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Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids
to treat their hearing loss at a fraction of traditional hearing care costs. These
products incorporate self-fitting methods that allow end-users to configure their
hearing aids without the help of an audiologist. A self-fitting method helps users
configure the gain-frequency responses that control the amplification for each
frequency band of the incoming sound. This paper considers how to guide the
design of self-fitting methods by evaluating certain aspects of their design using
computational tools before performing user studies. Most existing fitting methods
provide various user interfaces to allow users to select a configuration from a
predetermined set of presets. Accordingly, it is essential for the presets to meet
the hearing needs of a large fraction of users who suffer from varying degrees
of hearing loss and have unique hearing preferences. To this end, we propose
a novel metric for evaluating the effectiveness of preset-based approaches by
computing their population coverage. The population coverage estimates the
fraction of users for which a self-fitting method can find a configuration they
prefer. A unique aspect of our approach is a probabilistic model that captures
how a user’s unique preferences differ from other users with similar hearing loss.
Next, we propose methods for building preset-based and slider-based self-fitting
methods that maximize the population coverage. Simulation results demonstrate
that the proposed algorithms can effectively select a small number of presets that
provide higher population coverage than clustering-based approaches. Moreover,
we may use our algorithms to configure the number of increments of slider-based
methods. We expect that the computational tools presented in this article will help
reduce the cost of developing new self-fitting methods by allowing researchers to
evaluate population coverage before performing user studies.

KEYWORDS

audiology, hearing aids, genetic algorithm, hearing-aid self-fitting, over-the-counter
hearing aids

1. Introduction

Hearing loss is an epidemic in the United States that is too often left untreated.
The primary treatment for hearing loss is hearing aids (HAs). However, of the
48 million Americans with hearing loss, only 14-34% use HAs (Lin et al, 2011;
Chien and Lin, 2012; Powers and Rogin, 2019). A major reason for the low rate
of HA adoption is their high cost. One study estimated that the average cost
of HAs bundled with several audiologist visits is $2,500, representing a significant
financial expense for 77% of Americans (Jilla et al, 2020). Economic barriers to
hearing healthcare disproportionately affect minorities; most HA users are affluent,
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educated, and white (Nieman et al., 2016; McKee et al., 2019;
Reed et al., 2021). Thus, there is a critical need to improve
access to hearing care. One solution is the advent of over-the-
counter (OTC) HAs. The OTC Hearing Aid Act, signed into law
in 2017, with subsequent rules delivered in 2022, has enabled
HAs to be sold over the counter without the need for the user
to see an audiologist or medical professional. OTC hearing aids
are designated for adults who perceive that they have mild-to-
moderate hearing loss, even if they have not had a formal hearing
evaluation from an audiologist. In theory, OTC hearing aids should
be cheaper than prescription hearing aids. However, they require
the user to self-fit the device. The primary function of HAs is
to divide the incoming sound into several frequency bands and
amplify each band preferentially. For HAs to address a user’s needs
it is essential to fit the HA by configuring the gain-frequency
response (gains, henceforth) of each band to compensate for their
hearing loss in that frequency band. Traditionally, HA fitting
is performed by an audiologist, who first measures the user’s
hearing loss as an audiogram. Audiologists construct audiograms
by presenting pure tone to measure the user’s hearing thresholds at
frequencies important for speech perception (typically 0.25-8 kHz).
A user’s hearing loss is characterized by their thresholds across
the frequency range relative to the average hearing thresholds
of normal-hearing listeners. The amount of gain applied in each
band is traditionally determined using a prescription formula,
commonly NAL-NL2 (Keidser et al., 2011). NAL-NL2 is based on
theoretical models of speech intelligibility and loudness comfort,
as well as empirical data showing differences in gain preferences
between different population subgroups (e.g., men vs. women,
experienced vs. new HA users). Since NAL-NL2 uses theoretical
models and population-level statistics, the prescribed NAL-NL2
configuration estimates the average configuration for a sample
of users with similar audiograms (and hearing loss). However, a
user’s preferred configuration may deviate significantly from their
prescribed NAL-NL2 configuration due to individual perceptual,
lifestyle, and HA usage factors that differ from person to person
(Sogaard Jensen et al.,, 2019). To customize a user’s configuration,
a series of visits to the audiologist are generally required to fine-
tune the HAs configuration based on their feedback. OTC HAs
reduce cost, time, and other barriers to HA access by shifting the
burden of configuring these devices from the audiologist to the
end user. Traditional HA fitting requires sophisticated software,
a programming interface, and specialized knowledge typically
acquired through years of graduate-level training. For the lay user,
successful self-fitting must be achieved without any of these helpful
resources, which have traditionally been bundled with purchasing
a HA. To address this limitation, OTC HAs usually provide
a user interface that allows users to configure their gain. Two
common strategies are used to design user interfaces—collection-
based and slider-based approaches. Both approaches operate on a
set of predetermined and fixed configurations that we will refer
to as presets. In the case of collection-based methods, the presets
are configurations associated with representative types of hearing
loss. In contrast, slider-based methods directly manipulate various
aspects of configurations. For example, a loudness (i.e., overall
amplitude) slider increases the overall gain. The presets are the
union of all the possible configurations that the controllers may
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reach. It is common for collection-based methods to include a
small number of presets, whereas slider-based methods typically
include more presets. We provide additional details about these
two methods, including concrete examples of their use with existing
HAs in Section 2.

