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Limb amputation can lead to significant functional challenges in daily activities, prompting amputees to use
prosthetic devices (PDs). However, the cognitive demands of PDs and usability issues have resulted in user re-
jections. This study aimed to create a Human Performance Model for Upper-Limb Prosthetic Devices (HPM-UP).
The model used formulations of learnability, error rate, memory load, efficiency, and satisfaction to assess us-
ability. The model was validated in an experiment with 30 healthy participants using a bypass prosthetic device.

Findings indicated that the HPM-UP successfully predicted the usability of prosthetic devices, aligning with
human subject data. This research proposes a quantitative approach to predict upper limb prosthetic device
usability by quantifying each dimension and computationally connecting them. The model, available on Github
and executable with Rstudio, could enable clinicians to assess and analyze the human performance of various
commercial prostheses, aiding in recommending optimal devices for patients.

1. Introduction

The lack of useable prosthetic devices causes amputee patients to
have difficulties in performing activities of daily living (ADLSs). In the U.
S., there are over two million people who have lost a limb, and this
number is projected to increase twofold by 2050 (Niamba et al., 2021).
Prosthetic devices are essential for ADLs, but they may also demand
more time and effort from the users (Park et al., 2022; Park and Zahabi,
2022a). Many users find the existing devices hard to operate, resulting in
lower usage and device abandonment (Engdahl et al., 2015). A study
that evaluated the usability of various prosthetic devices reported that
53% of passive hand users, 50% of body-powered hook users, and 39%
of myoelectric hand users gave up on using prosthetic arms (Montagnani
et al., 2015) mainly because of poor dexterity, glove durability, and lack
of sensory feedback.

The International Standard Organization (ISO) defines usability as
“The extent to which specified users can use a product to achieve specified
goals with effectiveness, efficiency, and satisfaction in a specified context of
use.” (ISO, 2019). Usability is a critical factor in the adoption and
continued use of prosthetic devices. Prosthetic device rejection, where
users decide not to use or abandon their prosthetic limbs, can often be

attributed to issues related to the usability of these devices. The primary
aspects of usability that influence prosthetic acceptance include com-
fort, functionality, and the ease with which a user can operate the de-
vice. Devices that cause discomfort, pain, or do not fit properly are likely
to be rejected. Prior studies found that discomfort and poor fit are major
reasons for the abandonment of prosthetic devices (Biddiss and Chau,
2007). Functionality refers to how well the prosthetic meets the user’s
needs in terms of movement and daily activities. A prosthetic that does
not adequately replace the functionality of a lost limb or fails under
specific conditions is less likely to be accepted by the user. Functional
limitations have been cited as significant factors influencing the rejec-
tion of prosthetic devices (Sanders and Fatone, 2011). The ease of use of
a prosthetic device also plays a crucial role. Devices that are complex to
operate or require extensive maintenance can be frustrating for users,
leading to abandonment. Enhancing usability by focusing on the ease of
use can significantly improve acceptance rates (Peerdeman et al., 2011).
Addressing these usability issues through user-centered design and
regular feedback sessions can help mitigate the risk of prosthetic device
rejection.

Nielsen (2012) proposed five dimensions of usability, including:
Learnability, efficiency, memorability, error, and satisfaction.
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Learnability is an indicator that shows how users reach optimal perfor-
mance in interacting with a system (Joyce, 2019). Alternatively, it can
be interpreted as how easy it is for users to accomplish a task the first
time they encounter the interface and how many repetitions it takes to
become efficient at that task. Learnability can be measured using
learning time or the number of trials in a training session. Efficiency
refers to how fast users can perform tasks once they have learned to use
the system and is typically measured using the task completion time
(TCT) (Dix et al., 2000). Memorability means the system should be easy
to remember so that the users can return to the system after some time
without learning everything all over again. An error can be defined as a
function performed by a user that does not lead to the aimed result.
Finally, satisfaction refers to how pleasant the system is to use. Also, it
refers to the level of comfort and acceptability of the system to its users
and other people affected by its use (Dix et al., 2000).

Usability of prosthetic devices has been measured by several sub-
jective questionnaires, such as the Client Satisfaction with Device
module of the Orthotics and Prosthetic Users’ Survey (CSD-OPUS)
(Bravini et al., 2014). This is a self-report instrument for evaluating the
outcomes (satisfaction) of prosthetics and orthotics. Another question-
naire used in this domain is Quebec User Evaluation of Satisfaction with
assistive Technology (QUEST 2.0) (Demers et al., 2002). This ques-
tionnaire is designed for a person’s evaluation of those distinct di-
mensions of the assistive device that are influenced by one’s
expectations, perceptions, attitudes, and personal values. The third
questionnaire is Usefulness, Satisfaction, and Ease of Use (USE) survey
(Lund, 2001), which measures subjective usability and has been applied
for evaluating prosthetic devices and other products (e.g., wearable
devices, smartphones, website). Finally, the System Usability Scale
(SUS), which is also designed for products or services (Brooke, 1996),
has been used to assess the usability of prosthetic devices. SUS evaluates
various products and services, including hardware, software, mobile
devices, and websites. SUS and USE surveys are more focused on sub-
jective attributes such as comfort, ease of use, satisfaction, and will-
ingness to use as they are heavily used in assessing the usability of
websites or software (Gao et al., 2018; McLellan et al., 2012). Mean-
while, the CSD-OPUS and QUEST 2.0 surveys incorporate physical at-
tributes such as weight or aesthetic aspects of prosthetic devices.

Although there are several questionnaires for assessing the usability
of prostheses, these methods are mainly used toward the later stages of
the design and development process when there is a functional pros-
thetic device and there is a need for conducting a human subject study
which can be costly and time consuming. Furthermore, the scales pro-
vide discrete rather than continuous values, and prior studies have
found a dissociation between subjective usability evaluation and
objective performance measures (Yeh and Wickens, 1988). Also, there
could be self-report biases with survey responses (Hart, 2006).

