
Applied Ergonomics 120 (2024) 104344

Available online 10 July 2024
0003-6870/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

A novel approach for predicting usability of upper limb prostheses 

Junho Park a, Maryam Zahabi b,*, He Huang c, Mark Benden d 

a Department of General Engineering, Santa Clara University, Santa Clara, CA, USA 
b Wm Michael Barnes ‘64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, USA 
c Joint Dept. of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, North Carolina, USA 
d Department of Environmental & Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA   

A R T I C L E  I N F O   

Keywords: 
Usability 
Prosthesis 
Upper limb 
Prediction 
Human performance model 

A B S T R A C T   

Limb amputation can lead to significant functional challenges in daily activities, prompting amputees to use 
prosthetic devices (PDs). However, the cognitive demands of PDs and usability issues have resulted in user re
jections. This study aimed to create a Human Performance Model for Upper-Limb Prosthetic Devices (HPM-UP). 
The model used formulations of learnability, error rate, memory load, efficiency, and satisfaction to assess us
ability. The model was validated in an experiment with 30 healthy participants using a bypass prosthetic device. 
Findings indicated that the HPM-UP successfully predicted the usability of prosthetic devices, aligning with 
human subject data. This research proposes a quantitative approach to predict upper limb prosthetic device 
usability by quantifying each dimension and computationally connecting them. The model, available on Github 
and executable with Rstudio, could enable clinicians to assess and analyze the human performance of various 
commercial prostheses, aiding in recommending optimal devices for patients.   

1. Introduction 

The lack of useable prosthetic devices causes amputee patients to 
have difficulties in performing activities of daily living (ADLs). In the U. 
S., there are over two million people who have lost a limb, and this 
number is projected to increase twofold by 2050 (Niamba et al., 2021). 
Prosthetic devices are essential for ADLs, but they may also demand 
more time and effort from the users (Park et al., 2022; Park and Zahabi, 
2022a). Many users find the existing devices hard to operate, resulting in 
lower usage and device abandonment (Engdahl et al., 2015). A study 
that evaluated the usability of various prosthetic devices reported that 
53% of passive hand users, 50% of body-powered hook users, and 39% 
of myoelectric hand users gave up on using prosthetic arms (Montagnani 
et al., 2015) mainly because of poor dexterity, glove durability, and lack 
of sensory feedback. 

The International Standard Organization (ISO) defines usability as 
“The extent to which specified users can use a product to achieve specified 
goals with effectiveness, efficiency, and satisfaction in a specified context of 
use.” (ISO, 2019). Usability is a critical factor in the adoption and 
continued use of prosthetic devices. Prosthetic device rejection, where 
users decide not to use or abandon their prosthetic limbs, can often be 

attributed to issues related to the usability of these devices. The primary 
aspects of usability that influence prosthetic acceptance include com
fort, functionality, and the ease with which a user can operate the de
vice. Devices that cause discomfort, pain, or do not fit properly are likely 
to be rejected. Prior studies found that discomfort and poor fit are major 
reasons for the abandonment of prosthetic devices (Biddiss and Chau, 
2007). Functionality refers to how well the prosthetic meets the user’s 
needs in terms of movement and daily activities. A prosthetic that does 
not adequately replace the functionality of a lost limb or fails under 
specific conditions is less likely to be accepted by the user. Functional 
limitations have been cited as significant factors influencing the rejec
tion of prosthetic devices (Sanders and Fatone, 2011). The ease of use of 
a prosthetic device also plays a crucial role. Devices that are complex to 
operate or require extensive maintenance can be frustrating for users, 
leading to abandonment. Enhancing usability by focusing on the ease of 
use can significantly improve acceptance rates (Peerdeman et al., 2011). 
Addressing these usability issues through user-centered design and 
regular feedback sessions can help mitigate the risk of prosthetic device 
rejection. 

Nielsen (2012) proposed five dimensions of usability, including: 
Learnability, efficiency, memorability, error, and satisfaction. 

* Corresponding author. Wm Michael Barnes ’64 Department of Industrial & Systems Engineering, Texas A&M University, Emerging Technologies Building, 
College Station, TX, 77843, USA 

E-mail address: mzahabi@tamu.edu (M. Zahabi).  

Contents lists available at ScienceDirect 

Applied Ergonomics 

journal homepage: www.elsevier.com/locate/apergo 

https://doi.org/10.1016/j.apergo.2024.104344 
Received 14 January 2024; Received in revised form 23 June 2024; Accepted 2 July 2024   

mailto:mzahabi@tamu.edu
www.sciencedirect.com/science/journal/00036870
https://www.elsevier.com/locate/apergo
https://doi.org/10.1016/j.apergo.2024.104344
https://doi.org/10.1016/j.apergo.2024.104344
https://doi.org/10.1016/j.apergo.2024.104344
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apergo.2024.104344&domain=pdf


Applied Ergonomics 120 (2024) 104344

2

Learnability is an indicator that shows how users reach optimal perfor
mance in interacting with a system (Joyce, 2019). Alternatively, it can 
be interpreted as how easy it is for users to accomplish a task the first 
time they encounter the interface and how many repetitions it takes to 
become efficient at that task. Learnability can be measured using 
learning time or the number of trials in a training session. Efficiency 
refers to how fast users can perform tasks once they have learned to use 
the system and is typically measured using the task completion time 
(TCT) (Dix et al., 2000). Memorability means the system should be easy 
to remember so that the users can return to the system after some time 
without learning everything all over again. An error can be defined as a 
function performed by a user that does not lead to the aimed result. 
Finally, satisfaction refers to how pleasant the system is to use. Also, it 
refers to the level of comfort and acceptability of the system to its users 
and other people affected by its use (Dix et al., 2000). 