A key challenge associated with advancing the OTC fitting
methods is that their design requires extensive and costly user
studies. Similar challenges also occur when comparing different
self-fitting approaches. These questions will become increasingly
important as more OTC HAs are commercialized. Therefore, we
pose the question of whether it is possible to create metrics that
we can use to assess OTC HA fitting methods without resorting
to extensive user studies. We propose a new metric—population
coverage—to evaluate, compare, and optimize fitting methods. The
population coverage estimates how well a set of presets P meets the
needs of users with mild-to-moderate hearing loss, the population
that would benefit from an OTC HA the most. We will develop
statistical models to estimate the population coverage of a general
self-fitting method given (1) statistics regarding the typical hearing
loss of users in a population of interest and (2) the set of presets
used in the fitting method. Moreover, we will show that it is possible
to optimize various parameters of a fitting method to maximize
population coverage.

A key benefit of population coverage is that it provides a
computational method to evaluate the performance of self-fitting
methods. In the remainder of the paper, we describe how to use
it to drive the development of two popular self-fitting approaches
that use presets and sliders. We expect population coverage to be a
useful design tool for the development of future self-fitting methods
by allowing designers to narrow down the large space of possible
gain-frequency responses to those that would benefit a population
of interest. Of course, any fitting method must be evaluated through
rigorous empirical studies that go beyond population coverage.

Our work builds on a line of research in audiology that aims
to identify representative audiograms (or equivalently different
types of hearing loss). Ciletti and Flamme (2008) used audiograms
provided from two publicly available datasets and applied cluster
analysis to identify audiograms representative of the US population.
The audiograms within a cluster were more similar than those in
different clusters. The clustering analysis results may be used to
generate a set of presets by converting the centroid audiogram of
each cluster to a REAR configuration using NAL-NL2. A similar
approach to generating presets was proposed in Jensen et al. (2020).

We extend these approaches in two significant directions.
First, the above approaches assume that NAL-NL2 accurately
predicts a user’s most preferred configuration. Empirical evidence
shows that this assumption is incorrect and yields suboptimal
configurations to be selected as presets. We develop a statistical
model that characterizes how a user’s preference may deviate
from their NAL-NL2 prescription (see Section 3). Second,
our techniques are more general in that we can use them
for both collection- and slider-based approach. We present
algorithms to select presets for both collection- and slider-
based approaches that maximize the population coverage. Finally,
our results show our approachs superiority over standard
cluster-based techniques in constructing presets. We note that
the papers novelty is using probabilistic models to drive the
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development of self-fitting methods, which helps avoid extensive
user studies.

The remainder of the paper is organized as follows. Section 2
summarizes prior work on self-fitting methods. A formal definition
of population coverage and methods for computing it for preset-
based self-fitting methods is described in Section 3. Algorithms to
optimize the presets for collection- and slider-based approaches
are included in Section 4. Results comparing different methods for
generating presets are provided in Section 5, and their importance
is discussed in Section 6. Section 7 provides conclusions and
discusses future work.

2. Related work
2.1. Slider-based approaches

A common approach to allow users to personalize OTC HAs
is to use sliders (or wheels) that manipulate the gains HAs used
to amplify each channel. For example, the Ear Machine approach
presents users with two wheels, one which sliders loudness and one
which controls fine-tuning (Nelson et al., 2018). The loudness slider
enables users to vary the overall gain, and compression parameters
of the HA, and the fine-tuning wheel enables users to vary the
tilt of the gains around a 2 kHz fulcrum. In another approach,
called Goldilocks, the user is presented with three parameters they
can adjust using up and down arrows: fullness (low-frequency
cut), crispness (high-frequency boost), and loudness (overall
amplification) (Boothroyd and Mackersie, 2017; Mackersie et al.,
2019). The user first adjusts loudness, then crispness, then loudness
again, then fullness, then any parameter until they find a gain that
is “just right.” It is important to note that these interfaces enable the
user to only select from a predetermined and fixed set of presets by
manipulating the sliders.

2.2. Collection-based approaches

Slider-based approaches can lead to successful self-fitting
(Brody et al.,, 2018; Boothroyd et al., 2022). However, because
these methods require the user to manipulate various parameters
on continuous scales, the self-fitting process can be cumbersome
and cognitively challenging. For example, six of the 26 users in
the evaluation of the Goldilocks required help with the interface,
and there was a wide range in time to completion among users,
indicating that some users likely found the procedure more difficult
than others (Boothroyd and Mackersie, 2017). Recent MarkeTrak
survey data found up to half of potential OTC users would not be
comfortable tuning their own HAs (Edwards, 2020). One way to
simplify the self-fitting process is to use an unordered collection
of presets (Sabin et al., 2020; Urbanski et al., 2021). A gain that
can accommodate most users is predetermined in a collection-
based approach. The self-fitting process then involves arriving at
the user’s most preferred preset. Presumably, the preset approach
can both shorten the self-fitting process and make the procedure
easier, reducing failures during the self-fitting process. Although
some studies have investigated the use of presets in OTC HAs, it
remains an open problem to determine the right set of presets and
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the best strategy for identifying the user’s preferred preset in an easy
and efficient manner. In this paper, we focus on the former problem
while not directly addressing the latter.

