
Frontiers in Audiology and Otology
TYPE Original Research

PUBLISHED 27 September 2023

DOI 10.3389/fauot.2023.1223209

OPEN ACCESS

EDITED BY

Claus-Peter Richter,

Northwestern University, United States

REVIEWED BY

Sridhar Krishnamurti,

Auburn University, United States

Charlotte Vercammen,

Sonova, Switzerland

*CORRESPONDENCE

Dhruv Vyas

dhruv-vyas@uiowa.edu

RECEIVED 15 May 2023

ACCEPTED 06 September 2023

PUBLISHED 27 September 2023

CITATION

Vyas D, Jorgensen E, Wu Y-H and Chipara O

(2023) Evaluating and optimizing hearing-aid

self-fitting methods using population coverage.

Front. Audiol. Otol. 1:1223209.

doi: 10.3389/fauot.2023.1223209

COPYRIGHT

© 2023 Vyas, Jorgensen, Wu and Chipara. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Evaluating and optimizing
hearing-aid self-fitting methods
using population coverage

Dhruv Vyas1*, Erik Jorgensen2, Yu-Hsiang Wu3 and

Octav Chipara1

1Department of Computer Science, University of Iowa, Iowa City, IA, United States, 2Department of

Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States,
3Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States

Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids

to treat their hearing loss at a fraction of traditional hearing care costs. These

products incorporate self-fitting methods that allow end-users to configure their

hearing aids without the help of an audiologist. A self-fitting method helps users

configure the gain-frequency responses that control the amplification for each

frequency band of the incoming sound. This paper considers how to guide the

design of self-fitting methods by evaluating certain aspects of their design using

computational tools before performing user studies. Most existing fittingmethods

provide various user interfaces to allow users to select a configuration from a

predetermined set of presets. Accordingly, it is essential for the presets to meet

the hearing needs of a large fraction of users who suffer from varying degrees

of hearing loss and have unique hearing preferences. To this end, we propose

a novel metric for evaluating the effectiveness of preset-based approaches by

computing their population coverage. The population coverage estimates the

fraction of users for which a self-fitting method can find a configuration they

prefer. A unique aspect of our approach is a probabilistic model that captures

how a user’s unique preferences differ from other users with similar hearing loss.

Next, we propose methods for building preset-based and slider-based self-fitting

methods that maximize the population coverage. Simulation results demonstrate

that the proposed algorithms can effectively select a small number of presets that

provide higher population coverage than clustering-based approaches. Moreover,

wemay use our algorithms to configure the number of increments of slider-based

methods. We expect that the computational tools presented in this article will help

reduce the cost of developing new self-fitting methods by allowing researchers to

evaluate population coverage before performing user studies.

KEYWORDS

audiology, hearing aids, genetic algorithm, hearing-aid self-fitting, over-the-counter

hearing aids

1. Introduction

Hearing loss is an epidemic in the United States that is too often left untreated.

The primary treatment for hearing loss is hearing aids (HAs). However, of the

48 million Americans with hearing loss, only 14-34% use HAs (Lin et al., 2011;

Chien and Lin, 2012; Powers and Rogin, 2019). A major reason for the low rate

of HA adoption is their high cost. One study estimated that the average cost

of HAs bundled with several audiologist visits is $2,500, representing a significant

financial expense for 77% of Americans (Jilla et al., 2020). Economic barriers to

hearing healthcare disproportionately affect minorities; most HA users are affluent,
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educated, and white (Nieman et al., 2016; McKee et al., 2019;

Reed et al., 2021). Thus, there is a critical need to improve

access to hearing care. One solution is the advent of over-the-

counter (OTC) HAs. The OTC Hearing Aid Act, signed into law

in 2017, with subsequent rules delivered in 2022, has enabled

HAs to be sold over the counter without the need for the user

to see an audiologist or medical professional. OTC hearing aids

are designated for adults who perceive that they have mild-to-

moderate hearing loss, even if they have not had a formal hearing

evaluation from an audiologist. In theory, OTC hearing aids should

be cheaper than prescription hearing aids. However, they require

the user to self-fit the device. The primary function of HAs is

to divide the incoming sound into several frequency bands and

amplify each band preferentially. For HAs to address a user’s needs

it is essential to fit the HA by configuring the gain-frequency

response (gains, henceforth) of each band to compensate for their

hearing loss in that frequency band. Traditionally, HA fitting

is performed by an audiologist, who first measures the user’s

hearing loss as an audiogram. Audiologists construct audiograms

by presenting pure tone to measure the user’s hearing thresholds at

frequencies important for speech perception (typically 0.25–8 kHz).