Usability of prosthetic devices has been measured by several sub
jective questionnaires, such as the Client Satisfaction with Device 
module of the Orthotics and Prosthetic Users’ Survey (CSD-OPUS) 
(Bravini et al., 2014). This is a self-report instrument for evaluating the 
outcomes (satisfaction) of prosthetics and orthotics. Another question
naire used in this domain is Quebec User Evaluation of Satisfaction with 
assistive Technology (QUEST 2.0) (Demers et al., 2002). This ques
tionnaire is designed for a person’s evaluation of those distinct di
mensions of the assistive device that are influenced by one’s 
expectations, perceptions, attitudes, and personal values. The third 
questionnaire is Usefulness, Satisfaction, and Ease of Use (USE) survey 
(Lund, 2001), which measures subjective usability and has been applied 
for evaluating prosthetic devices and other products (e.g., wearable 
devices, smartphones, website). Finally, the System Usability Scale 
(SUS), which is also designed for products or services (Brooke, 1996), 
has been used to assess the usability of prosthetic devices. SUS evaluates 
various products and services, including hardware, software, mobile 
devices, and websites. SUS and USE surveys are more focused on sub
jective attributes such as comfort, ease of use, satisfaction, and will
ingness to use as they are heavily used in assessing the usability of 
websites or software (Gao et al., 2018; McLellan et al., 2012). Mean
while, the CSD-OPUS and QUEST 2.0 surveys incorporate physical at
tributes such as weight or aesthetic aspects of prosthetic devices. 

Although there are several questionnaires for assessing the usability 
of prostheses, these methods are mainly used toward the later stages of 
the design and development process when there is a functional pros
thetic device and there is a need for conducting a human subject study 
which can be costly and time consuming. Furthermore, the scales pro
vide discrete rather than continuous values, and prior studies have 
found a dissociation between subjective usability evaluation and 
objective performance measures (Yeh and Wickens, 1988). Also, there 
could be self-report biases with survey responses (Hart, 2006). 

To fill these research gaps, this study aimed to develop a usability 
prediction model for prosthetic devices (called HPM-UP). The main 
motivation for the model development is to have an analytical approach 
to overcome the limitations of subjective evaluation techniques in 
prosthetic assessments and to predict usability of prostheses in early 
stages of the design process. 

2. Method 

2.1. Human subject experiment 

2.1.1. Participants 
Thirty healthy participants (18 males and 12 females) were recruited 

for this study (Age: M = 22.9 yrs; SD = 2.8 yrs). All participants had 20/ 
20 vision (or corrected vision) and no prior experience of using pros
theses or myoelectric exoskeleton for upper limbs. The experiment 
protocol was approved by the Institutional Review Board at the Uni
versity of North Carolina at Chapel Hill. 

2.1.2. Apparatus 
A commercial 2-degrees of freedom (DoF) prosthetic device (Motion 

Control ETD, Filauer) in hand open/close and wrist pronation/supina
tion was used in this study. A custom prosthetic hand adapter was 
designed and fabricated as a bypass device, as shown in Fig. 1. This 
experiment included testing of three prosthetic device configurations: 
(1) direct control (DC), (2) pattern recognition (PR), and (3) continuous 
control (CC). For the DC mode, EMG signals were collected from two 
channels (the flexor carpi radialis and the extensor carpi radialis longus) 
based on the mean absolute value (MAV) of each channel (Resnik et al., 
2018; White et al., 2017). Participants were trained with five hand 
gestures (hand close/open, wrist pronation/supination, inactive) in the 
PR mode. EMG data were collected and labeled simultaneously with a 
certain movement class. Four commonly used time domain features 
(MAV, number of zero crossings, waveform length, and number of slope 
sign changes) were extracted from EMG signals following the methods 
used in prior studies (Resnik et al., 2018; White et al., 2017). In the CC 
mode, EMG data were recorded simultaneously with kinematic data 
from a Leap Motion Controller (Leap Motion, Inc., USA). An artificial 
neural network was created for each participant using the Deep Learning 
Toolbox in MATLAB 2018b (Mathworks Inc., USA). Hand gestures and 
hook movements for each control scheme is summarized in Table 1. 
More information about the apparatus and sensor placement can be 
found in Park et al. (2023) and Park (2023). 

2.1.3. Experiment design 
The experiment followed a between-subject design, in which each 

participant was randomly assigned to one of the three prosthetic con
figurations (i.e., DC, PR, or CC) to avoid potential fatigue or learning 
effect from one trial to the next. Clothespin Relocation Test (CRT) and 
Southampton Hand Assessment Procedure (SHAP) were used as ADLs in 
this experiment as they have been widely used for assessing usability of 
upper limb prostheses (Zahabi et al., 2019). The CRT required partici
pants to move as many pins as possible from the horizontal bar to the 
vertical bar and vice versa in 2 min with various hand gestures in each 
control mode (Park et al., 2020) (Fig. 2). For SHAP, participants had to 
turn the door handle down and bring it back five times as quickly as 
possible (Fig. 3). 

2.1.4. Variables 
This study compared the usability estimates from the Human Per

formance Model for Upper-limb Prostheses (HPM-UP) method, human- 
subject experiment, and a benchmark model. The benchmark model was 
developed using the Cognitive-Perceptual-Motor – Goals, Operators, 
Methods, and Selection rules (CPM-GOMS) method and Adaptive Con
trol of Thought—Rational (ACT-R) working memory module in Cogu
lator software (Estes, 2017) to be compared with HPM-UP and 
human-subject experiment outcomes. 

The dependent variables included task performance and usability 
measures (from QUEST 2.0 (Demers et al., 2002) and USE (Lund, 2001) 
questionnaires) and were used as a ground truth when comparing the 
outcomes with model estimates. Task performance measures included 

Fig. 1. The prosthetic device used in this study.  
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the number of pins moved within 2 min for the CRT and the time to 
rotate the door handle five times sequentially for the SHAP door handle 
task. 

