�
(
‖�n

s ‖S1[n] + ‖�n
r ‖Rn

)( n∑

m=0

‖�m
s ‖S1[m] +

n∑

m=1

‖�m
r ‖Rm

)

sup
k∈Z

2+δ2|k−n|∥∥Pk�
(
A3

x (φ<n, φ<n, A<n
x ) − A3

x (φ<n−1, φ<n−1, A<n−1
x )

)∥∥
Nk∩L2

t Ḣ
− 1

2
x

�
(
‖�n

s ‖S1[n] + ‖A
n
x,s‖S1[n] + ‖�n

r ‖Rn + ‖A
n
x,r ‖Rn

)
×

×
( n∑

m=0

‖�m
s ‖S1[m] +

n∑

m=0

‖A
m
x,s‖S1[m] +

n∑

m=1

‖�m
r ‖Rm +

n∑

m=1

‖A
m
x,r ‖Rm

)
. (4.11)

Proof. We provide the details for the proof of (4.10). The proof of (4.11) for the

simpler cubic terms is analogous, only that it just relies on the core generic product

estimates from Lemma 8.1. Correspondingly, we omit the details for (4.11).

The proof of (4.10) can be further reduced to the following two bilinear estimates

sup
k∈Z

2+δ2|k−n|∥∥Pk�A2
x (�

n,�n)
∥∥

Nk∩L2
t Ḣ

− 1
2

x

�
(
‖�n

s ‖S1[n] + ‖�n
r ‖Rn

)2
, (4.12)
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sup
k∈Z

2+δ2|k−n|∥∥Pk�A2
x (�

n, φ<n−1)
∥∥

Nk∩L2
t Ḣ

− 1
2

x

�
(
‖�n

s ‖S1[n]

+ ‖�n
r ‖Rn

)(n−1∑

m=0

‖�m
s ‖S1[m] +

n−1∑

m=1

‖�m
r ‖Rm

)
. (4.13)

Their proofs are analogous and so we focus on (4.12), beginning with the Nk bounds.

Recall that the �A2
x term has the favorable null form structure

P j

(
�n∇x�n

)
= ∂k	−1Nk j

(
�n,�n

)
.

Here we have to distinguish smooth-smooth, smooth-rough, and rough-rough in-

teractions. These cases can all be dealt with analogously using the generalized

bilinear null form estimate (8.5) and keeping in mind that the rough component

�n
r is sharply localized to frequencies ∼ 2n , while the smooth component �n

s is

localized to frequencies |ξ | ∼ 2n up to exponential tails captured by the S1[n]
norm. We also recall the smallness relations 0 < δ2 ≪ δ ≪ 1, which are important

here to close the estimates.

Smooth–smooth interactions: Let k ∈ Z be arbitrary. In the high-low case we

obtain from the bilinear null form estimate (8.5) that

2+δ2|k−n| ∑

k2≦k−C

∥∥Pk�A2
x (Pk�

n
s , Pk2�

n
s )

∥∥
Nk

�
∑

k2≦k−C

2−δ(k−k2)
(
2+δ2|k−n|‖Pk�

n
s ‖S1

k

)
‖Pk2�

n
s ‖S1

k2

� ‖�n
s ‖2

S1[n].

The low-high case is the same and in the high-high case we find that

2+δ2|k−n| ∑

k1≧k+O(1)

∑

k2=k1+O(1)

∥∥Pk�A2
x (Pk1�

n
s , Pk2�

n
s )

∥∥
Nk

� 2+δ2|k−n| ∑

k1≧k+O(1)

∑

k2=k1+O(1)

2−δ(k1−k)‖Pk1�
n
s ‖S1

k1

‖Pk2�
n
s ‖S1

k2

� 2+δ2|k−n| ∑

k1≧k+O(1)

2−δ(k1−k)2−δ2|n−k1|‖�n
s ‖2

S1[n]

�
∑

k1≧k+O(1)

2−(δ−δ2)(k1−k)‖�n
s ‖2

S1[n]

� ‖�n
s ‖2

S1[n].

Smooth–rough interactions: If k ≧ n+C , only the following high-low interaction

is possible

2+δ2(k−n)
∥∥Pk�A2

x (Pk�
n
s , Pn�n

r )
∥∥

Nk
� 2+δ2(k−n)2−δ(k−n)‖Pk�

n
s ‖S1

k
‖�n

r ‖Rn

� ‖�n
s ‖S1[n]‖�n

r ‖Rn .
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Instead if k ≦ n + C , we may have the high-high interaction

2+δ2(n−k)
∥∥Pk�A2

x (Pn�n
s , Pn�n

r )
∥∥

Nk
� 2+δ2(n−k)2−δ(n−k)‖Pn�n

s ‖S1
n
‖�n

r ‖Rn

� ‖�n
s ‖S1[n]‖�n

r ‖Rn ,

and specifically for k = n + O(1) the low-high interaction

∑

k1≦n−C

∥∥Pn�A2
x (Pk1�

n
s , Pn�n

r )
∥∥

Nk

�
∑

k1≦n−C

2−δ(n−k1)‖Pk1�
n
s ‖S1

k1

‖�n
r ‖Rn � ‖�n

s ‖S1[n]‖�n
r ‖Rn .

Rough–rough interactions: Due to the sharp frequency localization of the rough

components, here the output frequency must satisfy k ≦ n + C and only the

following high-high interaction is possible

2+δ2(n−k)
∥∥Pk�A2

x (Pn�n
r , Pn�n

r )
∥∥

Nk
� 2+δ2(n−k)2−δ(n−k)‖�n

r ‖Rn ‖�n
r ‖Rn � ‖�n

r ‖2
Rn

.

The high-modulation bounds for (4.12) can be proved similarly using the core

generic product estimates from Lemma 8.1. ⊓⊔

The next proposition treats the source terms of the A0 equation.

Proposition 4.4. (The A0 equation) For any n ≧ 1 we have that

sup
k∈Z

2+δ2|k−n| ∥∥Pk

(
A0

(
φ<n, φ<n, A<n

)
− A0

(
φ<n−1, φ<n−1, A<n−1

))∥∥
Y 1

�
(
‖�n

s ‖S1[n] + ‖An
x,s‖S1[n] + ‖An

0‖Y 1[n] + ‖�n
r ‖Rn + ‖An

x,r‖Rn

)
×

×
( n∑

m=0

‖�m
s ‖S1[m] +

n∑

m=0

‖Am
x,s‖S1[m]

+
n∑

m=0

‖Am
0 ‖Y 1[m] +

n∑

m=1

‖�m
r ‖Rm +

n∑

m=1

‖Am
x,r‖Rm

)2

.

(4.14)

Proof. The proof of (4.14) proceeds analgously to the one of Proposition 4.4, using

the generalized core product estimates from Lemma 8.1, see also Subsection 4.2 in

[27] and [27, Proposition 4.2]. ⊓⊔

The φ equation. We now turn to the heart of the matter, namely the magnetic

wave equation for the scalar field. The derivation of a priori bounds for �n
s hinges

on the following linear estimate for the inhomogeneous magnetic wave equation

�
p

A<n−1φ = F . We recall the definition of the paradifferential magnetic wave

operator

�
p

A<n−1 := � + 2i
∑

k

P≦k−C

(
A

<n−1, j
r + A

0, f ree, j
s

)
∂ j Pk,
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where A<n−1
x,r =

∑n−1
m=1 Am

x,r . In Proposition 5.1 in Sect. 5 we use a “deterministic”

parametrix construction to establish the following main linear estimate that provides

the link between the S1 and N spaces.

Main linear estimate: Let n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm + ‖A0, f ree

x,s ‖S1[0] ≦ 2C0ε.

For any ( f, g) ∈ Ḣ1
x × L2

x and any F ∈ N ∩ ℓ1 L2
t Ḣ

− 1
2

x , there exists a unique

global solution to the linear magnetic wave equation �
p

A<n−1φ = F with initial

data φ[0] = ( f, g) and it holds that

‖φ‖S1 � ‖ f ‖Ḣ1
x

+ ‖g‖L2
x
+ ‖F‖

N∩ℓ1 L2
t Ḣ

− 1
2

x

. (4.15)

We now turn to estimating the terms on the right-hand side of the equation for

�n
s in (fMKG-CGn). Here we first consider the most delicate terms, namely the error

term �
p,mod

A<n−1�
n
r and the low-high magnetic interaction term −2i

∑
k P≦k−CAn,α

∂α Pkφ
<n , where the high-frequency input φ<n can be rough. Subsequently, we will

describe how to deal with the other terms on the right-hand side of the equation for

�n
s .

The error term �
p,mod

A<n−1�
n
r acts as a forcing term (at linear order) on the right-

hand side of the equation for �n
s and correspondingly has to be sufficiently small in

Nn ∩ L2
t Ḣ

− 1
2

x to run the induction step global existence Proposition 4.2. We defer

the treatment of �
p,mod

A<n−1�
n
r to Sect. 6.6 since it relies on the precise definition of the

adapted rough linear evolution �n
r . There we show in Proposition 6.8 that the desired

smallness follows if ‖Tnφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

and the redeeming error control quantity

ECn are sufficiently small, which in turn gives rise to the corresponding smallness

assumptions in the statement of the induction step global existence Proposition 4.2.

The next proposition provides the bounds for the low-high interaction term

−2i
∑

k P≦k−CAn,α∂α Pkφ
<n .

Proposition 4.5. Let n ≧ 1 be arbitrary. Assume that An
x,s and An

0 are given by

An
x,s = Ax (φ

<n, φ<n, A<n) − Ax (φ
<n−1, φ<n−1, A<n−1), (4.16)

An
0 = A0(φ

<n, φ<n, A<n
0 ) − A0(φ

<n−1, φ<n−1, A<n−1
0 ). (4.17)

Then it holds that

sup
k∈Z

2+δ2|n−k|∥∥P≦k−CAn,α∂α Pkφ
<n

∥∥
Nk∩L2

t Ḣ
− 1

2
x

�
(
‖An

x,s‖S1[n] + ‖An
x,r‖Rn + ‖An

0‖Y 1[n]
)( n∑

m=0

‖�m
s ‖S1[m] +

n∑

m=1

‖�m
r ‖Rm

)

(4.18)
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+
(
‖�n

s ‖S1[n] + ‖�n
r ‖Rn + ‖An

x,s‖S1[n] + ‖An
0‖Y 1[n] + ‖An

x,r‖Rn

)
×

×
( n∑

m=0

(
‖�m

s ‖S1[m] + ‖Am
x,s‖S1[m] + ‖Am

0 ‖Y 1[m]
)

+
n∑

m=1

(
‖�m

r ‖Rm + ‖Ax,r‖Rm

))2

.

Observe that one of the bounds on the right-hand side of (4.18) is in fact cubic.

The reason is that when An is smooth, certain parts of this low-high interaction can

only be bounded by exploiting a subtle trilinear null form structure, which emerges

upon reinserting the Eqs. (4.16)–(4.17) for An
x,s and An

0 .

Proof. The high-modulation bound is as usual a consequence of the generalized

generic product estimates from Lemma 8.1, so it suffices to discuss the delicate Nk

bound. We further expand this low-high term into

P≦k−CAn,α∂α Pkφ
<n = P≦k−CAn, j∂ j Pkφ

<n + P≦k−CAn
0∂t Pkφ

<n . (4.19)

Then we have to distinguish different types of interactions depending on whether

An
x and φ<n are rough or smooth. Recall that the entire temporal component An

0 is

smooth in the sense that it belongs to the space Y 1[n].
Rough–rough interactions: Due to the sharp frequency localization of the rough

evolutionAn
x,r to frequencies |ξ | ∼ 2n and ofφ<n

r to frequencies |ξ | ≦ 2n−1+O(1),

the first term on the RHS of (4.19) in fact vanishes P≦k−CA
n, j
r ∂ j Pkφ

<n
r = 0, k ∈ Z,

in the case of rough-rough interactions.

Rough–smooth interactions: In view of the sharp frequency localization of the

rough evolution An
x,r to frequencies |ξ | ∼ 2n , we have P≦k−CA

n, j
r ∂ j Pkφ

<n
s = 0

for k − C < n and

P≦k−CA
n, j
r ∂ j Pkφ

<n
s = PnA

n, j
r ∂ j Pkφ

<n
s for k ≧ n + C.

In the latter case we use the generalized null form estimate (8.6) (and the fact that

An
x,r is just the free wave evolution of the random data (Tnaω, Tnbω)) to obtain for

any k > n + C that

∥∥PnA
n, j
r ∂ j Pkφ

<n
s

∥∥
Nk

≃
∥∥N

(
	−1∇An

x,r , Pkφ
<n
s

)∥∥
Nk

� 2n2−n‖An
x,r‖Rn ‖Pkφ

<n
s ‖S1

k

� ‖An
x,r‖Rn

( n∑

m=0

2−δ2|k−m|‖�m
s ‖S1[m]

)

� 2−δ2|k−n|‖An
x,r‖Rn

( n∑

m=0

‖�m
s ‖S1[m]

)
.

Smooth–smooth interactions: This case can be handled by proceeding as in

Steps 3–5 in [27, Subsection 4.3] using the generalized multilinear estimates from
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Sect. 8. The idea is to first “peel off” the good parts of P≦k−CA
n, j
s ∂ j Pkφ

<n
s and of

P≦k−CAn
0∂t Pkφ

<n
s that can be handled by bilinear (null form) estimates). Then we

reinsert the equations for An
x,s and An

0 to unveil the core trilinear null forms, which

can be bounded using the generalized trilinear null form estimates (8.9)–(8.11).

Since we implement a version of this procedure in the treatment of the “strongly

low-high” case of the smooth-rough interactions below, we omit the details for the

smooth-smooth interactions.

Smooth–rough interactions: Due to the sharp frequency localization of φ<n
r to fre-

quencies 1 � |ξ | � 2n , we may assume that 0 ≦ k ≦ n. Then we distinguish “mod-

erately low-high interactions” P[(1−γ )k,k−C]An,α∂α Pkφ
<n and “strongly low-high

interactions” P≦(1−γ )kA
n,α∂α Pkφ

<n where the small constant 0 < γ ≪ 1 is cho-

sen sufficiently small (depending on the size of δ∗ and σ ).

“Moderately low-high interactions”: the bound for P[(1−γ )k,k−C]A
n, j
s ∂ j Pkφ

<n
r : We

decompose this term schematically according to the various possibilities for the

modulations, assuming for now that we are in the “elliptic situation” where all

modulations are less than (1 − γ )k

P[(1−γ )k,k−C]A
n, j
s Pk∂ j φ

<n
r =

∑

l≦(1−γ )k

Q<l−10

(
P[(1−γ )k,k−C] QlA

n, j
s ∂ j Pk Q<l−10φ

<n
r

)

+
∑

l≦(1−γ )k

Ql

(
P[(1−γ )k,k−10] Q<l−10A

n, j
s ∂ j Pk Q<l−10φ

<n
r

)

+
∑

l≦(1−γ )k

Q<l−10

(
P[(1−γ )k,k−10] Q<l−10A

n, j
s ∂ j Pk Qlφ

<n
r

)
.

(4.20)

Observe that in all cases the angle between the inputs may be localized to size

∼ 2
l−k1

2 , where (1 − γ )k ≦ k1 ≦ k − C is the low frequency of the input A
n, j
s .

Then using the null form, we can bound the first term on the right by

∑

l≦(1−γ )k

∥∥Q<l−10

(
P[(1−γ )k,k−C]QlA

n, j
s ∂ j Pk Q<l−10φ

<n
r

)∥∥
L1

t L2
x

�
∑

l≦(1−γ )k

k−C∑

k1=(1−γ )k

∑

κ

2
l−k1

2 2k
∥∥Pk1,κ QlA

n
x,s

∥∥
L2

t L2
x

∥∥Pk,κ Q<l−10φ
<n
r

∥∥
L2

t L∞
x

.

Thanks to the redeeming bound and a simple application of Bernstein’s inequality

(∑

κ

∥∥Pk,κ Q<l−10φ
<n
r

∥∥2

L2
t L∞

x

) 1
2

� 2− k
2+ · 2(0+)(l−k) · ‖Pkφ

<n
r ‖Rk

,

we obtain by Cauchy–Schwarz in κ that

∑

l≦(1−γ )k

k−C∑

k1=(1−γ )k

2
l−k1
2− 2k

∥∥Pk1 QlA
n
x,s

∥∥
L2

t L2
x
2− k

2+ ‖Pkφ
<n
r ‖Rk

�
∑

l≦(1−γ )k

k−C∑

k1=(1−γ )k

2
l−k1
2− 2k−k1 2− 1

2 l

(
2k1 sup

l ′
2

1
2 l ′∥∥Pk1 Ql ′A

n
x,s

∥∥
L2

t L2
x

)
2− k

2+ ‖Pkφ
<n
r ‖Rk

.
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We can then complete the preceding estimate by Cauchy–Schwarz

�

k−10∑

k1=(1−γ )k

2−δ2|k1−n|2k−k1 2− k
2+

∥∥An
x,s

∥∥
S1[n]

( n∑

m=0

∥∥�m
r

∥∥
Rm

)

� 2−δ2|k−n|∥∥An
x,s

∥∥
S1[n]

( n∑

m=0

∥∥�m
r

∥∥
Rm

)
,

provided γ + δ∗ < 1
2

. The bound if l ≧ (1 − γ )k is similar except that one no

longer needs to localize to angular sectors.

The remaining terms above are bounded similarly. For example, consider the

last of the three terms in (4.20), again assuming l ≦ (1 − γ )k, i.e.

∑

l<(1−γ )n

Q<l−10

(
P[k(1−γ ),k−10]Q<l−10A

n, j
s ∂ j Pk Qlφ

<n
r

)

=
∑

l<(1−γ )n

k−10∑

k1=(1−γ )k

Q<l−10

(
Pk1 Q<l−10A

n, j
s ∂ j Pk Qlφ

<n
r

)
.

Here we place the large frequency term Pn Qlφ
<n
r into L2

t L3
x , and the low frequency

term into L2
t L6

x . Precisely, we may localize the factors to caps κ1,2 of radius ∼ 2
l−k1

2

and either aligned or anti-aligned,

∑

l<(1−γ )n

k−10∑

k1=(1−γ )k

Q<l−10

(
Pk1 Q<l−10A

n, j
s ∂ j Pk Qlφ

<n
r

)

=
∑

l<(1−γ )n

k−10∑

k1=(1−γ )k

∑

κ1∼±κ2

Q<l−10

(
Pκ1 Pk1 Q<l−10A

n, j
s ∂ j Pκ2 Pk Qlφ

<n
r

)
,

and using interpolation we have the bound

(
∑

κ2

∥∥∂ j Pκ2 Pk Qlφ
<n
r

∥∥2

L2
t L3

x

) 1
2

�
(
21− k

2+
) 1

3 ·
(
2δ∗k− l

2
) 2

3 ·
∥∥Pkφ

<n
r

∥∥
Rk

(
∑

κ1

∥∥Pκ1 Pk1 Q<l−10A
n, j
s

∥∥2

L2
t L6

x

) 1
2

� 2−δ2|k1−n| · 2− k1
6 ·

∥∥A
n, j
s

∥∥
S1[n]

Observe that the null form gains 2
l−k1

2 , and we infer that

∥∥∥∥
∑

l<(1−γ )n

k−10∑

k1=(1−γ )k

∑

κ1∼±κ2

Q<l−10

(
Pκ1 Pk1 Q<l−10A

n, j
s ∂ j Pκ2 Pk Qlφ

<n
r

)∥∥∥∥
L1

t L2
x

�
∑

l<(1−γ )n

k−10∑

k1=(1−γ )k

2
l−k1

2 ·
(
21− k

2+
) 1

3 ·
(
2δ∗k− l

2
) 2

3 · 2−δ2|k1−n| · 2− k1
6

∥∥A
n, j
s

∥∥
S1[n]

∥∥Pkφ
<n
r

∥∥
Rk
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� 2−δ2|k−n|∥∥A
n
x,s

∥∥
S1[n]

(n−1∑

m=0

∥∥�m
r

∥∥
Rm

)
.

The case of large modulations l > (1 − γ )k is again handled in a simpler fashion,

without having to take recourse to angular decompositions.

“Moderately low-high interactions”: the bound forP[(1−γ )k,k−C]An
0∂t Pkφ

<n
r : In

view of the frequency localization of φ<n
r to 1 � |ξ | � 2n , we may assume

that 0 ≦ k ≦ n. Then we easily obtain that

∥∥P[(1−γ )k,k−C]A
n
0∂t Pkφ

<n
r

∥∥
L1

t L2
x

�
∑

(1−γ )k≦k1≦k−C

‖Pk1A
n
0‖L2

t L2
x
‖Pk∂tφ

<n
r ‖L2

t L∞
x

�
∑

(1−γ )k≦k1≦k−C

2− 3
2 k1‖Pk1A

n
0‖Y 1 2k2− 1

2+ k
(
2−k‖Pk∂tφ

<n
r ‖Rk

)

�
∑

(1−γ )k≦k1≦k−C

2− 3
2 k1 2−δ2|k1−n|‖An

0‖Y 1[n]2
k2− 1

2+ k
(
2−k‖Pk∂tφ

<n
r ‖Rk

)

� 2−δ2|k−n|‖An
0‖Y 1[n]

(
2−k‖Pk∂tφ

<n
r ‖Rk

)
.

“Strongly low-high interactions”: Here the idea is to proceed analogously to the

treatment of the low-high interactions in [27, Subsection 4.3]. We first peel off

the “good parts” of P≦(1−γ )kA
n, j
s ∂ j Pkφ

<n
r and of P≦(1−γ )kA

n
0∂t Pkφ

<n
r , using

generalized bilinear null form estimates. Then we reinsert the equations for An
x,s and

An
0 to unveil the crucial trilinear null forms, which we bound using the generalized

trilinear null form estimates (8.9)–(8.11). However, in this approach we can only

place the rough high-frequency term Pkφ
<n
r in S1

k . This costs 2δ∗k below, which we

can then compensate (for suitable choice of γ depending on δ∗, δ2) using the off-

diagonal decay in all multilinear estimates combined with the off-diagonal decay

of Pk1A
n
x,s and Pk1A

n
0 (and Pk1�

n
s ) away from frequency |ξ | ∼ 2n and the fact that

we are in the strongly low-high case k1 ≦ (1 − γ )k, k ≧ 1. We now turn to the

details.

In what follows we try to closely mimic the notation in [27]. To decompose

the nonlinearity and to “peel off its good parts”, it will be useful to introduce the

following notation. For any bilinear operator M(Dt,x , Dt,y) we set

HkM(φ,ψ) :=
∑

j<k+C

Q j PkM
(
Q< j−Cφ, Q< j−Cψ

)
,

H∗
kM(φ,ψ) :=

∑

j<k+C

Q< j−CM
(
Q j Pkφ, Q< j−Cψ

)
.

Moreover, we introduce the following short-hand notation for the “strongly low-

high” interaction terms (for the spatial components of the connection form)

N
lh,k
str

(
An

x,s, φ
<n
r

)
:= P≦(1−γ )kA

n, j
s ∂ j Pkφ

<n
r

=
∑

i �= j

Ni j

(
∇i	

−1 P≦(1−γ )kA
n
j,s, Pkφ

<n
r

)
,
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where in the last line we recalled the null structure of this interaction term in the

Coulomb gauge. In order to decompose the “strongly low-high” interaction term

for the temporal component of the connection form, we introduce the short-hand

notation

N
lh,k
0,str

(
An

0, φ<n
r ) := P≦(1−γ )k Q<k−CAn

0∂t Pkφ
<n
r .

We can bound N
lh,k
str via a bilinear null form estimate for the most part, except for

high ×low → low modulation interactions. We group the latter into an expression

denoted by

H∗N lh,k
str

(
An

x,s, φ
<n
r

)
:=

∑

k′≦k−C

H∗
k′N

lh,k
str

(
An

x,s, φ
<n
r

)
. (4.21)

Then by the bilinear null form estimate (132) from [27] (and recalling that 1 ≦ k ≦
n) we obtain for the difference that

2+δ2|k−n|∥∥N
lh,k
str

(
An

x,s, φ
<n
r

)
− H∗N lh,k

str

(
An

x,s, φ
<n
r

)∥∥
Nk

� 2+δ2|k−n| ∑

k1≦(1−γ )k

‖Pk1A
n
x,s‖S1

k1

‖Pkφ
<n
r ‖S1

k

� 2+δ2|k−n| ∑

k1≦(1−γ )k

2−δ2|k1−n|‖An
x,s‖S1[n]2

δ∗k‖Pkφ
<n
r ‖

S
1−δ∗
k

� 2−δ2γ k2δ∗k‖An
x,s‖S1[n]‖Pkφ

<n
r ‖Rk

,

which is of the desired form as long as we choose δ2γ > δ∗.

The remaining term H∗N lh,k
str

(
An

x,s, φ
<n
r

)
can for the most part be estimated

using the stronger Z norm except for the following delicate part of An
x,s given by

HAn
j,s :=

∑

k,ki
k<min{k1,k2}−C

Hk

(
A2

j (Pk1φ
<n, Pk2φ

<n) − A2
j (Pk1φ

<n−1, Pk2φ
<n−1)

)
.

Then by the bilinear null form estimate (133) from [27] we obtain for the difference

that

2+δ2|k−n|∥∥H∗N lh,k
str

(
An

x,s, φ
<n
r

)
− H∗N lh,k

str

(
HAn

x,s, φ
<n
r

)∥∥
Nk

� 2+δ2|k−n| ∑

k1≦(1−γ )k

∥∥Pk1

(
An

x,s − HAn
x,s

)∥∥
Z

2δ∗k‖Pkφ
<n
r ‖

S
1−δ∗
k

. (4.22)

In order to bound
∥∥Pk1

(
An

x,s −HAn
x,s

)∥∥
Z

we use the generalized bilinear null form

estimate (8.7) for the quadratic contributions to An
x,s and the generalized generic

product estimates from Lemma 8.1 for the cubic contributions to An
x,s . Since at

least one of the inputs for the difference An
x,s − HAn

x,s must be �n or An , their

localization around frequency ∼ 2n combined with the off-diagonal decay of all

multilinear estimates involved as well as the “strongly low-high” separation, allows
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to compensate the factor 2δ∗k (as long as δ2γ > δ∗). In this manner we can bound

the right-hand side of (4.22) by

(
‖�n

s ‖S1[n] + ‖�n
r ‖Rn + ‖An

x,s‖S1[n] + ‖An
x,r‖Rn

)

×
( n∑

m=0

(
‖�m

s ‖S1[m] + ‖Am
x,s‖S1[m]

)

+
n∑

m=1

(
‖�m

r ‖Rm + ‖Ax,r‖Rm

))
‖Pkφ

<n
r ‖Rk

.

At this point we are left to bound the term H∗N lh,k
str

(
HAn

x,s, φ
<n
r

)
. This only

turns out to be possible after exploiting cancellations that occur by combining it

with an analogous contribution from the low-high interactions N
lh,k
0,str (A

n
0, φ<n

r )

involving the temporal component of the connection form. Proceeding as in Step 4

of Subsection 4.3 in [27] and using the generalized generic product estimates from

Lemma 8.1 (as well as the more microlocal generalized product estimate (8.12)),

we may peel off the good parts of N
lh,k
0,str in a similar manner as above, until we are

left with the following part

H∗N lh,k
0,str

(
HAn

0, φ
<n
r

)
,

where

H∗N lh,k
0,str

(
HAn

0, φ
<n
r

)
:=

∑

k′<k−C

H∗
k′N

lh,k
0,str

(
HAn

0, φ
<n
r

)
,

HAn
0 :=

∑

k,ki
k<min{k1,k2}−C

Hk

(
A2

0(Pk1φ
<n, Pk2φ

<n)

− A2
0(Pk1φ

<n−1, Pk2φ
<n−1)

)
.

Finally, we collect the portion of N
lh,k
str and the portion of N

lh,k
0,str that have not

been estimated yet, and combine them into the expression

−H∗N lh,k
str

(
HAn

x,s, φ
<n
r

)
+ H∗N lh,k

0,str

(
HAn

0, φ
<n
r

)
,

which exhibits a striking trilinear null structure. As detailed in the appendix of [27],

we may write

−A2
j

(
φ(1), φ(2)

)
∂ jφ

(3) + A2
0

(
φ(1), φ(2)

)
∂tφ

(3) =
(
Q1 + Q2 + Q3

)
(φ(1), φ(2), φ(3))

with

Q1

(
φ(1), φ(2), φ(3)

)
= −�−1Im

(
φ(1)∂αφ(2)

)
· ∂αφ(3),

Q2

(
φ(1), φ(2), φ(3)

)
= 	−1�−1∂t∂αIm

(
φ(1)∂αφ(2)

)
· ∂tφ

(3),

Q3

(
φ(1), φ(2), φ(3)

)
= 	−1�−1∂α∂ j Im

(
φ(1)∂ jφ

(3)
)
· ∂αφ(3).
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Using the generalized trilinear null form estimates (8.9)–(8.11), we then obtain for

1 ≦ k ≦ n the desired bound

2+δ2|k−n|∥∥Pk

(
−H∗N lh,k

str

(
HAn

x,s, φ
<n
r

)
+ H∗N lh,k

0,str

(
HAn

0, φ
<n
r

))∥∥
Nk

�
(
‖�n

s ‖S1[n] + ‖�n
r ‖Rn

)( n∑

m=0

‖�m
s ‖S1[m] +

n∑

m=1

‖�m
r ‖Rm

)
‖Pkφ

<n
r ‖

S
1−δ∗
k

.