To fill these research gaps, this study aimed to develop a usability
prediction model for prosthetic devices (called HPM-UP). The main
motivation for the model development is to have an analytical approach
to overcome the limitations of subjective evaluation techniques in
prosthetic assessments and to predict usability of prostheses in early
stages of the design process.

2. Method
2.1. Human subject experiment

2.1.1. Participants

Thirty healthy participants (18 males and 12 females) were recruited
for this study (Age: M = 22.9 yrs; SD = 2.8 yrs). All participants had 20/
20 vision (or corrected vision) and no prior experience of using pros-
theses or myoelectric exoskeleton for upper limbs. The experiment
protocol was approved by the Institutional Review Board at the Uni-
versity of North Carolina at Chapel Hill.
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2.1.2. Apparatus

A commercial 2-degrees of freedom (DoF) prosthetic device (Motion
Control ETD, Filauer) in hand open/close and wrist pronation/supina-
tion was used in this study. A custom prosthetic hand adapter was
designed and fabricated as a bypass device, as shown in Fig. 1. This
experiment included testing of three prosthetic device configurations:
(1) direct control (DC), (2) pattern recognition (PR), and (3) continuous
control (CC). For the DC mode, EMG signals were collected from two
channels (the flexor carpi radialis and the extensor carpi radialis longus)
based on the mean absolute value (MAV) of each channel (Resnik et al.,
2018; White et al., 2017). Participants were trained with five hand
gestures (hand close/open, wrist pronation/supination, inactive) in the
PR mode. EMG data were collected and labeled simultaneously with a
certain movement class. Four commonly used time domain features
(MAV, number of zero crossings, waveform length, and number of slope
sign changes) were extracted from EMG signals following the methods
used in prior studies (Resnik et al., 2018; White et al., 2017). In the CC
mode, EMG data were recorded simultaneously with kinematic data
from a Leap Motion Controller (Leap Motion, Inc., USA). An artificial
neural network was created for each participant using the Deep Learning
Toolbox in MATLAB 2018b (Mathworks Inc., USA). Hand gestures and
hook movements for each control scheme is summarized in Table 1.
More information about the apparatus and sensor placement can be
found in Park et al. (2023) and Park (2023).

2.1.3. Experiment design

The experiment followed a between-subject design, in which each
participant was randomly assigned to one of the three prosthetic con-
figurations (i.e., DC, PR, or CC) to avoid potential fatigue or learning
effect from one trial to the next. Clothespin Relocation Test (CRT) and
Southampton Hand Assessment Procedure (SHAP) were used as ADLs in
this experiment as they have been widely used for assessing usability of
upper limb prostheses (Zahabi et al., 2019). The CRT required partici-
pants to move as many pins as possible from the horizontal bar to the
vertical bar and vice versa in 2 min with various hand gestures in each
control mode (Park et al., 2020) (Fig. 2). For SHAP, participants had to
turn the door handle down and bring it back five times as quickly as
possible (Fig. 3).

2.1.4. Variables

This study compared the usability estimates from the Human Per-
formance Model for Upper-limb Prostheses (HPM-UP) method, human-
subject experiment, and a benchmark model. The benchmark model was
developed using the Cognitive-Perceptual-Motor — Goals, Operators,
Methods, and Selection rules (CPM-GOMS) method and Adaptive Con-
trol of Thought—Rational (ACT-R) working memory module in Cogu-
lator software (Estes, 2017) to be compared with HPM-UP and
human-subject experiment outcomes.

The dependent variables included task performance and usability
measures (from QUEST 2.0 (Demers et al., 2002) and USE (Lund, 2001)
questionnaires) and were used as a ground truth when comparing the
outcomes with model estimates. Task performance measures included

Fig. 1. The prosthetic device used in this study.
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Table 1
Hand gestures and hook movements.
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Prosthetic Movement

Pattern Recognition & Continuous Control Hand Movement

Direct Control Hand Movement

Open Prosthetic
Close Prosthetic
Mode Change

Open Hand

Close Hand
Not Applicable

Supinate (Rotate Clockwise) Prosthetic

Pronate (Rotate Counterclockwise) Prosthetic

Supinate Hand

Pronate Hand

i

Extend Hand at Wrist

Flex Hand at Wrist

Power Grip to Change Between Mode 1 and 2

Extend Hand at Wrist

Flex Hand at Wrist

the number of pins moved within 2 min for the CRT and the time to
rotate the door handle five times sequentially for the SHAP door handle
task.

2.1.5. Procedure

Once participants arrived at the lab, they signed the informed con-
sent form, and filled out the demographic questionnaire. Then, they
completed the Edinburgh Handedness Test (EHT) (Oldfield, 1971) and
the Purdue Pegboard Test (PPT) (Tiffin and Asher, 1948; White et al.,
2017) to assess dexterity and right handedness. Once participants
completed the EHT and PPT, they were equipped with the prosthesis and
EMG electrodes were placed on their skin based on the assigned control
mode. Participants were allowed to interact with the device and perform
different movements (i.e., opening and closing the hand, wrist prona-
tion, and supination) until they reported comfort with the control mode
and the classifier was sufficiently trained if it could classify the gestures
with accuracy of >90% (Fontana, 2010; Parajuli et al., 2019). Once the
participants received training for their assigned control mode, they were
trained on the CRT, which assessed the mastery of device handling and
the respective control mode. If the average TCT to move three pins in
three sequential trials was within 15-25s for the PR, 20-35s for the DC
(White et al., 2017), and 16-23s for the CC mode trials (Park, 2023), the
participant passed the training criteria and was allowed to proceed to
the testing session. We used different TCT thresholds because of the
differences in the DoFs, types of gestures, and control modes. The
thresholds for the DC and PR modes were defined based on our previous

investigations using similar prosthetic devices (White et al., 2017) and
the threshold for the CC mode was defined based on our pilot testing.