2.1.5. Procedure 
Once participants arrived at the lab, they signed the informed con

sent form, and filled out the demographic questionnaire. Then, they 
completed the Edinburgh Handedness Test (EHT) (Oldfield, 1971) and 
the Purdue Pegboard Test (PPT) (Tiffin and Asher, 1948; White et al., 
2017) to assess dexterity and right handedness. Once participants 
completed the EHT and PPT, they were equipped with the prosthesis and 
EMG electrodes were placed on their skin based on the assigned control 
mode. Participants were allowed to interact with the device and perform 
different movements (i.e., opening and closing the hand, wrist prona
tion, and supination) until they reported comfort with the control mode 
and the classifier was sufficiently trained if it could classify the gestures 
with accuracy of >90% (Fontana, 2010; Parajuli et al., 2019). Once the 
participants received training for their assigned control mode, they were 
trained on the CRT, which assessed the mastery of device handling and 
the respective control mode. If the average TCT to move three pins in 
three sequential trials was within 15–25s for the PR, 20–35s for the DC 
(White et al., 2017), and 16–23s for the CC mode trials (Park, 2023), the 
participant passed the training criteria and was allowed to proceed to 
the testing session. We used different TCT thresholds because of the 
differences in the DoFs, types of gestures, and control modes. The 
thresholds for the DC and PR modes were defined based on our previous 

investigations using similar prosthetic devices (White et al., 2017) and 
the threshold for the CC mode was defined based on our pilot testing. 

Upon completion of the training trials, participants could begin the 
experimental trials after having 5 min of rest. In experimental trials, 
participants were instructed to move as many clothespins as possible 
between the 2 bars within 2 min for the CRT task. For SHAP – Door 
Handle, participants were instructed to rotate the handle five times as 
fast as possible. All participants completed three trials for each task with 
a 5-min rest period after each trial. At the end of the experiment, par
ticipants filled out the USE and QUEST 2.0 questionnaires. 

2.1.6. Hypotheses 
Five hypotheses (H) were formulated for this study (Table 2). Since 

both human subject data and the benchmark model did not generate all 
usability dimensions, hypotheses were generated to enable comparisons 
between the HPM-UP and either human data or the benchmark model. 

2.1.7. Data analysis 
The statistical model did not meet the parametric assumptions and 

therefore, nonparametric analysis was conducted to assess the differ
ences in usability dimensions among the human subject data, HPM-UP, 
and the benchmark model. For the comparison between two sets of data, 
Wilcoxon rank sum test was conducted (Wilcoxon, 1992). The Wilcoxon 
test statistic W was used to determine the significance of the difference. 
Kruskal-Wallis rank sum test was conducted if there were more than two 
groups of data (Kruskal and Wallis, 1952). H statistic was used to 

Table 1 
Hand gestures and hook movements.  

Prosthetic Movement Pattern Recognition & Continuous Control Hand Movement Direct Control Hand Movement 

Open Prosthetic Open Hand Extend Hand at Wrist 

Close Prosthetic Close Hand Flex Hand at Wrist 
Mode Change Not Applicable 

Power Grip to Change Between Mode 1 and 2 

Supinate (Rotate Clockwise) Prosthetic Supinate Hand Extend Hand at Wrist 

Pronate (Rotate Counterclockwise) Prosthetic Pronate Hand Flex Hand at Wrist  
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determine the significance of the difference of the median of each group. 
H statistics was compared with a critical cutoff point determined by the 
chi-square distribution (chi-square is used because it is a good approx
imation of H, especially if each group’s sample size is bigger than 5). For 
the post-hoc analysis, Dunn’s Kruskal-Wallis multiple comparison was 
used (Dunn, 1964). All the statistical analysis was conducted using R 
4.0.5. Effect size for Wilcoxon signed-rank test was calculated with r =

Z̅ ̅
n

√ , where Z-score is a test statistic and standardized score of U-value 
calculated from Mann-Whitney U test (Tomczak and Tomczak, 2014) 
and n is the total number of observations. The effect size of 
Kruskal-Wallis test was calculated using Eta-squared (Rosenthal, 1986). 

2.2. Model development 

HPM-UP was developed based on the theories in human factors and 
psychology, and human-subject data. The model stemmed from the 
CPM-GOMS method since some tasks can occur in parallel (John and 
Gray, 1994) and thus, CPM-GOMS provide a more accurate TCT esti
mates as compared to other models that assume serial activities. In 
CPM-GOMS models, the task is broken down into a series of operators or 
actions. Each operator is assigned a specific execution time (e.g., 
keystroke = 0.28 s) (Kieras and Santoro, 2004). These times are typically 
determined by previous research or user testing. The next step involves 
constructing a schedule chart, similar to those used in project 

management (John and Kieras, 1994). TCT is then calculated by adding 
up the execution times for all the operators. However, unlike other 
GOMS models, CPM-GOMS takes into account the possibility of paral
lelism. That is, it recognizes that some operators can be performed 
simultaneously, rather than sequentially. This allows CPM-GOMS to 
provide a more realistic estimate of TCT for expert users, who often 
overlap their activities to work more efficiently. 

In addition to the CPM-GOMS logic, declarative memory module 
functions from ACT-R 7.0 were used for simulating the number of 
memory chunks in HPM-UP (Bothell, 2017; Estes, 2015; Leiden and Best, 
2005). For example, while performing ADLs, participants had to 
remember a particular device configuration to adjust the hook and 
complete the tasks. R software package 4.0.5 was used for model 
development. 

Fig. 2. The clothespin relocation task.  

Fig. 3. The SHAP door handle task.  

Table 2 
List of hypotheses.  

Hypothesis ID Hypothesis 

H1 
(Learnability) 

The results of HPM-UP learnability dimension would be similar 
to the human-subject data. 

H2 (Error rate) Use of the CC configuration would lead to the lowest error rate 
followed by the PR and DC configurations. 

H3 (Memory 
load) 

The results of HPM-UP memory load dimension would be 
similar to the benchmark model. 

H4 (Efficiency) (H4-1) The results of HPM-UP efficiency dimension would be 
similar to the human subject data. 
(H4-2) There would be a significant difference between the 
HPM-UP efficiency dimension results and the benchmark model 
results. 

H5 (Satisfaction) The results of HPM-UP satisfaction dimension would be similar 
to the human-subject data.  
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2.2.1. Outcomes of the model 
HPM-UP provides five usability dimensions based on Nielsen (2012) 

five dimensions of usability, including learnability, efficiency, memory 
load, errors, and satisfaction as these dimensions have been frequently 
used in evaluating the usability of other products. For the HPM-UP, 
there was a need to have new definitions of usability dimensions 
related to the prosthetic device application. Therefore, the modified 
usability dimensions were defined as follows.  