A user’s hearing loss is characterized by their thresholds across

the frequency range relative to the average hearing thresholds

of normal-hearing listeners. The amount of gain applied in each

band is traditionally determined using a prescription formula,

commonly NAL-NL2 (Keidser et al., 2011). NAL-NL2 is based on

theoretical models of speech intelligibility and loudness comfort,

as well as empirical data showing differences in gain preferences

between different population subgroups (e.g., men vs. women,

experienced vs. new HA users). Since NAL-NL2 uses theoretical

models and population-level statistics, the prescribed NAL-NL2

configuration estimates the average configuration for a sample

of users with similar audiograms (and hearing loss). However, a

user’s preferred configuration may deviate significantly from their

prescribed NAL-NL2 configuration due to individual perceptual,

lifestyle, and HA usage factors that differ from person to person

(Søgaard Jensen et al., 2019). To customize a user’s configuration,

a series of visits to the audiologist are generally required to fine-

tune the HA’s configuration based on their feedback. OTC HAs

reduce cost, time, and other barriers to HA access by shifting the

burden of configuring these devices from the audiologist to the

end user. Traditional HA fitting requires sophisticated software,

a programming interface, and specialized knowledge typically

acquired through years of graduate-level training. For the lay user,

successful self-fitting must be achieved without any of these helpful

resources, which have traditionally been bundled with purchasing

a HA. To address this limitation, OTC HAs usually provide

a user interface that allows users to configure their gain. Two

common strategies are used to design user interfaces—collection-

based and slider-based approaches. Both approaches operate on a

set of predetermined and fixed configurations that we will refer

to as presets. In the case of collection-based methods, the presets

are configurations associated with representative types of hearing

loss. In contrast, slider-based methods directly manipulate various

aspects of configurations. For example, a loudness (i.e., overall

amplitude) slider increases the overall gain. The presets are the

union of all the possible configurations that the controllers may

reach. It is common for collection-based methods to include a

small number of presets, whereas slider-based methods typically

include more presets. We provide additional details about these

twomethods, including concrete examples of their use with existing

HAs in Section 2.

A key challenge associated with advancing the OTC fitting

methods is that their design requires extensive and costly user

studies. Similar challenges also occur when comparing different

self-fitting approaches. These questions will become increasingly

important as more OTC HAs are commercialized. Therefore, we

pose the question of whether it is possible to create metrics that

we can use to assess OTC HA fitting methods without resorting

to extensive user studies. We propose a new metric—population

coverage—to evaluate, compare, and optimize fitting methods. The

population coverage estimates how well a set of presetsP meets the

needs of users with mild-to-moderate hearing loss, the population

that would benefit from an OTC HA the most. We will develop

statistical models to estimate the population coverage of a general

self-fitting method given (1) statistics regarding the typical hearing

loss of users in a population of interest and (2) the set of presets

used in the fittingmethod.Moreover, we will show that it is possible

to optimize various parameters of a fitting method to maximize

population coverage.

A key benefit of population coverage is that it provides a

computational method to evaluate the performance of self-fitting

methods. In the remainder of the paper, we describe how to use

it to drive the development of two popular self-fitting approaches

that use presets and sliders. We expect population coverage to be a

useful design tool for the development of future self-fittingmethods

by allowing designers to narrow down the large space of possible

gain-frequency responses to those that would benefit a population

of interest. Of course, any fittingmethodmust be evaluated through

rigorous empirical studies that go beyond population coverage.

Our work builds on a line of research in audiology that aims

to identify representative audiograms (or equivalently different

types of hearing loss). Ciletti and Flamme (2008) used audiograms

provided from two publicly available datasets and applied cluster

analysis to identify audiograms representative of theUS population.

The audiograms within a cluster were more similar than those in

different clusters. The clustering analysis results may be used to

generate a set of presets by converting the centroid audiogram of

each cluster to a REAR configuration using NAL-NL2. A similar

approach to generating presets was proposed in Jensen et al. (2020).

We extend these approaches in two significant directions.

First, the above approaches assume that NAL-NL2 accurately

predicts a user’s most preferred configuration. Empirical evidence

shows that this assumption is incorrect and yields suboptimal

configurations to be selected as presets. We develop a statistical

model that characterizes how a user’s preference may deviate

from their NAL-NL2 prescription (see Section 3). Second,

our techniques are more general in that we can use them

for both collection- and slider-based approach. We present

algorithms to select presets for both collection- and slider-

based approaches that maximize the population coverage. Finally,

our results show our approach’s superiority over standard

cluster-based techniques in constructing presets. We note that

the paper’s novelty is using probabilistic models to drive the
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development of self-fitting methods, which helps avoid extensive

user studies.

The remainder of the paper is organized as follows. Section 2

summarizes prior work on self-fitting methods. A formal definition

of population coverage and methods for computing it for preset-

based self-fitting methods is described in Section 3. Algorithms to

optimize the presets for collection- and slider-based approaches

are included in Section 4. Results comparing different methods for

generating presets are provided in Section 5, and their importance

is discussed in Section 6. Section 7 provides conclusions and

discusses future work.

2. Related work

2.1. Slider-based approaches

A common approach to allow users to personalize OTC HAs

is to use sliders (or wheels) that manipulate the gains HAs used

to amplify each channel. For example, the Ear Machine approach

presents users with two wheels, one which sliders loudness and one

which controls fine-tuning (Nelson et al., 2018). The loudness slider

enables users to vary the overall gain, and compression parameters

of the HA, and the fine-tuning wheel enables users to vary the

tilt of the gains around a 2 kHz fulcrum. In another approach,

called Goldilocks, the user is presented with three parameters they

can adjust using up and down arrows: fullness (low-frequency

cut), crispness (high-frequency boost), and loudness (overall

amplification) (Boothroyd and Mackersie, 2017; Mackersie et al.,

2019). The user first adjusts loudness, then crispness, then loudness

again, then fullness, then any parameter until they find a gain that

is “just right.” It is important to note that these interfaces enable the

user to only select from a predetermined and fixed set of presets by

manipulating the sliders.