Upon completion of the training trials, participants could begin the
experimental trials after having 5 min of rest. In experimental trials,
participants were instructed to move as many clothespins as possible
between the 2 bars within 2 min for the CRT task. For SHAP — Door
Handle, participants were instructed to rotate the handle five times as
fast as possible. All participants completed three trials for each task with
a 5-min rest period after each trial. At the end of the experiment, par-
ticipants filled out the USE and QUEST 2.0 questionnaires.

2.1.6. Hypotheses

Five hypotheses (H) were formulated for this study (Table 2). Since
both human subject data and the benchmark model did not generate all
usability dimensions, hypotheses were generated to enable comparisons
between the HPM-UP and either human data or the benchmark model.

2.1.7. Data analysis

The statistical model did not meet the parametric assumptions and
therefore, nonparametric analysis was conducted to assess the differ-
ences in usability dimensions among the human subject data, HPM-UP,
and the benchmark model. For the comparison between two sets of data,
Wilcoxon rank sum test was conducted (Wilcoxon, 1992). The Wilcoxon
test statistic W was used to determine the significance of the difference.
Kruskal-Wallis rank sum test was conducted if there were more than two
groups of data (Kruskal and Wallis, 1952). H statistic was used to
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Fig. 2. The clothespin relocation task.

determine the significance of the difference of the median of each group.
H statistics was compared with a critical cutoff point determined by the
chi-square distribution (chi-square is used because it is a good approx-
imation of H, especially if each group’s sample size is bigger than 5). For
the post-hoc analysis, Dunn’s Kruskal-Wallis multiple comparison was
used (Dunn, 1964). All the statistical analysis was conducted using R
4.0.5. Effect size for Wilcoxon signed-rank test was calculated with r =
%, where Z-score is a test statistic and standardized score of U-value
calculated from Mann-Whitney U test (Tomczak and Tomczak, 2014)
and n is the total number of observations. The effect size of

Kruskal-Wallis test was calculated using Eta-squared (Rosenthal, 1986).

2.2. Model development

HPM-UP was developed based on the theories in human factors and
psychology, and human-subject data. The model stemmed from the
CPM-GOMS method since some tasks can occur in parallel (John and
Gray, 1994) and thus, CPM-GOMS provide a more accurate TCT esti-
mates as compared to other models that assume serial activities. In
CPM-GOMS models, the task is broken down into a series of operators or
actions. Each operator is assigned a specific execution time (e.g.,
keystroke = 0.28 s) (Kieras and Santoro, 2004). These times are typically
determined by previous research or user testing. The next step involves
constructing a schedule chart, similar to those used in project
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Fig. 3. The SHAP door handle task.

Table 2
List of hypotheses.
Hypothesis ID Hypothesis
H1 The results of HPM-UP learnability dimension would be similar

(Learnability)
H2 (Error rate)

to the human-subject data.

Use of the CC configuration would lead to the lowest error rate

followed by the PR and DC configurations.

H3 (Memory The results of HPM-UP memory load dimension would be
load) similar to the benchmark model.

H4 (Efficiency) (H4-1) The results of HPM-UP efficiency dimension would be

similar to the human subject data.

(H4-2) There would be a significant difference between the

HPM-UP efficiency dimension results and the benchmark model

results.

The results of HPM-UP satisfaction dimension would be similar

to the human-subject data.

H5 (Satisfaction)

management (John and Kieras, 1994). TCT is then calculated by adding
up the execution times for all the operators. However, unlike other
GOMS models, CPM-GOMS takes into account the possibility of paral-
lelism. That is, it recognizes that some operators can be performed
simultaneously, rather than sequentially. This allows CPM-GOMS to
provide a more realistic estimate of TCT for expert users, who often
overlap their activities to work more efficiently.

In addition to the CPM-GOMS logic, declarative memory module
functions from ACT-R 7.0 were used for simulating the number of
memory chunks in HPM-UP (Bothell, 2017; Estes, 2015; Leiden and Best,
2005). For example, while performing ADLs, participants had to
remember a particular device configuration to adjust the hook and
complete the tasks. R software package 4.0.5 was used for model
development.
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2.2.1. Outcomes of the model

HPM-UP provides five usability dimensions based on Nielsen (2012)
five dimensions of usability, including learnability, efficiency, memory
load, errors, and satisfaction as these dimensions have been frequently
used in evaluating the usability of other products. For the HPM-UP,
there was a need to have new definitions of usability dimensions
related to the prosthetic device application. Therefore, the modified
usability dimensions were defined as follows.

e Learnability: The number of training trials required to pass the
training criteria

e Error (Error Rate): The error rate in performing a task with a pros-
thetic device

e Memory Load: The number of memory chunks stored in working
memory when performing a task with a prosthetic device

o Efficiency: TCT of one cycle of an ADL task

e Satisfaction: The relationship among perceived performance, expec-
tation, and desire (Oliver, 1977, 1980)

These dimensions are described in detail below.

2.2.2. Learnability

The learnability dimension in HPM-UP is defined as the number of
training trials to pass the training threshold level (or to reach a plateau).
The original learnability equation is based on the learning curve’s unit
theory (Camm, 1985; Mislick and Nussbaum, 2015; Zhang et al., 2016)
which is defined as Equation (1).

Y, =Ax )]

In equation (1), Y, is the cost of unit x, A is the theoretical cost of unit 1,
x is the unit number, and b is a constant that determines the slope of the
learning curve. In HPM-UP, x is the number of training trials which is the
outcome of learnability. A is the TCT for the first trial. Yy can be replaced
with the TCT in each trial and can be gathered from training trials.