In Urbanski et al. (2021), presets were derived using
audiograms of adults with mild-to-moderate hearing loss from
an extensive national database. First, they found all possible
gains based on the audiogram set. Then, they found the four
presets that fit the largest number of NAL-NL2 targets within
+ 5 dB from 0.25 to 4 kHz. The four presets could match
NAL-NL2 targets within 10 dB for 70% of the audiograms in
the database. The presets were then empirically tested by first
assigning different presets to participants using various fitting
methods and having participants complete speech testing using the
presets selected in each method. Presets were determined either
based on the participant’s audiologist-administered audiogram, a
self-test audiogram, listening to the different presets in quiet and
in noise, a questionnaire, or random assignment. The presets
determined by each selection method were generally different from
one another. However, none of the fitting methods besides the
questionnaire and random assignment methods resulted in speech
perception scores that differed significantly from those obtained
when participants were individually fit to NAL-NL2 targets. Taken
together, the findings from that study suggest that the process by
which presets are determined for individual listeners impacts what
preset is chosen-but several different presets can yield comparable
efficacy for speech perception for any given listener.

3. Coverage of self-fitting methods

In this section, we consider the problem of estimating the
fraction of users with mild-to-moderate hearing loss whose hearing
needs can be met by a set of N presets P (i.e., |P| = N). To do so,
we need to answer three questions:

1. How do we define the subset of users with mild-to-moderate
hearing loss?

2. When are the hearing needs of a user met by a preset?

3. How do we estimate the fraction of users that are covered by a
set of presets?

We will answer each of these questions in each of the subsequent
subsections.

3.1. Target population

The population of users that would benefit the most
from OTC HAs includes those with mild-to-moderate hearing
loss. The National Health and Nutrition Examination Surveys
(NHANES) (National Center for Health Statistics, 2022) from
1996-2016 includes audiograms characterizing common hearing
loss configurations. For each user u, NHANES includes a
population weight w, representing the prevalence of that type
of hearing loss in the population. We focus on a subset of older
individuals with mild to moderate sensorineural hearing loss from
NHANES who meet the following criteria: (1) They are between 55
and 85 years old (inclusive); (2) Their audiometric thresholds from
0.25 to 6 kHz are less than or equal to 75 dB HL, with a threshold
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at 8 kHz that does not exceed 120 dB HL; (3) A four-frequency
pure-tone average (0.5, 1, 2, and 4 kHz) greater than 20 dB HL
but less than 50 dB HL (World Health Organization of mild-to-
moderate hearing loss, Olusanya et al., 2019); (4) Normal middle
ear function defined as peak tympanometric peak pressure greater
than or equal to —50 daPa and less than or equal to 50 daPa, ear
canal volume equal to or greater than 0.5 ml but less than or equal
to 2 ml, and compliance equal to or greater than 0.3 ml and less than
or equal to 1.5 ml. If only one ear qualified, only that ear is included
in the dataset. Finally, all audiometric and tympanometric data
is complete with no missing values. The selected subset included
1,979 audiograms (mean age = 67.77 years, SD = 8.02 years; 1,018
female, 961 male; 813 bilateral, 1,166 unilateral).

For each user u, we compute the prescribed NAL-NL2
configuration ¢,. The NAL-NL2 configuration is computed using
the NAL-NL2 software (NAL-NL2, 2022), configured similar to
Sabin et al. (2020) and Urbanski et al. (2021): (1) thresholds entered
as air conduction; (2) broadband input signal level of 65 dB SPL; (3)
18-channels with multichannel compression limiting; (4) default
directionality (0 degrees azimuth); (5) default microphone (head
surface); (6) experienced HA users; (7) compression speed to dual;
(8) non-tonal language. The user’s gender and age are set according
to the NHANES data. NHANES dataset includes audiograms for
unilateral hearing loss (hearing loss in one ear) or bilateral hearing
loss (hearing loss in both ears). People with bilateral hearing loss
may choose to wear one or two hearing aids (Cox et al., 2011).
Thus, for bilateral audiograms, we compute four sets of NAL-
NL2 configurations: unilateral left, unilateral right, bilateral left,
and bilateral right. Thus, we compute a total of 4418 NAL-NL2
configurations.

3.2. Population coverage

e R%
representing the Real-Ear-Insertion-Gains (REIGs) at frequencies
0.5, 1, 2, 3, 4, and 6 KHz. The notation c[f] (f € {0.5,1,2,3,4,6})
refers to the gain associated with frequency f in the vector c. We

A configuration ¢ is a six-dimensional vector (¢;

will select a subset of N of configurations as presets. We define
the preset coverage of a preset p; to include all the configurations
¢ located within the ball centered at p; and with a radius R. The
distance between a configuration ¢ and p; is the maximum absolute
difference computed across the six frequencies:

Br(pi) = {c € R® | max|c — p;| <R} (1)

We assume that all the configurations within the ball are covered by
preset p;. Audiologists are typically satisfied to find a configuration
within £ 5 dB, so we set R = 5 dB.