2.2. Collection-based approaches

Slider-based approaches can lead to successful self-fitting

(Brody et al., 2018; Boothroyd et al., 2022). However, because

these methods require the user to manipulate various parameters

on continuous scales, the self-fitting process can be cumbersome

and cognitively challenging. For example, six of the 26 users in

the evaluation of the Goldilocks required help with the interface,

and there was a wide range in time to completion among users,

indicating that some users likely found the procedure more difficult

than others (Boothroyd and Mackersie, 2017). Recent MarkeTrak

survey data found up to half of potential OTC users would not be

comfortable tuning their own HAs (Edwards, 2020). One way to

simplify the self-fitting process is to use an unordered collection

of presets (Sabin et al., 2020; Urbanski et al., 2021). A gain that

can accommodate most users is predetermined in a collection-

based approach. The self-fitting process then involves arriving at

the user’s most preferred preset. Presumably, the preset approach

can both shorten the self-fitting process and make the procedure

easier, reducing failures during the self-fitting process. Although

some studies have investigated the use of presets in OTC HAs, it

remains an open problem to determine the right set of presets and

the best strategy for identifying the user’s preferred preset in an easy

and efficient manner. In this paper, we focus on the former problem

while not directly addressing the latter.

In Urbanski et al. (2021), presets were derived using

audiograms of adults with mild-to-moderate hearing loss from

an extensive national database. First, they found all possible

gains based on the audiogram set. Then, they found the four

presets that fit the largest number of NAL-NL2 targets within

± 5 dB from 0.25 to 4 kHz. The four presets could match

NAL-NL2 targets within 10 dB for 70% of the audiograms in

the database. The presets were then empirically tested by first

assigning different presets to participants using various fitting

methods and having participants complete speech testing using the

presets selected in each method. Presets were determined either

based on the participant’s audiologist-administered audiogram, a

self-test audiogram, listening to the different presets in quiet and

in noise, a questionnaire, or random assignment. The presets

determined by each selection method were generally different from

one another. However, none of the fitting methods besides the

questionnaire and random assignment methods resulted in speech

perception scores that differed significantly from those obtained

when participants were individually fit to NAL-NL2 targets. Taken

together, the findings from that study suggest that the process by

which presets are determined for individual listeners impacts what

preset is chosen–but several different presets can yield comparable

efficacy for speech perception for any given listener.

3. Coverage of self-fitting methods

In this section, we consider the problem of estimating the

fraction of users with mild-to-moderate hearing loss whose hearing

needs can be met by a set of N presets P (i.e., |P| = N). To do so,

we need to answer three questions:

1. How do we define the subset of users with mild-to-moderate

hearing loss?

2. When are the hearing needs of a user met by a preset?

3. How do we estimate the fraction of users that are covered by a

set of presets?

We will answer each of these questions in each of the subsequent

subsections.

3.1. Target population

The population of users that would benefit the most

from OTC HAs includes those with mild-to-moderate hearing

loss. The National Health and Nutrition Examination Surveys

(NHANES) (National Center for Health Statistics, 2022) from

1996-2016 includes audiograms characterizing common hearing

loss configurations. For each user u, NHANES includes a

population weight wu representing the prevalence of that type

of hearing loss in the population. We focus on a subset of older

individuals with mild to moderate sensorineural hearing loss from

NHANES who meet the following criteria: (1) They are between 55

and 85 years old (inclusive); (2) Their audiometric thresholds from

0.25 to 6 kHz are less than or equal to 75 dB HL, with a threshold
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at 8 kHz that does not exceed 120 dB HL; (3) A four-frequency

pure-tone average (0.5, 1, 2, and 4 kHz) greater than 20 dB HL

but less than 50 dB HL (World Health Organization of mild-to-

moderate hearing loss, Olusanya et al., 2019); (4) Normal middle

ear function defined as peak tympanometric peak pressure greater

than or equal to −50 daPa and less than or equal to 50 daPa, ear

canal volume equal to or greater than 0.5 ml but less than or equal

to 2ml, and compliance equal to or greater than 0.3ml and less than

or equal to 1.5 ml. If only one ear qualified, only that ear is included

in the dataset. Finally, all audiometric and tympanometric data

is complete with no missing values. The selected subset included

1,979 audiograms (mean age = 67.77 years, SD = 8.02 years; 1,018

female, 961 male; 813 bilateral, 1,166 unilateral).

For each user u, we compute the prescribed NAL-NL2

configuration ĉu. The NAL-NL2 configuration is computed using

the NAL-NL2 software (NAL-NL2, 2022), configured similar to

Sabin et al. (2020) and Urbanski et al. (2021): (1) thresholds entered

as air conduction; (2) broadband input signal level of 65 dB SPL; (3)

18-channels with multichannel compression limiting; (4) default

directionality (0 degrees azimuth); (5) default microphone (head

surface); (6) experienced HA users; (7) compression speed to dual;

(8) non-tonal language. The user’s gender and age are set according

to the NHANES data. NHANES dataset includes audiograms for

unilateral hearing loss (hearing loss in one ear) or bilateral hearing

loss (hearing loss in both ears). People with bilateral hearing loss

may choose to wear one or two hearing aids (Cox et al., 2011).