Pilot data from 10 participants were used to investigate the patterns
in TCT (Park, 2023). It was found that TCT of the first trial (i.e., A) is
different across participants, which might be due to the device calibra-
tion quality (DCQ). There are two types of DCQ including: Objective
DCQ (ODCQ) and subjective DCQ (SDCQ). ODCQ can be calculated using
Equation (2) (Music, 2022).

The number of correctly matched input gestures
The number of all input gestures

ODCQ = ()]

ODCQ can be used to estimate A for each participant, however, it
requires collecting data from all participants and conducting a detailed
video analysis, which might not be suitable for the HPM-UP package as
the goal of this package is to use it in early stages of the design and
development process of prosthetic devices. Additionally, video analysis
cannot guarantee if specific activities were intended or not by the par-
ticipants. Therefore, the SDCQ was used to adjust A. Having high SDCQ
could result in small A (i.e., positive perception of device calibration
quality could lead to shorter TCT in the first trial). However, subjective
evaluations can have self-report bias (VandenBos, 2007). To mitigate the
self-report bias, the first impression (FI) of the prosthesis was also
considered. FI refers to one’s initial perception of a person (or object),
typically involving a positive or negative evaluation as well as a sense of
physical (or psychological) characteristics (VandenBos, 2007). In this
study, although all the participants passed the training criteria, the
number of required training trials were different among participants,
which led to having different error rates, or efficiency in the experi-
mental trials. These differences could have been due to different FI of the
device.

Therefore, the A factor was adjusted (called A') based on the FI and
SDCQ (Equation (3)). If SDCQ is 1, which means users think the DCQ is
perfect or has no errors, the FI is the only concern. However, if SDCQ is
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for example 0.5 (e.g., 5 out of 10 gesture inputs were correct), the A will
be doubled. The FI factor is a number between 0 and 1. If FI is less than 1,

A’ will increase. If FI equals to 1 (i.e., the FI is positive), A will only be
influenced by SDCQ.

’ A

~SDCQ H 3

SDCQ in this study was calculated based on the average of the re-
sponses to questions Q3 (easiness in adjusting the device (fixing,
fastening)), Q6 (easiness of using the device), and Q8 (effectiveness of
using the device (the degree to which the device meets a user’s needs) of
the USE questionnaire. FI was calculated from the difference between
the SDCQ and participant’s training performance. This indirect
approach was used to avoid self-report bias (VandenBos, 2007) that
could have occurred if FI was measured directly. The slope of learning
curve is represented by b as shown in Equation (4).

cost of unit 2n A(2n)

i b
slope of learning curve = costof unitn ARy =2 4)

_ .. In (slope)
In(slope) =bln(2)..b = 2

Previous studies found that the slope could be estimated based on the
degree of automation (e.g., 70% for entirely manual operations) (Mislick
and Nussbaum, 2015). Since the tasks in this study were performed by
prostheses, ideally, the slope could be 0.7 when the calibration quality is
perfect (Mislick and Nussbaum, 2015) (i.e., the prosthesis could always
be controlled based on user’s input). However, since calibration quality
could be varied, there is a need to adjust the slope. If SDCQ becomes 0,
the slope changes to 0.90 (i.e., there is almost no learning occurred
between the trials - refers to the 25% manual operation) (Mislick and
Nussbaum, 2015). Therefore, Equation (5) shows the linear relationship
between the SDCQ and slope.

slope= — 0.2(SDCQ) + 0.9 (5)

Equation (5) does not include a potential effect of physical and/or
mental workload on device learnability. Therefore, two parameters were
added to adjust the slope based on the level of workload as shown
Equation (6).

slope= — 0.2R;(SDCQ) + (0.9+R>) 6)

The initial values for R; and R, parameters were determined based
on the pilot study with 10 participants. R, refers to the baseline physical
and mental demand of participants before the experiment which was
quantified using the NASA-Task Load Index (TLX) questionnaire (Hart
and Staveland, 1988). R; was determined based on the changes of
physical and mental workload from the baseline.

Based on the changes in slope and A factor described earlier, the
learning curve equation was revised to estimate learnability as shown in
Equation (7).

x A In (~0.2R; SDCQ+(0.9+R2))
= [ In2
L=AX"=speq F* " @

2.2.3. Error rate

Including errors in the HPM-UP for analysis of prosthetic devices is
necessary since unlike the direct human interaction with a mouse or
keyboard controlled with high precision, a prosthesis device uses an
EMG signal that does not always correctly project user’s intentions to the
outcome (i.e., hook movement). That is, there is a mediator (prosthesis)
between the human and the task, which can affect the task performance.
Some prior studies estimated errors in using protheses with the concepts
of total and active errors (Hargrove et al., 2007; Lock et al., 2005;
Scheme and Englehart, 2011). Active error is determined by the pro-
portion of erroneous active decisions to the overall count of active
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decisions (Music, 2022). Total error rate is computed as the ratio of
incorrect decisions, specifically mismatches between the input gesture
and hook movement, to the total number of decisions. However, these
studies had some limitations. First, it is challenging to clearly figure out
whether a specific gesture is an active or inactive decision from obser-
vational studies. Second, prior studies only considered the pattern
recognition (PR) configuration, which might limit the generalizability of
the approach to other prosthetic device configurations such as the direct
control (DC) or continuous control (CC).

To address the identified limitations, the error rate in HPM-UP was
formulated differently from Scheme and Englehart (2011) study. The
error rate in HPM-UP depends on learnability (e.g., participants who
reached the training criteria faster exhibited few numbers of errors in
experimental trials). Error rate was estimated based on learnability (i.e.,
Err(L)) because of the causal relationship between two dimensions. If
L = 1, (i.e.,, learnability is 100%), the estimated error rate in the
experimental trials will be 0 (i.e., Err (1) = 0). If L = 0, Err (0) will be 1,
which means that participants will make errors during the experimental
trials since they failed to learn how to use the device during the training.
The error rate follows the natural exponential function as shown in
Equation (8). This exponential curve was fitted based on the results of
pilot testing using the calculated learnability and error rate observed
during the experiment.