• Learnability: The number of training trials required to pass the 
training criteria 

• Error (Error Rate): The error rate in performing a task with a pros
thetic device  

• Memory Load: The number of memory chunks stored in working 
memory when performing a task with a prosthetic device  

• Efficiency: TCT of one cycle of an ADL task 
• Satisfaction: The relationship among perceived performance, expec

tation, and desire (Oliver, 1977, 1980) 

These dimensions are described in detail below. 

2.2.2. Learnability 
The learnability dimension in HPM-UP is defined as the number of 

training trials to pass the training threshold level (or to reach a plateau). 
The original learnability equation is based on the learning curve’s unit 
theory (Camm, 1985; Mislick and Nussbaum, 2015; Zhang et al., 2016) 
which is defined as Equation (1). 

Yx = Axb (1)  

In equation (1), Yx is the cost of unit x, A is the theoretical cost of unit 1, 
x is the unit number, and b is a constant that determines the slope of the 
learning curve. In HPM-UP, x is the number of training trials which is the 
outcome of learnability. A is the TCT for the first trial. Yx can be replaced 
with the TCT in each trial and can be gathered from training trials. 

Pilot data from 10 participants were used to investigate the patterns 
in TCT (Park, 2023). It was found that TCT of the first trial (i.e., A) is 
different across participants, which might be due to the device calibra
tion quality (DCQ). There are two types of DCQ including: Objective 
DCQ (ODCQ) and subjective DCQ (SDCQ). ODCQ can be calculated using 
Equation (2) (Music, 2022). 

ODCQ =
The number of correctly matched input gestures

The number of all input gestures
(2) 

ODCQ can be used to estimate A for each participant, however, it 
requires collecting data from all participants and conducting a detailed 
video analysis, which might not be suitable for the HPM-UP package as 
the goal of this package is to use it in early stages of the design and 
development process of prosthetic devices. Additionally, video analysis 
cannot guarantee if specific activities were intended or not by the par
ticipants. Therefore, the SDCQ was used to adjust A. Having high SDCQ 
could result in small A (i.e., positive perception of device calibration 
quality could lead to shorter TCT in the first trial). However, subjective 
evaluations can have self-report bias (VandenBos, 2007). To mitigate the 
self-report bias, the first impression (FI) of the prosthesis was also 
considered. FI refers to one’s initial perception of a person (or object), 
typically involving a positive or negative evaluation as well as a sense of 
physical (or psychological) characteristics (VandenBos, 2007). In this 
study, although all the participants passed the training criteria, the 
number of required training trials were different among participants, 
which led to having different error rates, or efficiency in the experi
mental trials. These differences could have been due to different FI of the 
device. 

Therefore, the A factor was adjusted (called Aʹ) based on the FI and 
SDCQ (Equation (3)). If SDCQ is 1, which means users think the DCQ is 
perfect or has no errors, the FI is the only concern. However, if SDCQ is 

for example 0.5 (e.g., 5 out of 10 gesture inputs were correct), the Aʹ will 
be doubled. The FI factor is a number between 0 and 1. If FI is less than 1, 
Aʹ will increase. If FI equals to 1 (i.e., the FI is positive), Aʹ will only be 
influenced by SDCQ. 

Aʹ =
A

SDCQ ⋅FI
(3) 

SDCQ in this study was calculated based on the average of the re
sponses to questions Q3 (easiness in adjusting the device (fixing, 
fastening)), Q6 (easiness of using the device), and Q8 (effectiveness of 
using the device (the degree to which the device meets a user’s needs) of 
the USE questionnaire. FI was calculated from the difference between 
the SDCQ and participant’s training performance. This indirect 
approach was used to avoid self-report bias (VandenBos, 2007) that 
could have occurred if FI was measured directly. The slope of learning 
curve is represented by b as shown in Equation (4). 

slope of learning curve =
cost of unit 2n
cost of unit n

=
A(2n)

b

A(n)
b = 2b (4)  

ln(slope) = bln(2)∴b =
ln (slope)

ln 2 

Previous studies found that the slope could be estimated based on the 
degree of automation (e.g., 70% for entirely manual operations) (Mislick 
and Nussbaum, 2015). Since the tasks in this study were performed by 
prostheses, ideally, the slope could be 0.7 when the calibration quality is 
perfect (Mislick and Nussbaum, 2015) (i.e., the prosthesis could always 
be controlled based on user’s input). However, since calibration quality 
could be varied, there is a need to adjust the slope. If SDCQ becomes 0, 
the slope changes to 0.90 (i.e., there is almost no learning occurred 
between the trials - refers to the 25% manual operation) (Mislick and 
Nussbaum, 2015). Therefore, Equation (5) shows the linear relationship 
between the SDCQ and slope. 

slope = − 0.2(SDCQ) + 0.9 (5) 

Equation (5) does not include a potential effect of physical and/or 
mental workload on device learnability. Therefore, two parameters were 
added to adjust the slope based on the level of workload as shown 
Equation (6). 

slope = − 0.2R1(SDCQ) + (0.9 + R2) (6) 

The initial values for R1 and R2 parameters were determined based 
on the pilot study with 10 participants. R2 refers to the baseline physical 
and mental demand of participants before the experiment which was 
quantified using the NASA-Task Load Index (TLX) questionnaire (Hart 
and Staveland, 1988). R1 was determined based on the changes of 
physical and mental workload from the baseline. 

Based on the changes in slope and A factor described earlier, the 
learning curve equation was revised to estimate learnability as shown in 
Equation (7). 

L = Aʹxb =
A

SDCQ ⋅FI
x

ln (−0.2R1SDCQ+(0.9+R2))

ln 2 (7)  

2.2.3. Error rate 
Including errors in the HPM-UP for analysis of prosthetic devices is 

necessary since unlike the direct human interaction with a mouse or 
keyboard controlled with high precision, a prosthesis device uses an 
EMG signal that does not always correctly project user’s intentions to the 
outcome (i.e., hook movement). That is, there is a mediator (prosthesis) 
between the human and the task, which can affect the task performance. 
Some prior studies estimated errors in using protheses with the concepts 
of total and active errors (Hargrove et al., 2007; Lock et al., 2005; 
Scheme and Englehart, 2011). Active error is determined by the pro
portion of erroneous active decisions to the overall count of active 
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decisions (Music, 2022). Total error rate is computed as the ratio of 
incorrect decisions, specifically mismatches between the input gesture 
and hook movement, to the total number of decisions. However, these 
studies had some limitations. First, it is challenging to clearly figure out 
whether a specific gesture is an active or inactive decision from obser
vational studies. Second, prior studies only considered the pattern 
recognition (PR) configuration, which might limit the generalizability of 
the approach to other prosthetic device configurations such as the direct 
control (DC) or continuous control (CC). 