Thus, for bilateral audiograms, we compute four sets of NAL-

NL2 configurations: unilateral left, unilateral right, bilateral left,

and bilateral right. Thus, we compute a total of 4418 NAL-NL2

configurations.

3.2. Population coverage

A configuration c is a six-dimensional vector (ci ∈ R
6)

representing the Real-Ear-Insertion-Gains (REIGs) at frequencies

0.5, 1, 2, 3, 4, and 6 KHz. The notation c[f ] (f ∈ {0.5, 1, 2, 3, 4, 6})

refers to the gain associated with frequency f in the vector c. We

will select a subset of N of configurations as presets. We define

the preset coverage of a preset pi to include all the configurations

c located within the ball centered at pi and with a radius R. The

distance between a configuration c and pi is the maximum absolute

difference computed across the six frequencies:

BR(pi) = {c ∈ R
6 | max |c− pi| ≤ R} (1)

We assume that all the configurations within the ball are covered by

preset pi. Audiologists are typically satisfied to find a configuration

within± 5 dB, so we set R = 5 dB.

The coverage of all presets in P is C(P):

C(P) =
⋃

pi∈P

BR(pi) (2)

Ideally, the presets included in P maximize the fraction of users

whose configurations are included in C(P).

Next, we consider determining whether a user’s configuration

is covered. A naive approach would be to assume that a user’s u

preferred configuration coincides with that prescribed byNAL-NL2

(as done in prior work, Jensen et al., 2020; Urbanski et al., 2021).

Consistent with this assumption, a user would be covered if its

prescribed NAL-NL2 configuration ĉu would be included in C(P).

Then, the fraction of the population covered would be the sum of

the population weights of covered users.

Emerging empirical evidence shows, however, that a user’s

preferred configuration often deviates from their NAL-NL2

prescription. In the following, we will propose a statistical model

that characterizes how the users’ preferences may deviate from the

NAL-NL2 model. We observe that fitting rationales like NAL-NL2

accurately estimate the average configuration for a group of patients

with similar hearing loss but do not account for the high variability

within the group due to individualized preferences. Moreover,

empirical evidence shows that a user’s preferred configuration often

differs from the NAL-NL2 configuration in either its “overall gain”

and/or “slope” (Mackersie et al., 2020; Boothroyd et al., 2022).

Therefore, the goal is to model how a user’s preferred configuration

may deviate from the NAL-NL2 prescription in overall gain and

slope.

To this end, we introduce transfer functions (see Figure 1A).

A transfer function is a log-linear function (Tj :R → R) describing

how a user’s u preferred configuration cu may deviate from their

NAL-NL2 configuration ĉu at f Hz.

cu,j[f ] = ĉu[f ]+ Tj(f ) (3)

We capture a user’s u potential preferred configurations cu,j using

several transfer functions Tj, each yielding changes in overall gain

and slope.

We construct the transfer functions as follows. Empirical

evidence suggests that the magnitude of the deviations at 0.5 and

4 KHz are within ± 15 dB (Mackersie et al., 2020; Boothroyd

et al., 2022) and at remains unchanged at 6 KHz. We divide

the range from −15 dB to 15 dB in increments of 3.75 dB and

create an anchor point at each increment at frequencies of 0.5

and 4 KHz (see Figure 1A). We select increments of 3.75 dB as

individuals cannot perceive the difference between configurations

with smaller REIG differences (Caswell-Midwinter and Whitmer,

2019). Then, each transfer function is constructed by fitting a

line for each pair of anchor points. By connecting each pair

of anchor points from 0.5 to 4 KHz, we create 81 possible

transfer functions. Accordingly, for a user u, there are 81 possible

preferred configurations, 80 of which differ from the user’s NAL-

NL2 configuration. For example, Figure 1B plots the NAL-NL2

prescription for one of the users in NHANES. Figure 1C plots the

user’s preferred configurations computed by adding each transfer

function shown (shown in Figure 1A) to the user’s NAL-NL2

configurations (shown in Figure 1B) according to Equation (3).

The transfer functions are designed to cover the range of

possible deviations from NAL-NL2. However, not all potential

preferred configurations are equally likely — configurations that

are closer to NAL-NL2 tend to be more likely. With each of

the 81 possible configurations, we associate a likelihood that is

determined by a 2D Gaussian parameterized by average deviation

in the low (5 and 1 KHz) and high frequencies (2, 3, and 4

KHz). Studies Mackersie et al. (2020) and Boothroyd et al. (2022)
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FIGURE 1

Example of an REIG from NHANES and its derived variations from transfer functions. (A) Transfer functions. (B) Example of an REIG from NHANES. (C)

Transfer functions superimposed on the REIG to create REIG variations.

collected statistics about the deviations between the configuration

prescribed by NAL-NL2 and those preferred by users. Using this

data, we empirically determine the mean and standard deviation

of the 2D Gaussian (see Figure 2). The weight lu,j of each potential

preferred configuration is cu,j determined according to the fitted 2D

Gaussian.

Recall that hearing loss can be either unilateral (i.e., only in

one ear) or bilateral (i.e., in both ears). We define a user with

unilateral hearing loss u to be covered if the sum of weights of the

covered potential preferred configurations exceeds a threshold (γ ).

A preferred configuration cu,j is covered if it is included in C(P).