Err (L):max{lie(eL—e),O} ®)

2.2.4. Memory load

Declarative memories are the kind of memories that can be declared
(e.g., the name of one’s fifth grade math teacher). Chunks are the ele-
ments of declarative knowledge in the ACT-R theory and are used to
communicate information among modules through the buffer (Bothell,

Disconfirmation of belief; =Z {l;l —f (I: .G ) } =Z {Percevied performance; —

2020). Chunks help link past experiences with the present context,
determining their relevance and ease of retrieval at any given time.
HPM-UP measured each chunk’s duration in working memory. Chunk’
duration was measured as time in millisecond from the moment when it
first entered the working memory stack and the moment when it dis-
appeared from the working memory stack due to the time lapse without
retrieval. Therefore, memory load in HPM-UP was defined as the overall
occupancy or duration of working memory chunks in the entire task and
was calculated using Equation (9), which divides the summation of the
duration of all chunks by the total task duration (Estes, 2015, 2021).
Thus, the memory load in HPM-UP is different from learnability, as it
only considers the number of memory chunks and task duration.

7
>~ (chunk duration),

_ia
Memory load = total task duration ©

2.2.5. Efficiency

Efficiency was calculated using Equation (10) and based on the TCT
and considering error rate. HPM-UP calculates the efficiency of an
expert (i.e., no errors) based on the TCT estimates from the CPM-GOMS
method and inflates the task time based on the error rate to estimate
efficiency for all users.

Eff (Err) =Eff{Err(L)} = (Expert/s efficiency) x {1 +Err(L)} (10)
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The time duration of general operators (e.g., “Grasp™) follows the
Motion-Time Measurement (MTM-1) (Maynard et al., 1948), as it has
the most fine-grained level of description for human movements. More
information regarding the use of these operators in our model can be
found in Park (2023).

2.2.6. Satisfaction

The theoretical foundation to formulate satisfaction came from the
expectation confirmation theory (ECT) which is a cognitive theory that
explains satisfaction as a function of expectations and perceived perfor-
mance (Oliver, 1977, 1980). Once users accumulate experience on a
product or service, they can subjectively evaluate their performance
with the device (Lowry et al., 2006). The user compares the desire and
expectations against the perceived performance of the product. Expec-
tation is a belief or subjective prediction about a product’s attributes or
performance at some point in the future (Bhattacherjee, 2001). Perceived
performance is a user’s perception of the degree to which a product can
fulfill his or her expectation in actual usage. Desire is the level of attri-
butes and benefits that leads to attaining the user’s desired outcomes
(Spreng et al., 1996). ECT posits that satisfaction is directly influenced
by disconfirmation of beliefs and perceived performance and is indi-
rectly influenced by both expectations and perceived performance by
means of a mediational relationship which passes through the discon-
firmation construct.

Expectation function (f) in the HPM-UP was defined based on the
expected task performance after passing the training session (or ex-
pected performance before the experiment trials). Desire was determined
with q that was used in the calculation of learnability dimension.
Perceived performance was calculated from the Efficiency dimension.
Based on these concepts, disconfirmation of beliefs was formulated as
Equation (11).

Entire task duration (i.e., 120 seconds) ‘a
min threshold; + Learnability; x (max threshold; — min threshold;) el
11

In this equation, 131 is a matrix or vector of participants’ perceived
performance, which is calculated from the efficiency module of HPM-

UP. Expectation (f) is a function of learnability (I:» ) and desire @ )
because expectation can be estimated using the training performance or
learnability as it is a belief or subjective prediction of performance in the
future. For example, if users pass the training criteria only within 3 or 4
trials, they may perform well during the experimental trials. Thus,
learnability was used as a variable to determine expectation (i.e., expected
performance) before the experimental trials based on the thresholds
defined for each configuration (threshold;; e.g., 20-35s for the DC
configuration). Based on the definition of desire (i.e., the level of attri-
butes and benefits that leads to attaining the user’s desired outcomes), g
ranges between 0 and 1 and is multiplied by expectation.

Lastly, Effort was defined as the level of difficulty (mentally and
physically) in performing an activity (Hart and Staveland, 1988), which
could also affect perceived performance. Therefore, the original ECT
was revised to include the level of effort needed to perform the tasks
(Fig. 4). Then, satisfaction was finally formulated with Equation (12)
based on the disconfirmation of beliefs and effort. In addition, a constant
value (c¢) was added which refers to the minimum level of satisfaction.

Satisfaction; = (Disconfirmation of belief;) x (1 - E{jg)(;t ) +c 12)
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3. Results
3.1. HPM-UP

An overview of HPM-UP graphical user interface (GUI) is illustrated
in Fig. 5. Analysts can start using HPM-UP by either using the ‘Develop a
Scenario’ tab or loading an already developed scenario (Microsoft CSV
format). Then, input parameters should be determined from the ‘Input
parameters’ tab. Lastly, the model will assess the usability of the pros-
thetic device based on dimensions including learnability, error rate,
memory load, efficiency, and satisfaction as shown in the ‘Results’ tab.

Figs. 6-8 illustrate the HPM-UP input entry, scenario development
interface, and the output window respectively. In the input parameter
screen (Fig. 6), the type of ADL task (e.g., CRT or SHAP) and device
control scheme (e.g., DC, PR, or CC) can be selected. The minimum and
maximum training time duration should be specified based on analysts’
previous knowledge, literature, or pilot test results (the minimum and
maximum values in Fig. 6 came from our pilot test results based on the
PR configuration). Device calibration quality (0-1), first impression
(0-1), and effort (0-1) should be determined based on the analyst
expertise and/or end users’ input.