To address the identified limitations, the error rate in HPM-UP was 
formulated differently from Scheme and Englehart (2011) study. The 
error rate in HPM-UP depends on learnability (e.g., participants who 
reached the training criteria faster exhibited few numbers of errors in 
experimental trials). Error rate was estimated based on learnability (i.e., 
Err(L)) because of the causal relationship between two dimensions. If 
L = 1, (i.e., learnability is 100%), the estimated error rate in the 
experimental trials will be 0 (i.e., Err (1) = 0). If L = 0, Err (0) will be 1, 
which means that participants will make errors during the experimental 
trials since they failed to learn how to use the device during the training. 
The error rate follows the natural exponential function as shown in 
Equation (8). This exponential curve was fitted based on the results of 
pilot testing using the calculated learnability and error rate observed 
during the experiment. 

Err (L) = max
{

1
1 − e

(
eL − e

)
, 0

}

(8)  

2.2.4. Memory load 
Declarative memories are the kind of memories that can be declared 

(e.g., the name of one’s fifth grade math teacher). Chunks are the ele
ments of declarative knowledge in the ACT-R theory and are used to 
communicate information among modules through the buffer (Bothell, 

2020). Chunks help link past experiences with the present context, 
determining their relevance and ease of retrieval at any given time. 
HPM-UP measured each chunk’s duration in working memory. Chunk’ 
duration was measured as time in millisecond from the moment when it 
first entered the working memory stack and the moment when it dis
appeared from the working memory stack due to the time lapse without 
retrieval. Therefore, memory load in HPM-UP was defined as the overall 
occupancy or duration of working memory chunks in the entire task and 
was calculated using Equation (9), which divides the summation of the 
duration of all chunks by the total task duration (Estes, 2015, 2021). 
Thus, the memory load in HPM-UP is different from learnability, as it 
only considers the number of memory chunks and task duration. 

Memory load =

∑7

i=1
(chunk duration)i

total task duration
(9)  

2.2.5. Efficiency 
Efficiency was calculated using Equation (10) and based on the TCT 

and considering error rate. HPM-UP calculates the efficiency of an 
expert (i.e., no errors) based on the TCT estimates from the CPM-GOMS 
method and inflates the task time based on the error rate to estimate 
efficiency for all users. 

Eff(Err) = Eff{Err(L)} = (Expertʹs efficiency) × {1 + Err(L)} (10) 

The time duration of general operators (e.g., “Grasp”) follows the 
Motion-Time Measurement (MTM-1) (Maynard et al., 1948), as it has 
the most fine-grained level of description for human movements. More 
information regarding the use of these operators in our model can be 
found in Park (2023). 

2.2.6. Satisfaction 
The theoretical foundation to formulate satisfaction came from the 

expectation confirmation theory (ECT) which is a cognitive theory that 
explains satisfaction as a function of expectations and perceived perfor
mance (Oliver, 1977, 1980). Once users accumulate experience on a 
product or service, they can subjectively evaluate their performance 
with the device (Lowry et al., 2006). The user compares the desire and 
expectations against the perceived performance of the product. Expec
tation is a belief or subjective prediction about a product’s attributes or 
performance at some point in the future (Bhattacherjee, 2001). Perceived 
performance is a user’s perception of the degree to which a product can 
fulfill his or her expectation in actual usage. Desire is the level of attri
butes and benefits that leads to attaining the user’s desired outcomes 
(Spreng et al., 1996). ECT posits that satisfaction is directly influenced 
by disconfirmation of beliefs and perceived performance and is indi
rectly influenced by both expectations and perceived performance by 
means of a mediational relationship which passes through the discon
firmation construct. 

Expectation function (f) in the HPM-UP was defined based on the 
expected task performance after passing the training session (or ex
pected performance before the experiment trials). Desire was determined 
with q that was used in the calculation of learnability dimension. 
Perceived performance was calculated from the Efficiency dimension. 
Based on these concepts, disconfirmation of beliefs was formulated as 
Equation (11).  

In this equation, Pi
⇀ 

is a matrix or vector of participants’ perceived 
performance, which is calculated from the efficiency module of HPM- 

UP. Expectation (f) is a function of learnability (Li
⇀

) and desire (qi
⇀ ) 

because expectation can be estimated using the training performance or 
learnability as it is a belief or subjective prediction of performance in the 
future. For example, if users pass the training criteria only within 3 or 4 
trials, they may perform well during the experimental trials. Thus, 
learnability was used as a variable to determine expectation (i.e., expected 
performance) before the experimental trials based on the thresholds 
defined for each configuration (thresholdi; e.g., 20–35s for the DC 
configuration). Based on the definition of desire (i.e., the level of attri
butes and benefits that leads to attaining the user’s desired outcomes), q 
ranges between 0 and 1 and is multiplied by expectation. 

Lastly, Effort was defined as the level of difficulty (mentally and 
physically) in performing an activity (Hart and Staveland, 1988), which 
could also affect perceived performance. Therefore, the original ECT 
was revised to include the level of effort needed to perform the tasks 
(Fig. 4). Then, satisfaction was finally formulated with Equation (12) 
based on the disconfirmation of beliefs and effort. In addition, a constant 
value (c) was added which refers to the minimum level of satisfaction. 

Satisfactioni = (Disconfirmation of beliefi) ×

(

1 −
Effort
100

)

+ c (12)  

Disconfirmation of beliefi = Z
{

Pi
⇀

− f
(

Li
⇀

, qi
⇀

)}
= Z

{

Percevied performancei −
Entire task duration (i.e., 120 seconds)

min thresholdi + Learnabilityi × (max thresholdi − min thresholdi)
× qi

}

(11)   
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3. Results 

3.1. HPM-UP 

An overview of HPM-UP graphical user interface (GUI) is illustrated 
in Fig. 5. Analysts can start using HPM-UP by either using the ‘Develop a 
Scenario’ tab or loading an already developed scenario (Microsoft CSV 
format). Then, input parameters should be determined from the ‘Input 
parameters’ tab. Lastly, the model will assess the usability of the pros
thetic device based on dimensions including learnability, error rate, 
memory load, efficiency, and satisfaction as shown in the ‘Results’ tab. 