Here it is again crucial that while we place Pkφ
<n
r into S1

k at a loss of a factor 2δ∗k ,

we can compensate this loss using the off-diagonal decay in the trilinear estimates

along with the fact that at least one of the first two inputs of the trilinear expressions

must be �n , which is localized around frequency ∼ 2n . ⊓⊔

It remains to describe how to deal with the other terms on the right-hand side of

the equation for �n
s in (fMKG-CGn). The “moderately low-high” interaction term

−2i P[(1−γ )n,n−C] A<n−1,α∂α Pn�n
r with the rough component �n

r at high frequency

and the entire connection form A<n−1 from prior induction stages at low frequency

can be estimated analogously to the “moderately low-high” interactions in the proof

of Proposition 4.5.

Proposition 4.6. For arbitrary n ≧ 1 it holds that

∥∥P[(1−γ )n,n−C] A<n−1,α∂α Pn�n
r

∥∥
Nn∩L2

t Ḣ
− 1

2
x

�

(n−1∑

m=0

(
‖Am

x,s‖S1[m] + ‖Am
0 ‖Y 1[m]

)

+
n−1∑

m=1

‖Am
x,r‖Rm

)
‖�n

r ‖Rn .

One more low-high interaction term appears on the right-hand side of the equa-

tion for �n
s that only involves smooth-smooth interactions with the smooth com-

ponent �n
s at high frequency and all smooth components of the connection form

A<n−1 from prior induction stages at low frequency. The treatment of this low-

high interaction term essentially exactly follows the approach in Subsection 4.3 of

[27]. First the good parts are peeled off using bilinear estimates, and then the equa-

tions for A<n−1
x,s and A<n−1

0 are inserted to unveil the crucial trilinear null forms.

(This scheme was basically detailed in the treatment of the “strongly low-high”

smooth-rough interactions in Proposition 4.5 above, although there additional work

is needed to compensate the derivative loss when placing the rough component φ<n
r

at high frequency into the critical space S1.)

Proposition 4.7. Let n ≧ 1. Assume that A<n−1
x,s − A

0, f ree
x,s and A<n−1

0 are given

by

A<n−1
x,s − A

0, f ree
x,s = Ax (φ

<n−1, φ<n−1, A<n−1),

A<n−1
0 = A0(φ

<n−1, φ<n−1, A<n−1
0 ).
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Then it holds that

sup
k∈Z

2+δ2|k−n|∥∥P≦k−C

(
A

<n−1, j
s − A

0, f ree, j
s

)
∂ j Pk�

n
s + P≦k−C A<n−1

0 ∂t Pk�
n
s

∥∥
Nk∩L2

t Ḣ
− 1

2
x

�

(n−1∑

m=0

(
‖A

m
x,s‖S1[m] + ‖A

m
0 ‖Y 1[m]

)
+

n−1∑

m=1

‖A
m
x,r ‖Rm

)
‖�n

s ‖S[n]

+
(n−1∑

m=0

(
‖�m

s ‖S1[m] + ‖A
m
x,s‖S1[m] + ‖A

m
0 ‖Y 1[m]

)

+
n−1∑

m=1

(
‖�m

r ‖Rm + ‖Ax,r ‖Rm

))2

‖�n
s ‖S[n].

Finally, we dispose of the easier multilinear terms M1, M2, and M3.

Proposition 4.8. For any n ≧ 1 we have

sup
k∈Z

2+δ2 |k−n|∥∥Pk

(
M1(A<n, φ<n) − M1(A<n−1, φ<n−1)

)∥∥
Nk∩L2

t Ḣ
− 1

2
x

�
(
‖�n

s ‖S1[n] + ‖A
n
x,s‖S1[n] + ‖A

n
0‖Y 1[n] + ‖�n

r ‖Rn + ‖A
n
x,r ‖Rn

)
×

(4.23)

×
( n∑

m=0

(
‖�m

s ‖S1[m] + ‖A
m
x,s‖S1[m] + ‖A

m
0 ‖Y 1[m]

)
+

n∑

m=1

(
‖�m

r ‖Rm + ‖A
m
x,r ‖Rm

))

sup
k∈Z

2+δ2 |k−n|∥∥Pk

(
M2(A<n, φ<n) − M2(A<n−1, φ<n−1)

)∥∥
Nk∩L2

t Ḣ
− 1

2
x

�
(
‖�n

s ‖S1[n] + ‖A
n
0‖Y 1[n] + ‖�n

r ‖Rn

)( n∑

m=0

(
‖�m

s ‖S1[m] + ‖A
m
0 ‖Y 1[m]

)
+

n∑

m=1

‖�m
r ‖Rm

)

(4.24)

sup
k∈Z

2+δ2 |k−n|∥∥Pk

(
M3(A<n, A<n, φ<n) − M3(A<n−1, A<n−1, φ<n−1)

)∥∥
Nk∩L2

t Ḣ
− 1

2
x

�
(
‖�n

s ‖S1[n] + ‖A
n
x,s‖S1[n] + ‖A

n
0‖Y 1[n] + ‖�n

r ‖Rn + ‖A
n
x,r ‖Rn

)
(4.25)

×
( n∑

m=0

(
‖�m

s ‖S1[m] + ‖A
m
x,s‖S1[m] + ‖A

m
0 ‖Y 1[m]

)
+

n∑

m=1

(
‖�m

r ‖Rm + ‖A
m
x,r ‖Rm

))2

.

Proof. The high-modulation bounds for (4.23)–(4.25) all follow readily using the

generalized generic product estimates from Lemma 8.1, and so it remains to discuss

the Nk bounds. The corresponding proof of (4.23) for the M1
x component follows

from the generalized core bilinear null form estimate (8.5), while the proof for

the M1
0 component follows analogously to the proof of the estimate (56) in [27],

using the generalized generic product estimates from Lemma 8.1. Finally, the cor-

responding bounds for (4.24) and (4.25) just rely on Strichartz-type estimates and

Sobolev embeddings, and therefore follow using the generalized generic product

estimates from Lemma 8.1. ⊓⊔

5. The “Deterministic” Parametrix

The goal of this section is to establish a key linear estimate for the linear

magnetic wave equation �
p

A<n−1φ = F , which establishes a link between the S1
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and N spaces. We recall that the paradifferential magnetic wave operator �
p

A<n−1

is given by

�
p

A<n−1 := � + 2i
∑

k

P≦k−C

(
A

<n−1, j
r + A

0, f ree, j
s

)
∂ j Pk .

All results in this section are deterministic in the sense that they hold as long as

A<n−1
x,r and A

0, f ree
x satisfy suitable smallness assumptions.

Proposition 5.1. (Main linear estimate for φ equation) Let n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm + ‖A0, f ree

x,s ‖S1[0] � ε.

Then for any ( f, g) ∈ Ḣ1
x × L2

x and any F ∈ N ∩ ℓ1 L2
t Ḣ

− 1
2

x , there exists a unique

global solution to the linear magnetic wave equation �
p

A<n−1φ = F with initial

data φ[0] = ( f, g) and it holds that

‖φ‖S1 � ‖ f ‖Ḣ1
x

+ ‖g‖L2
x
+ ‖F‖

N∩ℓ1 L2
t Ḣ

− 1
2

x

. (5.1)

The proof of Proposition 5.1 proceeds as in [27]. We first define an approximate

solution via a parametrix construction. Then we obtain an exact solution satisfying

the desired linear estimate by iterating away the error. To this end we build approx-

imate solutions φapp,k at each spatial frequency k ∈ Z to the frequency localized

problems

(
� + 2i P≦k−C (A

<n−1, j
r + A

0, f ree, j
s )∂ j Pk

)
φ = Pk F, Pkφ[0] = (Pk f, Pk g)

(5.2)

and assemble these to a full approximate solution φapp :=
∑

k∈Z
φapp,k . The

approximate solution φapp,k at frequency k ∈ Z is essentially defined as

φapp,k(t, x) := 1

2

∑

±
e
−iψ

n,<k
±

<k−C (t, x, D)
e±i t |D|

i |D| e
+iψ

n,<k
±

<k−C (D, y, 0)
(
i |D|Pk f ± Pk g

)

± 1

2

∑

±
e
−iψ

n,<k
±

<k−C (t, x, D)
K ±

i |D| e
+iψ

n,<k
±

<k−C (D, y, s)Pk F,

(5.3)

where the phase ψ
n,<k
± (t, x, ξ) is defined in Sect. 5.1 below and where K ±G are

the Duhamel terms

K ±G(t) =
∫ t

0

e±i(t−s)|D|G(s) ds.

The renormalization operators e
−iψ

n,<k
±

<k−C (t, x, D) and e
+iψ

n,<k
±

<k−C (D, y, s) denote the

left and right quantization of the symbol e
+iψ

n,<k
±

<k−C (t, x, ξ), where the subscript

< k − C denotes space-time (t, x)-frequency localization to frequencies ≦ k − C ,

pointwise in ξ .
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The definition of the phase function ψ
n,<k
± (t, x, ξ) in Sect. 5.1 below is the

exact analogue of the corresponding definition of the phase function introduced in

[27, Section 6]. However, here we build the rough free wave evolution A<n−1
x,r into

the phase that does not belong to the critical S1 space and only enjoys the redeeming

spacetime bounds of the Rk spaces. Despite the different (redeeming) bounds on

these rough components of the phase function, the construction from [27] turns out

to (largely) go through. Following Section 6 in [27] the proof of Proposition 5.1

reduces to establishing the following mapping properties of the frequency-localized

renormalization operators e
±iψ

n,<k
±

<k−C (t, x, D), which are the same as the ones in [27].

Proposition 5.2. Let n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm + ‖A0, f ree

x,s ‖S1[0] � ε.

For every k ∈ Z the frequency-localized renormalization operators e
±iψ

n,<k
±

<k−C (t, x, D)

have the following mapping properties with Z ∈ {Nk, L2, N∗
k }:

e
±iψ

n,<k
±

<k−C (t, x, D) : Z −→ Z , (5.4)

∂t e
±iψ

n,<k
±

<k−C (t, x, D) : Z −→ εZ , (5.5)

e
−iψ

n,<k
±

<k−C (t, x, D)e
+iψ

n,<k
±

<k−C (D, y, s) − I : Z −→ εZ , (5.6)

e
−iψ

n,<k
±

<k−C (t, x, D)� − �
p

A<n−1
<k

e
−iψ

n,<k
±

<k−C (t, x, D) : N∗
k,± −→ εNk,±, (5.7)

e
−iψ

n,<k
±

<k−C (t, x, D) : S
♯
k −→ Sk . (5.8)

The proof of Proposition 5.2 proceeds exactly as in Sections 6–11 in [27]

once we have established certain pointwise and decomposable estimates for the

“deterministic” phase functions ψ
n,<k
± (t, x, ξ). This is accomplished in Sect. 5.2

below. We remark that the proof of the conjugation estimate (5.7) is essentially

identical to the corresponding proof of the conjugation estimate (82) in [27], only

that we use the redeeming RL2
t L∞

x norm for the rough evolution A<n−1
x,r .

5.1. The “Deterministic” Phase Function

We begin with a heuristic motivation for the choice of the phase function, see

[27, Section 6] or [43, Section 7] for a more detailed account. It is reasonable to

expect that a linear magnetic wave equation of the form (� + 2i A j∂ j )φ = 0 can

be approximately conjugated to � via some phase correction eiψ with ∇ψ ≈ A.

To define an approximate solution to (�+2i A j∂ j )φ = 0, let us therefore consider

distorted waves of the form

φ(t, x) = e−iψ±(t,x)e±i t |ξ |+i x ·ξ



68 Page 40 of 109 Arch. Rational Mech. Anal. (2023) 247:68

and compute

(
� + 2i A j∂ j

)
φ = 2

(
±|ξ |(∂tψ±) − ξ · (∇xψ±) + Ax · ξ

)
φ

+
(
−2Ax · (∇xψ±) + |∇xψ±|2 − i(�ψ±)

)
φ.

While the terms in the second parenthesis can be expected to be error terms, we

would ideally like to choose the phase correction ψ± so that the expression in the

first parenthesis vanishes. Introducing the differential operators

L
η
± := ±∂t + η · ∇x , 	η⊥ := 	 − (η · ∇x )

2, η := ξ

|ξ | ∈ S3,

we may formulate this requirement more succinctly as

L
η
∓ψ± = Ax · ξ

|ξ | = Ax · η.

Applying L
η
±, noting that L

η
±L

η
∓ = −� − 	η⊥ , and neglecting � (since we may

assume that �Ax = 0), we obtain for fixed ξ that formally we would like to choose

ψ± = −	−1

η⊥ L
η
±
(

Ax · η
)
, η := ξ

|ξ | .

Unfortunately, this symbol is too singular due to the degeneracy of 	−1

η⊥ when φ

and A have parallel frequencies. Nevertheless, a viable choice is to smoothly cut

off small angle interactions in the above expression for ψ± and to observe that the

arising additional error terms turn out to be manageable, because one can gain from

the small interaction angle. For general initial data
∫

ei x ·ξ f̂ (ξ) dξ , we obtain by

linearity the approximate solution

φ(t, x) =
∫

e−iψ±(t,x,ξ)e±i t |ξ |+i x ·ξ f̂ (ξ) dξ,

in other words we apply the pseudodifferential renormalization operator e−iψ±

(t, x, D).

Let us now turn to the exact choice of the phase correction for our magnetic wave

operator �
p

A<n−1 , where n ≧ 1 is arbitrary. In view of the above considerations, for

every frequency k ∈ Z we are led to define the “deterministic” phase function by

ψ
n,<k
± (t, x, ξ) :=

∑

0≦ j≦k−C

ψ
n,<k,r
±, j (t, x, ξ) +

∑

j≦k−C

ψ
n,<k,s
±, j (t, x, ξ),

where its rough part is defined as

ψ
n,<k,r
±, j (t, x, ξ) := − L

η
±	−1

η⊥

(
�

η

>2σ( j−k) Pj A<n−1
x,r · η

)
, η := ξ

|ξ | ∈ S3,

and its smooth part is defined as

ψ
n,<k,s
±, j (t, x, ξ) := − L

η
±	−1

η⊥

(
�

η

>2σ( j−k) PjA
0, f ree
x,s · η

)
, η := ξ

|ξ | ∈ S3.
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5.2. Pointwise and Decomposable Estimates for the “Deterministic” Phase

Function

First, we establish some L∞ bounds on the “deterministic” phase function that

are used throughout this section. To this end it is helpful to introduce some notation

for the sector projection of ψ
n,<k
±, j in frequency space for an angle 0 < θ � 1,

ψ
n,<k
±, j,(θ)

(t, x, ξ) =
(
�

η
θψ

n,<k
±, j

)
(t, x, ξ), η := ξ

|ξ | .

Lemma 5.3. Let n ≧ 1. For the rough part of the “deterministic” phase function

we have for any k ∈ Z, any 0 ≦ j ≦ k − C, and for any 1 � θ > 2σ( j−k) that

∣∣ψn,<k,r
±, j,(θ)

(t, x, ξ)
∣∣ � 2−(2−20σ) jθ−1−δ1 min{(θ2 j )

3
2 −, 1}‖Pj A<n−1

x,r ‖R j
,

(5.9)
∣∣ψn,<k,r

±, j (t, x, ξ)
∣∣ � 2−(1−20σ−δ1) j‖Pj A<n−1

x,r ‖R j
, (5.10)

∣∣∇t,xψ
n,<k,r
±, j,(θ)

(t, x, ξ)
∣∣ � 2−(1−20σ) jθ−1−δ1 min{(θ2 j )

3
2 −, 1}‖Pj A<n−1

x,r ‖R j
,

(5.11)
∣∣∇t,xψ

n,<k,r
±, j (t, x, ξ)

∣∣ � 2+(20σ+δ1) j‖Pj A<n−1
x,r ‖R j

. (5.12)

For the smooth part of the “deterministic” phase function we have for any k ∈ Z,

any j ≦ k − C, and any 1 � θ > 2σ( j−k) that

∣∣ψn,<k,s
±, j,(θ)

(t, x, ξ)
∣∣ � θ

1
2 2 j‖PjA

0, f ree
x,s ‖L∞

t L2
x
, (5.13)

∣∣ψn,<k,s
±, j (t, x, ξ)

∣∣ � 2 j‖PjA
0, f ree
x,s ‖L∞

t L2
x
, (5.14)

∣∣∇t,xψ
n,<k,s
±, j,(θ)

(t, x, ξ)
∣∣ � θ

1
2 2 j‖∇t,x PjA

0, f ree
x,s ‖L∞

t L2
x
, (5.15)

∣∣∇t,xψ
n,<k,s
±, j (t, x, ξ)

∣∣ � 2 j‖∇t,x PjA
0, f ree
x,s ‖L∞

t L2
x
. (5.16)

Finally, for derivatives of the rough part of the phase function with respect to the

frequency variable we have for any multi-index α with |α| ≧ 1, any l ≧ 0, any

k ∈ Z, any 0 ≦ j ≦ k − C, and any 1 � θ > 2σ( j−k) that

∣∣∂ l
|ξ |∂

α
η ψ

n,<k,r
±, j,(θ)

(t, x, ξ)
∣∣ � θ−1−|α|2−(2−20σ) j‖Pj A<n−1

x,r ‖R j
, (5.17)

∣∣∂ l
|ξ |∂

α
η ψ

n,<k,r
±, j (t, x, ξ)

∣∣ � 2σ(1+|α|)(k− j)2−(2−20σ) j‖Pj A<n−1
x,r ‖R j

, (5.18)
∣∣∂ l

|ξ |∂
α
η ∇t,xψ

n,<k,r
±, j,(θ)

(t, x, ξ)
∣∣ � θ−1−|α|2−(1−20σ) j‖Pj A<n−1

x,r ‖R j
, (5.19)

∣∣∂ l
|ξ |∂

α
η ∇t,xψ

n,<k,r
±, j (t, x, ξ)

∣∣ � 2σ(1+|α|)(k− j)2−(1−20σ) j‖Pj A<n−1
x,r ‖R j

. (5.20)

Similarly, for derivatives of the smooth part of the phase function with respect to

the frequency variable we have for any multi-index α with |α| ≧ 1, any l ≧ 0, any

k ∈ Z, any j ≦ k − C, and any 1 � θ > 2σ( j−k) that

∣∣∂ l
|ξ |∂

α
η ψ

n,<k,s
±, j,(θ)

(t, x, ξ)
∣∣ � θ

1
2 −|α|2 j‖PjA

0, f ree
x,s ‖L∞

t L2
x
, (5.21)
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∣∣∂ l
|ξ |∂

α
η ψ

n,<k,s
±, j (t, x, ξ)

∣∣ � 2σ(|α|− 1
2 )(k− j)2 j‖PjA

0, f ree
x,s ‖L∞

t L2
x
, (5.22)

∣∣∂ l
|ξ |∂

α
η ∇t,xψ

n,<k,s
±, j,(θ)

(t, x, ξ)
∣∣ � θ

1
2 −|α|2 j‖∇t,x PjA

0, f ree
x,s ‖L∞

t L2
x
, (5.23)

∣∣∂ l
|ξ |∂

α
η ∇t,xψ

n,<k,s
±, j (t, x, ξ)

∣∣ � 2σ(|α|− 1
2 )(k− j)2 j‖∇t,x PjA

0, f ree
x,s ‖L∞

t L2
x
. (5.24)

Proof. For the rough part ψ
n,<k,r
±, j,(θ)

of the “deterministic” phase function we use

the Coulomb gauge condition to gain an additional factor of θ and the redeeming

L∞
t L∞

x norm with angular gains from our R j space to obtain that

∣∣ψn,<k,r
±, j,(θ)

(t, x, ξ)
∣∣ � sup

η

∥∥L
η
±	−1

η⊥ �
η
θ Pj A<n−1

x,r · η
∥∥

L∞
t L∞

x

� θ−22− j sup
η

∥∥�
η
θ Pj A<n−1

x,r · η
∥∥

L∞
t L∞

x

� θ−12− j
∥∥Pj A<n−1

x,r

∥∥
L∞

t L∞
x

� 2−(2−20σ) jθ−1−δ1 min{(θ2 j )(
3
2 −), 1}

∥∥Pj A<n−1
x,r

∥∥
R j

.

Then the other bounds on the rough part of the phase function follow upon summing

over the dyadic angles 1 � θ � 2σ( j−k) and upon taking an additional ∇t,x

derivative.

Next, we turn to estimating the smooth part ψ
n,<k,s
±, j,(θ)

of the “deterministic” phase

function. We again exploit the Coulomb gauge condition to gain another factor of

θ and then use the Bernstein estimate �
η
θ Pj L2

x → (θ324 j )
1
2 L∞

x to obtain that

∣∣ψn,<k,s
±, j,(θ)

(t, x, ξ)
∣∣ � sup

η

∥∥∥L
η
±	−1

η⊥ �
η
θ

(
PjA

0, f ree
x,s · η

)∥∥∥
L∞

t L∞
x

� θ−22− j sup
η

∥∥�
η
θ PjA

0, f ree
x,s · η

∥∥
L∞

t L∞
x

� θ−12− j
∥∥�

η
θ PjA

0, f ree
x,s

∥∥
L∞

t L∞
x

� θ
1
2 2 j‖PjA

0, f ree
x,s ‖L∞

t L2
x
.

The other bounds on the smooth part of the phase function then again follow upon

summing over the dyadic angles 1 � θ � 2σ( j−k) and upon taking an additional

∇t,x derivative.

Finally, the estimates for ∂ l
|ξ |∂

α
η derivatives of the phase function follow anal-

ogously, upon noting that differentiating with respect to η := ξ
|ξ | yields additional

θ−1 factors, while differentiating with respect to the radial frequency variable |ξ |
is harmless since the definition of the phase function only involves η. In the cor-

responding estimates for the rough part of the phase function it suffices to just

use the standard redeeming L∞
t L∞

x Strichartz norm, because an additional gain

in the angle cannot ultimately compensate the additional θ−1 factors produced by

differentiating with respect to the angular frequency variable. ⊓⊔

Next we establish L∞ bounds for differences of two “deterministic” phase

functions. The following lemma is the analogue of Lemma 7.4 in [27].
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Lemma 5.4. (Additional symbol bounds for differences of “deterministic” phase

functions) Let n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm + ‖A0, f ree

x,s ‖S1[0] � ε.

Then we have for any k ∈ Z, any multi-index α with 1 ≦ |α| + 1 < σ−1, and any

l ≧ 0 that

∣∣ψn,<k
± (t, x, ξ) − ψ

n,<k
± (s, y, ξ)

∣∣ � ε log
(
1 + 2k(|t − s| + |x − y|)

)
,

(5.25)
∣∣∂ l

|ξ |∂
α
η

(
ψ

n,<k
± (t, x, ξ) − ψ

n,<k
± (s, y, ξ)

)∣∣ � ε
(
1 + 2k(|t − s| + |x − y|)

)σ(|α|+1)
.

(5.26)

Proof. In the following we use the shorthand notation T := |x − y| + |t − s|. We

establish the first estimate (5.25) separately for the rough and the smooth part of

the phase function. Recall that the rough component A<n−1
x,r is sharply localized to

frequencies 1 � |ξ | � 2n−1. It therefore suffices to consider k ≧ 0 for the rough

part and we just bound by

∣∣ψn,<k,r
± (t, x, ξ) − ψ

n,<k,r
± (s, y, ξ)

∣∣ �
∑

0≦ j≦k−C

sup
η

∥∥ψ
n,<k,r
±, j (t, x, ξ)

∥∥
L∞

t L∞
x

�
∑

0≦ j≦k−C

2−(1−20σ−δ1) j‖Pj A<n−1
x,r ‖R j

� ε.

Instead, to bound the smooth part, for arbitrary k ∈ Z we pick some j0 ≦ k − C

and decompose into

∣∣ψn,<k,s
± (t, x, ξ) − ψ

n,<k,s
± (s, y, ξ)

∣∣

�
∑

j≦ j0

sup
η

∥∥∇t,xψ
n,<k,s
±, j

∥∥
L∞

t L∞
x

(
|t − s| + |x − y|

)

+
∑

j0≦ j≦k−C

sup
η

∥∥ψ
n,<k,s
±, j (t, x, ξ)

∥∥
L∞

t L∞
x

�
∑

j≦ j0

2 j‖Pj∇t,xA
0, f ree
x,s ‖L∞

t L2
x
T +

∑

j0≦ j≦k−C

2 j‖PjA
0, f ree
x,s ‖L∞

t L2
x

� 2 j0 T ε +
∣∣k − j0

∣∣ε.

Then choosing k − j0 ∼ log2(2
k T ) yields the desired estimate.

We also establish the second estimate (5.26) separately for the rough and the

smooth part of the phase function. For the rough part, we distinguish several cases.

If T � 2−k , we bound by

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,<k,r
± (t, x, ξ) − ψ

n,<k,r
± (s, y, ξ)

)∣∣
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�
∑

0≦ j≦k−C

sup
η

∥∥∇t,x∂
l
|ξ |∂

α
η ψ

n,<k,r
±, j

∥∥
L∞

t L∞
x

(
|t − s| + |x − y|

)

�
∑

0≦ j≦k−C

2σ(1+|α|)(k− j)2−(1−20σ) j‖Pj A<n−1
x,r ‖R j

T

� 2σ(|α|+1)k T ε

� ε.

Instead, if 2−k ≪ T � 1, we pick some 0 ≦ j0 ≦ k − C and decompose into

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,<k,r
± (t, x, ξ) − ψ

n,<k,r
± (s, y, ξ)

)∣∣

�
∑

0≦ j≦ j0

sup
η

∥∥∇t,x∂
l
|ξ |∂

α
η ψ

n,<k,r
±, j

∥∥
L∞

t L∞
x

(
|t − s| + |x − y|

)

+
∑

j0≦ j≦k−C

sup
η

∥∥∂ l
|ξ |∂

α
η ψ

n,<k,r
±, j

∥∥
L∞

t L∞
x

�
∑

0≦ j≦ j0

2σ(1+|α|)(k− j)2−(1−20σ) j‖Pj A<n−1
x,r ‖R j

T

+
∑

j0≦ j≦k−C

2σ(1+|α|)(k− j)2−(2−20σ) j‖Pj A<n−1
x,r ‖R j

� 2σ(|α|+1)k T ε + 2σ(|α|+1)(k− j0)ε

≃ 2σ(|α|+1)(k− j0)
(
2 j0 T + 1

)
ε.

Choosing 2− j0 ∼ T , we obtain the desired estimate. Finally, if T � 1, we just

bound by

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,<k,r
± (t, x, ξ) − ψ

n,<k,r
± (s, y, ξ)

)∣∣

�
∑

0≦ j≦k−C

sup
η

∥∥∂ l
|ξ |∂

α
η ψ

n,<k,r
±, j

∥∥
L∞

t L∞
x

�
∑

0≦ j≦k−C

2σ(1+|α|)(k− j)2−(2−20σ) j‖Pj A<n−1
x,r ‖R j

� 2σ(|α|+1)kε �
(
2k T

)σ(|α|+1)
ε.

For the smooth part we pick some j0 ≦ k − C and decompose into

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,<k,s
± (t, x, ξ) − ψ

n,<k,s
± (s, y, ξ)

)∣∣

�
∑

j≦ j0

sup
η

∥∥∇t,x∂
l
|ξ |∂

α
η ψ

n,<k,s
±, j

∥∥
L∞

t L∞
x

(
|t − s| + |x − y|

)

+
∑

j0≦ j≦k−C

sup
η

∥∥∂ l
|ξ |∂

α
η ψ

n,<k,s
±, j

∥∥
L∞

t L∞
x
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�
∑

j≦ j0

2σ(|α|− 1
2 )(k− j)2 j‖∇t,x PjA

0, f ree
x,s ‖L∞

t L2
x
T

+
∑

j0≦ j≦k−C

2σ(|α|− 1
2 )(k− j)2 j‖PjA

0, f ree
x,s ‖L∞

t L2
x

�
∑

j≦ j0

2σ(|α|+ 1
2 )(k− j)2 j T ε +

∑

j0≦ j≦k−C

2σ(|α|+ 1
2 )(k− j)ε

� 2σ(|α|+ 1
2 )(k− j0)

(
2 j0 T + 1

)
ε.

Choosing 2− j0 ∼ T , we arrive at the desired estimate

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,<k,s
± (t, x, ξ) − ψ

n,<k,s
± (s, y, ξ)

)∣∣ �
(
2k T

)σ(|α|+ 1
2 )

ε.

⊓⊔

Finally, we obtain certain decomposable estimates for the “deterministic” phase

function. This is the analogue of Lemma 7.3 in [27], but here we have to restrict the

allowed ranges of Strichartz exponents slightly in order not to lose derivatives. We

first briefly recall the definition of decomposable function spaces from [27,29,43]

and the basic decomposable calculus.

Let c(t, x, D) be a pseudodifferential operator whose symbol c(t, x, ξ) is ho-

mogeneous of degree 0 in ξ . Assume that c has a representation

c =
∑

θ∈2−N

c(θ).

Let 1 ≦ q, r ≦ ∞. For every θ ∈ 2−N, we define

‖c(θ)‖Dθ (L
q
t Lr

x ) :=
∥∥∥∥
( 40∑

l=0

∑

Ŵν
θ

sup
η∈Ŵν

θ

∥∥bν
θ (η)(θ∇ξ )

lc(θ)
∥∥2

Lr
x (R4)

)1/2∥∥∥∥
L

q
t (R)

,

where {Ŵν
θ }ν∈S3 is a uniformly finitely overlapping covering of S3 by caps of di-

ameter ∼ θ and {bν
θ }ν∈S3 is a smooth partition of unity subordinate to the covering

{Ŵν
θ }ν∈S3 . Then we define the decomposable norm

‖c‖DL
q
t Lr

x
:= inf

c=
∑

θ c(θ)

∑

θ∈2−N

‖c(θ)‖Dθ (L
q
t Lr

x ).