If the analysts would like to develop a scenario manually, they can
click the ‘Develop a Scenario’ tab (Fig. 7). Analysts can choose one of the
appropriate operators or memory chunks from the radio buttons on the
screen. If they would like to unselect radio buttons, they can click on the
‘Remove current selections’ button. First, analysts should define a goal
for their model (by clicking the ‘Add a goal?’ check box). Once the goal
is described in the text box of ‘Describe the use of the operator,” the
analysts can click ‘Add new line to code’ to add a line of code to the
scenario. The analyst can continuously develop the scenario by clicking
one of the operators and describing the operator in the related textbox.
Parallel activities can be added by clicking the “Parallel?” check box
when adding a line to the scenario. A chunk can be added to the scenario
once analysts choose an operator, click one of the chunks under the
“Chunks” column, describe the operator, and click “Add new line to
Code”. Analysts can also add a custom chunk to the scenario. If there is a
need to add new or customized operators, the analyst can choose
“custom” at the bottom of each column of perceptual, cognitive, or
motor operators. Then, the name of operator and duration can be
specified. The scenario can also be downloaded in a CSV format once it is
complete. This is useful because working or editing directly on a CSV
format file might be necessary when the analysts are developing more
complex scenarios. The CSV format file can also be loaded from the
HPM-UP main screen.

Once all the input parameters are added, analysts can see the out-
comes in terms of the predicted five usability dimensions (Fig. 8).

To provide a rule of thumb to support the interpretation of the out-
comes of HPM-UP (Fig. 8), a literature review was conducted (Table 3).
However, it is important to note that the outcomes depend on several

factors such as individuals’ physical condition, the amount of time they
spend using the prosthesis per day, and the complexity of the tasks they
are performing with it.

3.2. Model validation

Table 4 illustrates the descriptive statistics results regarding the
comparison among the human subject data, the HPM-UP modeling
approach, and the benchmark model. The benchmark model does not
provide learnability, error rate, and satisfaction, and therefore, these
cells are marked with not applicable (N/A). However, HPM-UP was able
to generate all five dimensions.

A summary of hypothesis test results is shown in Table 5. All the
hypotheses were supported except for H2. For the learnability dimension
(H1), there was no significant difference between the human subject
data and HPM-UP generated data based on the Wilcoxon Signed-Ranks
Sum test (W = 436.5, p > 0.05).

Hypothesis 2 was refuted as there was no significant difference
among configurations in terms of error rate (H (2) = 1.57, p > 0.05).
According to the computational logic of error rate in HPM-UP, the error
rate depends on learnability. There was no significant difference in
learnability among different configurations from the human subject data,
which led to not having any significant difference in error rate as well.

There was no significant difference in memory load between the
HPM-UP and the benchmark model (H3) (W = 65, p > 0.05). In the DC
configuration, participants needed to memorize and recall two mode
changes (supination/pronation or open/close) and three gestures (open,
close, AND rotation). Using the PR and CC configurations did not involve
memory chunks as these configurations were more intuitive.

For efficiency, both hypotheses (i.e., H4-1 and H4-2) were supported.
Based on Dunn’s Kruskal-Wallis multiple comparison, there was no
significant difference between the human subject data and HPM-UP
efficiency outcomes (H4-1) (Z = 0.26, p > 0.05). However, there was
a significant difference between HPM-UP and the benchmark model
(H4-2) (Z = —4.54, p < 0.001). There was also no significant difference
in satisfaction between the human subject data (USE questionnaire —
satisfaction dimension) and HPM-UP (W=41, p > 0.05).

To further validate the model, the root mean square error (RMSE)
and R-squared were calculated (Wu, 2018). RMSE was used to measure
the average deviation between the predicted value and the observed
data, while R-squared was used to understand how well the predictor
variables can explain the variation in the response variable. RMSE for
learnability between the observation and HPM-UP was 2.1 with an
R-squared value of 0.56. For efficiency, RMSE was 2.42s and R-squared
was 0.48. The RMSE for satisfaction was 0.19 with R-squared value of
0.89.
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4. Discussion

The hypothesis test results revealed that the HPM-UP generated
outcomes were similar to the outcomes derived from human subject
experiment. This implies that the logic behind HPM-UP worked properly
to estimate each usability dimension for upper limb prostheses under the
experimental conditions of this study. However, the findings of the
benchmark model were significantly different from the HPM-UP model
and the outcomes from the human subject experiment. This is because
the focus of the benchmark model was for modeling expert behavior
without any errors. Therefore, unlike the benchmark model, HPM-UP
showed closer results to the human data, especially for the TCT, as
HPM-UP incorporated error rates based on the learnability dimension.

As a unique approach, in the HPM-UP, learnability was used as an
input for calculating other usability dimensions. Including the subjective

device calibration quality and first impression in the equation was
appropriate because the training criteria could not capture the indi-
vidual differences. This means that although all the participants could
pass the training sessions, they were not on the same level of the
expertise in terms of controlling the prosthesis. Furthermore, incorpo-
rating the physical and mental workload into the learning curve slope
was helpful to customize the model.

Error rate estimation feature of HPM-UP is closely related to learn-
ability. The unique approach of HPM-UP with error rates is that it tried
to model the effect of errors not only on task performance (i.e., effi-
ciency) but also satisfaction because the efficiency was used as an input
for the satisfaction dimension. The predicted satisfaction scores from the
HPM-UP were similar to the results from human data and were signifi-
cantly different from the benchmark model outcomes. The error rate
calculation approach in HPM-UP was useful, as calculating the number
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of errors manually (by watching videos) was not feasible for the HPM-
UP. It was not possible to figure out whether the specific hand ges-
tures were errors as the videos did not provide any information on
participants’ intention.