Figs. 6–8 illustrate the HPM-UP input entry, scenario development 
interface, and the output window respectively. In the input parameter 
screen (Fig. 6), the type of ADL task (e.g., CRT or SHAP) and device 
control scheme (e.g., DC, PR, or CC) can be selected. The minimum and 
maximum training time duration should be specified based on analysts’ 
previous knowledge, literature, or pilot test results (the minimum and 
maximum values in Fig. 6 came from our pilot test results based on the 
PR configuration). Device calibration quality (0–1), first impression 
(0–1), and effort (0–1) should be determined based on the analyst 
expertise and/or end users’ input. 

If the analysts would like to develop a scenario manually, they can 
click the ‘Develop a Scenario’ tab (Fig. 7). Analysts can choose one of the 
appropriate operators or memory chunks from the radio buttons on the 
screen. If they would like to unselect radio buttons, they can click on the 
‘Remove current selections’ button. First, analysts should define a goal 
for their model (by clicking the ‘Add a goal?’ check box). Once the goal 
is described in the text box of ‘Describe the use of the operator,’ the 
analysts can click ‘Add new line to code’ to add a line of code to the 
scenario. The analyst can continuously develop the scenario by clicking 
one of the operators and describing the operator in the related textbox. 
Parallel activities can be added by clicking the “Parallel?” check box 
when adding a line to the scenario. A chunk can be added to the scenario 
once analysts choose an operator, click one of the chunks under the 
“Chunks” column, describe the operator, and click “Add new line to 
Code”. Analysts can also add a custom chunk to the scenario. If there is a 
need to add new or customized operators, the analyst can choose 
“custom” at the bottom of each column of perceptual, cognitive, or 
motor operators. Then, the name of operator and duration can be 
specified. The scenario can also be downloaded in a CSV format once it is 
complete. This is useful because working or editing directly on a CSV 
format file might be necessary when the analysts are developing more 
complex scenarios. The CSV format file can also be loaded from the 
HPM-UP main screen. 

Once all the input parameters are added, analysts can see the out
comes in terms of the predicted five usability dimensions (Fig. 8). 

To provide a rule of thumb to support the interpretation of the out
comes of HPM-UP (Fig. 8), a literature review was conducted (Table 3). 
However, it is important to note that the outcomes depend on several 

factors such as individuals’ physical condition, the amount of time they 
spend using the prosthesis per day, and the complexity of the tasks they 
are performing with it. 

3.2. Model validation 

Table 4 illustrates the descriptive statistics results regarding the 
comparison among the human subject data, the HPM-UP modeling 
approach, and the benchmark model. The benchmark model does not 
provide learnability, error rate, and satisfaction, and therefore, these 
cells are marked with not applicable (N/A). However, HPM-UP was able 
to generate all five dimensions. 

A summary of hypothesis test results is shown in Table 5. All the 
hypotheses were supported except for H2. For the learnability dimension 
(H1), there was no significant difference between the human subject 
data and HPM-UP generated data based on the Wilcoxon Signed-Ranks 
Sum test (W = 436.5, p > 0.05). 

Hypothesis 2 was refuted as there was no significant difference 
among configurations in terms of error rate (H (2) = 1.57, p > 0.05). 
According to the computational logic of error rate in HPM-UP, the error 
rate depends on learnability. There was no significant difference in 
learnability among different configurations from the human subject data, 
which led to not having any significant difference in error rate as well. 

There was no significant difference in memory load between the 
HPM-UP and the benchmark model (H3) (W = 65, p > 0.05). In the DC 
configuration, participants needed to memorize and recall two mode 
changes (supination/pronation or open/close) and three gestures (open, 
close, AND rotation). Using the PR and CC configurations did not involve 
memory chunks as these configurations were more intuitive. 

For efficiency, both hypotheses (i.e., H4-1 and H4-2) were supported. 
Based on Dunn’s Kruskal-Wallis multiple comparison, there was no 
significant difference between the human subject data and HPM-UP 
efficiency outcomes (H4-1) (Z = 0.26, p > 0.05). However, there was 
a significant difference between HPM-UP and the benchmark model 
(H4-2) (Z = −4.54, p < 0.001). There was also no significant difference 
in satisfaction between the human subject data (USE questionnaire – 
satisfaction dimension) and HPM-UP (W=41, p > 0.05). 

To further validate the model, the root mean square error (RMSE) 
and R-squared were calculated (Wu, 2018). RMSE was used to measure 
the average deviation between the predicted value and the observed 
data, while R-squared was used to understand how well the predictor 
variables can explain the variation in the response variable. RMSE for 
learnability between the observation and HPM-UP was 2.1 with an 
R-squared value of 0.56. For efficiency, RMSE was 2.42s and R-squared 
was 0.48. The RMSE for satisfaction was 0.19 with R-squared value of 
0.89. 

Fig. 4. Revised expectation-confirmation theory.  
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4. Discussion 

The hypothesis test results revealed that the HPM-UP generated 
outcomes were similar to the outcomes derived from human subject 
experiment. This implies that the logic behind HPM-UP worked properly 
to estimate each usability dimension for upper limb prostheses under the 
experimental conditions of this study. However, the findings of the 
benchmark model were significantly different from the HPM-UP model 
and the outcomes from the human subject experiment. This is because 
the focus of the benchmark model was for modeling expert behavior 
without any errors. Therefore, unlike the benchmark model, HPM-UP 
showed closer results to the human data, especially for the TCT, as 
HPM-UP incorporated error rates based on the learnability dimension. 

As a unique approach, in the HPM-UP, learnability was used as an 
input for calculating other usability dimensions. Including the subjective 

device calibration quality and first impression in the equation was 
appropriate because the training criteria could not capture the indi
vidual differences. This means that although all the participants could 
pass the training sessions, they were not on the same level of the 
expertise in terms of controlling the prosthesis. Furthermore, incorpo
rating the physical and mental workload into the learning curve slope 
was helpful to customize the model. 