The coverage of all presets in P is C(P):

cP)= | J Bx(p) 2)
p,-EP

Ideally, the presets included in 7 maximize the fraction of users
whose configurations are included in C(P).

Next, we consider determining whether a user’s configuration
is covered. A naive approach would be to assume that a user’s u
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preferred configuration coincides with that prescribed by NAL-NL2
(as done in prior work, Jensen et al., 2020; Urbanski et al., 2021).
Consistent with this assumption, a user would be covered if its
prescribed NAL-NL2 configuration ¢, would be included in C(P).
Then, the fraction of the population covered would be the sum of
the population weights of covered users.

Emerging empirical evidence shows, however, that a user’s
preferred configuration often deviates from their NAL-NL2
prescription. In the following, we will propose a statistical model
that characterizes how the users’ preferences may deviate from the
NAL-NL2 model. We observe that fitting rationales like NAL-NL2
accurately estimate the average configuration for a group of patients
with similar hearing loss but do not account for the high variability
within the group due to individualized preferences. Moreover,
empirical evidence shows that a user’s preferred configuration often
differs from the NAL-NL2 configuration in either its “overall gain”
and/or “slope” (Mackersie et al., 2020; Boothroyd et al., 2022).
Therefore, the goal is to model how a user’s preferred configuration
may deviate from the NAL-NL2 prescription in overall gain and
slope.

To this end, we introduce transfer functions (see Figure 1A).
A transfer function is a log-linear function (Tj: R — IR) describing
how a user’s u preferred configuration ¢, may deviate from their
NAL-NL2 configuration ¢, at f Hz.

Cu,j[f] = 2‘u[f] + T](f) (3)

We capture a user’s u potential preferred configurations c, ; using
several transfer functions Tj, each yielding changes in overall gain
and slope.

We construct the transfer functions as follows. Empirical
evidence suggests that the magnitude of the deviations at 0.5 and
4 KHz are within £ 15 dB (Mackersie et al., 2020; Boothroyd
et al, 2022) and at remains unchanged at 6 KHz. We divide
the range from —15 dB to 15 dB in increments of 3.75 dB and
create an anchor point at each increment at frequencies of 0.5
and 4 KHz (see Figure 1A). We select increments of 3.75 dB as
individuals cannot perceive the difference between configurations
with smaller REIG differences (Caswell-Midwinter and Whitmer,
2019). Then, each transfer function is constructed by fitting a
line for each pair of anchor points. By connecting each pair
of anchor points from 0.5 to 4 KHz, we create 81 possible
transfer functions. Accordingly, for a user u, there are 81 possible
preferred configurations, 80 of which differ from the user’s NAL-
NL2 configuration. For example, Figure 1B plots the NAL-NL2
prescription for one of the users in NHANES. Figure 1C plots the
user’s preferred configurations computed by adding each transfer
function shown (shown in Figure 1A) to the user’s NAL-NL2
configurations (shown in Figure 1B) according to Equation (3).

The transfer functions are designed to cover the range of
possible deviations from NAL-NL2. However, not all potential
preferred configurations are equally likely — configurations that
are closer to NAL-NL2 tend to be more likely. With each of
the 81 possible configurations, we associate a likelihood that is
determined by a 2D Gaussian parameterized by average deviation
in the low (5 and 1 KHz) and high frequencies (2, 3, and 4
KHz). Studies Mackersie et al. (2020) and Boothroyd et al. (2022)
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collected statistics about the deviations between the configuration
prescribed by NAL-NL2 and those preferred by users. Using this
data, we empirically determine the mean and standard deviation
of the 2D Gaussian (see Figure 2). The weight [, ; of each potential
preferred configuration is ¢, j determined according to the fitted 2D
Gaussian.

Recall that hearing loss can be either unilateral (i.e., only in
one ear) or bilateral (i.e., in both ears). We define a user with
unilateral hearing loss u to be covered if the sum of weights of the
covered potential preferred configurations exceeds a threshold (y).
A preferred configuration ¢, is covered if it is included in C(P).

Computing the coverage for a user with bilateral hearing loss is
a bit more involved since their hearing needs might be met in three
different ways:

1. Use a single device worn on the left ear (uni-left).

2. Use a single device worn on the right ear (uni-right).

3. Use two devices, each device configured for the hearing loss in
that ear (bi-left and bi-right).

We can evaluate whether each of the four configurations (uni-
left, uni-right, bi-left, and bi-right) are covered according to the
unilateral fitting criterion. We then say that a subject with bilateral
hearing loss is covered if all four configurations are covered. The
population coverage is then the sum of the population weights
of the covered users. The details of the coverage computation are
included in Algorithm 1.