We expected that the use of the CC configuration would lead to the
lowest error rate followed by the PR and DC configurations. This was
mainly because the CC mode allows for more intuitive and seamless
transitions between different movements and has more DoF as compared
to the other two control schemes (i.e., DC and PR) (Liu et al., 2024).
However, this hypothesis was not supported by the data. The findings
suggested that there were no significant differences in the error rate
among control schemes. Although the capability of CC to drive multiple
DoFs simultaneously was expected to allow participants to adopt more
natural motion strategies to efficiently complete tasks, participants had
a hard time controlling the device. This was because sometimes the hook
was rotating even though the participants had a neutral gesture and
therefore, it was difficult for them to recover from errors. The other
reason might be that the ADL tasks were too simple and therefore, could
not show the differences between these configurations. Although the CC
mode allowed simultaneous joint operations and natural arm motion in
control, since the number of controllable joints in our study was limited
to two and the task duration was short, the perceptual, cognitive, and
motor demand in operating CC and PR control could be similar. There
might be differences between the PR and CC configurations if the tasks
become more complicated. Future studies should assess the differences
in control modes using more complex ADLs.

Since error rate affects efficiency, the model outcomes became closer
to the human subject data than the benchmark model. In a previous
cognitive modeling study (Zahabi et al., 2019), it was assumed that
participants were experts (which means that they do not commit errors)
in a certain task after they passed the training sessions, which is one of

the main assumptions of many HPMs (Park and Zahabi, 2022b). How-
ever, this research found that participants could still make mistakes even
after passing the training sessions. These errors were added to estimate
the TCT and to calculate the efficiency. Therefore, the HPM-UP model
outcomes were similar to the human subject data and significantly
different from the benchmark model, which was developed based on
CPM-GOMS and did not include error rate in the model. In sum,
including error rate in the HPM-UP efficiency modeling is one of the
unique merits of HPM-UP, as compared to CPM-GOMS. Another unique
feature of HPM-UP is using a computational approach for quantifying
satisfaction based on theories.

The major contribution of this research was that our model provided
a method for early usability evaluation of prosthetic devices. Previous
studies focused on human subject experiments and subjective evalua-
tions for usability and mental workload assessment of amputees (Park
and Zahabi, 2020, 2022a). HPM-UP can be used to improve the usability
of prosthetic devices using pilot tests and early-stage prototypes espe-
cially since conducting human subject experiments with amputee par-
ticipants can be time-consuming and challenging. The other
contribution is that it developed a model for upper limb prosthetic de-
vices based on top-down (theories) and bottom-up (data driven) ap-
proaches and the model was validated with a human subject experiment.
The model in this research was successful as it could predict learnability
accurately even for cases where participants needed more training (i.e.,
more than 10 trials) due to fatigue or low device calibration quality.
Furthermore, the dimensions in HPM-UP are interconnected and this
connectivity has not been quantified in previous methods.

4.1. Practical implications of HPM-UP

There are several practical implications of HPM-UP for clinicians,
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device developers, or researchers in the cognitive modeling domain. The
model can be used by clinicians and device developers using the GUI and
with mouse-clicks. This feature can be especially useful for those
without any knowledge of programming. In addition, in the ‘Results’
tab, a guideline table is provided, which can provide practical recom-
mendations regarding the range of each usability dimension score. With
this table, clinicians can determine whether to recommend a certain
prosthesis to a patient. Finally, under the ‘Help’ tab of HPM-UP, several
tutorial videos are provided on how to use the model.

Whenever clinicians have new amputee patients and before recom-
mending any prosthetic device to patients, they can test or predict which
device could be the best in terms of the usability for the amputee. That is,
HPM-UP could reduce the work of clinicians to find, test, analyze, and
recommend a prosthetic device. Once clinicians collect the input pa-
rameters (e.g., first impression) for each prosthetic device from the pa-
tients, they could run the model and see the predicted usability
dimensions. Then, based on the results and the guideline table, they can
recommend the best device to amputees.

For designers of prosthetic devices, HPM-UP could be a quick and
practical guidance for a prototype-level usability assessment. Once they
have defined the tasks and a concept for the prosthetic devices, they
could predict the human performance of the device in the early stages of
the design process. They can also change the input parameters based on
the characteristics of the target group. Based on the results, they can
make changes to the device configurations to improve human use.

Although this model was initially designed and tested with EMG-
based prosthetic devices, it can be applied to assess the usability of
other prosthetic device configurations (e.g., body-powered prostheses).
For example, using HPM-UP for assessing the usability of the body-
powered prostheses might suggest different patterns in learnability
and memory load due to more intuitive and simple control mechanisms.

The model may predict a faster learning curve as the users can quickly
learn to control the device through basic body movements, and it offers
direct mechanical feedback, but potentially higher physical effort over
long use, as compared to EMG based prostheses. In addition, the model
could predict changes in usability metrics as users gain experience with
the prostheses. This is because HPM-UP uses learnability as the first
dimension and an input for all other following usability dimensions.
Over time, users typically become more adept at operating their pros-
thetic devices, leading to improvements in efficiency and a reduction in
error rate, which could lead to higher level of satisfaction.

4.2. Limitations

There are several aspects of this study that may limit the generaliz-
ability of findings. First, HPM-UP has some free parameters, especially in
learnability and satisfaction dimensions. The reason to include them in
the models was to personalize the outcome of the model to improve
model performance. The initial/default values included in the current
version of HPM-UP was calculated based on our pilot tests. Although this
approach has been used in other HPMs such as the queuing network-
model human processor (QN-MHP) (e.g., preliminary estimates of the
perceptual memory access time) (Feyen, 2003), MHP (Card et al., 1986),
or ACT-R (Bothell, 2020), the outcomes of the model depend on these
values. To quantify qualitative dimensions such as learnability and
satisfaction, some assumptions have been made. For example, SDCQ was
calculated based on the average of the responses to questions Q3
(easiness in adjusting the device (fixing, fastening)), Q6 (easiness of
using the device), and Q8 (effectiveness of using the device (the degree
to which the device meets a user’s needs) of the USE questionnaire. FI
was calculated from the difference between the SDCQ and participant’s
training performance. Furthermore, HPM-UP estimates the immediate
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Table 3
Thresholds to interpret the findings.
Dimension Threshold for acceptable Reference
usability
Learnability < 3-5 training trials
Park et al. (2020)
Error Rate <15% Mohebbian et al. (2021)
Memory 3-5 chunks of information Cowan (2010)
load
Efficiency ~80% of the experts’ Park et al. (2022); White et al.
performance (2017)
Satisfaction Body powered device: >45% Rekant et al. (2022)

Myoelectric device: >50%
Cosmetic device: >50%

learnability and satisfaction after using prostheses, which is different
from the retention effect or long-term/sustained satisfaction, which is
the original concept behind the ECT. Future studies should validate
these assumptions with additional experiments and considering
long-term satisfaction with prosthetic devices.