We will frequently use the following decomposability lemma from [27].

Lemma 5.5. (Decomposability lemma, [27, Lemma 7.1]) Let P(t, x, D) be a

pseudodifferential operator with symbol p(t, x, ξ). Suppose that P satisfies the

fixed-time estimate

sup
t∈R

‖P(t, x, D)‖L2
x →L2

x
� 1.
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Let 1 ≦ q, q1, q2, r, r1 ≦ ∞ such that 1
q

= 1
q1

+ 1
q2

and 1
r

= 1
r1

+ 1
2

. Then for any

symbol c(t, x, ξ) ∈ DL
q1
t L

r1
x that is zero homogeneous in ξ , we have

‖(cp)(t, x, D)φ‖L
q
t Lr

x
� ‖c‖

DL
q1
t L

r1
x

‖φ‖
L

q2
t L2

x
.

We now turn to proving decomposable estimates for the “deterministic” phase

function.

Lemma 5.6. (Decomposable estimates for the “deterministic” phase function) Let

n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm + ‖A0, f ree

x,s ‖S1[0] � ε.

Let k ∈ Z and j ≦ k − C. For 2 ≦ q < ∞ and 2
q

+ 3
r

≦ 3
2+ we have that

∥∥(
ψ

n,<k
±, j,(θ)

, 2− j∇t,xψ
n,<k
±, j,(θ)

)∥∥
DL

q
t Lr

x
� 2

−( 1
q
+ 4

r
) j

θ
1

2+ − 2
q
− 3

r ε. (5.27)

For 4+ < q ≦ ∞ it holds that

∥∥(
ψ

n,<k
±, j , 2− j∇t,xψ

n,<k
±, j

)∥∥
DL

q
t L∞

x
� 2

− 1
q

j
ε. (5.28)

Proof. We establish the decomposable estimate (5.27) separately for the rough and

the smooth part of the phase function. We begin with the rough part. As in [27,

Lemma 7.3], we interchange integration and the η summation to obtain that

∥∥(
ψ

n,<k,r
±, j,(θ)

, 2− j∇t,xψ
n,<k,r
±, j,(θ)

)∥∥
DL

q
t Lr

x
� θ−22− j

(∑

η

∥∥�
η
θ Pj A<n−1

x,r · η
∥∥2

L
q
t Lr

x

) 1
2

� θ−12− j

(∑

η

∥∥�
η
θ Pj A<n−1

x,r

∥∥2

L
q
t Lr

x

) 1
2

,

where in the last step we used the Coulomb gauge to gain another factor of θ . Next

we pick an admissible Strichartz pair (q̃, r̃) with q̃ > q and r̃ < r such that an

interpolate between (q̃, r̃) and (2,∞) gives (q, r). Then we obtain for some µ > 0

that

∥∥(
ψ

n,<k,r
±, j,(θ)

, 2− j∇t,xψ
n,<k,r
±, j,(θ)

)∥∥
DL

q
t Lr

x

� θ−12− j

(∑

η

∥∥�
η
θ Pj A<n−1

x,r

∥∥2

L
q̃
t L r̃

x

)µ
2
(∑

η

∥∥�
η
θ Pj A<n−1

x,r

∥∥2

L2
t L∞

x

) 1−µ
2

.

Now let r0 > 6 such that (q̃, r0) is a sharp admissible Strichartz pair in four space

dimensions, i.e. 2
q

+ 3
r0

= 3
2

. Bernstein’s estimate on an angular sector of size θ

gives the inequality �
η
θ Pj L

r0
x ⊂ θ

3( 1
r0

− 1
r̃
)
2

4( 1
r0

− 1
r̃
) j

L r̃
x . Using also the redeeming

R j L2
t L∞

x norm, we find that
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∥∥(
ψ

n,<k,r
±, j,(θ)

, 2− j∇t,xψ
n,<k,r
±, j,(θ)

)∥∥
DL

q
t Lr

x

� θ−12− j

(∑

η

(
θ

3
2 − 2

q̃
− 3

r̃ 2
4( 1

r0
− 1

r̃
) j∥∥�

η
θ Pj A<n−1

x,r

∥∥
L

q̃
t L

r0
x

)2
)µ

2

(
2−( 1

2 −20σ) jθ−δ1‖Pj A<n−1
x,r ‖R j

)1−µ

� θ−12− j

(
2δ∗ jθ

3
2 − 2

q̃
− 3

r̃ 2
(1− 1

q̃
− 4

r̃
) j∥∥Pj A<n−1

x,r

∥∥
S

1−δ∗
j

)µ

(
2−( 1

2 −20σ) jθ−δ1‖Pj A<n−1
x,r ‖R j

)1−µ

� θ
µ
2 −(1−µ)δ1− 2

q
− 3

r 2(µδ∗+(1−µ)20σ−(1−µ)) j 2
−( 1

q
+ 4

r
) j

ε.

Choosing 0 < µ < 1 close to 1, gives the decomposable estimate (5.27) for the

rough part of the phase function.

For the smooth part of the phase function we remark that since A
0, f ree
x,s belongs

to the critical S1 space, the corresponding bound follows exactly as in Lemma 7.3

in [27].

Finally, the second estimate (5.28) in the statement of the lemma follows imme-

diately for 4+ < q < ∞ from the first estimate (5.27) by summing over the dyadic

angles 2σ( j−k) � θ � 1. In the important case q = ∞ the second estimate (5.28)

can be proved directly using the redeeming R j L∞
t L∞

x norm with angular gains to

bound the contributions of the rough part of the phase function. ⊓⊔

6. The “Probabilistic” Parametrix

In this section we turn to the precise definition of the adapted linear evolutions

�n
r of the rough random data Tnφ

ω[0], n ≧ 1, as approximate solutions to the

modified linear magnetic wave equation

�
p,mod

A<n−1�
n
r ≡

(
� + 2i P≦(1−γ )n A<n−1,α∂α Pn

)
�n

r ≈ 0, �n
r [0] ≈ Tnφω[0].

(6.1)

We emphasize that A<n−1 is the entire connection form of the solution (A<n−1,

A<n−1
0 , φ<n−1) to (MKG-CG) with random initial data A<n−1

x [0] = T<n−1 Aω
x [0],

φ<n−1[0] = T<n−1φ
ω[0] that was constructed in the prior induction stages ≦ n−1.

We first carefully develop the iterative definition of �n
r in terms of a modified

“probabilistic” parametrix and prove mapping properties of the associated modified

renormalization operators. Then we turn to the derivation of the redeeming space-

time integrability properties of the rough linear evolutions �n
r of the random data

Tnφω[0]. Finally, we discuss the delicate renormalization error estimate and show

that (on a suitable event) the error �
p,mod

A<n−1�
n
r gains regularity and can be treated as

a “smooth” source term.
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6.1. Definition of the Adapted Rough Linear Evolution �n
r

Similarly to the “deterministic” parametrix construction, our construction of the

adapted linear evolution �n
r will be based on modified renormalization operators

e
±iψ

n,mod
±

<n−C (t, x, D). We begin by motivating heuristically the choice of the modi-

fied phase function ψ
n,mod
± in the context of the modified linear magnetic wave

equation (6.1). To this end let us again consider distorted waves of the form

φ(t, x) = e−iψ±(t,x)e±i t |ξ |+i x ·ξ

and compute how a magnetic wave operator of the form (� + 2i Aα∂α) acts on

them. In what follows it is important to keep in mind that the spatial part Ax of the

connection form is no longer a free wave, but that it also has inhomogeneous parts,

and that the temporal component A0 of the connection form is also built into the

magnetic wave operator. We find that

(
� + 2i Aα∂α

)
φ = 2

(
−|ξ |(L

η
∓ψ±) + Ax · ξ ∓ A0|ξ |

)
φ

+
(
2Aα(∂αψ±) − (∂tψ±)2 + |∇xψ±|2 − i(�ψ±)

)
φ.

The terms in the second parentheses are again expected to be error terms, while

we would like to achieve as much cancellation as possible in the first parentheses.

In order to largely cancel out the term ∓A0|ξ |, we would like to formally build a

component ∓(L
η
∓)−1 A0 into the definition of the phase function. However, to deal

with the degeneracy of the symbol L
η
∓, we have to refine this choice depending on

the size of the symbol of L
η
∓. This leads to an analogous choice to largely cancel

out the inhomogeneous part of the term Ax · ξ . For the homogeneous (rough) part

we use the same definition as for the “deterministic” phase function.

To arrive at the precise definitions we need to introduce some additional nota-

tion. We denote by (τ, ζ ) space-time Fourier variables. For η ∈ S3 and |ζ | ∼ 2k

we introduce the space-time frequency regions

S
±,η

≫2k |∡|2 :=
{
| ± τ + η · ζ | ≫ 2k |∡(η, ζ )|2

}
,

S
±,η

�2k |∡|2 :=
{
| ± τ + η · ζ | � 2k |∡(η, ζ )|2

}
.

Then we denote by �
±,η

≫2k |∡|2 and by �
±,η

�2k |∡|2 smooth projections to these space-

time frequency regions such that �
±,η

≫2k |∡|2 + �
±,η

�2k |∡|2 = 1. Additionally, for any

dyadic λ ∈ 2Z we denote by �
±,η
λ a smooth projection to the frequency region

{| ± τ + η · ζ | ∼ λ}.
Now we are in the position to define for every integer n ≧ 1 the modified

“probabilistic” phase function

ψ
n,mod
± (t, x, ξ) :=

∑

0≦k≦(1−γ )n

ψ
n,mod,r
±,k (t, x, ξ) +

∑

k≦(1−γ )n

ψ
n,mod,s
±,k (t, x, ξ),

(6.2)
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where its rough part is given by

ψ
n,mod,r
±,k (t, x, ξ) := − L

η
±	−1

η⊥

(
�

η

>2σ min{k,−n} Pk A<n−1
x,r · η

)
, η := ξ

|ξ | ∈ S3,

while its smooth part is defined as

ψ
n,mod,s
±,k (t, x, ξ) := + (L

η
∓)−1�

∓,η

≫2k |∡|2�
η

>2σ min{k,−n}
(
Pk A<n−1

x,s · η
)
, η := ξ

|ξ | ∈ S3

− L
η
±	−1

η⊥ �
∓,η

�2k |∡|2�
η

>2σ min{k,−n}
(
Pk A<n−1

x,s · η
)

∓ (L
η
∓)−1�

∓,η

≫2k |∡|2�
η

>2σ min{k,−n}
(
Pk A<n−1

0

)

∓ L
η
±	−1

η⊥ �
∓,η

�2k |∡|2�
η

>2σ min{k,−n}
(
Pk A<n−1

0

)
.

For given initial conditions ( f, g) and a given source term F , we define an

approximate solution to the linear magnetic wave equation �
p,mod

A<n−1 u = F with

initial data u[0] = ( f, g) by the parametrix

φmod
app,n

[
f, g; F

]
:= 1

2

∑

±
e
−iψ

n,mod
±

<n−C (t, x, D)
e±i t |D|

i |D| e
+iψ

n,mod
±

<n−C (D, y, 0)
(
i |D| f ± g

)

+1

2

∑

±
±e

−iψ
n,mod
±

<n−C (t, x, D)
K ±

i |D| e
+iψ

n,mod
±

<n−C (D, y, s)F, (6.3)

where K ±F are the Duhamel terms

K ±F(t) =
∫ t

0

e±i(t−s)|D|F(s) ds.

We define the adapted rough linear evolution �n
r as an infinite sum whose

components are defined iteratively

�n
r =

∞∑

ℓ=0

�n,[ℓ]
r . (6.4)

The zeroth term �
n,[0]
r is defined in terms of the homogeneoux parametrix

�n,[0]
r := φmod

app,n

[
Tnφω

0 , Tnφω
1 ; 0

]
.

It would be desirable if it sufficed to take �
n,[0]
r as our choice for an approximate

solution in the sense that �
n,[0]
r would be amenable to the probabilistic redeeming

bounds and that the entire error �
p,mod

A<n−1�
n,[0]
r would gain regularity. However,

�
p,mod

A<n−1�
n,[0]
r produces several types of error terms that we colloquially group into

“mild”, “delicate”, and “rough” error terms

�
p,mod

A<n−1�
n,[0]
r = E

n,[0]
mild + E

n,[0]
del + E

n,[0]
rough .

These are defined precisely further below. Unfortunately, the “rough” error terms

do not gain regularity and therefore cannot be treated as smooth source terms. But

at least, they gain smallness. The way out is therefore to try to iterate these “rough”
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error terms away so that we end up with an infinite sum of “mild” and “delicate”

error terms that can all be treated as smooth source terms. Correspondingly, we

inductively define the ℓ-th iterate �
n,[ℓ]
r , by

�n,[ℓ]
r := φmod

app,n

[
0, 0;−E

n,[ℓ−1]
rough

]
, ℓ ≧ 1,

which produces an error of the form

E
n,[ℓ−1]
rough + �

p,mod

A<n−1�
n,[ℓ]
r = E

n,[ℓ]
mild + E

n,[ℓ]
del + E

n,[ℓ]
rough, ℓ ≧ 1.

Then we have

�
p,mod

A<n−1�
n
r =

∞∑

ℓ=0

E
n,[ℓ]
mild +

∞∑

ℓ=0

E
n,[ℓ]
del . (6.5)

Our next goal is to arrive at the precise definitions of the higher iterates �
n,[ℓ]
r .

To this end we first compute the errors accrued by the zeroth iterate

�n,[0]
r := φmod

app,n

[
Tnφω

0 , Tnφω
1 ; 0

]

= 1

2

∑

±
e
−iψ

n,mod
±

<n−C (t, x, D)
e±i t |D|

i |D| e
+iψ

n,mod
±

<n−C (D, y, 0)
(
i |D|Tnφ

ω
0 ± Tnφω

1

)
.

We obtain schematically that

�
p,mod

A<n−1�
n,[0]
r =

∑

k≦(1−γ )n

∑

±
2
[(

−|ξ |(L
η
∓ψ

n,mod
±,k )

+ Pk A<n−1
x · ξ ∓ Pk A<n−1

0 |ξ |
)
e−iψ

n,mod
±

]
<n−C

Rn,±,[0]
r

+
∑

±
2∂t e

−iψ
n,mod
±

<n−C (i∂t ± |ξ |)Rn,±,[0]
r

+
∑

±

[(
−(∂tψ

n,mod
± )2 + (∂xψ

n,mod
± )2

)
e−iψ

n,mod
±

]
<n−C

Rn,±,[0]
r

+
∑

±

[
−i(�ψ

n,mod
± )e−iψ

n,mod
±

]
<n−C

Rn,±,[0]
r

−
∑

±
2i A

<n−1,α

≦(1−γ )n

[
(∂αψ

n,mod
± )e−iψ

n,mod
±

]
<n−C

Rn,±,[0]
r

+
∑

±
2i

[
A

<n−1,α

≦(1−γ )n
, S<n−C

]
ξαRn,±,[0]

r

≡ Diff
[0]
1 + · · · + Diff

[0]
6

with

Rn,±,[0]
r := 1

2

e±i t |D|

i |D| e
+iψ

n,mod
±

<n−C (D, y, 0)
(
i |D|Tnφ

ω
0 ± Tnφω

1

)
.
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At this point we anticipate that the error terms Diff
[0]
2 ,…, Diff

[0]
6 will be manageable

since effectively a derivative falls on a low frequency term, which then allows to

gain regularity thanks to the frequency separation. The main error term Diff
[0]
1 in

the first line on the right-hand side of �
p,mod

A<n−1�
n,[0]
r can be further decomposed as

Diff
[0]
1 =

∑

k≦(1−γ )n

∑

±
2
[(

−|ξ |(L
η
∓ψ

n,mod
±,k )

+ Pk A<n−1
x · ξ ∓ Pk A<n−1

0 |ξ |
)
e−iψ

n,mod
±

]
<n−C

R
n,±,[0]
r

=
∑

0≦k≦(1−γ )n

∑

±
2
[
�≦2−σn

(
Pk A<n−1

x,r · ξ
)
e−iψ

n,mod
±

]
<n−C

R
n,±,[0]
r

+
∑

k≦(1−γ )n

∑

±
2
[
�≦2σ min{k,−n}

(
Pk A<n−1

x,s · ξ ∓ Pk A<n−1
0 |ξ |

)
e−iψ

n,mod
±

]
<n−C

R
n,±,[0]
r

+
∑

k≦(1−γ )n

∑

±
2
[
−�	−1

η⊥ �
∓,η

�2k |∡|2 �
η

>2σ min{k,−n}
(
Pk A<n−1

x,s · ξ ∓ Pk A<n−1
0 |ξ |

)
e−iψ

n,mod
±

]
<n−C

R
n,±,[0]
r

≡ Diff
[0]
1,(a)

+ Diff
[0]
1,(b)

+ Diff
[0]
1,rough .

We emphasize that in view of the definition of the modified “probabilistic” phase

function ψ
n,mod
± , a crucial cancellation of the large angle part occurs so that the

first two error terms come with tight angle cutoffs. We anticipate that owing to the

tighter angle cutoffs �≦2−σn and �≦2σ min{k,−n} , the errors Diff
[0]
1,(a)

and Diff
[0]
1,(b)

will

turn out to gain regularity. Correspondingly, we group together all the error terms

Diff
[0]
1,(a)

, Diff
[0]
1,(b)

, and Diff
[0]
j , 2 ≦ j ≦ 6, into the collection of “mild” error terms

E
n,[0]
mild = Diff

[0]
1,(a)

+ Diff
[0]
1,(b)

+
6∑

j=2

Diff
[0]
j . (6.6)

Unfortunately, only certain parts of the error term Diff
[0]
1,rough can gain regularity

(which we will call “delicate” errors and which we will denote by E
n,[0]
del ), while the

remaining parts will have to be iterated away. In order to arrive at precise definitions,

it is helpful to first also determine the structure of the errors accrued by the higher

iterates

�n,[ℓ]
r (t, x) := 1

2

∑

±
± e

−iψ
n,mod
±

<n−C (t, x, D)
K ±

i |D| e
+iψ

n,mod
±

<n−C (D, y, s)
(
−E

n,[ℓ−1]
rough

)
, ℓ ≧ 1.

Here we compute that schematically

E
n,[ℓ−1]
rough + �

p,mod

A<n−1 �
n,[ℓ]
r

=
∑

k≦(1−γ )n

∑

±
2
[(

−|ξ |(L
η
∓ψ

n,mod
±,k ) + Pk A<n−1

x · ξ ∓ Pk A<n−1
0 |ξ |

)
e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

+
∑

±
2∂t e

−iψ
n,mod
±

<n−C (i∂t ± |ξ |)Rn,±,[ℓ]
r

+
∑

±

[(
−(∂tψ

n,mod
± )2 + (∂xψ

n,mod
± )2

)
e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r
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+
∑

±

[
−i(�ψ

n,mod
± )e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

−
∑

±
2i A

<n−1,α

≦(1−γ )n

[
(∂αψ

n,mod
± )e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

+
∑

±
2i

[
A

<n−1,α

≦(1−γ )n
, S<n−C

]
ξαR

n,±,[ℓ]
r

+ E
n,[ℓ−1]
rough ± 1

2

∑

±
e
−iψ

n,mod
±

<n−C (t, x, D)
∂t ± i |D| + 2i A<n−1

0

i |D| e
+iψ

n,mod
±

<n−C (D, y, t)
(
−E

n,[ℓ−1]
rough

)

≡ Diff
[ℓ]
1 + · · · + Diff

[ℓ]
6 + Diff

[ℓ]
7 ,

where

Rn,±,[ℓ]
r = ±1

2

K ±

i |D|e
+iψ

n,mod
±

<n−C (D, y, s)
(
−E

n,[ℓ−1]
rough

)
.

We anticipate that the error terms Diff
[ℓ]
2 ,…, Diff

[ℓ]
6 will again be manageable and

gain regularity since effectively a derivative falls on a low frequency term. The

additional error term Diff
[ℓ]
7 arising for the inhomogeneous parametrix will also

be manageable since we can gain regularity from the difference to the previous

error E
n,[ℓ−1]
rough , see Proposition 6.6. Then we may again further decompose the

main error term Diff
[ℓ]
1 in the first line on the right-hand side of the accrued error

E
n,[ℓ−1]
rough + �

p,mod

A<n−1�
n,[ℓ]
r as

Diff
[ℓ]
1 =

∑

k≦(1−γ )n

∑

±
2
[(

−|ξ |(L
η
∓ψ

n,mod
±,k )

+ Pk A<n−1
x · ξ ∓ Pk A<n−1

0 |ξ |
)
e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

=
∑

0≦k≦(1−γ )n

∑

±
2
[
�≦2−σn

(
Pk A<n−1

x,r · ξ
)
e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

+
∑

k≦(1−γ )n

∑

±
2
[
�≦2σ min{k,−n}

(
Pk A<n−1

x,s · ξ ∓ Pk A<n−1
0 |ξ |

)
e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

+
∑

k≦(1−γ )n

∑

±
2
[
−�	−1

η⊥ �
∓,η

�2k |∡|2 �
η

>2σ min{k,−n}
(
Pk A<n−1

x,s · ξ ∓ Pk A<n−1
0 |ξ |

)
e−iψ

n,mod
±

]
<n−C

R
n,±,[ℓ]
r

≡ Diff
[ℓ]
1,(a)

+ Diff
[ℓ]
1,(b)

+ Diff
[ℓ]
1,rough .

As in the treatment of the error �
p,mod

A<n−1�
n,[0]
r accrued by the zeroth iterate, we

anticipate that the errors Diff
[ℓ]
1,(a)

and Diff
[ℓ]
1,(b)

gain regularity thanks to the tighter

angle cutoff. Then we again group together the terms Diff
[ℓ]
1,(a)

, Diff
[ℓ]
1,(b)

, and Diff
[ℓ]
j ,

1 ≦ j ≦ 7, into the collection of “mild” error terms

E
n,[ℓ]
mild = Diff

[ℓ]
1,(a)

+ Diff
[ℓ]
1,(b)

+
7∑

j=2

Diff
[ℓ]
j . (6.7)

It remains to systematically define the “delicate” errors E
n,[ℓ]
del at every stage ℓ ≧ 0,

which are those parts of Diff
[ℓ]
1,rough that gain regularity.
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To this end we need to introduce some more notation and terminology. We shall

call a “string of frequencies of length ℓ”, ℓ ≧ 0, an expression

(k) = (k1k2k3 . . . k3ℓ+1k3ℓ+2k3ℓ+3),

where each k j , 1 ≦ j ≦ 3ℓ + 3, is either a positive integer ≦ (1 − γ )n or the

symbol ≦ 0. Given a string of frequencies (k) of length ℓ ≧ 1, we denote by

(k′) = (k1k2k3 . . . k3ℓ−2k3ℓ−1k3ℓ)

the associated “truncated string”. Moreover, if a string of frequencies (k) of length

ℓ ≧ 0 has all frequencies k j ≦ 3σn, 1 ≦ j ≦ 3ℓ + 3, then we call (k) a “small

string of length ℓ”.

We also introduce the concept of an ascending sequence of “dominating fre-

quencies” associated with a small string of frequencies. Specifically, given a small

string of frequencies (k) = (k1k2k3 . . . k3ℓ+1k3ℓ+2k3ℓ+3), we select an ascending

sequence of “dominating frequencies” r1 < r2 < . . . < rq as follows: We set

r1 = k1 if k1 > 0 and r1 = 0 otherwise. Then we let r2 be the first frequency

among k2, k3, . . . , k3ℓ+3 that is larger1 than r1. Then if r2 = kp, we let r3 be the

first frequency among kp+1, kp+2, . . . , k3ℓ+3 that is larger than r2 and so on. Fi-

nally, we denote by b j , 1 ≦ j ≦ q, the length of the string starting2 at r j and

ending right before r j+1.3 Then we say that the small string (k) with dominating

frequencies r1 < . . . < rq consists of segments of length b1, b2, . . . , bq , and we

have 3ℓ + 3 =
∑

b j . In addition, we introduce the notation

Z
η,∓
k := −�	−1

η⊥ �
∓,η

�2k |∡|2�
η

>2σ min{k,−n} .

Then we set

�n,(k1k2k3)
r :=

∑

±
Z

η,∓
k3

(
Pk3 A<n−1

x,s · ξ ∓ Pk3 A<n−1
0 |ξ |

)
×

× Pk2

(
e−iψ

n,mod
±

)
(t, x, D)

e±i t |D|

i |D| Pk1

(
e+iψ

n,mod
±

)
(D, y, 0)

(
i |D|Tnφω

0 ± Tnφω
1

)

and for a given string (k) of length ℓ ≧ 1, we define inductively

�
n,(k)
r :=

∑

±
±Z

η,∓
k3ℓ+3

(
Pk3ℓ+3

A<n−1
x,s · ξ ∓ Pk3ℓ+3

A<n−1
0 |ξ |

)
×

× Pk3ℓ+2

(
e−iψ

n,mod
±

)
(t, x, D)

K ±

i |D| Pk3ℓ+1

(
e+iψ

n,mod
±

)
(D, y, s)�

n,(k′)
r .

Moreover, for a given string (k) of length ℓ and a given �
n,(k)
r , we also introduce

the notation

�
n,±,(k)
r := Pk3ℓ+2

(
e−iψ

n,mod
±

)
(t, x, D)

K ±

i |D| Pk3ℓ+1

(
e+iψ

n,mod
±

)
(D, y, s)�

n,(k′)
r . (6.8)

1 By definition any positive frequency dominates the symbol ≦ 0.
2 If r1 = 0 we mean by this the string starting at k1.
3 For the last dominating frequency rq , we let bq be the length of the string starting at rq

and ending with k3ℓ+3. Hence, if rq = k3ℓ+3, we have rq = 1.
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We may from now on suppress the space-time localizations [. . .]<n−C , since

they are given by convolution with L1-bounded kernels and all spaces used are

translation invariant. Using the above notation, we may then schematically write

the worst part Diff
[0]
1,rough of the error �

p,mod

A<n−1�
n,[0]
r accrued at the zeroth stage as

Diff
[0]
1,rough =

∑

k1,k2,k3≦(1−γ )n

�n,(k1k2k3)
r .

A key observation will be that whenever (at least) one of the frequencies k1, k2, or

k3 is ≧ 3σn, the corresponding frequency localized error �
n,(k)
r gains smoothness

and we can treat it as a smooth source term, see the proof of Proposition 6.8. We

refer to such a situation as a “terminating situation”. This means that �
n,(k)
r is only

a rough error term for “small strings” (k1, k2, k3), and these rough error terms have

to be iterated away by applying the inhomogeneous parametrix to them again.

Thus, since only “small strings” have to be iterated away, at this point we

anticipate that at stage ℓ ≧ 1 the worst part Diff
[ℓ]
1,rough of the error �

p,mod

A<n−1�
n,[ℓ]
r

accrued at the ℓ-th stage is approximately of the schematic form

Diff
[ℓ]
1,rough ≈

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

∑

±
±Z

η,∓
k3ℓ+3

(
Pk3ℓ+3

A<n−1
x,s · ξ ∓ Pk3ℓ+3

A<n−1
0 |ξ |

)

× Pk3ℓ+2

(
e−iψ

n,mod
±

)
(t, x, D)

K ±

i |D| Pk3ℓ+1

(
e+iψ

n,mod
±

)
(D, y, s)�

n,(k′)
r .

Then at stage ℓ a “terminating event” occurs whenever (at least) one of the frequen-

cies k3ℓ+1, k3ℓ+2, or k3ℓ+3 is at a higher frequency ≧ 3σn. Correspondingly, the

rough error terms accrued at the ℓth stage are approximately �
n,(k)
r for all small

strings (k) of length ℓ.

In fact, we have to refine this definition by taking into account the angular cutoffs

in the operators Z
η,∓
k and in the phases ψ

n,mod
± . What makes this somewhat delicate

is that we do not carry out this refinement one function at a time, but only for the

collection of all of them. To this end we introduce the notation for 0 ≦ k ≦ 3σn

and integer-valued −σn ≦ α < 0,

Z
η,∓
k,α := −�	−1

η⊥ �
∓,η

�2k |∡|2�
η
2α ,

and then expand Z
η,∓
k as

Z
η,∓
k =

∑

−σn≦α<0

Z
η,∓
k,α .

Keeping in mind that the inductive definition of �
n,(k)
r for a string (k) of length ℓ

implies the presence of ℓ + 1 such operators Z
η,∓
k j

, and expanding each of these

out, we encounter a string of operators Z
η,∓
k3,α0

, . . . , Z
η,∓
k3ℓ+3,αℓ

. Freezing the angles

α j , we denote the corresponding contribution by �
n,(k),(α)
r . We will see that if the

sum of the angles is sufficiently small
∑

j α j ≦ − σn
100

, the corresponding term
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gains regularity and does not have to be passed on to the next iteration stage, see

the proof of Proposition 6.8.