3.3. Example

To illustrate the concept of coverage, we plot as black and
gray dots the potential configurations of the considered users in
Figure 3. The graph is obtained by reducing the dimensionality of
the configuration to two dimensions using Principle Component
Analysis (PCA). The red square in the figure indicates one of the
selected presets. The black dots indicate the configurations that are
covered by the preset i.e., they fall within the ball of radius £ 5 dB
consistent with Equation (1).
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2D Gaussian plot of transfer function weights with data points from
literature.
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Coverage example. Red squares represent example presets in 2D
PCA space. Black dots represent the NHANES configurations
covered by these distinct presets. Gray dots represent NHANES
configurations that are not covered by any of the presets.
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Input P- presets

U - set of users

losstype, - unilateral or bilateral loss
wy - population weights

¢y - NAL-NL2 prescription for user u

Tj - the j-th transfer function

lu,j - likelihood of potential config. ¢
Yy - user coverage threshold (y =0.8)
Output: PC(P) - population coverage

1 PC(P) = 0
2 for ue U do
3 | if losstype, == unilateral then
4 user_coverage = 0
5 for j=1,81 do
6 /+ Compute the user’s potential
config. %/
7 Cu,j = Eu + T]
8 if ¢,j € C(P) then
9 user_coverage = user_coverage + I
10 end if
11 end for
12 if user_coverage > y then
13 /+ User is covered */
14 PC(P) = PC(P) + wy
15 end if
16 else
17 foreach
fit_type € {(uni; left), (uni; right), (bi; left), (bi; right)} do
18 user_coverageﬁt_type =0
19 for j=1,81 do
20 /* Compute the user’s potential
config. */
2 Cu(fit_type)j = Cutfit_type) T T
22 if cy(fit_type)j € C(P) then
23 user_coveragef; ,,, = USer_COVerages; . + luj
24 end if
25 end for
26 end foreach
27 if user_coverage,, ;. jofy >y user_coverage,,;. rjgh >y e
user_coveragey;. jof; = Y & user_coveragey,;. right =V then
28 /+ User is covered x/
29 PC(P) = PC(P) + wy
30 end if
31 end if
32 end for

Algorithm 1. Compute population coverage of presets P.

4. Preset optimization

In this section, we focus on the problem of fitting OTC HAs
by either using preset collection- or slider-based approaches. In
both cases, the challenge is to balance the population coverage
of the P and the number of presets included. The number of
presets included is a proxy for the complexity of the user interface
provided to the end user and the increased time to identify
the user’s preferred configuration. Generally, user interfaces that
expose fewer presets are likely easier to use but provide reduced
population coverage. Conversely, increasing the number of presets
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The graph indicates that a large fraction of the variance may be
explained using 2—-3 dimensions.
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Overlaying a grid in the 2-dimensional PCA space.

increases population coverage at the cost of a more complex user
interface. The algorithms discussed in this section can evaluate the
trade-off between population coverage and the number of presets.
Researchers may use this information to evaluate the effectiveness
of existing self-fitting methods or to identify promising new
approaches.

4.1. Collection-based self-fitting methods

Collection-based self-fitting methods maximize the population
coverage of their presets. The input to the optimization problem is
the sample of users with mild-to-moderate hearing loss, each with
an associated population weight w,. A feasible solution P must
include N configurations (i.e., |P| = N).

A key challenge to determining P is the high dimensionality
of the configuration space. To simplify the problem, we use
PCA to reduce the dimensionality of the configuration space
to two dimensions. Figure 4 plots the fraction of the explained
variance as the number of dimensions is increased from 1 to
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6. The PCA transformation is applied for all the NAL-NL2
prescriptions of the selected users. The figure indicates that using
two dimensions accounts for 95% of the total variance. Therefore,
it is possible to map the high-dimensional configuration space
into two dimensions with little accuracy loss. This result can be
explained by a significant correlation between gains at different
frequencies.

We can use the reduced two-dimensional space to simplify the
original optimization problem. We observe that it is possible to
construct a two-dimensional grid with G vertices that span the
space of possible configurations, as shown in Figure 5. Then, a
solution to the optimization problem involves selecting N out of the
G configurations in the grid. Note that the granularity of the grid
influences the population coverage of the selected presets (). For
course-grained grids (i.e., when G is small), we can identify the best
solution by evaluating the C§ possible combinations and selecting
the one which provides the most population coverage. In contrast,
it is computationally expensive to brute-force all solutions for finer-
grained grids (i.e., when G is large), and more efficient algorithms
are necessary.

We propose two approaches to solve the problem in the
case of fine-grained grids. A simple strategy is to use a
greedy algorithm that iteratively adds to P the preset that
improves the population coverage the most. The algorithm
maintains a set X of candidate configurations on the 2D
grid that can be selected as presets. Additionally, the set P’
contains the configurations already selected to be presets. Initially,
P =
configuration ¢ (¢ € X), the algorithm computes population

¢ and X include all the points in the grid. For each

coverage of P’ U {c}. Then, the configuration that produces
the largest increase in population coverage is added to P’ and
removed from X. While the greedy algorithm is computationally
efficient, the greedy choice does not always identify the best set
of presets.