Table 4
Descriptive statistics (mean (sd)).

Another limitation of this study was that participants were mainly
young adults. Older adults or those outside of this age range might have
different ergonomics and usability requirements. They might interact
with and perceive prosthetic devices differently due to variations in
physical abilities, technology familiarity, and cognitive flexibility,
impacting their ability to efficiently use these devices. Older adults may
experience a decline in physical capabilities such as muscle strength,
coordination, and dexterity. This decline can impact their ability to
handle and operate prosthetic devices efficiently. For example, hand
strength and dexterity significantly decrease with age, which could
affect the use of prosthetic devices (Desrosiers et al., 1994). Further-
more, quadriceps function, proprioceptive acuity, and functional per-
formance decrease with age, which could affect the manipulation of
prosthetic controls (Maresova et al., 2023; Toledo and Barela, 2014).
Studies have found that structured exercise programs and physical ac-
tivity interventions can enhance functional abilities, therefore,
improving the overall effectiveness and satisfaction with prosthetic de-
vices (Pinheiro et al., 2022). The adaptability of older adults to new
technologies or rehabilitation methods can also differ, influencing

Factors (definition) Human subject data HPM-UP Benchmark model
DC PR cC DC PR cC DC PR cC

Learnability 7.8 (3.46) 5.50 (1.50) 9.80 (4.40) 8.20 (6.54) 7.00 (3.87) 10.00 (5.00) N/A
Error rate (%) N/A 36.43 (3.36) 25.8 (3.55) 28.14 (8.76) N/A
Memory Load N/A 4.79 (0.04) 0 0 4.80 (0.00) 0 0
Efficiency CRT 17.91 (6.76) 12.90 (5.77) 13.40 (2.30) 19.03 (2.48) 11.19 (3.91) 14.19 (5.62) 13.3 (0.00) 6.9 (0.00) 6.9 (0.00)

SHAP 11.03 (2.31) 11.26 (4.95) 18.91 (7.10) 11.96 (0.70) 12.22 (1.42) 13.18 (1.71) 8.2 (0.00) 8.6 (0.00) 8.6 (0.00)
Satisfaction (%) 75.09 (0.12) 64.51 (0.23) 65.28 (0.18) 61.16 (0.06) 61.18 (0.11) 56.20 (0.16) N/A
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Hypothesis ID Hypothesis

Test Result Test statistics, p-value,

effect size

H1 (Learnability)  The results of HPM-UP learnability dimension would be similar to the human-subject data. Supported W =436.5,p=0.85r=
0.03

H2 (Error rate) Use of the CC configuration would lead to the lowest error rate followed by the PR and DC Refuted (DC = H(2) =1.57,p=0.47,p* =
configurations. PR=CC) .06

H3 (Memory The results of HPM-UP memory load dimension would be similar to the benchmark model Supported W=65p=0.23r=0.28

load)

H4 (Efficiency) (H4-1) The results of HPM-UP efficiency dimension would be similar to the human subject data Supported Z=0.26,p=0.79,r = .03
(H4-2) There would be a significant difference between the HPM-UP efficiency dimension results and Supported Z = —4.54,p <0.001, r =
the benchmark model results 0.64

H5 (Satisfaction) The results of HPM-UP satisfaction dimension would be similar to the human-subject data Supported W=41.3,p =0.59, r = 0.07

usability assessments. Future studies should validate HPM-UP with administration, Methodology, Investigation, Funding acquisition,

participants from different age groups.

The decision to work with healthy individuals was made due to the
limited number of trans-radial amputees in the surrounding area. In
addition, since most patients currently use devices with DC modes
(commonly used in myoelectric control), recruiting such patients could
have produced a bias in their performance. Furthermore, although HPM-
UP provides estimates of device usability, it cannot guarantee the fitness
or feeling of embodiment of a prosthesis to amputees. Lastly, although
HPM-UP supports modeling under GUI environment, analysts need to
have basic knowledge of human performance modeling.

5. Conclusion

Previous studies for measuring usability of upper-limb prostheses
relied on human subject experiments and subjective evaluations. While
these methods could provide useful outcomes, early estimation of us-
ability is critical to reduce future device rejection due to usability issues.
Therefore, this research advanced the fundamental knowledge of esti-
mating usability of EMG-based upper-limb prostheses. This study not
only quantified each usability dimension (learnability, errors, memory
load, efficiency, and satisfaction) but also connected them in a compu-
tational way. The outcome of this study, HPM-UP, provides the capa-
bility to predict human performance of prostheses at the early stage of
the design process.

The model is released to Github (https://github.com/hsilab/hpmup)
and can be run with Rstudio. As the model was developed in R Shiny
package format with a GUI, it does not require hard coding and other
researchers, designers, or clinicians can easily adopt it. As the source
code is released, researchers can modify or upgrade the software for
their own purposes. Clinicians can test and analyze the human perfor-
mance of several commercial prostheses to find and recommend a best
device(s) for the patient. Manufacturers can also run the software to
evaluate usability of devices under different types of prosthetic config-
urations and scenarios.
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