Error rate estimation feature of HPM-UP is closely related to learn
ability. The unique approach of HPM-UP with error rates is that it tried 
to model the effect of errors not only on task performance (i.e., effi
ciency) but also satisfaction because the efficiency was used as an input 
for the satisfaction dimension. The predicted satisfaction scores from the 
HPM-UP were similar to the results from human data and were signifi
cantly different from the benchmark model outcomes. The error rate 
calculation approach in HPM-UP was useful, as calculating the number 

Fig. 5. Overview of HPM-UP  
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of errors manually (by watching videos) was not feasible for the HPM- 
UP. It was not possible to figure out whether the specific hand ges
tures were errors as the videos did not provide any information on 
participants’ intention. 

We expected that the use of the CC configuration would lead to the 
lowest error rate followed by the PR and DC configurations. This was 
mainly because the CC mode allows for more intuitive and seamless 
transitions between different movements and has more DoF as compared 
to the other two control schemes (i.e., DC and PR) (Liu et al., 2024). 
However, this hypothesis was not supported by the data. The findings 
suggested that there were no significant differences in the error rate 
among control schemes. Although the capability of CC to drive multiple 
DoFs simultaneously was expected to allow participants to adopt more 
natural motion strategies to efficiently complete tasks, participants had 
a hard time controlling the device. This was because sometimes the hook 
was rotating even though the participants had a neutral gesture and 
therefore, it was difficult for them to recover from errors. The other 
reason might be that the ADL tasks were too simple and therefore, could 
not show the differences between these configurations. Although the CC 
mode allowed simultaneous joint operations and natural arm motion in 
control, since the number of controllable joints in our study was limited 
to two and the task duration was short, the perceptual, cognitive, and 
motor demand in operating CC and PR control could be similar. There 
might be differences between the PR and CC configurations if the tasks 
become more complicated. Future studies should assess the differences 
in control modes using more complex ADLs. 

Since error rate affects efficiency, the model outcomes became closer 
to the human subject data than the benchmark model. In a previous 
cognitive modeling study (Zahabi et al., 2019), it was assumed that 
participants were experts (which means that they do not commit errors) 
in a certain task after they passed the training sessions, which is one of 

the main assumptions of many HPMs (Park and Zahabi, 2022b). How
ever, this research found that participants could still make mistakes even 
after passing the training sessions. These errors were added to estimate 
the TCT and to calculate the efficiency. Therefore, the HPM-UP model 
outcomes were similar to the human subject data and significantly 
different from the benchmark model, which was developed based on 
CPM-GOMS and did not include error rate in the model. In sum, 
including error rate in the HPM-UP efficiency modeling is one of the 
unique merits of HPM-UP, as compared to CPM-GOMS. Another unique 
feature of HPM-UP is using a computational approach for quantifying 
satisfaction based on theories. 

The major contribution of this research was that our model provided 
a method for early usability evaluation of prosthetic devices. Previous 
studies focused on human subject experiments and subjective evalua
tions for usability and mental workload assessment of amputees (Park 
and Zahabi, 2020, 2022a). HPM-UP can be used to improve the usability 
of prosthetic devices using pilot tests and early-stage prototypes espe
cially since conducting human subject experiments with amputee par
ticipants can be time-consuming and challenging. The other 
contribution is that it developed a model for upper limb prosthetic de
vices based on top-down (theories) and bottom-up (data driven) ap
proaches and the model was validated with a human subject experiment. 
The model in this research was successful as it could predict learnability 
accurately even for cases where participants needed more training (i.e., 
more than 10 trials) due to fatigue or low device calibration quality. 
Furthermore, the dimensions in HPM-UP are interconnected and this 
connectivity has not been quantified in previous methods. 

4.1. Practical implications of HPM-UP 

There are several practical implications of HPM-UP for clinicians, 

Fig. 6. Input parameter screen.  
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device developers, or researchers in the cognitive modeling domain. The 
model can be used by clinicians and device developers using the GUI and 
with mouse-clicks. This feature can be especially useful for those 
without any knowledge of programming. In addition, in the ‘Results’ 
tab, a guideline table is provided, which can provide practical recom
mendations regarding the range of each usability dimension score. With 
this table, clinicians can determine whether to recommend a certain 
prosthesis to a patient. Finally, under the ‘Help’ tab of HPM-UP, several 
tutorial videos are provided on how to use the model. 

Whenever clinicians have new amputee patients and before recom
mending any prosthetic device to patients, they can test or predict which 
device could be the best in terms of the usability for the amputee. That is, 
HPM-UP could reduce the work of clinicians to find, test, analyze, and 
recommend a prosthetic device. Once clinicians collect the input pa
rameters (e.g., first impression) for each prosthetic device from the pa
tients, they could run the model and see the predicted usability 
dimensions. Then, based on the results and the guideline table, they can 
recommend the best device to amputees. 

For designers of prosthetic devices, HPM-UP could be a quick and 
practical guidance for a prototype-level usability assessment. Once they 
have defined the tasks and a concept for the prosthetic devices, they 
could predict the human performance of the device in the early stages of 
the design process. They can also change the input parameters based on 
the characteristics of the target group. Based on the results, they can 
make changes to the device configurations to improve human use. 

Although this model was initially designed and tested with EMG- 
based prosthetic devices, it can be applied to assess the usability of 
other prosthetic device configurations (e.g., body-powered prostheses). 
For example, using HPM-UP for assessing the usability of the body- 
powered prostheses might suggest different patterns in learnability 
and memory load due to more intuitive and simple control mechanisms. 

The model may predict a faster learning curve as the users can quickly 
learn to control the device through basic body movements, and it offers 
direct mechanical feedback, but potentially higher physical effort over 
long use, as compared to EMG based prostheses. In addition, the model 
could predict changes in usability metrics as users gain experience with 
the prostheses. This is because HPM-UP uses learnability as the first 
dimension and an input for all other following usability dimensions. 
Over time, users typically become more adept at operating their pros
thetic devices, leading to improvements in efficiency and a reduction in 
error rate, which could lead to higher level of satisfaction. 