Similarly, we also reduce the phases in the exponentials e±iψ
n,mod
± to sufficiently

large angular separation from the Fourier support of the high frequency factor. To

this end we use the decomposition

e±iψ
n,mod
± = e±i�>−10ψ

n,mod
± +

(
e±iψ

n,mod
± − e±i�>−10ψ

n,mod
±

)

= e±i�>−10ψ
n,mod
± ∓

∫ −10

−σn

i
∂

∂h

(
�>hψ

n,mod
±

)
e±i�>hψ

n,mod
± dh,

where we recall that �>a denotes a smooth cutoff localizing the angular separation

of the Fourier support to direction η := ξ
|ξ | to an angle � 2a . We substitute this

formula for each instance of e±iψ
n,mod
± in �

n,(k),(α)
r . If we use the integral part

∓
∫ −10

−σn

i
∂

∂h

(
�>hψ

n,mod
±

)
e±i�>hψ

n,mod
± dh

in m instances of these exponentials in �
n,(k),(α)
r , we can write the corresponding

expression as an iterated integral of the form

∫ −10

−σn

∫ −10

−σn

· · ·
∫ −10

−σn

. . . dh1dh2 . . . dhm,

and we denote it by �n,(k),(α),(h). We anticipate that the contribution of the integral

∫ −10

−σn

∫ −10

−σn

· · ·
∫ −10

−σn

χ{
∑

h j ≦− σ
10 n} . . . dh1dh2 . . . dhm

is a smooth source term, see the proof of Proposition 6.8.

Hence, we arrive at the following precise definition of the “rough” error accrued

at every stage ℓ ≧ 0

E
n,[ℓ]
rough :=

∑
∑

j h j ≧− σn
10

∑
∑

j α j ≧− σn
100

∑

small strings (k)
of length ℓ

�
n,(k),(α),(h)
r , (6.9)

which then gets iterated away by applying the inhomogeneous parametrix again.

Correspondingly, the “delicate” error terms accrued at stage ℓ ≧ 0 are precisely

defined by

E
n,[ℓ]
del := Diff

n,[ℓ]
1,rough − E

n,[ℓ]
rough . (6.10)

In what follows we will frequently make use of the short-hand notation

κn−1 :=
n−1∑

m=1

(
‖A

m
x,r ‖Rm + ‖�m

r ‖Rm

)
+

n−1∑

m=0

(
‖A

m
x,s‖S1[m] + ‖A

m
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
)
.

(6.11)
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6.2. The “Probabilistic” Phase Function

We now turn to establishing mapping properties of the associated “probabilistic”

renormalization operators e
±iψ

n,mod
±

<n−C (t, x, D). It is helpful to recall that the spatial

and temporal parts of the connection form A<n−1 are composed of

A<n−1
x =

n−1∑

m=0

Am
x,s +

n−1∑

m=1

Am
x,r , A<n−1

0 =
n−1∑

m=0

Am
0 ,

and that the rough evolution A<n−1
x,r =

∑n−1
m=1 Am

x,r is sharply localized to fre-

quencies 1 � |ξ | � 2n−1. The next proposition on the mapping properties of

e
±iψ

n,mod
±

<n−C (t, x, D) is purely deterministic in the sense that it only relies on certain

smallness assumptions about the components of A<n−1 and that their randomness

does not play a role here.

Proposition 6.1. Let n ≧ 1. Assume that

n−1∑

m=1

‖Am
x,r‖Rm +

n−1∑

m=0

‖Am
x,s‖S1[m] +

n−1∑

m=0

‖Am
0 ‖Y 1[m] � ε.

Then the frequency-localized “probabilistic” renormalization operator e
±iψ

n,mod
±

<n−C

(t, x, D) has the following mapping properties with Z ∈ {Nn, L2, N∗
n }:

e
±iψ

n,mod
±

<n−C (t, x, D) : Z −→ Z , (6.12)

∂t e
±iψ

n,mod
±

<n−C (t, x, D) : Z −→ εZ , (6.13)

e
−iψ

n,mod
±

<n−C (t, x, D)e
+iψ

n,mod
±

<n−C (D, y, s) − I : Z −→ εZ , (6.14)

e
−iψ

n,mod
±

<n−C (t, x, D) : S♯
n −→ Sn . (6.15)

The proof of the mapping properties in Proposition 6.1 again proceeds as in Sec-

tions 6–11 in [27] once we have established certain pointwise and decomposable

estimates for the “probabilistic” phase functions ψ
n,mod
± (t, x, ξ) in Lemma 6.2,

Lemma 6.3, and Lemma 6.4 below. The proofs of the latter are also just deter-

ministic in the sense that they only rely on certain smallness assumptions about

the components of A<n−1. We note that the delicate proof of the error estimate

for �
p,mod

A<n−1�
n
r is deferred to Sect. 6.6 below. We start off with L∞ bounds on the

“probabilistic” phase function.

Lemma 6.2. Let n ≧ 1. For the rough part of the “probabilistic” phase function

we have for any 0 ≦ k ≦ n and for any 1 � θ > 2σ min{k,−n} that

∣∣ψn,mod,r
±,k,(θ)

(t, x, ξ)
∣∣ � 2−(2−)k2+2δ∗kθ−1−δ1 min{(θ2k)

3
2 −, 1}‖Pk A<n−1

x,r ‖Rk
,

∣∣ψn,mod,r
±,k (t, x, ξ)

∣∣ � 2−((1−)−2δ∗−δ1)k‖Pk A<n−1
x,r ‖Rk

,
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∣∣∇t,xψ
n,mod,r
±,k,(θ)

(t, x, ξ)
∣∣ � 2−(1−)k2+2δ∗kθ−1−δ1 min{(θ2k)

3
2 −, 1}‖Pk A<n−1

x,r ‖Rk
,

∣∣∇t,xψ
n,mod,r
±,k (t, x, ξ)

∣∣ � 2−(0+)k2+(2δ∗+δ1)k‖Pk A<n−1
x,r ‖Rk

.

For the smooth part of the “probabilistic” phase function we have for any k ∈ Z

and for any 1 � θ > 2σ min{k,−n} that

∣∣ψn,mod,s
±,k,(θ)

(t, x, ξ)
∣∣ � θ

1
2
(
2k‖Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x

)
,

∣∣ψn,mod,s
±,k (t, x, ξ)

∣∣ � 2k‖Pk A<n−1
x,s ‖L∞

t L2
x
+ 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x
,

∣∣∇t,xψ
n,mod,s
±,k,(θ)

(t, x, ξ)
∣∣ � θ

1
2 2k

(
‖∇t,x Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

1
2 k‖∇t,x Pk A<n−1

0 ‖L2
t L2

x

)
,

∣∣∇t,xψ
n,mod,s
±,k (t, x, ξ)

∣∣ � 2k
(
‖∇t,x Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

1
2 k‖∇t,x Pk A<n−1

0 ‖L2
t L2

x

)
.

Finally, for derivatives of the rough part of the phase function with respect to the

frequency variable we have for any multi-index α with |α| ≧ 1, any l ≧ 0, any

0 ≦ k ≦ n, and any 1 � θ > 2σ min{k,−n} that

∣∣∂ l
|ξ |∂

α
η ψ

n,mod,r
±,k,(θ)

(t, x, ξ)
∣∣ � θ−1−|α|2−2k2+2δ∗k2(0+)k‖Pk A<n−1

x,r ‖Rk
,

∣∣∂ l
|ξ |∂

α
η ψ

n,mod,r
±,k (t, x, ξ)

∣∣ � 2σ(1+|α|)n2−2k2+2δ∗k2(0+)k‖Pk A<n−1
x,r ‖Rk

,
∣∣∂ l

|ξ |∂
α
η ∇t,xψ

n,mod,r,(θ)
±,k (t, x, ξ)

∣∣ � θ−1−|α|2−k2+2δ∗k2(0+)k‖Pk A<n−1
x,r ‖Rk

,
∣∣∂ l

|ξ |∂
α
η ∇t,xψ

n,mod,r
±,k (t, x, ξ)

∣∣ � 2σ(1+|α|)n2−k2+2δ∗k2(0+)k‖Pk A<n−1
x,r ‖Rk

.

Similarly, for derivatives of the smooth part of the phase function with respect to

the frequency variable we have for any multi-index α with |α| ≧ 1, any l ≧ 0, any

k ∈ Z, and any 1 � θ > 2σ min{k,−n} that

∣∣∂ l
|ξ |∂

α
η ψ

n,mod,s
±,k,(θ)

(t, x, ξ)
∣∣ � θ

1
2 −|α|(2k‖Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x

)
,

∣∣∂ l
|ξ |∂

α
η ψ

n,mod,s
±,k (t, x, ξ)

∣∣ � 2σ(|α|− 1
2 ) max{−k,n}(2k‖Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x

)
,

∣∣∂ l
|ξ |∂

α
η ∇t,x ψ

n,mod,s
±,k,(θ)

(t, x, ξ)
∣∣ � θ

1
2 −|α|2k

(
‖∇t,x Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

1
2 k‖∇t,x Pk A<n−1

0 ‖L2
t L2

x

)
,

∣∣∂ l
|ξ |∂

α
η ∇t,x ψ

n,mod,s
±,k (t, x, ξ)

∣∣ � 2σ(|α|− 1
2 ) max{−k,n}2k

(
‖∇t,x Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

1
2 k‖∇t,x Pk A<n−1

0 ‖L∞
t L2

x

)
.

Proof. The rough part of the “probabilistic” phase function coincides with the

rough part of the “deterministic” phase function up to the tighter angle cut-off in the

“probabilistic” phase. For this reason the proofs of the bounds for ψ
n,mod,r
±,k,(θ)

(t, x, ξ)

with localization to an angle θ is identical to the proof of the corresponding bounds

for the “deterministic” phase function. We then obtain slightly different bounds for

the rough component ψ
n,mod,r
±,k (t, x, ξ) upon summing over the angles 1 � θ �

2σ min{k,−n} due to the tighter angle cut-off in the definition of the “probabilistic”

phase function.

While the smooth part of the “deterministic” phase function only contains the

free wave evolution A
0, f ree
x,s of the lowest frequency block, the smooth part of the

“probabilistic” phase function incorporates the homogeneous and inhomogeneous

spatial components of the connection form A<n−1
x,s (from frequency stages up to

n − 1) as well as the temporal components of the connection form A<n−1
0 (from
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frequency stages up to n − 1). Correspondingly, the bounds for the smooth part of

the “probabilistic” phase function require more explanations.

In order to estimate the contribution of the spatial component of the connection

form A<n−1
x,s we again exploit the Coulomb gauge condition to gain another factor

of θ and use the Bernstein estimate �
η
θ Pk L2

x → (θ324k)
1
2 L∞

x . Specifically, we find

that

sup
η

∥∥∥(L
η
∓)−1�

∓,η

≫2k |∡|2�
η
θ

(
Pk A<n−1

x,s · η
)∥∥∥

L∞
t L∞

x

� θ−22−k sup
η

∥∥�
η
θ Pk A<n−1

x,s · η
∥∥

L∞
t L∞

x

� θ−12−k sup
η

∥∥�
η
θ Pk A<n−1

x,s

∥∥
L∞

t L∞
x

� θ
1
2 2k‖Pk A<n−1

x,s ‖L∞
t L2

x

as well as

sup
η

∥∥∥L
η
±	−1

η⊥ �
∓,η

�2k |∡|2�
η
θ

(
Pk A<n−1

x,s · η
)∥∥∥

L∞
t L∞

x

� θ−22−k sup
η

∥∥�
η
θ Pk A<n−1

x,s · η
∥∥

L∞
t L∞

x

� θ−12−k sup
η

∥∥�
η
θ Pk A<n−1

x,s

∥∥
L∞

t L∞
x

� θ
1
2 2k‖Pk A<n−1

x,s ‖L∞
t L2

x
.

In order to estimate the contribution of the temporal component A<n−1
0 of the con-

nection form, we dyadically decompose the size of the symbol of L
η
∓, i.e. |τ∓η·ζ | ∼

λ, λ ∈ 2Z. Using the Bernstein estimate �
±,η
λ �

η
θ Pk L2

t L2
x → (λ θ324k)

1
2 L∞

t L∞
x ,

we then find that

sup
η

∥∥(L
η
∓)−1�

∓,η

≫2k |∡|2�
η
θ

(
Pk A<n−1

0

)∥∥
L∞

t L∞
x

�
∑

λ≫2kθ2

sup
η

∥∥(L
η
∓)−1�

∓,η
λ �

η
θ

(
Pk A<n−1

0

)∥∥
L∞

t L∞
x

�
∑

λ≫2kθ2

λ−1
(
λ θ324k

) 1
2 ‖Pk A<n−1

0 ‖L2
t L2

x

�
∑

λ≫2kθ2

λ− 1
2 θ

3
2 22k‖Pk A<n−1

0 ‖L2
t L2

x

� θ
1
2 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x

as well as

sup
η

∥∥L
η
±	−1

η⊥ �
∓,η

�2k |∡|2�
η
θ

(
Pk A<n−1

0

)∥∥
L∞

t L∞
x

�
∑

λ�2kθ2

sup
η

∥∥L
η
±	−1

η⊥ �
∓,η
λ �

η
θ

(
Pk A<n−1

0

)∥∥
L∞

t L∞
x
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�
∑

λ�2kθ2

2kθ−22−2 j
(
λ θ324k

) 1
2 ‖Pk A<n−1

0 ‖L2
t L2

x

�
∑

λ�2kθ2

λ
1
2 θ− 1

2 2k‖Pk A<n−1
0 ‖L2

t L2
x

� θ
1
2 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x
.

Putting the above estimates together we arrive at the following bound on the smooth

part of the “deterministic” phase function

∣∣ψn,mod,s
±,k,(θ)

(t, x, ξ)
∣∣ � θ

1
2
(
2k‖Pk A<n−1

x,s ‖L∞
t L2

x
+ 2

3
2 k‖Pk A<n−1

0 ‖L2
t L2

x

)
.

Then the other bounds on the smooth part of the phase function again follow upon

summing over the dyadic angles 1 � θ � 2σ min{k,−n} and upon taking an additional

∇t,x derivative.

Finally, the estimates for ∂ l
|ξ |∂

α
η derivatives of the “probabilistic” phase function

are proved similarly, noting that differentiating with respect to η := ξ
|ξ | yields

additional θ−1 factors, while differentiating with respect to the radial frequency

variable |ξ | is harmless since the definition of the phase function only involves η.

⊓⊔

Next, we establish L∞ bounds for differences of two “probabilistic” phase

functions.

Lemma 6.3. (Additional symbol bounds for differences of “probabilistic” phase

functions) Let n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm +

n−1∑

m=0

‖Am
x,s‖S[m] +

n−1∑

m=0

‖Am
0 ‖Y 1[m] � ε.

Then we have for any multi-index α with 1 ≦ |α| ≦ γ
2σ

+ 1
2

and any l ≧ 0 that

∣∣ψn,mod
± (t, x, ξ) − ψ

n,mod
± (s, y, ξ)

∣∣ � ε log
(
1 + 2n(|t − s| + |x − y|)

)
, (6.16)

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,mod
± (t, x, ξ) − ψ

n,mod
± (s, y, ξ)

)∣∣ � ε
(
1 + 2n(|t − s| + |x − y|)

) 2σ
γ

(|α|− 1
2 )

. (6.17)

Proof. In the following we again use the shorthand notation T := |x − y|+ |t − s|.
The proof of the first estimate (6.16) is very similar to the corresponding proof of

the estimate (5.25) for the “deterministic” phase function.

In the proof of the second estimate (6.17) we treat the rough and the smooth part

of the phase function separately. The treatment of the rough part proceeds similarly

to the treatment of the contribution of the rough part of the “deterministic” phase

function in the proof of the estimate (5.26). The contributions of the smooth part

of the “probabilistic” phase function have to be discussed more carefully here. We

distinguish several cases depending on the size of T . Throughout we make use

of the L∞ bounds on the “probabilistic” phase function from Lemma 6.2 without
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further mentioning. If 2−(1−γ )n � T � 2n , we pick some −n ≦ j0 ≦ (1 − γ )n

and decompose into

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,mod,s
± (t, x, ξ) − ψ

n,mod,s
± (s, y, ξ)

)∣∣

�
∑

j≦ j0

sup
η

∥∥∇t,x∂
l
|ξ |∂

α
η ψ

n,mod,s
±, j

∥∥
L∞

t L∞
x

(
|t − s| + |x − y|

)

+
∑

j0≦ j≦(1−γ )n

sup
η

∥∥∂ l
|ξ |∂

α
η ψ

n,mod,s
±, j

∥∥
L∞

t L∞
x

�
∑

j≦ j0

2σ(|α|− 1
2 ) max{− j,n}2 j T ε +

∑

j0≦ j≦(1−γ )n

2σ(|α|− 1
2 ) max{− j,n}ε

� 2σ(|α|− 1
2 )n2−nT ε +

∑

−n≦ j≦ j0

2σ(|α|− 1
2 )n2 j T ε +

∑

j0≦ j≦(1−γ )n

2σ(|α|− 1
2 )nε.

Using that j ≦ (1 − γ )n we may further bound the last line by

2σ(|α|− 1
2 )n2−nT ε +

∑

−n≦ j≦ j0

2
σ
γ

(|α|− 1
2 )(n− j)

2 j T ε +
∑

j0≦ j≦(1−γ )n

2
σ
γ

(|α|− 1
2 )(n− j)

ε

� max{1, (2nT )σ(|α|− 1
2 )}ε + 2

σ
γ

(|α|− 1
2 )(n− j0)(2 j0 T + 1)ε.

Then choosing 2− j0 ∼ T yields the desired bound. If T � 2n the argument proceeds

similarly by decomposing with respect to a suitably chosen j0 ≦ −n. Finally, if

T � 2−(1−γ )n we bound by

∣∣∂ l
|ξ |∂

α
η

(
ψ

n,mod,s
± (t, x, ξ) − ψ

n,mod,s
± (s, y, ξ)

)∣∣

�
∑

j≦(1−γ )n

sup
η

∥∥∇t,x∂
l
|ξ |∂

α
η ψ

n,mod,s
±, j

∥∥
L∞

t L∞
x

(
|t − s| + |x − y|

)

� 2σ(|α|− 1
2 )n2−γ n2nT ε.

Then if 2nT � 2
1
2 γ n , we may just bound by ε as long as σ(|α| − 1

2
) ≦ 1

2
γ , while

if 2
1
2 γ n � 2nT � 2γ n , we can obtain a bound in terms of (2nT )

2σ
γ

(|α|− 1
2 )

ε. ⊓⊔

Finally, we record decomposable estimates for the “probabilistic” phase func-

tion.

Lemma 6.4. (Decomposable estimates for the “probabilistic” phase function) Let

n ≧ 1 and assume that

n−1∑

m=1

‖Am
x,r‖Rm +

n−1∑

m=0

‖Am
x,s‖S[m] +

n−1∑

m=0

‖Am
0 ‖Y 1[m] � ε.

Let k ≦ (1 − γ )n. For 2 ≦ q < ∞ and 2
q

+ 3
r

≦ 3
2+ we have that

∥∥(
ψ

n,mod
±,k,(θ)

, 2−k∇t,xψ
n,mod
±,k,(θ)

)∥∥
DL

q
t Lr

x
� 2

−( 1
q
+ 4

r
)k

θ
1

2+ − 2
q
− 3

r ε. (6.18)
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Moreover, for 4+ < q ≦ ∞ it holds that

∥∥(
ψ

n,mod
±,k , 2−k∇t,xψ

n,mod
±,k

)∥∥
DL

q
t L∞

x
� 2

− 1
q

k
ε. (6.19)

Proof. The proofs of (6.18)–(6.19) for the rough part of the “probabilistic” phase

function and for the contributions of the spatial components of the connection form

A<n−1
x,s to the smooth part of the “probabilistic” phase function closely resemble

the corresponding proofs of (5.27)–(5.28) for the “deterministic” phase function.

It therefore only remains to discuss the contributions of the temporal component

A<n−1
0 . Here it is straightforward to obtain the desired estimates. Interchanging

integration and the η summation as in [27, Lemma 7.3] we find that

(∑

η

∥∥(L
η
∓)−1�

∓,η

≫2k |∡|2�
η
θ

(
Pk A<n−1

0

)∥∥2

L
q
t Lr

x

) 1
2

�

(∑

η

( ∑

λ≫2kθ2

∥∥(L
η
∓)−1�

∓,η
λ �

η
θ

(
Pk A<n−1

0

)∥∥
L

q
t Lr

x

)2
) 1

2

�

(∑

η

( ∑

λ≫2kθ2

λ−1λ
1
2 − 1

q (θ324k)
1
2 − 1

r

∥∥�
η
θ

(
Pk A<n−1

0

)∥∥
L2

t L2
x

)2
) 1

2

� θ
1
2 − 2

q
− 3

r 2
−( 1

q
+ 4

r
)k

2
3
2 k

(∑

η

∥∥�
η
θ

(
Pk A<n−1

0

)∥∥2

L2
t L2

x

) 1
2

� θ
1
2 − 2

q
− 3

r 2
−( 1

q
+ 4

r
)k

2
3
2 k

∥∥Pk A<n−1
0

∥∥
L2

t L2
x

� θ
1
2 − 2

q
− 3

r 2
−( 1

q
+ 4

r
)k

and that

(∑

η

∥∥L
η
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η⊥ �
∓,η

�2k |∡|2�
η
θ

(
Pk A<n−1

0

)∥∥2

L
q
t Lr

x

) 1
2

�

(∑

η

( ∑

λ�2kθ2

∥∥L
η
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η⊥ �
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η
θ

(
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0
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L

q
t Lr

x

)2
) 1

2

�

(∑

η

( ∑

λ�2kθ2

2kθ−22−2 jλ
1
2 − 1

q (θ324k)
1
2 − 1

r

∥∥�
η
θ

(
Pk A<n−1

0

)∥∥
L2

t L2
x

)2
) 1

2

� θ
1
2 − 2

q
− 3

r 2
−( 1

q
+ 4

r
)k

2
3
2 k

(∑

η

∥∥�
η
θ

(
Pk A<n−1

0

)∥∥2

L2
t L2

x

) 1
2

� θ
1
2 − 2

q
− 3

r 2
−( 1

q
+ 4

r
)k

2
3
2 k

∥∥Pk A<n−1
0

∥∥
L2

t L2
x

� θ
1
2 − 2

q
− 3

r 2
−( 1

q
+ 4
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ε.

⊓⊔
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6.3. Probabilistic Strichartz Estimates for the Adapted Rough Linear

Evolution �n
r

We now turn to the derivation of the redeeming probabilistic space-time inte-

grability properties (on a suitable event) of the adapted rough linear evolution �n
r

of the random data Tnφω[0], n ≧ 1. These are a consequence of moment bounds

for the redeeming Rn norm of the evolution �n
r established in the next proposition.

At its core the proof is based on a combination of Bernstein’s inequality, (refined)

Strichartz estimates, Minkowski’s integral inequality, and Khintchine’s inequality,

which allows one to decouple the “atoms” of the Wiener randomization and gain

from their unit-sized frequency supports to beat the scaling. This idea was first used

in [32,46] for the Wiener randomization.

However, in our setting �n
r is not the free wave evolution of the random data

Tnφω[0], but a modified linear evolution defined as an infinite sum in terms of

iterative applications of the “probabilistic” parametrix (6.3). This comes with two

main difficulties. First, the “probabilistic” parametrix (6.3) is defined in terms of

the modified phase functions ψ
n,mod
± . The definition of the latter involves the con-

nection form A<n−1 from the prior induction stages, which however depends in a

highly nonlinear manner on the random initial data T<n−1 Aω
x [0] and T<n−1φ

ω[0].
Crucially, these are independent of the random data Tnφω[0] for the adapted linear

evolution �n
r . One can therefore still decouple the “atoms” of the random data

Tnφω[0] for the adapted linear evolution �n
r via Khintchine’s inequality by con-

ditioning on the σ -algebra Fn−1 generated by the Gaussians {gm, g̃m, hm, h̃m :
m ∈ Z4, |m| < 2n−1}. This type of argument first appeared in [7] for the Wiener

randomization and we refer to [7, Proposition 4.4] for a nice illustration of this

circle of ideas within a simpler functional framework.

A second difficulty is that the higher iterates �
n,[ℓ]
r in the definition of �n

r =∑∞
ℓ=0 �

n,[ℓ]
r are defined in terms of iterative applications of the “probabilistic”

parametrix (6.3). This could potentially more and more “smear out” the unit-sized

frequency support of the “atoms” of the Wiener randomization and the desired gain

from their unit-sized frequency support would eventually break down. However,

this is prevented by the careful definition of the rough errors (6.9) accrued at every

stage in terms of “small strings of frequencies”. It allows to essentially offset the

loss due to the smearing out of the frequency supports by the gain in smallness of

the higher iterates, at the expense of a very small regularity loss that is built into

the definition of our redeeming norms.

Proposition 6.5. Let n ≧ 1. Assume that the functions {Am
x,r }n−1

m=1, {Am
x,s}n−1

m=0,

{Am
0 }n−1

m=0, {�m
r }n−1

m=1, and {�m
s }n−1

m=0 are measurable with respect to the σ -algebra

Fn−1 and that we have almost surely

n−1∑

m=1

(
‖Am

x,r‖Rm + ‖�m
r ‖Rm

)
+

n−1∑

m=0

(
‖Am

x,s‖S1[m] + ‖Am
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
)

< ∞.
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Let 1[0,2C0ε] be the characteristic function of the interval [0, 2C0ε] and set

1
<n−1
ε := 1[0,2C0ε]

(n−1∑

m=1

(
‖Am

x,r‖Rm + ‖�m
r ‖Rm

)

+
n−1∑

m=0

(
‖Am

x,s‖S1[m] + ‖Am
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
))

.

Let �n
r be defined as in (6.4). Then we have for all 1 ≦ p < ∞ that

∥∥1<n−1
ε �n

r

∥∥
L

p
ω(�;Rn)

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

, (6.20)

with an analogous bound for 2−n∇t,x�
n
r .

Observe that the presence of the cutoff1<n−1
ε on the left-hand side of (6.20) is of

utmost importance in the proof of Proposition 6.5. It enforces the necessary small-

ness to invoke the mapping properties of the renormalization operators e
±iψ

n,mod
±

<n−C

from Proposition 5.2 and it ensures sufficient smallness to sum up all higher iterates

�
n,[ℓ]
r in the definition of the adapted linear evolution �n

r .

Proof of Proposition 6.5. We first note that

∥∥1<n−1
ε �n

r

∥∥
L

p
ω(�;Rn)

�

∞∑

ℓ=0

∥∥1<n−1
ε �n,[ℓ]

r

∥∥
L

p
ω(�;Rn)

.

In what follows we will conclude for every stage ℓ ≧ 0 the moment bound

∥∥1<n−1
ε �n,[ℓ]

r

∥∥
L

p
ω(�;Rn)

� 10ℓ(κn−1)
2ℓ√p

∥∥(Pnφ0, Pnφ1)
∥∥

H
1−δ∗
x ×H

−δ∗
x

,

(6.21)

where we recall the definition of κn−1 in (6.11). Thanks to the cutoff 1<n−1
ε we

may assume that κn−1 ≪ 1 so that the asserted moment bound (6.20) follows from

summing the previous estimate (6.21) over all ℓ ≧ 0.

We begin with a careful treatment of the moment bound (6.21) for the zeroth

iterate. To this end it suffices to only consider the homogeneous parametrix

�̃n,[0]
r (t, x) := 1

2

∑

±
e
−iψ

n,mod
±

<n−C (t, x, D)e±i t |D|e
+iψ

n,mod
±

<n−C (D, y, 0)Tnφω
0

for the random initial condition

Tnφ
ω
0 =

∑

2n−1≦|m|<2n

hm(ω)ϕ(D − m)φ0 (6.22)

and to establish the bound corresponding to (6.21) for ℓ = 0, i.e. to show for all

1 ≦ p < ∞ that

∥∥1<n−1
ε �̃n,[0]

r

∥∥
L

p
ω(�;Rn)

�
√

p
∥∥Pnφ0

∥∥
H

1−δ∗
x

. (6.23)
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We now establish (6.23) separately for each component of our redeeming Rn norm.

Here it suffices to prove the corresponding bounds for �̃
n,[0]
r , noting that the bounds

for 2−n∇t,x�̃
n,[0]
r follow analogously.

Moment bounds for Rn L2
t L∞

x : Recall that the Gaussians {hm : m ∈ Z4, 2n−1 ≦
|m| < 2n} are independent of the σ -algebra Fn−1 generated by the Gaussians

{gm, g̃m, hm, h̃m : m ∈ Z4, |m| < 2n−1} (from the prior induction stages) and

that the functions {Am
x,r }n−1

m=1, {Am
0 }n−1

m=0, and {Am
x,s}n−1

m=0 entering the definition of

the phase functions ψ
n,mod
± are assumed to be measurable with respect to Fn−1.

Conditioning on Fn−1 and using Bernstein’s estimate to go down to L∞−
x , we have

∥∥1<n−1
ε Pn�̃n,[0]

r

∥∥
L

p
ω(�;Rn L2

t L∞
x )

=
(

E

[(
E

[∥∥1<n−1
ε Pn�̃n,[0]

r

∥∥p

Rn L2
t L∞

x

∣∣∣ Fn−1

]) p
p
]) 1

p

� 2(0+)n2( 1
2 −20σ)n

(
E

[(
E

[( ∑

l<0

2δ1l
( ∑

k′≦n, l ′≦0

n+2l≦k′+l ′≦n+l

γ (k′, l ′)−2×

×
∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃n,[0]

r

)∥∥2

L2
t L∞−

x

) 1
2

)p ∣∣∣∣ Fn−1

]) p
p
]) 1

p

,

(6.24)

where we recall from the definition of the redeeming space Rn L2
t L∞

x that

γ (k′, l ′) :=
(
min{2k′

, 1}
) 1

2 −(
min{2k′+l ′ , 1}

) 1
2 −

.