Computing the coverage for a user with bilateral hearing loss is

a bit more involved since their hearing needs might be met in three

different ways:

1. Use a single device worn on the left ear (uni-left).

2. Use a single device worn on the right ear (uni-right).

3. Use two devices, each device configured for the hearing loss in

that ear (bi-left and bi-right).

We can evaluate whether each of the four configurations (uni-

left, uni-right, bi-left, and bi-right) are covered according to the

unilateral fitting criterion. We then say that a subject with bilateral

hearing loss is covered if all four configurations are covered. The

population coverage is then the sum of the population weights

of the covered users. The details of the coverage computation are

included in Algorithm 1.

3.3. Example

To illustrate the concept of coverage, we plot as black and

gray dots the potential configurations of the considered users in

Figure 3. The graph is obtained by reducing the dimensionality of

the configuration to two dimensions using Principle Component

Analysis (PCA). The red square in the figure indicates one of the

selected presets. The black dots indicate the configurations that are

covered by the preset i.e., they fall within the ball of radius ± 5 dB

consistent with Equation (1).

FIGURE 2

2D Gaussian plot of transfer function weights with data points from

literature.

FIGURE 3

Coverage example. Red squares represent example presets in 2D

PCA space. Black dots represent the NHANES configurations

covered by these distinct presets. Gray dots represent NHANES

configurations that are not covered by any of the presets.
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Input : P- presets
U - set of users
losstypeu - unilateral or bilateral loss
wu - population weights
ĉu - NAL-NL2 prescription for user u

Tj - the j-th transfer function
lu,j - likelihood of potential config. cu,j
γ - user coverage threshold (γ = 0.8)

Output: PC(P) - population coverage

1 PC(P) = 0
2 for u ∈ U do

3 if losstypeu == unilateral then

4 user_coverage = 0

5 for j = 1, 81 do

6 /* Compute the user’s potential
config. */

7 cu,j = ĉu + Tj

8 if cu,j ∈ C(P) then

9 user_coverage = user_coverage + lu,j

10 end if

11 end for

12 if user_coverage ≥ γ then

13 /* User is covered */
14 PC(P) = PC(P)+ wu

15 end if

16 else

17 foreach

fit_type ∈ {(uni; left), (uni; right), (bi; left), (bi; right)} do

18 user_coveragefit_type = 0

19 for j = 1, 81 do

20 /* Compute the user’s potential
config. */

21 cu(fit_type),j = ĉu(fit_type) + Tj

22 if cu(fit_type),j ∈ C(P) then

23 user_coveragefit_type = user_coveragefit_type + lu,j

24 end if

25 end for

26 end foreach

27 if user_coverageuni;left ≥ γ & user_coverageuni;right ≥ γ &

user_coveragebi;left ≥ γ & user_coveragebi;right ≥ γ then

28 /* User is covered */
29 PC(P) = PC(P)+ wu

30 end if

31 end if

32 end for

Algorithm 1. Compute population coverage of presetsP .

4. Preset optimization

In this section, we focus on the problem of fitting OTC HAs

by either using preset collection- or slider-based approaches. In

both cases, the challenge is to balance the population coverage

of the P and the number of presets included. The number of

presets included is a proxy for the complexity of the user interface

provided to the end user and the increased time to identify

the user’s preferred configuration. Generally, user interfaces that

expose fewer presets are likely easier to use but provide reduced

population coverage. Conversely, increasing the number of presets

FIGURE 4

PCA explained variance ratio for different numbers of components.

The graph indicates that a large fraction of the variance may be

explained using 2–3 dimensions.

FIGURE 5

Overlaying a grid in the 2-dimensional PCA space.

increases population coverage at the cost of a more complex user

interface. The algorithms discussed in this section can evaluate the

trade-off between population coverage and the number of presets.

Researchers may use this information to evaluate the effectiveness

of existing self-fitting methods or to identify promising new

approaches.

4.1. Collection-based self-fitting methods

Collection-based self-fitting methods maximize the population

coverage of their presets. The input to the optimization problem is

the sample of users with mild-to-moderate hearing loss, each with

an associated population weight wu. A feasible solution P must

include N configurations (i.e., |P| = N).

A key challenge to determining P is the high dimensionality

of the configuration space. To simplify the problem, we use

PCA to reduce the dimensionality of the configuration space

to two dimensions. Figure 4 plots the fraction of the explained

variance as the number of dimensions is increased from 1 to
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6. The PCA transformation is applied for all the NAL-NL2

prescriptions of the selected users. The figure indicates that using

two dimensions accounts for 95% of the total variance. Therefore,

it is possible to map the high-dimensional configuration space

into two dimensions with little accuracy loss. This result can be

explained by a significant correlation between gains at different

frequencies.

We can use the reduced two-dimensional space to simplify the

original optimization problem. We observe that it is possible to

construct a two-dimensional grid with G vertices that span the

space of possible configurations, as shown in Figure 5. Then, a

solution to the optimization problem involves selectingN out of the

G configurations in the grid. Note that the granularity of the grid

influences the population coverage of the selected presets (P). For

course-grained grids (i.e., when G is small), we can identify the best

solution by evaluating the CG
N possible combinations and selecting

the one which provides the most population coverage. In contrast,

it is computationally expensive to brute-force all solutions for finer-

grained grids (i.e., when G is large), and more efficient algorithms

are necessary.