A better alternative is to use a genetic algorithm (GA) to
find the set of P. We encode an individual’s chromosome as a
bit vector whose size equals the number of points on the two-
dimensional grid. If a grid point is selected to be a preset, then
its associated bit is set to one; otherwise, the bit is set to zero.
The GA starts with an initial population containing individuals
generated by setting N bits to equal 1 at random locations in the
chromosome. The fitness of each individual is determined by its
population coverage.

The next generation of individuals is constructed as follows.
First, the individual with the highest fitness is added to the next
generation. Then, half of the next generation is generated using
cross-over. Cross-over involves two individuals with fitness in the
top 50% of the population as parents. Then, a random location,
L, is selected. A new individual is created by copying the first
L bits from one parent and the remaining N — L bits from the
other parent. The remaining 50% of the population is obtained by
mutating the chromosomes of individuals. Specifically, we select a
random individual and mutate its chromosome: we flip two bits,
one whose value was originally one and one whose value was
originally zero. This operation enforces that the number of ones in
the chromosome still sums up to N. The algorithm terminates after
a predetermined number of iterations (set to 500 iterations in our
experiments).
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4.2. Slider-based self-fitting methods

Another common approach to configuring OTC HAs is
providing a user interface with one to three sliders. An example of
an interface with two sliders is shown in Figure 6A. An intuitive
way of thinking about how the user selects the configuration is to
imagine a ball representing current configuration selection (as show
in Figure 6B). The ball moves when the sliders are manipulated. The
ball’s movement is constrained to a two-dimensional grid which we

«_»

refer to as the controller grid. As expected, the slider “x” controls

«_»

the ball’s horizontal position, whereas the “y” controller controls
its vertical position. The open question is how to map the ball’s
position in the controller space to a configuration in the space of
possible configuration.

We will create a simple isomorphic mapping between the
controller and configuration spaces. We start by identifying a
bounding box that covers all the potential configurations in the
configuration space. An example of such a bounding box is shown
in Figure 5. Consider a coordinate system that originates at one of
the corners of the bounding box and has its axis along the two sides
of the bounding box. We will refer to one axis as bx and the other as
by. Furthermore, let one of the corners of the bounding box be the
origin with coordinates (0,0). We map the origin in the controller
space to the origin in the configuration space. Next, we divide the
bounding box to create a 2D grid such that the sides bx and by
are divided in the same number of increments as sliders x and
y, respectively. Each point on the configuration grid is assigned a
coordinate according to the number of increments from the origin.
The controller and configuration space are mapped such that a
point with coordinates in the controller space (x,y) is mapped to
a point with coordinates (bx, by) in the configuration space. Next,
for each point on the grid, we determine its 2D coordinates in
the embedded configuration space. The configurations at the grid
points constitute the presets and are included in P.

As in the case of collection-based interfaces, it is possible
to evaluate and optimize the population coverage of slider-based
interfaces. To evaluate the population coverage of the slider-based
approach, Algorithm 1 is invoked with P, including all the grid
points. The population coverage depends only on the number
of increments used for each of the sliders (and implicitly in the
configuration grid). We may optimize these parameters to improve
the population coverage.

5. Experiments
Our experiments answer the following questions:

e What is the trade-off between the number of presets and
coverage of collection- and slider-based techniques? How is
this trade-off impacted by the algorithms used to determine
the presets?

e What is the impact of user demographics (e.g., sex or age) on
coverage?

e How robust are our results with respect to our modeling
assumptions?
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FIGURE 6
(A) A slider interface may be used to select configuration. The controller grid is shown in (B) and the current configuration is indicated by the blue
circle.
of 46-60%, an improvement of 14%. In contrast, increasing the
100 number of presets from 35 to 40 results in an increase in population
coverage of only 2.5%. The population coverage when the number
sol 00 AL of presets is 100 is approximately 95%. Improving the population
= coverage further would require a significant number of additional
_5% 60 presets as the remaining 5% of the users have configurations that
p=
&2 differ significantly from the remainder of the population.
oo I . .
§g 40 Result: The population coverage of a collection-based
S ! —e- Kmeans method increases with the number of presets; however the
201 " - Greedy improvements diminish with additional presets. Achieving a
! —=— Genetic algorithm population coverage higher than 90% requires a large number
0+ . . . i . of presets.
20 40 60 80 100 The method used to derive the presets has an impact
Number Gf fresets on the obtained population coverage. The k-means clustering
FIGURE 7 has consistently lower population coverage, particularly when
Population coverage for k-means, greedy, and genetic algorithm the number of presets is below 35. The reason behind this
methods of determining the presets of collection-based methods. . . . S
worse performance is that k-means is not designed to maximize

5.1. Trade-off between population
coverage and number of presets

Let us start by considering the performance of the greedy and
genetic algorithms in building presets for collection-based self-
fitting methods. We also ran k-means clustering algorithm as a
baseline algorithm similar to Jensen et al. (2020). Specifically, we
ran k-means on all the preferred configurations to construct N
clusters. The presets were determined by computing the mean of
all preferred configurations in the same cluster.