We distinguish summation in k′, l ′ over the frequency ranges n + 2 l ≦ k′ + l ′ ≦
min{n+l, 0} and over max{n+2 l, 0} ≦ k′ +l ′ ≦ n+l. We start with the first case.

For any p ≧ ∞− we now use Minkowski’s integral inequality and Khintchine’s

inequality (with respect to the conditional expectation), while for 1 ≦ p ≦ ∞−
we first apply Hölder’s inequality in ω. Then we can bound the last line (6.24) by

2(0+)n2( 1
2 −20σ)n

(
E

[(∑

l<0

2δ1l

( ∑

k′≦n, l ′≦0

n+2l≦k′+l ′≦n+l

γ (k′, l ′)−2

×
∑

κ

∑

Ck′ (l ′)

∥∥∥∥
(

E

[ ∣∣∣
∑

c

hc(ω)PCk′ (l ′) Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃n,[0],(c)

r

)∣∣∣
p ∣∣∣ Fn−1

]) 1
p
∥∥∥∥

2

L2
t L∞−

x

) 1
2
)p]) 1

p

,

�

∥∥∥∥
√

p 2( 1
2 −19σ)n

∑

l<0

2δ1l

(∑

c

∑

k′≦n, l ′≦0

n+2l≦k′+l ′≦0

γ (k′, l ′)−2

×
∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃n,[0],(c)

r

)∥∥2

L2
t L∞−

x

) 1
2
∥∥∥∥

L
p
ω

.

(6.25)

Here,
∑

c denotes the sum over a covering of the annulus |ξ | ∼ 2n by unit-sized balls

with associated frequency projections Pc (coming from the unit-scale frequency
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projections in the definition of the Wiener randomization) and where the parametrix

applied to the (deterministic) initial datum Pcφ0 is denoted by

�̃n,[0],(c)
r (t, x) := 1

2

∑

±
e
−iψ

n,mod
±

<n−C (t, x, D)e±i t |D|e
+iψ

n,mod
±

<n−C (D, y, 0)Pcφ0.

Note that we tacitly changed the notation of the Gaussians and the unit-scale pro-

jections associated with the Wiener randomization to hc(ω), respectively to Pc, to

better distinguish the latter from the standard dyadic Littlewood–Paley projections

Pn within this proof. Our goal is now to bound the integrand inside the L
p
ω norm

on the right-hand side of (6.25) by
√

p‖Pnφ0‖H
1−δ∗
x

. At that point the L
p
ω norm can

be trivially dropped. To this end we have to distinguish several cases depending

on the frequency localization of the symbols e±iψ
n,mod
± (t, x, ξ). We introduce the

corresponding short-hand notations

�̃
n,[0],(c)
r,L L (t, x) := 1

2

∑

±
e
−iψ

n,mod
±

<−C (t, x, D)e±i t |D|e
+iψ

n,mod
±

<−C (D, y, 0)Pcφ0,

�̃
n,[0],(c)
r,L H (t, x) :=

∑

−C≦ℓ2≦n−C

1

2

∑

±
e
−iψ

n,mod
±

<−C (t, x, D)e±i t |D|e
+iψ

n,mod
±

ℓ2
(D, y, 0)Pcφ0,

�̃
n,[0],(c)
r,H L (t, x) :=

∑

−C≦ℓ1≦n−C

1

2

∑

±
e
−iψ

n,mod
±

ℓ1
(t, x, D)e±i t |D|e

+iψ
n,mod
±

<−C (D, y, 0)Pcφ0,

�̃
n,[0],(c)
r,H H (t, x) :=

∑

−C≦ℓ1,ℓ2≦n−C

1

2

∑

±
e
−iψ

n,mod
±

ℓ1
(t, x, D)e±i t |D|e

+iψ
n,mod
±

ℓ2
(D, y, 0)Pcφ0.

Case 1: Bounding the contribution of �̃
n,[0],(c)
r,L L : Here the frequency projection Pc

can essentially be moved through the parametrix to the outside (up to passing to a

slight enlargement P̃c), and we reduce to bounding

√
p 2( 1

2 −19σ)n
∑

l<0

2δ1l

(∑

c

∑

k′≦n, l ′≦0

n+2l≦k′+l ′≦0

γ (k′, l ′)−2
∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) P̃c Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃

n,[0],(c)
r,L L

)∥∥2

L2
t L∞−

x

) 1
2

.

(6.26)

Then for fixed choice of k′, l ′ (with k′ + l ′ ≦ 0) we first use the Bernstein estimate

PCk′ (ℓ′) P̃c L6
x → (23(k′+l ′) min{2k′

, 1}) 1
6 −L∞−

x to bound
∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) P̃c Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃

n,[0],(c)
r,L L

)∥∥2

L2
t L∞−

x

�
((

23(k′+l ′) min{2k′
, 1}

) 1
6 −)2 ∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) P̃c Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃

n,[0],(c)
r,L L

)∥∥2

L2
t L6

x
.

Then we invoke that by the mapping properties of the renormalization operator

e
−iψ

n,mod
±

<−C (t, x, D) as in Proposition 6.1, we have a square-summed L2
t L6

x Strichartz

estimate with a gain from frequency localization to a ball of diameter ∼ min{2k′
, 1}
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(at distance ∼ 2n from the origin of frequency space) for the wave operator

e
−iψ

n,mod
±

<−C (t, x, D)e±i t |D|e
+iψ

n,mod
±

<−C (D, y, 0)Pc (see Section 11 in [27]). Thus, we

can further estimate the previous line by

((
23(k′+l ′) min{2k′

, 1}
) 1

6 −)2 ∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) P̃c Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃

n,[0],(c)
r,L L

)∥∥2

L2
t L6

x

�
((

23(k′+l ′) min{2k′
, 1}

) 1
6 −(

min{2k′
, 1}2−n

) 1
3 2

5
6 n

)2
‖Pcφ0‖2

L2
x

≃
(

2( 1
2 −)(k′+l ′)(min{2k′

, 1}
) 1

2 −
2

1
2 n

)2
‖Pcφ0‖2

L2
x
.

Then we use a small portion of the factor 2( 1
2 −)(k′+l ′) to sum over k′, l ′ in the

indicated range. Square-summing over the unit-sized cubes c, we find that (6.26)

is safely bounded by
√

p ‖Pnφ0‖H
1−δ∗
x

.

Case 2: Bounding the contribution of �̃
n,[0],(c)
r,L H : In this case we first observe that

for −C ≦ ℓ2 ≦ n −C the operator e
+iψ

n,mod
±

ℓ2
(D, y, 0)Pc has the mapping property

e
+iψ

n,mod
±

ℓ2
(D, y, 0)Pc : L2

y → 210σn2−2ℓ2 L2
y . (6.27)

This follows from a crude decomposable estimate ‖ψn,mod
±,ℓ2

‖DL∞L2 � 210σn2−2ℓ2

and the unit-scale Bernstein estimate Pc : L2
y → L∞

y . Moreover, we note that the

evolution

e
−iψ

n,mod
±

<−C (t, x, D)e±i t |D|e
+iψ

n,mod
±

ℓ2
(D, y, 0)Pcφ0, −C ≦ ℓ2 ≦ n − C,

has spatial Fourier support in a ball of diameter ∼ 2ℓ2 (located at distance ∼ 2n

from the origin of frequency space). We may therefore freely insert outside a cor-

responding frequency projection P̃2ℓ2 c adapted to a slight enlargement of that

ball. Then we proceed analogously to Case 1 and use the Bernstein estimate

PCk′ (ℓ′) P̃2ℓ2 c L6
x → (23(k′+l ′) min{2k′

, 2ℓ2}) 1
6 −L∞−

x and subsequently a square-

summed L2
t L6

x Strichartz estimate with gain from frequency localization to a ball

of diameter ∼ min{2k′
, 2ℓ2} together with the mapping property (6.27) to find for

fixed choice of k′, l ′ (with k′ + l ′ ≦ 0) that

∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃

n,[0],(c)
r,L H

)∥∥2

L2
t L∞−

x

�

( ∑

−C≦ℓ2≦n−C

2( 1
2 −)(k′+l ′)(min{2k′

, 2ℓ2}
) 1

2 −
2( 1

2 +10σ)n2−2ℓ2‖Pcφ0‖L2
x

)2

.

Thus, we have at least a gain of 2− 3
2 ℓ2 , which can be summed over −C ≦ ℓ2 ≦

n −C . Then, again using a small fraction of the factor 2( 1
2 −)(k′+l ′) to sum over k′, l ′

in the indicated range and square-summing over the unit-sized cubes c, we obtain

that the contribution of �̃
n,[0],(c)
r,L H to (6.25) is safely bounded by

√
p ‖Pnφ0‖H

1−δ∗
x

.



Arch. Rational Mech. Anal. (2023) 247:68 Page 67 of 109 68

Case 3: Bounding the contribution of �̃
n,[0],(c)
r,H L : We begin by noting that the evolu-

tion

e
−iψ

n,mod
±

ℓ1
(t, x, D)e±i t |D|e

+iψ
n,mod
±

<−C (D, y, 0)Pcφ0

has spatial Fourier support in a ball of diameter ∼ 2ℓ1 (located at distance ∼ 2n

from the origin of frequency space). We may therefore freely insert a corresponding

frequency projection P̃2ℓ1 c adapted to a slight enlargement of that ball. Hence,

using the Bernstein estimate PCk′ (l ′) P̃2ℓ1 c : L2
x →

(
23(k′+l ′) min{2k′

, 2ℓ1}
) 1

2 −
L∞−

x

and square-summing over the caps κ and boxes Ck′(l ′), we obtain for fixed choice

of k′, l ′ (with k′ + l ′ ≦ 0) that
∑

κ

∑

Ck′ (l ′)

∥∥PCk′ (l ′) Pκ
l Q<n+2l

(
1

<n−1
ε Pn�̃

n,[0],(c)
r,H L

)∥∥2

L2
t L∞−

x

�

( ∑

−C≦ℓ1≦n−C

(∑

κ

∑

Ck′ (l ′)

∥∥P̃2ℓ1 c PCk′ (l ′) Pκ
l Q<n+2l

(
1

<n−1
ε e

−iψ
n,mod
±

ℓ1

(t, x, D)e±i t |D|e
+iψ

n,mod
±

<−C (D, y, 0)Pcφ0

)∥∥2

L2
t L∞−

x

) 1
2
)2

�

( ∑

−C≦ℓ1≦n−C

(
23(k′+l ′) min{2k′

, 2ℓ1}
) 1

2 −∥∥1<n−1
ε e

−iψ
n,mod
±

ℓ1

(t, x, D)P̃ce±i t |D|e
+iψ

n,mod
±

<−C (D, y, 0)Pcφ0

∥∥
L2

t L2
x

)2

.

In the last line we already indicated that (a slight enlargement of) the frequency

projection Pc can be moved through to the outside of the renormalization operator

e
+iψ

n,mod
±

<−C (D, y, 0). Since the operator e
−iψ

n,mod
±

ℓ1
(t, x, D)P̃c is essentially smooth

at the scale of the unit-scale projection P̃c, we obtain from crude decomposability

estimates the operator bound

e
−iψ

n,mod
±

ℓ1
(t, x, D)P̃c : L∞

x → 210σn2−2ℓ1 L2
x .

By the mapping properties of the renormalization operator as in Proposition 6.1,

it follows that the wave operator P̃ce±i t |D|e
+iψ

n,mod
±

<−C (D, y, 0) satisfies an improved

Strichartz estimate L2
x → 2

1
2 n L2

t L∞
x with gain from frequency localization to a

ball of diameter ∼ 1 (at distance ∼ 2n from the origin of frequency space). Hence,

the previous line can be further bounded by

(
210σn

∑

−C≦ℓ1≦n−C

2( 3
2 −)(k′+l ′)(min{2k′

, 2ℓ1}
) 1

2 −
2−2ℓ12

1
2 n‖Pcφ0‖L2

x

)2

.

Again, we have at least a gain of 2− 3
2 ℓ2 , which can be summed over −C ≦ ℓ2 ≦

n − C , and subsequently we can use a small portion of the factor 2( 3
2 −)(k′+l ′) to
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sum over k′, l ′ in the indicated range. After square-summing over the unit-sized

cubes c, we obtain that the contribution of �̃
n,[0],(c)
r,H L to (6.25) is also safely bounded

by
√

p ‖Pnφ0‖H
1−δ∗
x

.

Case 4: Bounding the contribution of �̃
n,[0],(c)
r,H H : This case can be treated by com-

bining the arguments from the previous two cases.

To conclude the discussion of the derivation of the redeeming Rn L2
t L∞

x bounds,

it remains to describe how to deal with the frequency range max{n + 2l, 0} ≦
k′ + l ′ ≦ n + l. We proceed as above for the other frequency range, but in this

regime we can only exploit the unit-scale frequency localization and cannot further

gain from the radially directed frequency blocks Ck′(l ′). The summation over k′, l ′

in this frequency range comes at the expense of a factor 2(0+)n that can be safely

compensated.

Moment bounds for Rn L2
t L6

x : This is effectively just a special case of the derivation

of the moment bounds for the Rn L2
t L∞

x norm, we therefore omit the details.

Moment bounds for Rn L∞
t L∞

x : We proceed analogously to the derivation of the

moment bounds for the redeeming Rn L2
t L∞

x norm. First, we use Bernstein’s in-

equality and fractional Sobolev embedding in time to go down to L∞−
t L∞−

x at the

expense of picking up a factor 2(0+)n . Then we condition on Fn−1, use Minkowski’s

integral inequality together with Khintchine’s inequality as above, and distinguish

the same four cases depending on the frequency localization of the renormalization

operator symbols. In order to estimate the contribution of the main term �̃
n,[0],(c)
r,L L (t),

we use the Bernstein estimate Pκ
l P̃c : L2+

x →
(
min{23(n+l), 1}

) 1
2 −

L∞−
x and sub-

sequently a square-summed L∞−
t L2+

x Strichartz estimate. In the other three cases

we proceed analogously to the treatment of the Rn L2
t L∞

x norm and play out the

mismatched frequency localizations.

Moment bounds for Rn Str : This bound is also very analogous to the derivation of

the moment bounds for the redeeming Rn L2
t L∞

x norm above. For a given admissible

Strichartz pair (q, r), we first condition on Fn−1 and use Minkowski’s integral

inequality together with Khintchine’s inequality (after possibly going down to L∞−
t

or L∞−
x at the expense of a factor 2(0+)n). Then we again distinguish the same

four cases depending on the frequency localization of the renormalization operator

symbols. For the contribution of the main term �̃
n,[0],(c)
r,L L (t), we first use the unit-

scale Bernstein estimate P̃c : L
r0
x → Lr

x where (q, r0) is sharp-admissible and then

apply a Strichartz estimate with gain from the frequency localization to a unit-sized

ball (at distance ∼ 2n from the origin of frequency space). In the other cases we

take advantage of the mismatched frequency localizations.

Moment bounds for S
1−δ∗
n : Here we do not look for a gain from probabilistic

decoupling of the unit-scale frequency localized pieces. By the mapping properties

from Proposition 6.1, we right away have an S
1−δ∗
n norm bound for the homoge-

neous parametrix �
n,[0]
r (as in Section 11 in [27]), and only subsequently apply

Khintchine’s inequality and square-sum over the unit-scale frequency localized
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pieces to find for any p ≧ 2 that

∥∥1<n−1
ε �n

r

∥∥
L

p
ω(�;S

1−δ∗
n )

�
∥∥(Tnφω

0 , Tnφω
1 )

∥∥
L

p
ω(�;H

1−δ∗
x ×H

−δ∗
x )

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

.

In the case 1 ≦ p ≦ 2 we first use Hölder’s inequality in ω.

This finishes the proof of the moment bound (6.21) for the zeroth iterate and it

now remains to discuss the derivation of the moment bounds (6.21) for all higher

iterates ℓ ≧ 1. Recall that the higher iterates �
n,[ℓ]
r , ℓ ≧ 1, are defined as the

inhomogeneous parametrix applied to the error −E
[ℓ−1]
rough . The key point that makes

the derivation of the redeeming bounds work for all higher iterates �
n,[ℓ]
r , ℓ ≧ 1, is

that the error E
[ℓ−1]
rough defined in (6.9) consists only of “small strings of frequencies

of length ℓ − 1” that are all at frequencies ≦ 23σn . Thus, the Fourier support of the

ℓ-th iterate �
n,[ℓ],(c)
r applied to a single unit-sized frequency localized piece smears

out by at most � 10ℓ23σn . Moreover, the error E
[ℓ−1]
rough gains smallness and is of

size (κn−1)
2ℓ. This smallness gain stems from repeatedly estimating the schematic

magnetic potential terms

Z
η,∓
k

(
Pk A<n−1

x,s · ξ ∓ Pk A<n−1
0 |ξ |

)

using the equations for A<n−1
x,s and A<n−1

0 (whose nonlinearities are at least quadratic).

See the proof of Proposition 6.8 for more details).

In the proof of the moment bound for the redeeming norms of �
n,[ℓ]
r , ℓ ≧ 1, we

then only once have to argue analogously to the zeroth iterate above, namely for the

inhomogeneoux parametrix applied to the error −E
[ℓ−1]
rough , which costs some 210σn .

Since we built enough room of size 2−20σn into the definition of our redeeming

spaces, we can easily absorb the additional factor of 23σn arising due to the smearing

out of the frequency support. Overall, we therefore obtain the desired bound

∥∥1<n−1
ε �n,[ℓ]

r

∥∥
L

p
ω(�;Rn)

� 10ℓ(κn−1)
2ℓ√p

∥∥(Pnφ0, Pnφ1)
∥∥

H
1−δ∗
x ×H

−δ∗
x

.

⊓⊔

6.4. Probabilistic Energy Bounds for the Data Error �n
s [0]

Next, we present a new type of moment bound, which ensures that the data error

generated by the modified rough linear evolution �n
r in fact gains smoothness (on

a suitable event).

Proposition 6.6. Let n ≧ 1. Assume that we have almost surely

n−1∑

m=1

(
‖Am

x,r‖Rm + ‖�m
r ‖Rm

)
+

n−1∑

m=0

(
‖Am

x,s‖S1[m] + ‖Am
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
)

< ∞.
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Let 1[0,2C0ε] be the characteristic function of the interval [0, 2C0ε] and set

1
<n−1
ε := 1[0,2C0ε]

(n−1∑

m=1

(
‖Am

x,r‖Rm + ‖�m
r ‖Rm

)

+
n−1∑

m=0

(
‖Am

x,s‖S1[m] + ‖Am
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
))

.

Let �n
r be defined as in (6.4). For every 1 ≦ p < ∞ it holds that

∥∥1<n−1
ε

(
�n

r [0] − Tnφω[0]
)∥∥

L
p
ω(�;Ḣ1

x ×L2
x )

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

.

(6.28)

We emphasize that the presence of the cut-off 1
<n−1
ε on the left-hand side

of (6.28) is again crucial to enforce the necessary smallness to invoke the mapping

properties of the renormalization operators e
±iψ

n,mod
±

<n−C from Proposition 5.2, which

enter the definition of �n
r . Moreover, it guarantees the necessary smallness to sum

up all higher iterates in the definition of �n
r .

Proof of Proposition 6.6. Here the main work actually goes into proving that al-

most surely we have

∥∥1<n−1
ε

(
�n

r [0] − Tnφω[0]
)∥∥

Ḣ1
x ×L2

x
�

∥∥1<n−1
ε Tnφω[0]

∥∥
H

1−δ∗
x ×H

−δ∗
x

. (6.29)

Then the asserted bound (6.28) is a simple consequence of (6.29) and a subse-

quent application of Khintchine’s inequality (so that no conditioning on Fn−1 is

necessary). We begin with the Ḣ1
x bound. By definition of �n

r , we have that

�n
r (0) − Tnφω

0 = �n,[0]
r (0) − Tnφω

0

= 1

2

∑

±

(
e
−iψ

<n,mod
±

<n−C (0, x, D)e
+iψ

<n,mod
±

<n−C (D, y, 0) − 1
)

Tnφω
0 .

(6.30)

Correspondingly, we need to show that

∥∥∥1<n−1
ε

(
e
−iψ

<n,mod
±

<n−C (0, x, D)e
+iψ

<n,mod
±

<n−C (D, y, 0) − 1
)

Tnφω
0

∥∥∥
Ḣ1

x

� 2−δ∗n
∥∥Tnφω

0

∥∥
Ḣ1

x
.

(6.31)

To this end we introduce the kernel

Kn(x, y) := 1
<n−1
ε

∫

R4
ei(x−y)·ξ

(
e−iψ

<n,mod
± (0,x,ξ)e+iψ

<n,mod
± (ξ,y,0) − 1

)
χ

( ξ

2n

)
dξ,

where χ(z) is a suitable bump function supported around |z| ∼ 1. Then by av-

eraging arguments such as in Proposition 8.2 in [27] and by the decomposable
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estimate ‖∇t,xψ
<n,mod
± ‖DL∞

t L∞
x

� 2(1−γ )nε from (6.19), the bound (6.31) reduces

to proving that
∥∥∥∥
∫

R4
Kn(x, y)(Pn f )(y) dy

∥∥∥∥
L2

x

� 2−δ∗n‖Pn f ‖L2
x
,

which in turn follows from Schur’s test upon establishing that

sup
y

∥∥Kn(x, y)
∥∥

L1
x
+ sup

x

∥∥Kn(x, y)
∥∥

L1
y

� 2−δ∗n . (6.32)

We only estimate the first term on the left-hand side, the estimate for the second

term being analogous. By non-stationary phase arguments using (6.17), we have

|Kn(x, y)| �N 24n〈2n(x − y)〉−N , for any 1 ≦ N ≪ γ

2σ
.

This decay estimate easily yields the desired bound for |x − y| � 2−(1−δ∗)n since

we have for N ≫ 1 that

sup
y

∫

{|x−y|�2−(1−δ∗)n}
|Kn(x, y)| dy � 2−(N−4)δ∗n � 2−δ∗n .

If |x − y| � 2−(1−δ∗)n we use that by Lemma 6.2 we have the bound

|Kn(x, y)| � 24n
∥∥∇t,xψ

<n,mod
±

∥∥
L∞

t L∞
x

|x − y| � 24n2(1−γ )n|x − y|ε,

and hence,

sup
y

∫

{|x−y|�2−(1−δ∗)n}
|Kn(x, y)| dy � 24n2(1−γ )n sup

y

∫

{|x−y|�2−(1−δ∗)n}
|x − y| dy

� 24n2(1−γ )n2−5(1−δ∗)n

� 2−(γ−5δ∗)n .

This yields the desired estimate (6.32) since 1 ≫ γ ≫ δ∗ > 0.

The proof of the L2
x bound for the time derivative in (6.29) proceeds analogously.

We note that here the time derivative produces additional terms when it falls onto

the phase functions ψ
n,mod
± (also of the higher iterates). However, these terms gain

regularity easily by decomposable estimates such as ‖∇t,xψ
<n,mod
± ‖DL∞

t L∞
x

�

2(1−γ )nε from (6.19). ⊓⊔

6.5. Probabilistic Strichartz Estimates for the Rough Linear Evolution An
x,r

We also record moment bounds for the redeeming Rn norm of the rough linear

evolutionAn
x,r of the random data Tn Aω

x [0], n ≧ 1. SinceAn
x,r := S(t)[Tnaω, Tnbω]

is just the free wave evolution of Tn Aω
x [0] = (Tnaω, Tnbω), the proof is a (very

simple) special case of the proof of Proposition 6.5 for the zeroth iterate �
n,[0]
r

with the renormalization operators replaced by the identity (and no necessity for a

probabilistic cutoff 1<n−1
ε ).

Proposition 6.7. Let n ≧ 1. Then we have for all 1 ≦ p < ∞ that
∥∥An

x,r

∥∥
L

p
ω(�;Rn)

�
√

p
∥∥(Pna, Pnb)

∥∥
H

1−δ∗
x ×H

−δ∗
x

. (6.33)
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6.6. The Renormalization Error Estimate for �
p,mod

A<n−1�
n
r

In this section we turn to the subtle treatment of the error term �
p,mod

A<n−1�
n
r

produced by the rough linear evolution �n
r . We need to establish that it gains

regularity and acts as a (small) “smooth” source term in the equation for �n
s in the

system of forced MKG-CG equations (fMKG-CGn) at dyadic level n.

Recall from (6.5) that by construction of �n
r the overall accrued error �

p,mod

A<n−1�
n
r

consists of “mild” and “delicate” error terms. To handle the “mild” error terms and

show that they gain regularity we primarily rely on the tighter angle cutoff and

the “strongly low-high” frequency separation. For the treatment of the “delicate”

error terms (that do not enjoy tight angular localizations) we have to invoke as an

additional key ingredient probabilistic redeeming bounds for the following error

control quantity

ECn :=
∑

ℓ≧0

ECn,[ℓ], n ≧ 1, (6.34)

with

EC
n,[ℓ] := 2−σn2−δ∗n2−νn

∑
∑

j h j >− σn
10

∑
∑

j α j >− σn
100

∑

small strings (k)
of length ℓ

2− ra
3

∥∥∇t,x �
n,±,(k),(h),(α)
r

∥∥
L M

t L6
x
,

where M ≫ 1 is sufficiently large, 0 < ν ≡ ν(M) ≪ 1 is sufficiently small with

limM→∞ ν(M) = 0, and for each small string (k) of length ℓ we denote by ra

its largest dominating frequency. We derive moment bounds for ECn in Proposi-

tion 6.10 below. First, we turn to the treatment of the error estimate for �
p,mod

A<n−1�
n
r

in the following proposition (which should be regarded as an entirely deterministic

estimate).

Proposition 6.8. (Renormalization error estimate) Let n ≧ 1. Let (A0
x,s,A

0
0,�

0
s )

be the solution to (MKG-CG) with initial data (T0 Aω
x , T0φ

ω)[0] and let {(Am
x,s,A

m
0 ,

�m
s )}n−1

m=0 be the solutions to (fMKG-CGm), 1 ≦ m ≦ n − 1, satisfying

n−1∑

m=0

‖Am
x,s‖S1[m] +

n−1∑

m=0

‖Am
0 ‖Y 1[m] +

n−1∑

m=0

‖�m
s ‖S1[m] � ε.

Moreover, assume that the corresponding rough linear evolutions satisfy

n−1∑

m=1

‖Am
x,r‖Rm +

n−1∑

m=1

‖�m
r ‖Rm � ε,

and that the error control quantity satisfies ECn < ∞. Let �n
r be defined as in (6.4).

Then we have

∥∥�
p,mod

A<n−1�
n
r

∥∥
Nn∩ℓ1 L2

t Ḣ
− 1

2
x

�
∥∥Tnφω[0]

∥∥
H

1−δ∗
x ×H

−δ∗
x

+ ECn . (6.35)
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Proof. By construction of the rough linear evolution �n
r , the error is given by

�
p,mod

A<n−1�
n
r =

∞∑

ℓ=0

E
n,[ℓ]
mild +

∞∑

ℓ=0

E
n,[ℓ]
del .

We treat the “mild” and “delicate” error terms separately, starting with the former.

We only focus on estimating the more difficult Nn norm and omit the details for

the high-modulation bound.

“Mild” error terms: Our goal is to show that for all ℓ ≧ 0,

∥∥E
n,[ℓ]
mild

∥∥
Nn

� (κn−1)
2ℓ

∥∥Tnφω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

.

Thanks to the smallness assumptions this then gives sufficient control for all “mild”

error terms

∥∥∥∥
∞∑

ℓ=0

E
n,[ℓ]
mild

∥∥∥∥
Nn

�

∞∑

ℓ=0

(κn−1)
2ℓ

∥∥Tnφω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

�
∥∥Tnφω[0]

∥∥
H

1−δ∗
x ×H

−δ∗
x

.

We describe in detail the estimates of the “mild” error E
n,[0]
mild for the zeroth iterate

and afterwards explain how to deal with the higher order iterates. Recall from (6.4)

that

E
n,[0]
mild = Diff

[0]
1,(a)

+ Diff
[0]
1,(b)

+
6∑

j=2

Diff
[0]
j .

The estimate for Diff
[0]
1,(a)

: Here we essentially argue exactly as in the treatment of the

term Diff1 in [27, Subsection 10.2], only that we use the redeeming L2
t L∞

x norm

for A<n−1
x,r and place R

n,±,[0]
r into S

1−δ∗
n . Importantly, the frequency separation

k ≦ (1 − γ )n ensures that we will gain a negative power in n that compensates for

the loss of 2δ∗n caused by placing R
n,±,[0]
r into S

1−δ∗
n .

The estimate for Diff
[0]
1,(b)

: Next, we consider the contribution of the smooth part.

For the contribution of the spatial part A<n−1
x,s , we generate the error term

∑

k≦(1−γ )n

∑

±
2
[
�≦2σ min{k,−n}

(
Pk A<n−1

x,s · ξ
)
e−iψ

n,mod
±

]
<n−C

Rn,±,[0]
r .