We propose two approaches to solve the problem in the

case of fine-grained grids. A simple strategy is to use a

greedy algorithm that iteratively adds to P the preset that

improves the population coverage the most. The algorithm

maintains a set X of candidate configurations on the 2D

grid that can be selected as presets. Additionally, the set P ′

contains the configurations already selected to be presets. Initially,

P ′ = ∅ and X include all the points in the grid. For each

configuration c (c ∈ X), the algorithm computes population

coverage of P ′ ∪ {c}. Then, the configuration that produces

the largest increase in population coverage is added to P ′ and

removed from X. While the greedy algorithm is computationally

efficient, the greedy choice does not always identify the best set

of presets.

A better alternative is to use a genetic algorithm (GA) to

find the set of P . We encode an individual’s chromosome as a

bit vector whose size equals the number of points on the two-

dimensional grid. If a grid point is selected to be a preset, then

its associated bit is set to one; otherwise, the bit is set to zero.

The GA starts with an initial population containing individuals

generated by setting N bits to equal 1 at random locations in the

chromosome. The fitness of each individual is determined by its

population coverage.

The next generation of individuals is constructed as follows.

First, the individual with the highest fitness is added to the next

generation. Then, half of the next generation is generated using

cross-over. Cross-over involves two individuals with fitness in the

top 50% of the population as parents. Then, a random location,

L, is selected. A new individual is created by copying the first

L bits from one parent and the remaining N − L bits from the

other parent. The remaining 50% of the population is obtained by

mutating the chromosomes of individuals. Specifically, we select a

random individual and mutate its chromosome: we flip two bits,

one whose value was originally one and one whose value was

originally zero. This operation enforces that the number of ones in

the chromosome still sums up to N. The algorithm terminates after

a predetermined number of iterations (set to 500 iterations in our

experiments).

4.2. Slider-based self-fitting methods

Another common approach to configuring OTC HAs is

providing a user interface with one to three sliders. An example of

an interface with two sliders is shown in Figure 6A. An intuitive

way of thinking about how the user selects the configuration is to

imagine a ball representing current configuration selection (as show

in Figure 6B). The ball moves when the sliders aremanipulated. The

ball’s movement is constrained to a two-dimensional grid which we

refer to as the controller grid. As expected, the slider “x” controls

the ball’s horizontal position, whereas the “y” controller controls

its vertical position. The open question is how to map the ball’s

position in the controller space to a configuration in the space of

possible configuration.

We will create a simple isomorphic mapping between the

controller and configuration spaces. We start by identifying a

bounding box that covers all the potential configurations in the

configuration space. An example of such a bounding box is shown

in Figure 5. Consider a coordinate system that originates at one of

the corners of the bounding box and has its axis along the two sides

of the bounding box. We will refer to one axis as bx and the other as

by. Furthermore, let one of the corners of the bounding box be the

origin with coordinates (0, 0). We map the origin in the controller

space to the origin in the configuration space. Next, we divide the

bounding box to create a 2D grid such that the sides bx and by

are divided in the same number of increments as sliders x and

y, respectively. Each point on the configuration grid is assigned a

coordinate according to the number of increments from the origin.

The controller and configuration space are mapped such that a

point with coordinates in the controller space (x, y) is mapped to

a point with coordinates (bx, by) in the configuration space. Next,

for each point on the grid, we determine its 2D coordinates in

the embedded configuration space. The configurations at the grid

points constitute the presets and are included in P .

As in the case of collection-based interfaces, it is possible

to evaluate and optimize the population coverage of slider-based

interfaces. To evaluate the population coverage of the slider-based

approach, Algorithm 1 is invoked with P , including all the grid

points. The population coverage depends only on the number

of increments used for each of the sliders (and implicitly in the

configuration grid). We may optimize these parameters to improve

the population coverage.

5. Experiments

Our experiments answer the following questions:

• What is the trade-off between the number of presets and

coverage of collection- and slider-based techniques? How is

this trade-off impacted by the algorithms used to determine

the presets?

• What is the impact of user demographics (e.g., sex or age) on

coverage?

• How robust are our results with respect to our modeling

assumptions?
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FIGURE 6

(A) A slider interface may be used to select configuration. The controller grid is shown in (B) and the current configuration is indicated by the blue

circle.

FIGURE 7

Population coverage for k-means, greedy, and genetic algorithm

methods of determining the presets of collection-based methods.

5.1. Trade-off between population
coverage and number of presets

Let us start by considering the performance of the greedy and

genetic algorithms in building presets for collection-based self-

fitting methods. We also ran k-means clustering algorithm as a

baseline algorithm similar to Jensen et al. (2020). Specifically, we

ran k-means on all the preferred configurations to construct N

clusters. The presets were determined by computing the mean of

all preferred configurations in the same cluster.

Figure 7 plots the population coverage as the number of presets

is varied from 5 to 100. As expected, the general trend is that the

population coverage increases with the number of presets. Initially,

the population coverage increases fast with the number of presets.

As the number of presets continues to grow, there are diminishing

returns and further improvements in population coverage are

harder to achieve. For example, in the case of the genetic algorithm,

an increase from 15 to 20 presets results in an increase in coverage

of 46–60%, an improvement of 14%. In contrast, increasing the

number of presets from 35 to 40 results in an increase in population

coverage of only 2.5%. The population coverage when the number

of presets is 100 is approximately 95%. Improving the population

coverage further would require a significant number of additional

presets as the remaining 5% of the users have configurations that

differ significantly from the remainder of the population.