4.2. Limitations 

There are several aspects of this study that may limit the generaliz
ability of findings. First, HPM-UP has some free parameters, especially in 
learnability and satisfaction dimensions. The reason to include them in 
the models was to personalize the outcome of the model to improve 
model performance. The initial/default values included in the current 
version of HPM-UP was calculated based on our pilot tests. Although this 
approach has been used in other HPMs such as the queuing network- 
model human processor (QN-MHP) (e.g., preliminary estimates of the 
perceptual memory access time) (Feyen, 2003), MHP (Card et al., 1986), 
or ACT-R (Bothell, 2020), the outcomes of the model depend on these 
values. To quantify qualitative dimensions such as learnability and 
satisfaction, some assumptions have been made. For example, SDCQ was 
calculated based on the average of the responses to questions Q3 
(easiness in adjusting the device (fixing, fastening)), Q6 (easiness of 
using the device), and Q8 (effectiveness of using the device (the degree 
to which the device meets a user’s needs) of the USE questionnaire. FI 
was calculated from the difference between the SDCQ and participant’s 
training performance. Furthermore, HPM-UP estimates the immediate 

Fig. 7. Scenario development screen.  
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learnability and satisfaction after using prostheses, which is different 
from the retention effect or long-term/sustained satisfaction, which is 
the original concept behind the ECT. Future studies should validate 
these assumptions with additional experiments and considering 
long-term satisfaction with prosthetic devices. 

Another limitation of this study was that participants were mainly 
young adults. Older adults or those outside of this age range might have 
different ergonomics and usability requirements. They might interact 
with and perceive prosthetic devices differently due to variations in 
physical abilities, technology familiarity, and cognitive flexibility, 
impacting their ability to efficiently use these devices. Older adults may 
experience a decline in physical capabilities such as muscle strength, 
coordination, and dexterity. This decline can impact their ability to 
handle and operate prosthetic devices efficiently. For example, hand 
strength and dexterity significantly decrease with age, which could 
affect the use of prosthetic devices (Desrosiers et al., 1994). Further
more, quadriceps function, proprioceptive acuity, and functional per
formance decrease with age, which could affect the manipulation of 
prosthetic controls (Maresova et al., 2023; Toledo and Barela, 2014). 
Studies have found that structured exercise programs and physical ac
tivity interventions can enhance functional abilities, therefore, 
improving the overall effectiveness and satisfaction with prosthetic de
vices (Pinheiro et al., 2022). The adaptability of older adults to new 
technologies or rehabilitation methods can also differ, influencing 

Fig. 8. Sample output screen of HPM-UP.  

Table 3 
Thresholds to interpret the findings.  

Dimension Threshold for acceptable 
usability 

Reference 

Learnability ≤ 3–5 training trials 
Park et al. (2020) 

Error Rate <15% Mohebbian et al. (2021) 
Memory 

load 
3-5 chunks of information Cowan (2010) 

Efficiency ~80% of the experts’ 
performance 

Park et al. (2022); White et al. 
(2017) 

Satisfaction Body powered device: >45% Rekant et al. (2022) 
Myoelectric device: >50% 
Cosmetic device: >50%  

Table 4 
Descriptive statistics (mean (sd)).  

Factors (definition) Human subject data HPM-UP Benchmark model 

DC PR CC DC PR CC DC PR CC 

Learnability 7.8 (3.46) 5.50 (1.50) 9.80 (4.40) 8.20 (6.54) 7.00 (3.87) 10.00 (5.00) N/A 
Error rate (%) N/A 36.43 (3.36) 25.8 (3.55) 28.14 (8.76) N/A 
Memory Load N/A 4.79 (0.04) 0 0 4.80 (0.00) 0 0 
Efficiency CRT 17.91 (6.76) 12.90 (5.77) 13.40 (2.30) 19.03 (2.48) 11.19 (3.91) 14.19 (5.62) 13.3 (0.00) 6.9 (0.00) 6.9 (0.00) 

SHAP 11.03 (2.31) 11.26 (4.95) 18.91 (7.10) 11.96 (0.70) 12.22 (1.42) 13.18 (1.71) 8.2 (0.00) 8.6 (0.00) 8.6 (0.00) 
Satisfaction (%) 75.09 (0.12) 64.51 (0.23) 65.28 (0.18) 61.16 (0.06) 61.18 (0.11) 56.20 (0.16) N/A  
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usability assessments. Future studies should validate HPM-UP with 
participants from different age groups. 

The decision to work with healthy individuals was made due to the 
limited number of trans-radial amputees in the surrounding area. In 
addition, since most patients currently use devices with DC modes 
(commonly used in myoelectric control), recruiting such patients could 
have produced a bias in their performance. Furthermore, although HPM- 
UP provides estimates of device usability, it cannot guarantee the fitness 
or feeling of embodiment of a prosthesis to amputees. Lastly, although 
HPM-UP supports modeling under GUI environment, analysts need to 
have basic knowledge of human performance modeling. 

5. Conclusion 

Previous studies for measuring usability of upper-limb prostheses 
relied on human subject experiments and subjective evaluations. While 
these methods could provide useful outcomes, early estimation of us
ability is critical to reduce future device rejection due to usability issues. 
Therefore, this research advanced the fundamental knowledge of esti
mating usability of EMG-based upper-limb prostheses. This study not 
only quantified each usability dimension (learnability, errors, memory 
load, efficiency, and satisfaction) but also connected them in a compu
tational way. The outcome of this study, HPM-UP, provides the capa
bility to predict human performance of prostheses at the early stage of 
the design process. 

The model is released to Github (https://github.com/hsilab/hpmup) 
and can be run with Rstudio. As the model was developed in R Shiny 
package format with a GUI, it does not require hard coding and other 
researchers, designers, or clinicians can easily adopt it. As the source 
code is released, researchers can modify or upgrade the software for 
their own purposes. Clinicians can test and analyze the human perfor
mance of several commercial prostheses to find and recommend a best 
device(s) for the patient. Manufacturers can also run the software to 
evaluate usability of devices under different types of prosthetic config
urations and scenarios. 
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