This term is of course a microlocal version of the interaction term A
<n−1, j
x,s ∂ j and

needs to be handled in analogy to it, but obtaining an extra exponential gain in

−n, thanks to the additional tight angular localization. This additional gain allows

to compensate a loss of 2δ∗n caused by placing R
n,±,[0]
r into S

1−δ∗
n . However, this

will only be possible after re-iterating the equation for A<n−1
x,s and exploiting the

subtle cancellation against the corresponding temporal contribution coming from

the equation for A<n−1
0 . Since this is a recapitulation of the estimates in [27] with

one extra observation, we shall be relatively brief:
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(i) By translation invariance of all spaces involved, we can first dispose of the

frequency localization [. . .]<n . As in [27], the goal shall be to reduce the

contribution of the spatial part A<n−1
x,s of the connection form to an expression

of the schematic form
∑

k≦(1−γ )n

H∗[�≦2σ min{k,−n}
(
Hk A<n−1

x,s · ξ
)
e−iψ

n,mod
±

]
Rn,±,[0]

r ,

whereH∗[. . .] is defined analogously to (4.21) and is understood as an operator

acting on the frequency ∼ 2n function R
n,±,[0]
r . The above expression will

then be combined with the corresponding one from A<n−1
0 to result in the

desired null form type cancellation.

(ii) Reduction to H∗[. . .]Rn,±,[0]
r : Consider

∑

k≦(1−γ )n

(1 − H∗)
[
�≦2σ min{k,−n}

(
A<n−1

x,s · ξ
)
e−iψ

n,mod
±

]
Rn,±,[0]

r

=
∑

k≦(1−γ )n

′∑

j

Q≧ j−C

[
�≦2σ min{k,−n}

(
Q j Pk A<n−1

x,s · ξ
)
e−iψ

n,mod
±

]
Rn,±,[0]

r

+
∑

k≦(1−γ )n

′∑

j

[
�≦2σ min{k,−n}

(
Q j Pk A<n−1

x,s · ξ
)
Q≧ j−C e−iψ

n,mod
±

]
Rn,±,[0]

r ,

where the inner sum is over
j−k
2

< −σn. For the first term on the right, we

place the whole expression into X
0,− 1

2

1 . For this we place�≦2σ min{k,−n} Q j Pk A<n−1
x,s

into DL2
t L∞

x , while e−iψ
n,mod
± R

n,±,[0]
r gets placed into L∞

t L2
x . Due the the

null structure we gain 2
j−k
4 ≦ 2− σn

2 , which is enough. The second term on

the right is handled similarly by placing the full expression into L1
t L2

x and the

function Q≧ j−C e−iψ
n,mod
± R

n,±,[0]
r into L2

t L2
x .

(iii) Reduction to H∗[�≦2σ min{k,−n}HA<n−1
x,s . . .

]
R

n,±,[0]
r : Consider the schematic

expression

∑

k≦(1−γ )n

H∗[�≦2σ min{k,−n}(1 − Hk)
(

A<n−1
x,s · ξ

)
e−iψ

n,mod
±

]
Rn,±,[0]

r .

Iterating the equation, write this term as

∑

k≦(1−γ )n

′∑

j

eiψ
n,mod
± H∗

[
�≦2σ min{k,−n} Pk Q j�

−1N (Q≧ j−Cφ<n−1
1 , φ<n−1

2 ) · ξe−iψ
n,mod
±

]
Rn,±,[0]

r ,

where N denotes the null form which appears in the equation for A<n−1
x,s . Then

place the null form into L1
t L

3
2
x and pass from here to L1

t L∞
x via Bernstein’s
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inequality. Keeping track of the outer null form coming from the inner product

with ξ , we gain a total of

2− j−k · 2
j−k
2 · 23· 2

3 · j−k
2 = 2

j−k
2 · 2−2k,

and we can use the first factor to gain 2− σ
2 n , as desired.

(iv) Dealing with the reduced term H∗[�≦2σ min{k,−n}HA<n−1
x,s . . .

]
R

n,±,[0]
r : This

requires combination with the corresponding contribution from A<n−1
0 , which

can be similarly reduced, and we omit the details for that. In order to deal

with the combined term the idea is to argue precisely as in [27], using the

generalized versions (8.9)–(8.11) of the core trilinear null form estimates

(136)–(138) from [27, Theorem 12.1], except that here the structure is slightly

different due to the microlocal formulation. To get rid of this obstacle, we first

observe that the multiplication with ξ can be replaced by ∂x , and similarly for

the contribution from A0 where multiplication with |ξ | gets replaced by ∂t .

Moreover, localizing HA<n−1
x,s to Pk Q jHA<n−1

x,s as in the proof of Theorem

12.1 in [27], the angular cut-off �≦2σ min{k,−n} is smooth at the angular scale

2
j−k
2 < 2−σn . Thus, we can expand the cut-off into a discrete Fourier series and

decouple Pk Q jHA<n−1
x,s from the rest of the expression, i.e. we are formally

allowed to replace the original expression

H∗[�≦2σ min{k,−n} Pk Q jH
(

A<n−1
x,s · ξ

)
e−iψ

n,mod
±

]
Rn,±,[0]

r

by

H∗(Pk Q jHA<n−1
x,s · ∂x

(
e−iψ

n,mod
± Rn,±,[0]

r

))
.

But this term, combined with its analogue coming from A<n−1
0 , is now amenable

to the generalized trilinear null form estimates (8.9)–(8.11). Moreover, we

have 2
j−k
2 < 2−σn , whence the fact that all estimates in the proofs of (8.9)–

(8.11) gain a small power of j − k translates to an exponential gain in −n.

This concludes the estimate for the term Diff
[0]
1,(b)

.

The estimate for Diff
[0]
j , 2 ≦ j ≦ 6. In all these terms there is an extra derivative

falling on the low frequency term ψ
n,mod
± , and so the analogous estimates as in

[27, Theorem 12.1] furnish an exponential gain in −n due to the separation of the

frequency support of ψ
n,mod
± from n.

Since by the mapping properties of the renormalization operators we have

‖Rn,±,[0]
r ‖

S
1−δ∗
n

�
∥∥Tnφω[0]

∥∥
H

1−δ∗
x ×H

−δ∗
x

,

we obtain from the above that

∥∥E
n,[0]
mild

∥∥
Nn

�
∥∥Tnφ

ω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

.
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The treatment of the “mild” error terms E
n,[ℓ]
mild generated by all higher iterates

ℓ ≧ 1 proceeds analogously, placing R
n,±,[ℓ]
r into S

1−δ∗
n . Then we gain additional

smallness from the bound

∥∥Rn,±,[ℓ]
r

∥∥
S

1−δ∗
n

� (κn−1)
2ℓ

∥∥Tnφω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

, ℓ ≧ 1,

which follows from the mapping properties of the renormalization operators and

the definition of E
[ℓ−1]
rough (note that each magnetic potential term Z

η,∓
k

(
Pk A<n−1

x,s ·
ξ ∓ Pk A<n−1

0 |ξ |
)

produces a smallness factor (κn−1)
2, because to estimate these

terms we insert the equations for A<n−1
x,s and A<n−1

0 , which are at least quadratic

in the unknowns). We remark that the additional error term Diff
[0]
7 that arises in

the case of the inhomogeneous parametrix gains regularity from the difference to

the error from the previous stage (see also the proof of the data error estimate in

Proposition 6.6).

“Delicate” error terms: Let ℓ ≧ 0. Recall that

E
n,[ℓ]
del = Diff

[ℓ]
1,rough − E

n,[ℓ]
rough (6.36)

with

E
n,[ℓ]
rough :=

∑
∑

j h j ≧− σn
10

∑
∑

j α j ≧− σn
100

∑

small strings (k)
of length ℓ

�
n,(k),(α),(h)
r . (6.37)

In order to estimate all “delicate” error terms we first dispose of the “small angle”

cases
∑

j α j ≦ − σn
100

and
∑

j h j ≦ −σn
10

. Then we consider terminating situations,

where (at least) one of the frequencies k3ℓ+3, k3ℓ+2, or k3ℓ+1 is greater than ≧ 3σn.

Once we have taken care of all these smoother parts of Diff
[ℓ]
1,rough , we are left

exactly with E
n,[ℓ]
rough and we are done.

We begin with the small angle case
∑

j α j ≦ − σn
100

. We split Diff
[ℓ]
1,rough into

two parts

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k)
r =

∑
∑

j α j ≦− σn
100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α)
r

+
∑

∑
j α j >− σn

100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α)
r .

For the small angle case we infer the following bound

∥∥∥∥
∑

∑
j α j ≦− σn

100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α)
r

∥∥∥∥
Nn

� 2− σn
1000 (κn−1)

3
2 ℓ2+δ∗n

∥∥Tnφω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

,
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whence this term is in the smooth source space. To see this, observe that we get an

exponential gain from the small angles at each stage, gaining 2
1
4

∑
j α j (by proceed-

ing as in the treatment of the milder error term Diff
[0]
1,(b)

above). Moreover, at each

stage we gain a power (κn−1)
2, resulting in an overall smallness gain of (κn−1)

2ℓ.

Now fixing the (integer) value of σn
100

≦
∑

j |α j | ≦ ℓσn and summing over all

possible combinations of angles costs

≦

(∑
j |α j | + ℓ

ℓ

)
≦

(
2

∑
j |α j |
ℓ

)
≦

(
2

∑
j |α j |

)ℓ

ℓ! .

Combining this with a fractional power (κ(n−1))
1
4 ℓ of the overall smallness gain

results in

(
2

∑
|α j |

)ℓ

ℓ! · (κn−1)
1
4 ℓ ≦ e

2(κn−1)
1
4

∑
j |α j | � 2

C(κn−1)
1
4

∑
j |α j |.

Thus, the total effect of combining the gain 2
1
4

∑
j α j and the smallness gain (κn−1)

2ℓ

with the loss due to counting all possible combinations and due to summing over
σn
100

≦
∑

j |α j | ≦ ℓσn is bounded by

ℓσn 2
− 1

4

∑
j |α j |2C(κn−1)

1
4

∑
j |α j |(κn−1)

7
4 ℓ2+δ∗n

∥∥Tnφ
ω[0]

∥∥
H

1−δ∗
x ×H

−δ∗
x

� 2− σn
1000 (κn−1)

3
2 ℓ2+δ∗n

∥∥Tnφω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

.

It follows that we can reduce to considering

∑
∑

j α j >− σn
100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α)
r .

Next, we argue that we can further dispose of the error terms

∑
∑

j h j <− σn
10

∑
∑

j α j >− σn
100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α),(h)
r ,

where �
n,(k),(α),(h)
r stands for the iterated integral expression when m instances of

the exponentials e±iψ
n,mod
± are replaced by the integral expressions in the decom-

position

e±iψ
n,mod
± = e±i�>−10ψ

n,mod
± +

(
e±iψ

n,mod
± − e±i�>−10ψ

n,mod
±

)

= e±i�>−10ψ
n,mod
± ∓

∫ −10

−σn

i
∂

∂h

(
�>hψ

n,mod
±

)
e±i�>hψ

n,mod
± dh.
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We recall that �>a denotes a smooth cutoff localizing the angular separation of the

Fourier support to direction η := ξ
|ξ | to an angle � 2a . To see this, observe that for

a ≦ −10 the integral

∫ −10

−σn

χh∼a

∂

∂h

(
�>hψ

n,mod
±

)
e±i�>hψ

n,mod
± dh

defines a map L2
x −→ L2

x with norm � 2
a
2 κn−1. This is a consequence of the

bound
∥∥∥χh∼a

∂

∂h

(
�>hψ

n,mod
±

)∥∥∥
DL∞

t L∞
x

� 2
a
2 κn−1.

We can then iteratively bound the L1
t L2

x norm of the contribution to

∑
∑

j α j >− σn
100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α),(h)
r ,

where m exponentials e±iψ
n,mod
± are replaced by the integral expression above, by

invoking the schematic bound
∥∥∥∥

∑

k3ℓ+3<(1−γ )n

Z
η,∓
k3ℓ+3,αℓ

(
Pk3ℓ+3

A<n−1
x,s · ξ ∓ Pk3ℓ+3

A<n−1
0 |ξ |

)
�

n,±,(k),(α)
r

∥∥∥∥
L1

t L2
x

�
∑

k3ℓ+3<(1−γ )n

sup
κ

∥∥∥�κ Z
η,∓
k3ℓ+3,αℓ

(
Pk3ℓ+3

A<n−1
x,s · ξ

|ξ | ∓ Pk3ℓ+3
A<n−1

0

)∥∥∥
DL1

t L∞
x

∥∥∇x�
n,±,(k),(α)
r

∥∥
L∞

t L2
x

� 2−αℓ(κn−1)
2
∥∥∇x�

n,±,(k),(α)
r

∥∥
L∞

t L2
x

in conjunction with schematic bounds of the form

∥∥∥∥∇x

(∫ −10

−σn

χh∼a

∂

∂h

(
�>hψ

n,mod
±

)
e−i�>hψ

n,mod
± dh

)
K ±

i |D|e+iψ
n,mod
± H

∥∥∥∥
L∞

t L2
x

� 2
a
2 κn−1

∥∥H
∥∥

L1
t L2

x
.

It follows that the contribution to
∑

∑
j α j >− σn

100

∑

ki ≦(1−γ )n

3ℓ+1≦i≦3ℓ+3

∑

small strings (k′)
of length ℓ−1

�
n,(k),(α),(h)
r

coming from those terms in the iterated expansion, where m exponentials e±iψ
n,mod
±

are replaced by the integral expression above and where we impose the additional

constraint
∑

j

h j ≦ −σn

10
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for the integration variables, can be bounded with respect to ‖ · ‖L1
t L2

x
by

2
−

∑
j α j 2

1
2

∑
j h j (κn−1)

2ℓ2δ∗n
∥∥Tnφ

ω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

� 2−( 1
40 − 1

100 )σn(κn−1)
2ℓ2δ∗n

∥∥Tnφω[0]
∥∥

H
1−δ∗
x ×H

−δ∗
x

.

This easily allows us to place this contribution into the smooth source space, even

after summation over all possible α j as well as m ≦ 2ℓ.

It now follows that we may assume for the angular scales h j occurring in the

phases in the exponentials e±iψ
n,mod
± the additional constraint

∑

j

h j > −σn

10

and we can henceforth omit the effect of the singular operator 	−1

η⊥ due to the

angular degeneracy in the phases ψ
n,mod
± up to paying a factor 2

σn
10 at the end.

This is analogous to the restriction
∑

j α j > − σn
100

that we impose on the angles

occurring in the definition of the magnetic potential terms

Z
η,∓
k,α j

(
Pk A<n−1

x,s · ξ ∓ Pk A<n−1
0 |ξ |

)
.

We shall henceforth suppress these angular losses, and replace all operators 	−1

η⊥ by

	−1, it being understood that at the end of the day we always have to have enough

margin to absorb a loss of 2
σ
10 n · 2

σ
100 n .

At this point we are left to consider “terminating situations” where at least one

of the frequencies k3ℓ+3, k3ℓ+2, or k3ℓ+1 is greater than ≧ 3σn. We describe in

detail how to treat a “delicate” error term where the frequencies k3ℓ+3 are greater

than 3σn, noting that all other “delicate” error terms can be treated analogously.

This error term is of the schematic form

∑

small strings (k)
of length ℓ

Z
η,∓
≧3σn

(
P≧3σn A<n−1

x,s · ξ ∓ P≧3σn A<n−1
0 |ξ |

)
�

n,±,(k)
r ,

where we suppress the explicit notations (α) and (h) for the angular restrictions,

and where we recall that then

�
n,±,(k)
r := Pk3ℓ+2

(
e−iψ

n,mod
±

)
(t, x, D)

K ±

i |D| Pk3ℓ+1

(
e+iψ

n,mod
±

)
(D, y, s)�

n,(k′)
r .

In order to show that this error term gains regularity and can be treated as a smooth

source term, we bring in the crucial redeeming “error control” quantity ECn,[ℓ].
Suppressing the angular localizations, it reads

ECn,[ℓ] = 2−σn2−δ∗n2−νn
∑

small strings (k)
of length ℓ

2− ra
3

∥∥∇t,x�
n,±,(k)
r

∥∥
L M

t L6
x
,
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where M ≫ 1 is sufficiently large, 0 < ν ≡ ν(M) ≪ 1 with limM→∞ ν(M) = 0,

and for each small string (k) of length ℓ we denote by ra its largest dominating

frequency. Then we claim the following “terminating bound”
∥∥∥∥

∑

small strings (k)
of length ℓ

Z
η,∓
≧3σn

(
P≧3σn A<n−1

x,s · ξ ∓ P≧3σn A<n−1
0 |ξ |

)
�

n,±,(k)
r

∥∥∥∥
L1

t L2
x

� 2−(3−)σn2σn2δ∗n2νnECn,[ℓ], (6.38)

with analogous bounds for all other “terminating situations”. Since σ ≫ ν + δ∗ we

have ample room to ensure the margin required to handle the losses arising from

the angular degeneracies that we have suppressed. It follows that we can bound all

“delicate” error terms accrued in the course of all inductive stages by

∥∥∥∥
∞∑

ℓ=0

E
n,[ℓ]
del

∥∥∥∥
L1

t L2
x

�

∞∑

ℓ=0

ECn,[ℓ] = ECn .

It remains to prove (6.38). To see this we bound schematically
∥∥Z

η,∓
≧3σn

(
P≧3σn A<n−1

x,s · ξ ∓ P≧3σn A<n−1
0 |ξ |

)
�

n,±,(k)
r

∥∥
L1

t L2
x

� sup
κ

∥∥∥�κ Z
η,∓
≧3σn

(
P≧3σn A<n−1

x,s · ξ

|ξ | ∓ P≧3σn A<n−1
0

)∥∥∥
DL1+

t L3
x

(∑

κ

∥∥�κ∇x�
n,±,(k)
r

∥∥2

L M
t L6

x

) 1
2

.

We show below that we can estimate

sup
κ

∥∥∥�κ Z
η,∓
≧3σn

(
P≧3σn A<n−1

x,s · ξ

|ξ | ∓ P≧3σn A<n−1
0

)∥∥∥
DL1+

t L3
x

� 2−(4−)σn(κn−1)
2,

(6.39)

where we suppressed any losses arising from angular degeneracies. Then taking

advantage of the probabilistic error control quantity ECn,[ℓ] and suppressing any

losses due to summations over angular caps, we obtain the desired bound
∥∥∥∥

∑

small strings (k)
of length ℓ

Z
η,∓
≧3σn

(
P≧3σn A<n−1

x,s · ξ ∓ P≧3σn A<n−1
0 |ξ |

)
�

n,±,(k)
r

∥∥∥∥
L1

t L2
x

� 2−(4−)σn(κn−1)
22σn

∑

small strings (k)
of length ℓ

2− ra
3

∥∥∇t,x�
n,±,(k)
r

∥∥
L M

t L6
x

� 2−(3−)σn2σn2δ∗n2νnECn,[ℓ].

In order to derive the estimate (6.39), we insert the equations for A<n−1
x,s and A<n−1

0 .

Here we have very schematically that (ignoring angular localizations and replacing

	−1

η⊥ by 	−1)

�κ Z
η,∓
≧3σn

P≧3σn A<n−1
j,s · ξ

|ξ |
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≃ −	−1 P≧3σnIm ∂k	−1Nk j

(
φ<n−1, φ<n−1

)
· ξ

|ξ |

− 	−1 P≧3σn

(
(φ<n−1)2 A<n−1

)
· ξ

|ξ | .

In the key quadratic term we can effectively ignore the high × high → low case,

then we obtain by just placing the inputs into L2
t L6

x and L2+
t L6

x that schematically
4

∥∥	−1 P≧3σnIm ∂k	−1Nk j

(
φ<n−1, φ<n−1

)
· ξ

|ξ |
∥∥

DL1+
t L3

x
� 2−(4−)σn(κn−1)

2

with analogous bounds for the cubic contribution to the equation for A<n−1
x and

for the equation for A<n−1
0 . ⊓⊔

Finally, we turn to the proof of the derivation of moment bounds for the redeem-

ing energy control quantity, for which we need the following technical refinement

of certain decomposable bounds from [27].

Lemma 6.9. Let 0 < k ≦ n − C be a positive integer or else k equals the symbol

≦ 0. Then the operators

Pk

(
e±iψ

n,mod
±

)
: S♯

n −→ SStr ,

with mapping norms bounded by constants a
(n)
k satisfy

∑

k

a
(n)
k � 1 + κn−1.

Moreover, we have the bound

∥∥Pk

(
e
±i��hψ

n,mod
±

)∥∥
DL∞

t L2
x

� 2−2k2−ha
(n)
k ,

where ��h localizes the scale of the angle between
ξ
|ξ | and the Fourier support of

the phase to size � 2h , with say h < −10.

Proof. This follows by writing schematically

Pk

(
e±iψ

n,mod
±

)
= 2−k Pk

(
i∇xψ

n,mod
± · e±iψ

n,mod
±

)

= 2−k Pk

(
i∇x P<k−Cψ

n,mod
± · e±iψ

n,mod
±

)

+ 2−k Pk

(
i∇x P[k−C,k+C]ψ

n,mod
± · e±iψ

n,mod
±

)

4 Strictly speaking, this bound is only valid provided the input frequencies in the null-form
are at most comparable to the output frequencies. However, in case of high × high → low

situations with frequency differences ≧ σ
100 n, one can again easily place the corresponding

contributions into the smooth space, and one reduces to strings with only small frequency
differences by reasoning as for the angles α j .



68 Page 82 of 109 Arch. Rational Mech. Anal. (2023) 247:68

+ 2−k Pk

(
i∇x P≧k+Cψ

n,mod
± · e±iψ

n,mod
±

)

≡ I + I I + I I I.

Then we use that
∑

k

2−k
∥∥∇x P<k−Cψ

n,mod
±

∥∥
DL∞

t,x
+

∑

k

2−k
∥∥∇x P[k−C,k+C]ψ

n,mod
±

∥∥
DL∞

t,x
� κn−1

to handle I and I I . To estimate I I I , we expand further

2−k Pk

(
i∇x P≧k+Cψ

n,mod
± · e±iψ

n,mod
±

)

=
∑

k1≧k+C

2−k Pk

(
i∇x Pk1ψ

n,mod
± · Pk1+C [e±iψ

n,mod
± ]

)

=
∑

k1≧k+C

2−k−k1 Pk

(
i∇x Pk1ψ

n,mod
± · Pk1+C [i∇xψ

n,mod
± e±iψ

n,mod
± ]

)

and then reiterate the splitting I –I I I for the inner parentheses. Then we close

the cases I –I I by using DL∞
t L6+

x for both factors ∇xψ
n,mod
± and Bernstein’s

inequality. The remaining case I I I is treated by again expanding. We note that

this infinite re-iteration procedure is required if we make no assumptions on the

angular localisations of the phases ψ
n,mod
± . However, in the present setting, we in

fact assume that the angles are bounded from below, in which case one can conclude

after two-fold expansion, taking into account the loss from the degenerate operator

	−1

η⊥ in the definition of ψ
n,mod
± . The final estimate is proved similarly. ⊓⊔

We are now in the position to establish moment bounds for the redeeming error

control quantity.

Proposition 6.10. Let n ≧ 1. Assume that the functions {Am
x,r }n−1

m=1, {Am
x,s}n−1

m=0,

{Am
0 }n−1

m=0, {�m
r }n−1

m=1, and {�m
s }n−1

m=0 are measurable with respect to the σ -algebra

Fn−1 and that we have almost surely

n−1∑

m=1

(
‖Am

x,r‖Rm + ‖�m
r ‖Rm

)
+

n−1∑

m=0

(
‖Am

x,s‖S1[m] + ‖Am
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
)

< ∞.

Let 1[0,2C0ε] be the characteristic function of the interval [0, 2C0ε] and set

1
<n−1
ε := 1[0,2C0ε]

(n−1∑

m=1

(
‖Am

x,r‖Rm + ‖�m
r ‖Rm

)
+

n−1∑

m=0

(
‖Am

x,s‖S1[m]

+‖Am
0 ‖Y 1[m] + ‖�m

s ‖S1[m]
))

.

Let ECn be defined as in (6.34). Then we have for all 1 ≦ p < ∞ that
∥∥1<n−1

ε ECn
∥∥

L
p
ω(�)

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

. (6.40)
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Proof. Recall from (6.34) that the redeeming error control quantity is defined as

ECn :=
∑

ℓ≧0 ECn,[ℓ] with

ECn,[ℓ] := 2−σn2−δ∗n2−νn
∑

∑
j h j >− σn

10

∑
∑

j α j >− σn
100

∑

small strings (k)
of length ℓ

2
− ra

3
∥∥∇t,x �

n,±,(k),(h),(α)
r

∥∥
L M

t L6
x
,

where M ≫ 1 is sufficiently large, 0 < ν ≡ ν(M) ≪ 1 with limM→∞ ν(M) = 0,

and for each small string (k) of length ℓ we denote by ra its largest dominating

frequency.

Thanks to the angular restrictions
∑

j α j > − σn
100

and
∑

j h j > −σn
10

, in what

follows we can omit the effect of the singular operator 	−1

η⊥ due to the angular

degeneracy in the phases ψ
n,mod
± as well as in the operators Z

η,∓
k,α j

up to paying a

factor 2
σ
10 n · 2

σ
100 n at the end. We shall henceforth suppress these angular losses,

and replace all operators 	−1

η⊥ by 	−1, it being understood that at the end of the

day we always have to have enough margin to absorb a loss of 2
σ
10 n · 2

σ
100 n . This is

the purpose of the factor 2−σn in the definition of ECn . Correspondingly, we omit

the explicit notations (α) and (h) from now on.

We let �
n,±,(k),(c)
r be defined inductively like �

n,±,(k)
r , only that the the data

(Tnφω
0 , Tnφω

1 ) are replaced by (Pcφ0, Pcφ1), where Pc is a frequency projection to a

unit-sized cube at distance ∼ 2n from the origin of frequency space. Analogously,

we define �
n,(k),(c)
r . Conditioning on Fn−1 and using a conditional expectation

version of Khintchine’s inequality (as in the proof of Proposition 6.5), the asserted

moment bound (6.40) follows immediately from the following (deterministic) es-

timate

∑

small strings (k)
of length ℓ

2− ra
3

(∑

c

∥∥∇t,x�
n,±,(k),(c)
r

∥∥2

L M
t L6

x

) 1
2

� ℓ
4
3 Cℓ(κn−1)

2ℓ2δ∗n2νn
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

,

(6.41)

where C ≧ 1 is some absolute constant. Indeed, thanks to the cutoff 1<n−1
ε we

may assume κn−1 ≪ 1 so that we can sum up
∑∞

ℓ=0 ℓ
4
3 Cℓ(κn−1)

2ℓ � 1. Then we

obtain that

∥∥1<n−1
ε ECn

∥∥
L

p
ω(�)

�

∞∑

ℓ=0

∥∥1<n−1
ε ECn,[ℓ]∥∥

L
p
ω(�)

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

.

Let us therefore turn to the derivation of (6.41). Fix a small string of frequencies

(k) of length ℓ with dominating frequencies r1 < r2 < · · · < ra and associated

segments b1, . . . , ba . Note that for a fixed cube c, the Fourier support of �
n,±,(k),(c)
r

is contained in a ball of radius ∼ b12r1 + b22r2 + · · · + ba2ra . Let 2+ be such that

(M, 2+) is a sharp Strichartz admissible pair at regularity ν(M). Using Bernstein’s
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inequality to go down from L6
x to L2+

x and using the fact that
∑a

j=1 b j = 3ℓ + 3,

we infer that

2− ra
3

(∑

c

∥∥∇t,x�
n,±,(k),(c)
r

∥∥2

L M
t L6

x

) 1
2

� 2− ra
3
(
b12r1 + · · · ba2ra

) 4
3 −

(∑

c

∥∥∇t,x�
n,±,(k),(c)
r

∥∥2

L M
t L2+

x

) 1
2

� ℓ
4
3 2ra

(∑

c

∥∥∇t,x�
n,±,(k),(c)
r

∥∥2

L M
t L2+

x

) 1
2

.

(6.42)

For 1 ≦ j ≦ a let d j be such that r j ∈ {k3d j
, k3d j+1

, k3d j+2
} and denote (r1r j ) =

(k1 . . . k3d j +2). Then by Strichartz estimates, the multilinear estimates from Sect. 8,

and Lemma 6.9 we have that
∥∥∇t,x�

n,±,(k),(c)
r

∥∥
L M

t L2+
x

=
∥∥∥∥∇t,x Pk3ℓ+2

(
e−iψ

n,mod
±

) K ±

i |D| Pk3ℓ+1

(
e+iψ

n,mod
±

)
�

n,(k′),(c)
r

∥∥∥∥
L M

t L2+
x

� 2νna
(n)
k3ℓ+2

a
(n)
k3ℓ+1

∥∥�
n,(k′),(c)
r

∥∥
L1

t L2
x

� 2νna
(n)
k3ℓ+2

a
(n)
k3ℓ+1

β
(n)
k3ℓ

∥∥∇t,x�
n,±,(k′),(c)
r

∥∥
L∞

t L2
x

� . . .

� 2νn

( ℓ∏

l̃=da+1

a
(n)
k

3l̃+2
a

(n)
k

3l̃+1

)( ℓ∏

l̃=da+1

β
(n)
k

3l̃

)∥∥∇t,x�
n,±,(r1ra ),(c)
r

∥∥
L∞

t L2
x
,

(6.43)

where β
(n)
k

3l̃
denotes a bound for the estimate of the frequency-localized magnetic

potential term

Z
η,∓
k3

(
Pk3 A<n−1

x,s · ξ ∓ Pk3 A<n−1
0 |ξ |

)

and is such that
∑

k
3l̃

≦3σn

β
(n)
k

3l̃
� (κn−1)

2.