Result: The population coverage of a collection-based

method increases with the number of presets; however the

improvements diminish with additional presets. Achieving a

population coverage higher than 90% requires a large number

of presets.

The method used to derive the presets has an impact

on the obtained population coverage. The k-means clustering

has consistently lower population coverage, particularly when

the number of presets is below 35. The reason behind this

worse performance is that k-means is not designed to maximize

population coverage. The genetic algorithm provides a maximum

of 9% improvement in coverage over the greedy algorithm.

Note that even though a 9% improvement may seem minor,

in practice this means tens of thousands of users who might

find a configuration they prefer. When the number of presets is

large, all considered methods of generating presets provide similar

performance. Note that usually, the most important cases are when

the number of presets is in the range of 4–30 when the algorithms

differ the most in their performance. There are self-fitting methods

that envision users performing simple auditory tests and being

prescribed an OTC HA using one of four presets (Urbanski et al.,

2021). On the other end, users might be provided with an interface

to select one out of 30 presets for their use.

We use the greedy, genetic algorithm, and k-means to generate

the 20, 30, and 40 presets. The generated presets are projected in

two dimensions using PCA and shown in Figure 8. A common

trend across the presets is the presets selected using k-means

tend to be more spread out than those generated by greedy and

genetic algorithms. As the presets picked by k-means tend to be

more spread out some of them are in areas where they provide

little population coverage. In contrast, the other two methods pick
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FIGURE 8

Representation of Presets in PCA space (GA Presets, Greedy Presets, and Clustering presets). (A) 20 Presets. (B) 30 Presets. (C) 40 Presets.

FIGURE 9

Percentage coverage results for slider-based approach. Y steps were

kept constant (10) while X steps were varied from 2 to 20.

are more densely packed toward the center of the figure. This

result highlights the importance of picking an algorithm that is

designed to maximize the population coverage (greedy or genetic

algorithms) rather than as different objectives (for k-means).

Result: For the cluster-basedmethods that use four to twenty

presets, the genetic algorithms provide better performance than

the greedy and k-means approaches.

Next, we consider user interfaces that are slider-based where the

number of steps on the sliders is increased from 2 to 20. Figures 9,

10 plot the population coverage for a different number of steps

used for the x and y sliders respectively while keeping y and x

steps constant at 10. As the number of steps is increased, the two-

dimensional grid in the configuration space becomes denser and

the associated population coverage also increases. A user interface

with the two sliders each having ten steps provides a population

coverage of 78.24%. In general, for the same number of presets

sliders provide lower coverage than the same number of presets for

collection-based presets. This is a consequence of the slider-based

approaches constraining presets on the 2D grid whereas no such

constraints are imposed for collection-based approaches.

Results: The proposed approach can be used to optimize the

number of increments for slider-based approaches.

FIGURE 10

Percentage coverage results for slider-based approach. X steps

were kept constant (10) while Y steps were varied from 2 to 20.

5.2. Impact of demographics

One approach that may yield improvements to the population

coverage is to consider the impact of various demographics. In

the following, we will consider whether dividing the population

into four subgroups based on age and gender can yield presets

that are tailored for those specific groups and provide higher

coverage than the original presets that do not differentiate for

gender or age. Historically, hearing loss in the population has varied

as a function of demographics, with older adults having greater

degrees of hearing loss than younger adults, and males having

greater degrees of hearing loss than females (Pearson et al., 1995;

Hoffman et al., 2017). Thus, dividing the population by age and

gender may improve coverage estimates. The subsets into which

we divide the population of users with mild-to-moderate hearing

loss are:

• Male, age > 65

• Male, age ≤ 65

• Female, age > 65

• Female, age ≤ 65
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FIGURE 11

Population coverage for different subgroups. (A) Subgroup: male, age >65; (B) Subgroup: male, age <= 65; (C) Subgroup: female, age >65; (D)

Subgroup: female, age <= 65.

Figure 11 plots the population coverage for each of the four

groups with GA presets and presets obtained by running GA only

on the subgroup population. The results indicate that in some cases

higher population coverage may be achieved if the presets are built

for that specific subset of the population. The most promising

results are for the subgroup which includes males who are over

65. In this case, constructing presets specialized for this subgroup

provides an improvement of 16% in population coverage over

using the presets constructed for the general population. However,

these results do not hold for all subgroups. Our approach provides

no meaningful improvements for the subgroup which included

women over 65 over constructing presets for the overall population.

Result: Using demographics to refine the target population

of users may yield significant improvements in population

coverage.

5.3. Robustness of results

An important question is to evaluate how robust are our

methods to different ways of characterizing a user’s deviation

from NAL-NL2. We will use two different approaches—using

bootstrap and scaling the variance of the Gaussian. We used

bootstrap (Mackersie et al., 2020; Boothroyd et al., 2022) to obtain a

distribution of possible values for the variance of the 2D Gaussian.