Figure 7 plots the population coverage as the number of presets
is varied from 5 to 100. As expected, the general trend is that the
population coverage increases with the number of presets. Initially,
the population coverage increases fast with the number of presets.
As the number of presets continues to grow, there are diminishing
returns and further improvements in population coverage are
harder to achieve. For example, in the case of the genetic algorithm,
an increase from 15 to 20 presets results in an increase in coverage
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population coverage. The genetic algorithm provides a maximum
of 9% improvement in coverage over the greedy algorithm.
Note that even though a 9% improvement may seem minor,
in practice this means tens of thousands of users who might
find a configuration they prefer. When the number of presets is
large, all considered methods of generating presets provide similar
performance. Note that usually, the most important cases are when
the number of presets is in the range of 4-30 when the algorithms
differ the most in their performance. There are self-fitting methods
that envision users performing simple auditory tests and being
prescribed an OTC HA using one of four presets (Urbanski et al.,
2021). On the other end, users might be provided with an interface
to select one out of 30 presets for their use.

We use the greedy, genetic algorithm, and k-means to generate
the 20, 30, and 40 presets. The generated presets are projected in
two dimensions using PCA and shown in Figure 8. A common
trend across the presets is the presets selected using k-means
tend to be more spread out than those generated by greedy and
genetic algorithms. As the presets picked by k-means tend to be
more spread out some of them are in areas where they provide
little population coverage. In contrast, the other two methods pick
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Representation of Presets in PCA space (GA Presets, Greedy Presets, and Clustering presets). (A) 20 Presets. (B) 30 Presets. (C) 40 Presets.
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FIGURE 9
Percentage coverage results for slider-based approach. Y steps were
kept constant (10) while X steps were varied from 2 to 20.

are more densely packed toward the center of the figure. This
result highlights the importance of picking an algorithm that is
designed to maximize the population coverage (greedy or genetic
algorithms) rather than as different objectives (for k-means).

Result: For the cluster-based methods that use four to twenty
presets, the genetic algorithms provide better performance than
the greedy and k-means approaches.

Next, we consider user interfaces that are slider-based where the
number of steps on the sliders is increased from 2 to 20. Figures 9,
10 plot the population coverage for a different number of steps
used for the x and y sliders respectively while keeping y and x
steps constant at 10. As the number of steps is increased, the two-
dimensional grid in the configuration space becomes denser and
the associated population coverage also increases. A user interface
with the two sliders each having ten steps provides a population
coverage of 78.24%. In general, for the same number of presets
sliders provide lower coverage than the same number of presets for
collection-based presets. This is a consequence of the slider-based
approaches constraining presets on the 2D grid whereas no such
constraints are imposed for collection-based approaches.

Results: The proposed approach can be used to optimize the
number of increments for slider-based approaches.

Frontiersin Audiology and Otology

09

100
__ 807
e
o 60+
28
|9
201
0' T T T
5 10 15 20
Number of Y steps
(Keeping X steps=10 constant)
FIGURE 10

Percentage coverage results for slider-based approach. X steps
were kept constant (10) while Y steps were varied from 2 to 20.

5.2. Impact of demographics

One approach that may yield improvements to the population
coverage is to consider the impact of various demographics. In
the following, we will consider whether dividing the population
into four subgroups based on age and gender can yield presets
that are tailored for those specific groups and provide higher
coverage than the original presets that do not differentiate for
gender or age. Historically, hearing loss in the population has varied
as a function of demographics, with older adults having greater
degrees of hearing loss than younger adults, and males having
greater degrees of hearing loss than females (Pearson et al., 1995;
Hoffman et al., 2017). Thus, dividing the population by age and
gender may improve coverage estimates. The subsets into which
we divide the population of users with mild-to-moderate hearing
loss are:

Male, age > 65
Male, age < 65
Female, age > 65

Female, age < 65
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FIGURE 11
Population coverage for different subgroups. (A) Subgroup: male, age >65; (B) Subgroup: male, age <= 65; (C) Subgroup: female, age >65; (D)
Subgroup: female, age <= 65.

Figure 11 plots the population coverage for each of the four
groups with GA presets and presets obtained by running GA only
on the subgroup population. The results indicate that in some cases
higher population coverage may be achieved if the presets are built
for that specific subset of the population. The most promising
results are for the subgroup which includes males who are over
65. In this case, constructing presets specialized for this subgroup
provides an improvement of 16% in population coverage over
using the presets constructed for the general population. However,
these results do not hold for all subgroups. Our approach provides
no meaningful improvements for the subgroup which included
women over 65 over constructing presets for the overall population.

Result: Using demographics to refine the target population
of users may yield significant improvements in population
coverage.

5.3. Robustness of results

An important question is to evaluate how robust are our
methods to different ways of characterizing a user’s deviation
from NAL-NL2. We will use two different approaches—using
bootstrap and scaling the variance of the Gaussian. We used
bootstrap (Mackersie et al., 2020; Boothroyd et al., 2022) to obtain a
distribution of possible values for the variance of the 2D Gaussian.
Accordingly, we sample with replacement from the empirical data
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Distribution of population coverage by greedy presets using
bootstrap technique.

of studies (Mackersie et al., 2020; Boothroyd et al, 2022) to
generate 50 bootstrap samples. For each bootstrap sample, we
run the greedy algorithm for 5 to 40 presets and compute their
associated population coverage. Figure 12 plots the probability
density function of the population coverage for the 20, 25, 30, 35,
and 40 presets.
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The figure shows that there is little variation in the population
coverage for the generated bootstrap samples. Moreover, the
variation tends to diminish with the number of presets. At 20
presets the population coverage range fluctuates by £ 0.75%.
With an increasing number of presets, this variation in range
significantly goes down. At 40 presets, the fluctuation range is
£ 0.25%. Therefore, there are small variations in the population
coverage within the bootstrap samples. This indicates that if
the data from original studies used to build the 2D Gaussian
is representative, then we should observe little variation in the
population coverage.