We also recall that the factors a
(n)
k

3l̃+2
denote bounds on the mapping norms of

Pk
3l̃+2

(
e±iψ

n,mod
±

)
: S

♯
n −→ SStr satisfying

∑
k

3l̃+2
a

(n)
k

3l̃+2
� 1 + κn−1, and similarly

for the factors a
(n)
k

3l̃+1
. Then we claim that for all 1 ≦ j ≦ a it holds that

(∑

c

∥∥∇t,x�
n,±,(r1r j ),(c)

r

∥∥2

L∞
t L2

x

) 1
2

� C
∑ j−1

i=1 bi

( d j∏

l̃=1

a
(n)
k

3l̃+2
a

(n)
k

3l̃+1

)( d j∏

l̃=1

β
(n)
k

3l̃

)
2−r j 2δ∗n

∥∥(Pnφ0, Pnφ1)
∥∥

H
1−δ∗
x ×H

−δ∗
x

.

(6.44)
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Using (6.44) with j = a, combining with (6.43), and square-summing over all

cubes c, we conclude that

(∑

c

∥∥∇t,x�
n,±,(k),(c)
r

∥∥2

L M
t L2+

x

) 1
2

� Cℓ

( ℓ∏

l̃=1

a
(n)
k

3l̃+2
a

(n)
k

3l̃+1

)( ℓ∏

l̃=1

β
(n)
k

3l̃

)
2−ra 2νn2δ∗n

∥∥(Pnφ0, Pnφ1)
∥∥

H
1−δ∗
x ×H

−δ∗
x

.

Combining the previous estimate with (6.42) and summing over all small strings

(k) yields (6.41).

It now remains to prove (6.44). Recall that for 1 ≦ j ≦ a we let d j be such that

r j ∈ {k3d j
, k3d j +1, k3d j +2} and that we use the notation (r1r j ) = (k1 . . . k3d j +2).

We distinguish the cases r j = k3d j
, r j = k3d j +1, and r j = k3d j +2.

We begin with the case r j = k3d j
. For a fixed cube c we use Lemma 6.9 to

schematically estimate

∥∥∇t,x�
n,±,(r1r j ),(c)

r

∥∥
L∞

t L2
x

=
∥∥∥∥∇t,x Pk3d j +2

(
e−iψ

n,mod
±

) K ±

i |D| Pk3d j +1

(
e+iψ

n,mod
±

)
�

n,(k1...k3d j
),(c)

r

∥∥∥∥
L∞

t L2
x

� a
(n)
k3d j +2

a
(n)
k3d j +1

∥∥∥Zη,∓
r j

(
Pr j

A<n−1
x,s · ξ ∓ Pr j

A<n−1
0 |ξ |

)
�

n,±,(k1...k3d j −1),(c)

r

∥∥∥
L1

t L2
x

� a
(n)
k3d j +2

a
(n)
k3d j +1

sup
κ

∥∥∥�κ Zη,∓
r j

(
Pr j

A<n−1
x,s · ξ

|ξ | ∓ Pr j
A<n−1

0

)∥∥∥
DL1

t L3
x

×

×
∥∥∥
(∑

κ

∥∥∇t,x�κ�
n,±,(k1...k3d j −1),(c)

r

∥∥2

L6
x

) 1
2
∥∥∥

L∞
t

� a
(n)
k3d j +2

a
(n)
k3d j +1

2− 4
3 r j β(n)

r j

(
b j−12r j−1 + · · · + b12r1

) 4
3
∥∥∇t,x�

n,±,(k1...k3d j −1),(c)

r

∥∥
L∞

t L2
x
.

(6.45)

In order to achieve the last step, we bounded5

sup
κ

∥∥∥�κ Zη,∓
r j

(
Pr j

A<n−1
x,s · ξ

|ξ | ∓ Pr j
A<n−1

0

)∥∥∥
DL1

t L3
x

using the equations for A<n−1
x,s and A<n−1

0 , where for the key quadratic contribution

to�A<n−1
x,s we just place both inputs into the L2

t L6
x Strichartz space, and suppressing

the errors accruing because of the angular localization. Moreover, we used that by

construction �
n,±,(k1...k3d j −1),(c)

r has Fourier support contained in a ball of radius

b j−12r j−1 + · · · + b12r1 so that we can estimate

∥∥∥
(∑

κ

∥∥∇t,x�κ�
n,±,(k1...k3d j −1),(c)

r

∥∥2

L6
x

) 1
2
∥∥∥

L∞
t

5 Recall from the preceding footnote that we can again effectively ignore high ×high →
low interactions here.
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by Bernstein to go from L6
x down to L2

x , where we can then square-sum over the

caps.

Square-summing the estimate (6.45) over the cubes c, and then repeatedly using

the multilinear estimates from Sect. 8 along with Lemma 6.9 until we reach the next

dominating frequency r j−1, we obtain that

(∑

c

∥∥∇t,x�
n,±,(r1r j ),(c)

r

∥∥2

L∞
t L2

x

) 1
2

� 2− 4
3 r j β(n)

r j

(
b j−12r j−1 + · · · + b12r1

) 4
3

(∑

c

∥∥∇t,x�
n,±,(k1...k3d j −1),(c)

r

∥∥2

L∞
t L2

x

) 1
2

�

( d j∏

l̃=d j−1+1

a
(n)
k

3l̃+2
a

(n)
k

3l̃+1

)
2− 4

3 r j β(n)
r j

(
b j−12r j−1 + · · · + b12r1

) 4
3

(∑

c

∥∥∇t,x�
n,±,(k1...k3d j−1+2),(c)

r

∥∥2

L∞
t L2

x

) 1
2

.

At this point we restart the process.

If instead say r j = k3d j +2, we obtain for a fixed cube c the schematic bound

∥∥∇t,x�
n,±,(r1r j ),(c)

r

∥∥
L∞

t L2
x

=
∥∥∥∥∇t,x Pr j

(
e−iψ

n,mod
±

) K ±

i |D| Pk3d j +1

(
e+iψ

n,mod
±

)
�

n,(k1...k3d j
),(c)

r

∥∥∥∥
L∞

t L2
x

� sup
κ

∥∥�κ Pr j

(
e−iψ

n,mod
±

)∥∥
DL∞

t L2
x

∥∥∥∥∇t,x

∑

κ

�κ

K ±

i |D| Pk3d j +1

(
e+iψ

n,mod
±

)
�

n,(k1...k3d j
),(c)

r

∥∥∥∥
L∞

t L∞
x

� sup
κ

∥∥�κ Pr j

(
e−iψ

n,mod
±

)∥∥
DL∞

t L2
x

(
b j−12r j−1 + · · · + b12r1

)2×

×
∥∥∥∥∇t,x

∑

κ

�κ

K ±

i |D| Pk3d j +1

(
e+iψ

n,mod
±

)
�

n,(k1...k3d j
),(c)

r

∥∥∥∥
L∞

t L2
x

,

where we used Bernstein’s inequality to go down from L∞
x to L2

x . Then we may

invoke from Lemma 6.9 the following bound

sup
κ

∥∥�κ Pr j

(
e−iψ

n,mod
±

)∥∥
DL∞

t L2
x

� a(n)
r j

2−2r j ,

where we exploit the assumption about the angular localizations of the Fourier

support of the phases and we adhere to the convention of suppressing the accrued

errors. Similarly to above we may estimate
∥∥∥∥∇t,x

∑
κ �κ

K ±
i |D| Pk3d j +1

(
e+iψ

n,mod
±

)
�

n,(k1...k3d j
),(c)

r

∥∥∥∥
L∞

t L2
x
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� a
(n)
k3d j +1

β
(n)
k3d j

∥∥∇t,x�
n,±,(k1...k3d j −1),(c)

r

∥∥
L∞

t L2
x
.

Combining the preceding bounds and square-summing over the cubes c, and then

repeatedly using the multilinear estimates from Sect. 8 along with Lemma 6.9 until

we reach the next dominating frequency r j−1, we obtain analogously to above that

(∑

c

∥∥∇t,x�
n,±,(r1r j ),(c)

r

∥∥2

L∞
t L2

x

) 1
2

�

( d j∏

l̃=d j−1+1

a
(n)
k

3l̃+2
a

(n)
k

3l̃+1

)
2−2r j β(n)

r j

(
b j−12r j−1 + · · · + b12r1

)2

(∑

c

∥∥∇t,x�
n,±,(k1...k3d j−1+2),(c)

r

∥∥2

L∞
t L2

x

) 1
2

.

At this point we restart the process. The case r j = k3d j +1 is similar.

Re-iterating the above procedure, we arrive at the bound

(∑

c

∥∥∇t,x�
n,±,(r1r j ),(c)

r

∥∥2

L∞
t L2

x

) 1
2

�

( d j∏

l̃=1

a
(n)
k

3l̃+2
a

(n)
k

3l̃+1

)( d j∏

l̃=1

β
(n)
k

3l̃

)( j−1∏

q=1

2−γqrq+1
(
bq2rq + · · ·

+ b12r1
)γq

)
2−r1 2δ∗n

∥∥(Pnφ0, Pnφ1)
∥∥

H
1−δ∗
x ×H

−δ∗
x

,

where γq ∈ { 4
3
, 2} for 1 ≦ q ≦ j − 1. In order to further estimate the third product

we observe that

( j−1∏

q=1

2−γqrq+1
(
bq2rq + · · · + b12r1

)γq

)
2−r1 � 2−r j

j−1∏

q=1

(
bq2rq + · · · + b12r1

2rq

)γq

and that

j−1∑

q=1

bq2rq + · · · + b12r1

2rq
�

j−1∑

q=1

bq .

Hence, by invoking the inequality of arithmetic and geometric means, we infer (for

j ≧ 2) that

j−1∏

q=1

(
bq2rq + · · · + b12r1

2rq

)γq

≦

j−1∏

q=1

(
bq2rq + · · · + b12r1

2rq

)2

≦

(
C̃

∑ j−1
q=1 bq

j − 1

)2( j−1)

� C
∑ j−1

q=1 bq .

This gives (6.44) and thus finishes the proof of Proposition 6.10. ⊓⊔
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7. Proof of Theorem 1.1

After the preparations in the previous sections, the main work to prove The-

orem 1.1 at this point goes into establishing the existence of an event � ⊂ �

(with high probability) so that for all ω ∈ �, we can obtain the corresponding

solution to (MKG-CG) with random initial data Aω
x [0], φω[0] as the limit of the

sequence (A<n
x , A<n

0 , φ<n) of solutions to (MKG-CG) with frequency truncated

random initial data T<n Aω
x [0], T<nφω[0], as described in Sects. 4.2–4.3. Since it

is not possible for the rough linear evolutions and the smooth nonlinear solution

increments to almost surely satisfy the necessary smallness assumptions to apply

the induction step Proposition 4.2 at every stage of the construction, we have to

incorporate probabilistic cutoffs into the precise construction procedure.

More specifically, in the following we iteratively construct a sequence{
(A

n,χ
x,r ,�

n,χ
r )

}
n≧1

of (possibly “eventually cut off”) rough linear evolutions and

a sequence
{
(A

n,χ
x,s ,A

n,χ
0 ,�

n,χ
s )

}
n≧0

of (possibly “eventually cut off”) smooth

solutions to the sequence of systems of forced (fMKG-CGn) equations. The su-

perscript χ shall indicate this cutoff feature of the construction procedure. At the

end we ensure that there exists an event � ⊂ � (with high probability) so that for

every ω ∈ �, the triples (A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s ) are (non-trivial) solutions to the sys-

tem of forced MKG-CG equations (fMKG-CGn) at dyadic level n for every n ≧ 1.

Moreover, for every ω ∈ �, the corresponding triple (Ax , A0, φ) defined by

Ax :=
∞∑

n=1

An,χ
x,r +

∞∑

n=0

An,χ
x,s ∈ C0

t H s
x + S1

A0 :=
∞∑

n=0

A
n,χ
0 ∈ Y 1

φ :=
∞∑

n=1

�n,χ
r +

∞∑

n=0

�n,χ
s ∈ C0

t H s
x + S1

is then a solution to (MKG-CG) with random initial data Ax [0] = (aω, bω), φ[0] =
(φω

0 , φω
1 ).

We begin by introducing various cutoff functions that will play a crucial role in

the definition of the sequences
{
(A

n,χ
x,r ,�

n,χ
r )

}
n≧1

and
{
(A

n,χ
x,s ,A

n,χ
0 ,�

n,χ
s )

}
n≧0

in what follows. To this end we denote by 1[0,µ] for any µ > 0 the characteristic

function of the interval [0, µ]. Then we set

χ0
ε := 1[0,ε]

(
‖T0 Aω

x [0]‖Ḣ1
x ×L2

x
+ ‖T0φ

ω[0]
∥∥

Ḣ1
x ×L2

x

)
, (7.1)
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and for every integer n ≧ 1 we define

χ<n−1
ε := 1[0,ε]

(
‖T0 Aω

x [0]‖Ḣ1
x ×L2

x
+ ‖T0φ

ω[0]‖Ḣ1
x ×L2

x

+
n−1∑

m=1

‖A
m,χ
x,r ‖Rm +

n−1∑

m=1

‖�m,χ
r ‖Rm

+
n−1∑

m=1

‖�m,χ
s [0]‖Ḣ1

x ×L2
x
+

n−1∑

m=1

‖Tmφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

+
n−1∑

m=1

EC
m,χ

)

× 1[0,C0ε]

(n−1∑

m=0

‖A
m,χ
x,s ‖S1[m] +

n−1∑

m=0

‖A
m,χ
0 ‖Y [m] +

n−1∑

m=0

‖�m,χ
s ‖S1[m]

)

(7.2)

as well as

χn
ε := 1[0,ε]

(
‖An,χ

x,r ‖Rn + ‖�n,χ
r ‖Rn + ‖�n,χ

s [0]‖Ḣ1
x ×L2

x

+ ‖Tnφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

+ ECn,χ

)
.

(7.3)

Stage n = 0: We define (A
0,χ
x,s ,A

0,χ
0 ,�

0,χ
s ) as the smooth solution to (MKG-CG)

with smooth initial data

(A0,χ
x,s [0],�0,χ

s [0]) = χ0
ε (T0 Aω

x [0], T0φ
ω[0]) ∈ Ḣ1

x × L2
x

provided by the induction base case Proposition 4.1. Observe that the cutoff χ0
ε

ensures the necessary smallness of the data to apply Proposition 4.1. In particular,

it then holds almost surely that

‖A
0,χ
x,s ‖S1[0] + ‖A

0,χ
0 ‖Y 1[0] + ‖�0,χ

s ‖S1[0] ≦ C0

(∥∥A
0,χ
x,s [0]

∥∥
Ḣ1

x ×L2
x
+

∥∥�0,χ
s [0]

∥∥
Ḣ1

x ×L2
x

)

≦ C0

(∥∥T0 Aω
x [0]

∥∥
Ḣ1

x ×L2
x
+

∥∥T0φ
ω[0]

∥∥
Ḣ1

x ×L2
x

)
.

(7.4)

Clearly, on an event with non-zero probability the initial dataχ0
ε (T0 Aω

x [0], T0φ
ω[0])

vanishes and in those cases, (A
0,χ
x,s ,A

0,χ
0 ,�

0,χ
s ) is just the zero solution.

Stage n ≧ 1: Here we are given the smooth inhomogeneous parts {(Am,χ
x,s ,A

m,χ
0 ,

�
m,χ
s )}n−1

m=0 and the rough linear evolutions {(Am,χ
x,r ,�

m,χ
r )}n−1

m=1 from the previous

stages 0, 1, . . . , n − 1 of the construction. Importantly, these are measurable with

respect to the σ -algebra Fn−1 (see for instance [7, Appendix A]). Then we define

the rough free wave evolution A
n,χ
x,r by

An,χ
x,r := χ<n−1

ε S(t)
[
Tnaω, Tnbω

]
= χ<n−1

ε

(
cos(t |D|)Tnaω + sin(t |D|)

|D| Tnbω
)

and the rough adapted linear evolution �
n,χ
r as in (6.4), where the modified phase

function ψ
n,mod
± is defined in terms of A

<n−1,χ
0 =

∑n−1
m=0 A

m,χ
0 and A

<n−1,χ
x =∑n−1

m=1 A
m,χ
x,r +

∑n−1
m=0 A

m,χ
x,s . Similarly, the redeeming error control quantity ECn,χ

is defined in terms of A
<n−1,χ
x,s and A

<n−1,χ
0 . Moreover, we define

�n,χ
s [0] := χ<n−1

ε

(
Tnφ

ω[0] − �n,χ
r [0]

)
.
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Observe that thanks to the cutoff χ<n−1
ε , we are in the position to invoke the moment

bounds from Proposition 6.5, Proposition 6.6, Proposition 6.7, and Proposition 6.10.

Hence, for any 1 ≦ p < ∞ it holds that

∥∥‖An,χ
x,r ‖Rn

∥∥
L

p
ω

�
√

p
∥∥(Pna, Pnb)

∥∥
H

1−δ∗
x ×H

−δ∗
x

,
∥∥‖�n,χ

r ‖Rn

∥∥
L

p
ω

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

,
∥∥‖�n,χ

s [0]‖Ḣ1
x ×L2

x

∥∥
L

p
ω

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

,
∥∥ECn,χ

∥∥
L

p
ω

�
√

p
∥∥(Pnφ0, Pnφ1)

∥∥
H

1−δ∗
x ×H

−δ∗
x

.

(7.5)

Now we use the induction step Proposition 4.2 to define (A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s ) as

the (smooth) solution to the system of forced Maxwell–Klein–Gordon equations

(fMKG-CGn) at dyadic stage n with forcing terms given by

A<n−1
0 = χn

ε χ<n−1
ε

(n−1∑

m=0

A
m,χ
0

)
, A<n−1

x = χn
ε χ<n−1

ε

(n−1∑

m=1

A
m,χ
x,r +

n−1∑

m=0

A
m,χ
x,s

)
,

φ<n−1 = χn
ε χ<n−1

ε

(n−1∑

m=1

�m,χ
r +

n−1∑

m=0

�m,χ
s

)
,

χn
ε χ<n−1

ε A
n,χ
x,r , χn

ε χ<n−1
ε �n,χ

r ,

χn
ε χ<n−1

ε �
p,mod

A<n−1�
n,χ
r ,

and initial data for the scalar field given by

χn
ε χ<n−1

ε �n,χ
s [0].

Note that the cutoffs χn
ε χ<n−1

ε guarantee that the necessary smallness conditions

in the statement of the induction step Proposition 4.2 are satisfied. Importantly,

Proposition 4.2 also yields a bound on the S1[n] and Y 1[n] norms of the solution

(A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s ). Specifically, we have almost surely that

‖A
n,χ
x,s ‖S1[n] + ‖A

n,χ
0 ‖Y 1[n] + ‖�n,χ

s ‖S1[n]

≦ C0

(
‖χn

ε χ<n−1
ε A

n,χ
x,r ‖Rn + ‖χn

ε χ<n−1
ε �n,χ

r ‖Rn + ‖χn
ε χ<n−1

ε �n,χ
s [0]‖Ḣ1

x ×L2
x

+ ‖χn
ε χ<n−1

ε Tnφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

+ χn
ε χ<n−1

ε EC
n,χ

)

≦ C0

(
‖A

n,χ
x,r ‖Rn + ‖�n,χ

r ‖Rn + ‖�n,χ
s [0]‖Ḣ1

x ×L2
x
+ ‖Tnφω[0]‖

H
1−δ∗
x ×H

−δ∗
x

+ EC
n,χ

)
.

(7.6)

Again, the cutoff clearly χn
ε χ<n−1

ε vanishes on an event with non-zero probability,

and correspondingly (A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s ) is just the zero solution in those cases.

We carry out this construction for every integer n ≧ 1. Then it remains to prove:

(i) The series of rough linear evolutions of the random data

∞∑

n=1

An,χ
x,r and

∞∑

n=1

�n,χ
r converge in L2

ωC0
t H s

x ,
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and the series of smooth nonlinear solution increments

∞∑

n=0

(
An,χ

x,s ,A
n,χ
0 ,�n,χ

s

)
converges in L2

ω

(
S1 × Y 1 × S1

)
.

Hence, for almost every ω ∈ � these series converge in C0
t H s

x , respectively in

S1 × Y 1 × S1.

(ii) There exists a small constant 0 < c ≪ 1 and an event � ⊂ � with

P(�) ≧ 1 − C exp
(
−cD−2

)
, D := ‖(a, b)‖

H s
x ×H s−1

x
+ ‖(φ0, φ1)‖H s

x ×H s−1
x

,

so that for everyω ∈ � none of the elements of the sequence
{(

A
n,χ
x,r ,�

n,χ
r

)}
n≧1

and of the sequence
{(

A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s

)}
n≧0

are trivially set to zero in the

above construction procedure. In particular, then for every ω ∈ � and for every

n ≧ 1 the triple
(
A

n,χ
x,s ,A

n,χ
0 ,�

n,χ
s

)
is a (non-trivial) solution to the system of

forced Maxwell-Klein-Gordon equations (fMKG-CGn) at dyadic stage n (with

non-trivial forcing terms). Moreover, for every ω ∈ � the triple (Ax , A0, φ)

given by

Ax :=
∞∑

n=1

An,χ
x,r +

∞∑

n=0

An,χ
x,s ∈ C0

t H s
x + S1

A0 :=
∞∑

n=0

A
n,χ
0 ∈ Y 1

φ :=
∞∑

n=1

�n,χ
r +

∞∑

n=0

�n,χ
s ∈ C0

t H s
x + S1

is a solution to (MKG-CG) with initial data Ax [0] = (aω, bω),φ[0] = (φω
0 , φω

1 ).

Proof of (i): We begin with the rough linear evolutions. For any n ≧ 1 the energy

estimate for the free wave evolution implies that almost surely

∥∥An,χ
x,r

∥∥
C0

t H s
x

�
∥∥(Tnaω, Tnbω)

∥∥
H s

x ×H s−1
x

.

Moreover, for any n ≧ 1 we obtain from the mapping properties of the renormal-

ization operators in Proposition 6.1 that almost surely

∥∥�n,χ
r

∥∥
C0

t H s
x

�
∥∥(Tnφ

ω
0 , Tnφω

1 )
∥∥

H s
x ×H s−1

x
.

Note that these bounds are trivial on the event where the cutoff χ<n−1
ε vanishes.

Thus, we have for any N2 ≧ N1 ≧ 1 by the almost orthogonality of the frequency

supports that

∥∥∥∥
N2∑

n=N1

A
n,χ
x,r

∥∥∥∥
L2

ωC0
t H s

x

+
∥∥∥∥

N2∑

n=N1

�n,χ
r

∥∥∥∥
L2

ωC0
t H s

x

�

∥∥∥∥
( N2∑

n=N1

∥∥A
n,χ
x,r

∥∥2

C0
t H s

x

) 1
2
∥∥∥∥

L2
ω

+
∥∥∥∥
( N2∑

n=N1

∥∥�n,χ
r

∥∥2

C0
t H s

x

) 1
2
∥∥∥∥

L2
ω
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�

∥∥∥∥
( N2∑

n=N1

∥∥(Tnaω, Tnbω)
∥∥2

H s
x ×H s−1

x

) 1
2
∥∥∥∥

L2
ω

+
∥∥∥∥
( N2∑

n=N1

∥∥(Tnφω
0 , Tnφω

1 )
∥∥2

H s
x ×H s−1

x

) 1
2
∥∥∥∥

L2
ω

�

( ∞∑

n=N1

∥∥(Pna, Pnb)
∥∥2

H s
x ×H s−1

x

) 1
2

+
( ∞∑

n=N1

∥∥(Pnφ0, Pnφ1)
∥∥2

H s
x ×H s−1

x

) 1
2

,

which converges to zero as N1 → ∞. Thus, the series
∑∞

n=1 A
n,χ
x,r and

∑∞
n=1 �

n,χ
r

are Cauchy in L2
ωC0

t H s
x .

Next, we turn to the smooth nonlinear components. Using the key bounds (7.6)

on the solutions (A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s ), n ≧ 1, along with the moment bounds (7.5),

we have for any N2 ≧ N1 ≧ 1 that

∥∥∥∥
N2∑

n=N1

(An,χ
x,s ,A

n,χ
0 ,�n,χ

s )

∥∥∥∥
L2

ω(S1×Y 1×S1)

�

N2∑

n=N1

∥∥∥
∥∥(An,χ

x,s ,A
n,χ
0 ,�n,χ

s )
∥∥

S1×Y 1×S1

∥∥∥
L2

ω

�

N2∑

n=N1

∥∥∥‖�n,χ
s ‖S1[n] + ‖An,χ

x,s ‖S1[n] + ‖An,χ
0 ‖Y 1[n]

∥∥∥
L2

ω

�

N2∑

n=N1

(∥∥‖�n,χ
s [0]‖Ḣ1

x ×L2
x

∥∥
L2

ω
+

∥∥‖�n,χ
r ‖Rn

∥∥
L2

ω
+

∥∥‖An,χ
x,r ‖Rn

∥∥
L2

ω

+
∥∥‖Tnφω[0]‖

H
1−δ∗
x ×H

−δ∗
x

∥∥
L2

ω
+

∥∥ECn,χ
∥∥

L2
ω

)

�

N2∑

n=N1

(∥∥(Pnφ0, Pnφ1)
∥∥

H
1−δ∗
x ×H

−δ∗
x

+
∥∥(Pna, Pnb)

∥∥
H

1−δ∗
x ×H

−δ∗
x

)
.

Since 1 − δ∗ < s < 1 by assumption, we may sum up the last line and bound it by

( ∞∑

n=N1

∥∥(Pnφ0, Pnφ1)
∥∥2

H s
x ×H s−1

x
+

∥∥(Pna, Pnb)
∥∥2

H s
x ×H s−1

x

) 1
2

,

which converges to zero as N1 → ∞. Thus, the series
∑∞

n=0(A
n,χ
x,s ,A

n,χ
0 ,�

n,χ
s )

converges in L2
ω(S1 × Y 1 × S1).

Proof of (ii): We need to show that there exists an event � ⊂ � (with high prob-

ability) on which none of the elements of the sequence of rough linear evolutions{
(A

n,χ
x,r ,�

n,χ
r )

}∞
n=0

are trivially set to zero and on which none of the elements of the

sequence of smooth nonlinear components
{
(A

n,χ
x,s ,A

n,χ
0 ,�

n,χ
s )

}∞
n=0

are trivial. In

view of the definitions (7.1)–(7.3) of the cutoffs χ0
ε , χ<n−1

ε , and χn
ε as well as in

view of the crucial bound (7.6) on the smooth nonlinear components, this is the
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case on the event � ⊂ � defined by the property that for all ω ∈ � it holds that

‖T0 Aω
x [0]‖Ḣ1

x ×L2
x
+ ‖T0φ

ω[0]‖Ḣ1
x ×L2

x
+

∞∑

n=1

‖An,χ
x,r ‖Rn +
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x
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‖Tnφ
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H
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x ×H
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x

+
∞∑

n=1

ECn,χ ≦ ε.

(7.7)

Here the main point is that (7.7) together with the key bounds (7.4) and (7.6) on

the solutions automatically ensure that the cutoff 1[0,C0ε](·) in the definition (7.2)

of χ<n−1
ε does not vanish on � at every stage n. To determine a lower bound on

the probability of the event � we now establish L
p
ω bounds for the expression on

the left-hand side of (7.7) and then invoke the tail estimate from Lemma 2.2. By

the moment bounds (7.5) from above we have for all 1 ≦ p < ∞ that
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x ×L2
x
+

∞∑

n=1

‖Tnφω[0]‖
H

1−δ∗
x ×H

−δ∗
x

+
∞∑

n=1

EC
n,χ

∥∥∥∥
L

p
ω

� ‖T0 Aω
x [0]‖L

p
ω(Ḣ1
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p
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+
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p
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x ×H
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x )
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x

+
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x
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x ×H s−1
x

)
,

where in the last line we again used the assumption that 1 − δ∗ < s < 1 in order

to sum up in n. By the tail estimate from Lemma 2.2, it follows that there exists a

small constant 0 < c ≪ 1 (whose size depends on the size of the small constant

0 < ε ≪ 1) such that

P
(
�c

)
≦ C exp

(
−cD−2

)
, D := ‖(a, b)‖

H s
x ×H s−1

x
+ ‖(φ0, φ1)‖H s

x ×H s−1
x

.

This finishes the proof of Theorem 1.1.

8. Multilinear Estimates

In this section we establish generalized versions of the multilinear estimates

from [27] that allow for one or more rough inputs with redeeming space-time

integrability properties.
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8.1. Core Generic Product Estimates

We begin with several generic product estimates that are immediate conse-

quences of Hölder’s inequality and Bernstein estimates.

Lemma 8.1. We have that
∥∥Pk

(
Ak1φk2

)∥∥
L1

t L2
x

� 2δ(k−max{ki })2−δ|k1−k2|‖Ak1‖
L2

t Ḣ
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2

x
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6, 1

6
x +Rk2

(8.1)
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1
2

x

� 2δ(k−max{ki })2−δ|k1−k2|‖φ(1)
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(8.2)
∥∥Pk(φ
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φ
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x
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x
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k2
‖

L2
t Ẇ
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(8.3)
∥∥Pk(∇t,xφ
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φ
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)
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6, 1
6

x +Rk2

(8.4)

Proof of (8.1). We may assume that φk2 is rough and that k2 ≧ 1. Otherwise, the

estimate follows from (64) in [27]. We begin with the low-high case k1 ≦ k2 − C .