Accordingly, we sample with replacement from the empirical data

FIGURE 12

Distribution of population coverage by greedy presets using

bootstrap technique.

of studies (Mackersie et al., 2020; Boothroyd et al., 2022) to

generate 50 bootstrap samples. For each bootstrap sample, we

run the greedy algorithm for 5 to 40 presets and compute their

associated population coverage. Figure 12 plots the probability

density function of the population coverage for the 20, 25, 30, 35,

and 40 presets.
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FIGURE 13

Effects of variance scaling on greedy preset coverage.

The figure shows that there is little variation in the population

coverage for the generated bootstrap samples. Moreover, the

variation tends to diminish with the number of presets. At 20

presets the population coverage range fluctuates by ± 0.75%.

With an increasing number of presets, this variation in range

significantly goes down. At 40 presets, the fluctuation range is

± 0.25%. Therefore, there are small variations in the population

coverage within the bootstrap samples. This indicates that if

the data from original studies used to build the 2D Gaussian

is representative, then we should observe little variation in the

population coverage.

Another approach to evaluate the robustness of our approach

is to consider the impact that a higher Gaussian variance may

have. We have scaled the fitted variance using the data from

studies (Mackersie et al., 2020; Boothroyd et al., 2022) by scalars

0.5, 1, and 1.5. The expectation is that increasing the variance

will result in lower coverage for the same number of presets.

Stated differently, a larger number of presets is necessary to

achieve the same coverage. We have evaluated the impact of

scaling the variance in the case of using the greedy algorithm to

build presets.

Figure 13 plots the effects of variance scaling on population

coverage by greedy presets. When the variance is 1.5 times larger,

there is a reduction of 3.5% in population coverage. Conversely,

when the variance is 0.5 times smaller, there is an increase of 7%

in population coverage at 40 presets. Overall, these results indicate

that population coverage results are robust with respect to larger

variances than those expected based on the empirical data alone.

Intuitively, if the variance is lower, there is a higher variation

weight associated with the variations closer to the user’s REIG.

Thus, it takes less number of presets to cover the same population.

It reflects in our results i.e., population coverage difference is as

high as 32% for 10 greedy presets generated between a variance

scale of 0.5 and 1.5. This wide difference narrows down to almost

7% for 50 greedy presets.

Result: The experiments demonstrate that the population

coverage results are robust different assumptions about the

underlying Gaussian distribution controlling the weights of

transfer functions.

6. Discussion

The paper uses population coverage to evaluate and optimize

various settings for preset-based methods. We caution the reader

that population coverage is not the only metric that may be

used to assess self-fitting methods. To fully evaluate self-fitting

methods, it is necessary to run detailed user studies to evaluate

their performance. However, population coverage can guide how

user studies may be set up. For example, in the case of collection-

based approaches, the region of interest is when the number of

presets is in the range of 20–40. Using fewer than 20 presets yields

would cover only a small fraction of users. In contrast, increasing

the number of presets beyond 40 results in minor improvements in

population coverage. Further user studies should particularly focus

on this range. Similarly, in the case of slider-based approaches, the

region of interest is when the number of increments is about ten for

both sliders.

The computation of population coverage depends on a number

of modeling assumptions and hyper-parameters. The hyper-

parameters of our model include γ , R, and the likelihood of

each possible configuration as given by the two-dimensional

Gaussian. Our experiments show that the population coverage

values are fairly robust to increases in the variance of the Gaussian

distribution. The parameters γ and R are configured based on

audiology expertise. Our experimentation with different values for

γ and R shows that although population coverage changes, the

same overall trends are observed.

Both studies (Mackersie et al., 2020; Boothroyd et al., 2022)

that we used to create transfer functions utilize speech listening to

conduct self-fitting. Therefore, the user preference could be mainly

driven by speech understanding or clarity. In a different listening

situation, such as music listening, other factors, such as sound

quality (e.g., fullness), could drive the preference. Therefore, our

study may not generalize to situations other than speech listening.

Audibility is only one factor among a constellation of complex

factors that might be expected to affect hearing aid setting selection

and hearing aid outcomes. This study investigates a theoretical

approach to optimizing the selection of hearing aid gain-frequency

configurations such that a preferable setting was included for the

majority of potential users. Importantly, this study did not test

the identified presets empirically among a sample of hearing aid

users; such a study is a critical next step to determine the real-

world viability of our approach. This study also did not consider

factors in the selection process that might affect outcomes such

as pre- or post-selection self-assessment or service delivery model,

though such factors have not been shown to have large impacts on

hearing aid satisfaction for OTC hearing aids (e.g., Humes et al.,

2017; Mackersie et al., 2020).

7. Conclusion

This paper proposes a novel metric—population coverage—

to evaluate, compare, and optimize preset-based self-fitting

methods. The population coverage estimates how well a given

number of presets meet the needs of populations of users with

different characteristics. The unique aspect of our approach

is that the population coverage is computed to account for
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how a user’s preferred configuration may deviate from the

NAL-NL2 prescription. We apply the population coverage to

optimize the presets used by collection- and slider-based methods.

Specifically, greedy and genetic algorithms are proposed presets

that maximize population coverage. Similarly, algorithms are

proposed to configure the number of intervals on slider-based

interfaces to maximize coverage. Our experiments indicate that

the proposed algorithms can effectively identify presets for both

collection- and slider-based methods. Moreover, we may use

population coverage to narrow down the different configurations

of preset-based methods with good population coverage and

whose performance should be further characterized through

user studies.
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