Another approach to evaluate the robustness of our approach
is to consider the impact that a higher Gaussian variance may
have. We have scaled the fitted variance using the data from
studies (Mackersie et al., 2020; Boothroyd et al., 2022) by scalars
0.5, 1, and 1.5. The expectation is that increasing the variance
will result in lower coverage for the same number of presets.
Stated differently, a larger number of presets is necessary to
achieve the same coverage. We have evaluated the impact of
scaling the variance in the case of using the greedy algorithm to
build presets.

Figure 13 plots the effects of variance scaling on population
coverage by greedy presets. When the variance is 1.5 times larger,
there is a reduction of 3.5% in population coverage. Conversely,
when the variance is 0.5 times smaller, there is an increase of 7%
in population coverage at 40 presets. Overall, these results indicate
that population coverage results are robust with respect to larger
variances than those expected based on the empirical data alone.

Intuitively, if the variance is lower, there is a higher variation
weight associated with the variations closer to the user’s REIG.
Thus, it takes less number of presets to cover the same population.
It reflects in our results i.e., population coverage difference is as
high as 32% for 10 greedy presets generated between a variance
scale of 0.5 and 1.5. This wide difference narrows down to almost
7% for 50 greedy presets.

Result: The experiments demonstrate that the population
coverage results are robust different assumptions about the
underlying Gaussian distribution controlling the weights of
transfer functions.
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6. Discussion

The paper uses population coverage to evaluate and optimize
various settings for preset-based methods. We caution the reader
that population coverage is not the only metric that may be
used to assess self-fitting methods. To fully evaluate self-fitting
methods, it is necessary to run detailed user studies to evaluate
their performance. However, population coverage can guide how
user studies may be set up. For example, in the case of collection-
based approaches, the region of interest is when the number of
presets is in the range of 20-40. Using fewer than 20 presets yields
would cover only a small fraction of users. In contrast, increasing
the number of presets beyond 40 results in minor improvements in
population coverage. Further user studies should particularly focus
on this range. Similarly, in the case of slider-based approaches, the
region of interest is when the number of increments is about ten for
both sliders.

The computation of population coverage depends on a number
of modeling assumptions and hyper-parameters. The hyper-
parameters of our model include y, R, and the likelihood of
each possible configuration as given by the two-dimensional
Gaussian. Our experiments show that the population coverage
values are fairly robust to increases in the variance of the Gaussian
distribution. The parameters y and R are configured based on
audiology expertise. Our experimentation with different values for
y and R shows that although population coverage changes, the
same overall trends are observed.

Both studies (Mackersie et al., 2020; Boothroyd et al., 2022)
that we used to create transfer functions utilize speech listening to
conduct self-fitting. Therefore, the user preference could be mainly
driven by speech understanding or clarity. In a different listening
situation, such as music listening, other factors, such as sound
quality (e.g., fullness), could drive the preference. Therefore, our
study may not generalize to situations other than speech listening.

Audibility is only one factor among a constellation of complex
factors that might be expected to affect hearing aid setting selection
and hearing aid outcomes. This study investigates a theoretical
approach to optimizing the selection of hearing aid gain-frequency
configurations such that a preferable setting was included for the
majority of potential users. Importantly, this study did not test
the identified presets empirically among a sample of hearing aid
users; such a study is a critical next step to determine the real-
world viability of our approach. This study also did not consider
factors in the selection process that might affect outcomes such
as pre- or post-selection self-assessment or service delivery model,
though such factors have not been shown to have large impacts on
hearing aid satisfaction for OTC hearing aids (e.g., Humes et al,,
2017; Mackersie et al., 2020).

7. Conclusion

This paper proposes a novel metric—population coverage—
to evaluate, compare, and optimize preset-based self-fitting
methods. The population coverage estimates how well a given
number of presets meet the needs of populations of users with
different characteristics. The unique aspect of our approach
is that the population coverage is computed to account for
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how a user’s preferred configuration may deviate from the
NAL-NL2 prescription. We apply the population coverage to
optimize the presets used by collection- and slider-based methods.
Specifically, greedy and genetic algorithms are proposed presets
that maximize population coverage. Similarly, algorithms are
proposed to configure the number of intervals on slider-based
interfaces to maximize coverage. Our experiments indicate that
the proposed algorithms can effectively identify presets for both
collection- and slider-based methods. Moreover, we may use
population coverage to narrow down the different configurations
of preset-based methods with good population coverage and
whose performance should be further characterized through
user studies.
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