Then we obtain by Hölder’s inequality and Bernstein estimates that
∥∥Pk

(
Ak1φk2

)∥∥
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x
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In the high-low case k2 ≦ k1 − C we obtain in an analogous manner that
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1
2

x

‖φk2‖Rk2
Str .

Finally, in the high-high case k1 = k2 + O(1) ≫ k we bound by
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)∥∥
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⊓⊔

Proof of (8.2). By symmetry considerations and the estimate (67) from [27], it

suffices to consider the two cases



Arch. Rational Mech. Anal. (2023) 247:68 Page 95 of 109 68

(i) φ
(1)
k1

is rough (k1 ≧ 1) and φ
(2)
k2

is rough (k2 ≧ 1),

(ii) φ
(1)
k1

is rough (k1 ≧ 1) and φ
(2)
k2

is smooth.

We begin with the first case (i). For high-low interactions k2 ≦ k1 −C , we estimate
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For low-high interactions we can proceed in the same manner by symmetry. For

high-high interactions k1 = k2 + O(1) ≫ k we bound by
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Now we turn to the second case (ii). For the high-low interactions k2 ≦ k1 − C , we

bound
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The bounds for the low-high interactions and the high-high interactions are more

of the same. ⊓⊔

Proof of (8.3) and (8.4). These are generalizations of the estimate (65) in [27].

The proofs are similar to the proofs of (8.1)–(8.2). ⊓⊔

8.2. Core Bilinear Null Form Estimates

Here we present several generalized bilinear null form estimates. We begin with

the generalization of the multilinear estimate (131) from [27].
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Lemma 8.2. It holds that

∥∥Pk1 N (φ
(2)
k2

, φ
(3)
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(8.5)

Proof. This follows from Lemma 8.4 and Lemma 8.5 below after localizing the

modulations. ⊓⊔

Similarly, we have the following generalized version of the multilinear estimate

(132) from [27].

Lemma 8.3. The following holds
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Proof. We write
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Due to the multilinear estimate (131) in [27], we may assume that φ
(1)
k1

∈ Rk1 , and

in particular that k1 > 0.

Estimate for I : Freezing the output modulation to j1 ≧ j − C and summing over

j ≦ j1 − C , we may localize the factors Q< j1+Cφ
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, φ
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to caps κ1,2 of diameter

∼ 2
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2 and aligned or anti-aligned. Then for j1 < k1 + O(1) estimate
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which can be summed over j1 < k1 + O(1) to give (more than) the desired bound.

Note that the factor 2
j1−k1

2 in the second line comes from the null-structure, and

the factor 2
j1−k1

4 in the third line comes from Bernstein’s inequality passing from

L2
t L6

x to L2
t L∞

x and exploiting the angular localization. When j1 > k1 + C one

argues similarly but without angular localizations.
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Estimate for I I : This is handled by placing the second factor Q≧ j−Cφ
(2)
k2

into L2
t,x

and the first factor Q jφ
(1)
k1

into L2
t L∞

x , thus placing the output into L1
t L2

x . The

details are similar to the preceding case. ⊓⊔

The following is a variant of Lemma 12.4 in [27], which follows easily from

the formulation there in case all factors are in the space S1
k j

, and which suffices for

the purposes of the core multilinear estimates in [27].

Lemma 8.4. (Core modulation estimates) The following estimate holds uniformly

in the indices ji , ki , where j2, j3 = j1 + O(1):
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In addition, when j > kmin + C, we have the improved bound
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Proof. By symmetry we may assume k2 ≧ k3. Then we may assume that k2 > 0,

since else the estimate coincides with the one from [27]. To begin with, assume that

φ
(2)
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∈ Rk2 . By duality, it suffices to place the null-form Pk1 Q j1N
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1 . We verify this for the different frequency interactions.

High-High interactions k2 = k3 + O(1) ≧ k1 + O(1): Assume first that j1 ≦
k1 + O(1). Localizing the inputs further to the upper or lower half-space, we can

further write this as
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where the capsκ2,3 range over the collections of spherical caps of diameter 2
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2 −k2 .

Then we bound the expression by
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on account of the Cauchy–Schwarz inequality. Note that
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(∑
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The desired bound follows easily from this, if we choose σ and δ∗ sufficiently small.

The estimate when j1 > k1 + C is similar, except that it suffices to localize to caps

of diameter ∼ 2k1−k2 .

High-Low interactions k2 = k1 + O(1) ≧ k3 + O(1): Assume first that j1 ≦

k3 + O(1). Then we can localize the factors to discs of radius ∼ 2
j1−k3

2 , and either

aligned or anti-aligned. If k3 > 0, we use the same bounds as in the preceding case,

which gives
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Combining with the bounds from the preceding case, we infer the bound
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which is (more than) the required bound. In case k3 < 0, we use the same bound

provided |k3| < σk2, while we place the high frequency term Q±
< j2

∇xφ
(2)
k2,κ2

into
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t L2

x and the low frequency term Q±
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x , provided |k3| ≧ σk2.

The low frequency gain neutralises the loss of 2δ∗k2 coming from the high frequency

term.

If j1 > k3 + C , one argues similarly but without the angular localizations.

Low-High interactions k3 = k1 + O(1) ≧ k2 + O(1): This can be handled by

using identical estimates to the preceding case, changing the roles of φ
(2)
k2

, φ
(3)
k3

if

necessary. ⊓⊔

Lemma 8.5. The following estimate holds uniformly in all indices:
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Proof. We consider the case when at least one of φ
(2)
k2

, φ
(3)
k3

is in the space Rk j
, j =

2, 3. To begin with, assume φ
(2)
k2

∈ Rk2 .

Low-High interactions k2 ≦ k3, k1 = k3 + O(1): Of course we may assume

k3 > 0 since else the estimate is covered by those in [27]. If j1 < k2 + O(1), we
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may localize the Fourier supports of φk2 , φk3 to caps κ2,3 of diameter ∼ 2
j1−k2

2 and

aligned or anti-aligned. Then we get
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2

� 2− j1
2 2δ∗k2

∥∥φ
(2)
k2

∥∥
Rk2

,

(∑

κ2

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥2

L2
t L6

x

) 1
2

� 2k2 2−( 1
2 −20σ)k2

∥∥φ
(2)
k2

∥∥
Rk2

.

Interpolating gives

(∑

κ2

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥2

L2
t L3

x

) 1
2

� 2
1
2 ( 1

2 +20σ)k2 2− j1
4 2

δ∗
2 k2

∥∥φ
(2)
k2

∥∥
Rk2

.

Furthermore, we have

(∑

κ3

∥∥∇x Pκ3 Q j1φ
(3)
k3

∥∥2

L2
t L6

x

) 1
2

� 2
5
6 k3

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

.

Since we gain 2
j1−k2

2 from the null-structure, we infer the bound

∥∥Q< j1−C Pk1N
(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
Nk1

≦
∥∥Q< j1−C Pk1N

(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
L1

t L2
x

� 2
j1−k2

2

(∑

κ2

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥2

L2
t L3

x

) 1
2
(∑

κ3

∥∥∇x Pκ3 Q j1φ
(3)
k3

∥∥2

L2
t L6

x

) 1
2

.

Since k1 = k3 + O(1), the above bounds allow us to bound the preceding by

2k1 2
j1−k2

4 2(10σ+ δ∗
2 )k2− k3

6

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

,

which is as desired if σ, δ∗ are sufficiently small. If j1 ≧ k2, we can proceed

similarly without the extra factor 2
j1−k2

2 from the angular gain before.

High-Low interactions k2 ≧ k3, k1 = k2 + O(1): Here if j1 ≦ k3 + O(1) we can

localize the two factors φ
( j)
k j

to caps of diameter ∼ 2
j1−k3

2 . Then similarly to the

preceding, we bound

∥∥Q< j1−C Pk1N
(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
Nk1

≦
∥∥Q< j1−C Pk1N

(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
L1

t L2
x

� 2
j1−k3

2

(∑

κ2

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥2

L2
t L3

x

) 1
2
(∑

κ3

∥∥∇x Pκ3 Q j1φ
(3)
k3

∥∥2

L2
t L6

x

) 1
2

� 2
j1−k3

2 2
1
2 ( 1

2 +20σ)k2 2− j1
4 2

δ∗
2 k2

∥∥φ
(2)
k2

∥∥
Rk2

2
5
6 k3

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

.
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The preceding can be rearranged as

2
j1−k2

4 2(10σ+δ∗− 1
6 )k2 2

k3−k2
3

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

,

again acceptable if σ, δ∗ are sufficiently small. In case j1 ≧ k3 we argue similarly

without the angular gain.

High-High interactions k2 = k3 + O(1) ≧ k1 + O(1): Here we can localize the

factors φ
( j)
k j

to caps κ j of radius 2
j+k1

2 −k2 , either aligned or anti-aligned. Then we

estimate

∥∥Q< j1−C Pk1N
(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
Nk1

≦
∥∥Q< j1−C Pk1N

(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
L1

t L2
x

� 2
k1
3 2

j1+k1
2 −k2

∑

κ2∼±κ3

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥
L2

t L
12
5

x

∥∥∇x Pκ3 Q< j1+Cφ
(3)
k3

∥∥
L2

t L6
x

by Bernstein’s inequality as well as the gain from the angular alignment and the

null-structure. Using interpolation we get

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥
L2

t L
12
5

x

≦
∥∥∇x Pκ2 Q j1φ

(2)
k2

∥∥ 3
4

L2
t,x

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥ 1
4

L2
t L6

x

,

and square summing over κ2, we get

(∑

κ2

∥∥∇x Pκ2 Q j1φ
(2)
k2

∥∥2

L2
t L

12
5

x

) 1
2

�
(
2− j1

2 2δ∗k2
) 3

4
(
2( 1

2 +20σ)k2
) 1

4
∥∥φ

(2)
k2

∥∥
Rk2

,

while we have directly from the definition of Rk3 that

(∑

κ3

∥∥∇x Pκ3 Q< j1+Cφ
(3)
k3

∥∥2

L2
t L6

x

) 1
2

� 2k3 2− k3
6

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

.

Combining these estimates and also using Cauchy–Schwarz to reduce to square-

summation over the caps, we infer the desired bound by also observing that neces-

sarily j1 ≦ k1 + O(1):

∥∥Q< j1−C Pk1N
(
Q j1φ

(2)
k2

, Q< j1+Cφ
(3)
k3

)∥∥
Nk1

� 2
k1
3 2

j1+k1
2 −k2 2k2 2− 3 j1

8 2( 1
8 + 3

4 δ∗+5σ)k2 2− k2
6

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

= 2
j1
8 2

5k1
6 2(− 1

24 + 3
4 δ∗+5σ)k2

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

,

which is easily seen to be of the desired form if δ∗, σ are sufficiently small, recalling

that j1 ≦ k1 + O(1).
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To conclude the proof, we also need to deal with the case when φ
(2)
k2

belongs

to S1
k2

but φ
(3)
k3

is in Rk3 . This case is much easier though, because then it suffices

to place Q j1φ
(2)
k2

in L2
t,x and exploit the redeeming bounds for φ

(3)
k3

. We omit the

details. ⊓⊔

Finally, we present the following generalizations of the multilinear estimates

(134) and (135) in [27].

Proposition 8.6. We have that

∥∥(1 − Hk1 )Pk1 N (φ
(2)
k2

, φ
(3)
k3

)
∥∥

�Z

� 2k1 2δ(k1−max{k2,k3})2−δ|k2−k3|‖φ(2)
k2

‖S1
k2

+Rk2
‖φ(3)

k3
‖S1

k3
+Rk3

, (8.7)

∥∥Hk1 N (φ
(2)
k2

, φ
(3)
k3

)‖�Z

� 2k1 2δ(k1−max{k2,k3})2−δ|k2−k3|‖φ(2)
k2

‖S1
k2

+Rk2
‖φ(3)

k3
‖S1

k3
+Rk3

, k1 > max{k2, k3} − C. (8.8)

Proof. We start with the first estimate (8.7). To this end we observe the identity

(1 − Hk1)N
(
φ

(2)
k2

, φ
(3)
k3

)
=

∑

j≧k+C

Q jN
(
Q< j−Cφ

(2)
k2

, Q< j−Cφ
(3)
k3

)

+
∑

j

Q< j+O(1)N
(
Q jφ

(2)
k2

, Q< j+O(1)φ
(3)
k3

)

+
∑

j

Q< j+O(1)N
(
Q< j+O(1)φ

(2)
k2

, Q jφ
(3)
k3

)
.

The first term on the right-hand side does not contribute to the norm ‖ · ‖�Z due to

the definition. Consider then the most delicate case where k2 = k3 + O(1) ≫ k1.

We only need to consider the case where at least one factor is in the space Rk j
. By

symmetry, it suffices to bound the term

∑

j

Pk1 Q< j+O(1)N
(
Q jφ

(2)
k2

, Q< j+O(1)φ
(3)
k3

)

We may assume that φ
(2)
k2

∈ Rk2 . Here if r > k1 + 2l and l > k1 − k2, we use the

estimate

2
l
2

( ∑

κ∈Kl

∥∥Pk1,κ Qk1+2l+O(1)N
(
Qr φ

(2)
k2

, Q<r+O(1)φ
(3)
k3

)∥∥2

�L1
t L∞

x

) 1
2

= 2
l
2

( ∑

κ∈Kl

∑

C2∼C3∈Ck1
(l)

κ(C2)∈2κ

∥∥Pk1,κ Qk1+2l+O(1)N
(
Qr φ

(2)
k2,C2

, Q<r+O(1)φ
(3)
k3,C3

)∥∥2

�L1
t L∞

x

) 1
2

� 2k1+l−k2 2
2
3 k1

( ∑

C2∈Ck1
(l)

∥∥Qr ∇xφ
(2)
k2,C2

∥∥2

L2
t L2

x

) 1
2
( ∑

C3∈Ck1
(l)

∥∥Q<r+O(1)∇xφ
(3)
k3,C3

∥∥2

L2
t L6

x

) 1
2

,
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where we have used Bernstein’s inequality to pass from L
3
2
x to L2

x and we used the

fact that

2
l
2 Pk1,κ Qk1+2l+O(1)L1

t L2
x ⊂ �L1

t L∞
x .

Then use the estimate

( ∑

C2∈Ck1
(l)

∥∥Qr∇xφ
(2)
k2,C2

∥∥2

L2
t L2

x

) 1
2

� 2
k1+2l−r

2 2− k1+2l

2 2δ∗k2
∥∥φ

(2)
k2

∥∥
Rk2

,

while we also have the improved Strichartz type estimate

( ∑

C3∈Ck1
(l)

∥∥Q<r+O(1)∇xφ
(3)
k3,C3

∥∥2

L2
t L6

x

) 1
2

� 2k3 2− k3
6 2

k1−k3
3

∥∥φ
(3)
k3

∥∥
S1

k3

.

Combining the preceding estimates we infer the first bound we need

2
l
2

( ∑

κ∈Kl

∥∥Pk1,κ Qk1+2l+O(1)N
(
Qrφ

(2)
k2

, Q<r+O(1)φ
(3)
k3

)∥∥2

�L1
t L∞

x

) 1
2

� 2k1+l−k2 2
2
3 k1 2

k1+2l−r

2 2− k1+2l

2 2δ∗k2 2k3 2− k3
6 2

k1−k3
3

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

.

Using the assumption k2 = k3 + O(1), the preceding simplifies to

� 2
3
2 k1+(δ∗− 1

2 )k2 2
k1+2l−r

2

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

.

This is good in terms of the decay in k2 but bad since overall we leak δ∗ in terms of

the frequencies; this is as expected since we have not used the redeeming features

of φ
(2)
k2

, which we do next. Using interpolation between L2
t L∞

x and L2
t,x , we obtain

the bound

( ∑

C2∈Ck1
(l)

∥∥Qr∇xφ
(2)
k2,C2

∥∥2

L2
t L3

x

) 1
2

�
(
2k2 2−( 1

2 −δ∗)k2
) 1

3
(
2− k1+2l

2 +δ∗k2
) 2

3
∥∥φ

(2)
k2

∥∥
Rk2

.

We then infer the second bound

2
l
2

( ∑

κ∈Kl

∥∥Pk1,κ Qk1+2l+O(1)N
(
Qr φ

(2)
k2

, Q<r+O(1)φ
(3)
k3

)∥∥2

�L1
t L∞

x

) 1
2

� 2k1+l−k2

( ∑

C2∈Ck1
(l)

∥∥Qr ∇xφ
(2)
k2,C2

∥∥2

L2
t L3

x

) 1
2
( ∑

C3∈Ck1
(l)

∥∥Q<r+O(1)∇xφ
(3)
k3,C3

∥∥2

L2
t L6

x

) 1
2

� 2k1+l−k2 2
k2
6 2− k1+2l

3 2k2 2− k2
2 2

k1
3 2δ∗k2

∥∥φ
(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

.

This simplifies to

� 2k1 2
l
3 2(δ∗− 1

3 )k2
∥∥φ

(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

.
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Interpolating between this bound and the preceding one results beyond the factor

2k1 in exponential gains in l, k1 + 2l − r , as well as −k2, which is more than what

we need.

Consider next the second estimate (8.8). For symmetry reasons, we may assume

that k1 = k2 + O(1). We need to bound

∥∥∥∥
∑

j≦k+1+O(1)

Pk1 Q jN
(
Q< j−Cφ

(2)
k2

, Q< j−Cφ
(3)
k3

)∥∥∥∥
�Z

.

We can further restrict the summation to j ≦ k3 + O(1), and we can localize φ
( j)
k j

,

j = 2, 3, to angular caps κ j of size ∼ 2
j−k3

2 and either aligned or anti-aligned. The

whole expression then also has Fourier support on Cκ2, and square summation over

caps is handled by using the square-summation over caps inherent in the definitions

of the norms ‖ · ‖S1
k2

and ‖ · ‖Rk2
. Then taking advantage of Bernstein’s inequality,

we have the bound (for κ a cap of radius ∼ 2
j−k1

2 )

∥∥Pk1,κ Q jN
(
Q< j−C Pk2,κ2φ

(2)
k2

, Q< j−C Pk3,κ3φ
(3)
k3

)∥∥
�Z

� 2
j−k1

4 2−k1− j 2
j−k3

2 2
2
3 k1

∥∥Q< j−C Pk2,κ2φ
(2)
k2

∥∥
L2

t L6
x

∥∥Q< j−C Pk3,κ3φ
(3)
k3

∥∥
L2

t L∞
x

.

Square-summing over the caps results in the bound

� 2k1 2
j−k1

4 2− k1
2 + k3

2

∥∥φ
(2)
k2

∥∥
S1

k2
+Rk2

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

,

which can then be summed over j ≦ k3 + O(1) to result in the desired bound. ⊓⊔

8.3. Core Quadrilinear Null Form Bounds

Here we present the generalized versions of the key quadrilinear null form

bounds (136)–(138) in [27].

Proposition 8.7. The following quadrilinear form bounds hold under the condition

k < ki − C:

∣∣〈�−1Hk

(
φ

(1)
k1

∂αφ
(2)
k2

)
,Hk

(
∂αφ

(3)
k3

ψk4

)
〉
∣∣

� 2δ(k−min{ki })∥∥φ
(1)
k1

∥∥
S1

k1
+Rk1

∥∥φ
(2)
k2

∥∥
S1

k2
+Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

∥∥ψk4

∥∥
N∗ , (8.9)

∣∣〈(�	)−1Hk∂
α
(
φ

(1)
k1

∂αφ
(2)
k2

)
,Hk∂t

(
∂tφ

(3)
k3

ψk4

)
〉
∣∣

� 2δ(k−min{ki })∥∥φ
(1)
k1

∥∥
S1

k1
+Rk1

∥∥φ
(2)
k2

∥∥
S1

k2
+Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

∥∥ψk4

∥∥
N∗ , (8.10)

∣∣〈(�	)−1Hk∇x

(
φ

(1)
k1

∇xφ
(2)
k2

)
,Hk∂α

(
∂αφ

(3)
k3

ψk4

)
〉
∣∣

� 2δ(k−min{ki })∥∥φ
(1)
k1

∥∥
S1

k1
+Rk1

∥∥φ
(2)
k2

∥∥
S1

k2
+Rk2

∥∥φ
(3)
k3

∥∥
S1

k3

∥∥ψk4

∥∥
N∗ . (8.11)
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Proof. We present the details for the derivation of the first estimate (8.9). The

remaining estimates (8.10)–(8.11) can be handled analogously.

We microlocalize as in (148) in [27]. In particular, the modulation of Hk

(
. . .

)

is restricted to ∼ 2 j and we set 2l := 2
j−k
2 . We may assume that at least one of

the inputs φ
(1)
k1

or φ
(2)
k2

are in the space Rk j
, j = 1 or j = 2, and in particular that

k1 > 0. Following the argument in the proof of (136) in [27], we consider various

situations depending on the angle between φ
(2)
k2

and φ
(3)
k3

.

Case 1: ∠(φ2, φ3) mod π � 2l2k−k2 . As in [27] we obtain the bound

� 2k3−k2
∑

Ck (l)

∥∥PCk (l)Q< j−Cφ
(1)
k1

∥∥
L2

t L∞
x

∥∥P−Ck (l)Q< j−Cφ
(2)
k2

∥∥
L2

t L∞
x

× sup
t

∑

Ck′ (l)

∥∥PCk′ (l)Q< j−Cφ
(3)
k3

∥∥
L2

x

∥∥P−Ck′ (l)Q< j−Cψk4

∥∥
L2

x
.

By symmetry, we may assume that the first factor φ
(1)
k1

∈ Rk1 , while we use control

over ‖ · ‖S1
k2

for the second factor, potentially with a 2δ∗k2 -loss. Then we can bound

2−k2
∑

Ck (l)

∥∥PCk (l)Q< j−Cφ
(1)
k1

∥∥
L2

t L∞
x

∥∥P−Ck (l)Q< j−Cφ
(2)
k2

∥∥
L2

t L∞
x

� 2−k2 2− k1
2+ 2

l
2 2

k2
2 2

k−k2
2 2δ∗k2

∥∥φ
(1)
k1

∥∥
Rk1

∥∥φ
(2)
k2

∥∥
S1

k2
+Rk2

.

Completing the estimate as in [27], we arrive at a bound that is indeed much better

than what is required, due to additional exponential gains in −k1.

Case 2: ∠(φ2, φ3) mod π � 2l2k−k3 . Here we may assume k3 < k2, in light of the

previous case. This time we use the fixed-time bound

� 2k2−k3
∑

Ck (l)

∥∥PCk (l)Q< j−Cφ
(1)
k1

∥∥
L∞

x

∥∥P−Ck (l)Q< j−Cφ
(2)
k2

∥∥
L2

x

×
∑

Ck′ (l)

∥∥PCk′ (l)Q< j−Cφ
(3)
k3

∥∥
L∞

x

∥∥P−Ck′ (l)Q< j−Cψk4

∥∥
L2

x
.

Applying Cauchy–Schwarz in the second sum over rectangular boxes in order to

reduce to
∥∥ψk4

∥∥
L2

x
and then integrating in time and using Hölder’s inequality, we can

estimate things as before by using the L2
t L∞

x based norm for the factors φ
(1)
k1

, φ
(3)
k3

,

and L∞
t L2

x for φ
(2)
k2

(more precisely, we use square sums over pieces microlocalized

to rectangular boxes). Note that if the other high-frequency factor φ
(2)
k2

is in Rk2

and not the first one, we simply interchange the roles of these factors. Then the

preceding expression can further be bounded by

� 2−k3 2
l
2 2

k−k3
3 2− k3

6 2
k
2 2

k
6 2

2
3 k2− k1

2+ 2δ∗k2
∥∥φ

(1)
k1

∥∥
Rk1

∥∥φ
(2)
k2

∥∥
S1

k2
+Rk2

∥∥ψk4

∥∥
N∗

k4

.

This can again be summed over all relevant parameters to give (more than) the

required bound.
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Case 3: 2l � ∠(φ2, φ3) mod π ≫ 2l2k−min{k2,3}. Again we may assume that φ
(1)
k1

is in Rk1 , since both φ
(1)
k1

and φ
(2)
k2

form an angle ≫ 2l2k−min{k2,3} mod π with φ
(3)
k3

.

Set ∠(φ2, φ3) ∼ 2l ′ . In analogy with [27], and specifically Case 3 in the proof of

estimate (148) there, we infer the bound

� 2−2k2−2l2l ′2min{k,0}2− k1
2+ 2k2+k3 I23(l

′)
∥∥φ

(1)
k1

∥∥
Rk1

∥∥ψk4

∥∥
N∗

k4

,

where we have

I23(l
′) � 2

3
2 (k+l)2δ∗k2

∥∥φk2

∥∥
Rk2

∥∥φk3

∥∥
S1

k3

.

It is then straightforward to sum over l ′ < l +C < O(1) to infer the desired bound.

⊓⊔

We conclude with a generalized version of the multilinear estimate (141) in

[27].

Proposition 8.8. (Additional core product estimate) We have that

∥∥(I − Hk1)Pk1(φ
(2)
k2

∂tφ
(3)
k3

)
∥∥

�
1
2 	

1
2 Z

� 2δ(k1−k2)‖φ(2)
k2

‖S1
k2

+Rk2
‖φ(3)

k3
‖S1

k3
+Rk3

, k1 ≦ k2 − C. (8.12)

Proof. From the definition, we have

(I − Hk1)Pk1(φ
(2)
k2

∂tφ
(3)
k3

) =
∑

j≧k1+C

Pk1 Q j (Q< j−Cφ
(2)
k2

∂t Q< j−Cφ
(3)
k3

)

+
∑

j<k1+C

Pk1 Q j (Q≧ j−Cφ
(2)
k2

∂t Q< j−Cφ
(3)
k3

)

+
∑

j<k1+C

Pk1 Q j (φ
(2)
k2

∂t Q≧ j−Cφ
(3)
k3

)

≡ I + I I + I I I.

Recall that we have

∥∥φ
∥∥2

Zk
= sup

l<C

2l
∥∥Pκ

l Qk+2lφ
∥∥2

L1
t L∞

x
.

In particular, the term I does not contribute. We treat the term I I , the remaining

term I I I being similar. Consider then the term I I . We need to estimate (with

l = j−k
2

)
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2− j
2 2− 3k1

2 2
j−k1

4

(∑

κ

∥∥Pκ
l Pk1 Q j (Q≧ j−Cφ

(2)
k2

∂t Q< j−Cφ
(3)
k3

)
∥∥2

L1
t L∞

x

) 1
2

� 2− j
2 2− 3k1

2 2
j−k1

4

∑

j1≧ j−C

∑

κ2∼±κ3

(∑

κ

∥∥Pκ
l Pk1 Q j (Q j1 Pκ2 φ

(2)
k2

∂t Q< j−C Pκ3 φ
(3)
k3

)
∥∥2

L1
t L∞

x

) 1
2

,

where the caps κ2,3 are of diameter ∼ 2
j1+k1

2 −k2 . Then from the proof of Lemma 8.5

recall the estimate

2k2

(∑

κ2

∥∥Q j Pκ2φ
(2)
k2

∥∥2

L2
t L

12
5

x

) 1
2

�
(
2− j

2 2δ∗k2
) 3

4
(
2( 1

2 +20σ)k2
) 1

4
∥∥φ

(2)
k2

∥∥
Rk2

,

and furthermore that we have

(∑

κ3

∥∥∂t Q< j−C Pκ3φ
(3)
k3

∥∥2

L2
t L6

x

) 1
2

� 2
5
6 k3

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

.

Then use that

(∑

κ

∥∥Pκ
l Pk1 Q j f

∥∥2

L1
t L∞

x

) 1
2

� 2
3l
2 22k1

(∑

κ

∥∥Pκ
l Pk1 Q j f

∥∥2

L1
t L2

x

) 1
2

� 2
3l
2 22k1

∥∥Pk1 Q j f
∥∥

L1
t L2

x
,

and apply the Cauchy–Schwarz inequality to
∑

κ2∼±κ3
, as well as Bernstein’s in-

equality to pass from L1
t L

12
7

x to L1
t L2

x . It follows that

2− j
2 2− 3k1

2 2
j−k1

4

(∑

κ

∥∥Pκ
l Pk1 Q j (Q≧ j−Cφ

(2)
k2

∂t Q< j−Cφ
(3)
k3

)
∥∥2

L1
t L∞

x

) 1
2

� 2− j
2 2− 3k1

2 2
j−k1

4 23
j−k1

4 2
7
3 k1

(
2− j

2 2δ∗k2
) 3

4
(
2( 1

2 +20σ)k2
) 1

4
∥∥φ

(2)
k2

∥∥
Rk2

2− 1
6 k3

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

≃ 2
j−k1

8 2− k1
24 2(δ∗+20σ− 1

24 )k2
∥∥φ

(2)
k2

∥∥
Rk2

∥∥φ
(3)
k3

∥∥
S1

k3
+Rk3

,

which is good provided that φ
(2)
k2

∈ Rk2 and k1 ≧ 0. If k1 < 0, one places

Q≧ j−Cφ
(2)
k2

into L2
t,x and ∂t Q< j−Cφ

(3)
k3

into L2
t L6

x , since the gain of 2− k3
6 is then

enough to neutralize the loss of 2δ∗k2 . The case when φ
(2)
k2

∈ S1
k2

but φ
(3)
k3

∈ Rk3 is

simpler since one only needs to place Q≧ j−Cφ
(2)
k2

in L2
t,x while using the redeeming

version of L2
t L6

x for ∂t Q< j−Cφ
(3)
k3

. ⊓⊔
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