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Upper-Limb Prosthetic Control Modes
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Abstract—The aim of this study was to experimentally test
the effects of different electromyographic-based prosthetic con-
trol modes on user task performance, cognitive workload, and
perceived usability to inform further human-centered design and
application of these prosthetic control interfaces. We recruited
30 able-bodied participants for a between-subjects comparison of
three control modes: direct control (DC), pattern recognition (PR),
and continuous control (CC). Multiple human-centered evalua-
tions were used, including task performance, cognitive workload,
and usability assessments. To ensure that the results were not
task-dependent, this study used two different test tasks, including
the clothespin relocation task and Southampton hand assessment
procedure-door handle task. Results revealed performance with
each control mode to vary among tasks. When the task had high-
angle adjustment accuracy requirements, the PR control outper-
formed DC. For cognitive workload, the CC mode was superior
to DC in reducing user load across tasks. Both CC and PR con-
trol appear to be effective alternatives to DC in terms of task
performance and cognitive load. Furthermore, we observed that,
when comparing control modes, multitask testing and multifaceted
evaluations are critical to avoid task-induced or method-induced
evaluation bias. Hence, future studies with larger samples and
different designs will be needed to expand the understanding of
prosthetic device features and workload relationships.
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1. INTRODUCTION

PPER-LIMB amputation causes a permanent disability.
UBasic activities of daily living (ADL), such as grasp-
ing, eating, and using zippers on clothing, become difficult to
perform for individuals with upper-limb amputations [1]. To
restore their motor function and improve the quality of life,
advanced prosthesis technology is needed. Over the past decade,
significant technological advances have made powered, dexter-
ous prosthetic hands and arms commercially available. The key
challenge in making these modern devices functional for upper-
limb amputees is an intuitive human—machine interface for easy
prosthesis operation. Since electromyographic (EMG) signals
represent the user’s movement intent, EMG signals recorded
from residual muscles have been widely used as neural sources
in human-machine interfaces for powered prosthetic arm
control [2].

A. Prosthetic Control Modes

There are several EMG-based control modes described in
the literature that map EMG signals to prosthesis control com-
mands. Direct control (DC) has been widely used in clinics
for decades [3]. DC allows users to control one degree of
freedom (DOF) from EMG signals recorded from a single pair
of residual agonist—antagonist muscles. If more than 1-DOF
needs to be operated, the user must generate a special muscle
activation pattern, e.g., cocontraction, to switch the control
DOF and then use the same muscle pair to control another
joint, which is nonintuitive. Another control mode, EMG pat-
tern recognition (PR) [4], has become clinically available in
recent years. PR control recognizes a user’s intent based on
the activation patterns of residual muscles. At the core of PR
control is a classifier that maps the features of multichannel
EMG signals to discrete motion classes (i.e., hand open/close
and wrist pronation/supination). Compared with DC, PR control
is more intuitive to use. However, this method still only allows
for the control of 1-DOF at a time, leading to unnatural arm/hand
motions. To address this limitation, recent research has focused
on developing EMG-based control that can estimate multijoint
coordinated, continuous arm kinematics (i.e., position or veloc-
ity) for continuous control (CC) of multifunctional prostheses
[51,[6],[71,[81,[91,[10], [11], [12]. The capability of CC to drive
multiple DOFs simultaneously may allow users to adopt more
natural motion strategies to efficiently complete tasks. Since CC
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is relatively new, it has not been adopted by commercial pros-
theses yet. Theoretically, CC is more natural to use. However,
there are gaps in the objective and subjective comparison of
CC with other widely used control modes, such as DC and PR
control.

Despite tremendous engineering efforts in developing EMG-
based control modes for prosthetics, human-centered research
on how the different modes impact user cognition and physical
task performance (TP) has been limited. Rehabilitation engi-
neers often evaluate EMG-based control methods by the EMG
decoding accuracy in estimating user intent [6], [7], [8], [9],
[10], [11],[12], [13], [14]. TP of users wearing EMG-controlled
prostheses is sometimes included in these evaluations just to
show the feasibility of a new design. Cognitive function effects
have rarely been quantified.

B. Human-Centered Evaluation Measures

For assistive technologies, human-centered evaluations are
critical to understand how a device may be interpreted by a user
and to ensure the intended benefits for users. Such evaluations
quantify not only the performance of user tasks assisted by
the technology but also the demand on cognitive function (i.e.,
workload) and usability. Despite the importance of human-
centered evaluations, related research that uses human-centered
approaches to evaluate different EMG control modes for pros-
theses is quite limited.

Several clinical translational studies compared DC and PR
control modes. These evaluations have included the performance
of prosthesis users in various tasks and cognitive load [15], [16],
[17]. In these clinical trials, the evaluation of cognitive load
is primarily addressed by dual-task paradigms, using specific
tasks with overlapping or competing demands. In our previous
research, we evaluated the physical performance and associ-
ated cognitive load of human participants who used powered
upper-extremity prosthetics with either DC or PR control while
performing the clothespin relocation task (CRT) [18], [19], [20].

Regarding cognitive load assessment, a wide variety of met-
rics are documented in the literature, primarily due to the
multidimensional nature of the mental workload construct [21].
Several studies classify the measures of cognitive load into three
categories: physiological state, subjective reports, and dual-task
paradigms [21], [22]. The drawback of dual-task paradigms is
that they can distract/subtract from primary TP, which is unde-
sirable when studying the effectiveness of task interfaces [22].
Based on the literature, there are pros and cons for both subjec-
tive reports of workload and objective physiological indicators.
Some subjective reporting methods have been demonstrated to
be usable and effective for capturing perceptions of workload but
inevitably have a bias due to memory dependencies and the influ-
ence of perceived TP [21], [23]. Opposite to this, physiological
state measures have shown advantages in providing objective
indicators of cognitive load with strong correlations between
pupillometry features and objective measures of task demands.
However, physiological measures can also be influenced by the
task environment and other cognitive demands, such as anxiety,
stress, and sexual arousal [23]. Given the limitations of each
technique, we elected to use a combination of subjective reports
and physiological measures, including eye-tracking responses,
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which are noninvasive and highly sensitive to cognitive task
demands. The percent change in pupil size (PCPS) has been
used in previous research to assess the effect of prosthetic device
control modes on cognitive load [18]. It was found that PCPS
has a higher value in mentally complex tasks than in more
manageable tasks [24]. Blink rate (BR) has also been frequently
used as an indicator of cognitive load in other domains [25],
[26]. However, some studies suggest that this measure is only
adequate to assess visual workload [27]. The number of eye
blinks and blink duration decreases as visual workload increases
[27]. In addition to these eye-tracking measures, we also applied
the NASA task load index (TLX) as a subjective workload report
method, as this index has been used extensively in prior research,
including perceived workload in prosthesis device use [28], [29],
[30].

The existing human-centered evaluation studies reveal several
knowledge gaps. First, none of the previous studies considered
CC as a comparative design for EMG-based prosthetic control.
Second, when evaluating cognitive load, only one test task has
been used, which may challenge the generalizability of study
conclusions. In addition, the analysis of cognitive load has been
based on one type of physiological measure, such as pupil size,
electro-encephalography signals, and heart rate, or subjective
measures. Each measure has its own challenges, and there is no
“gold standard” among cognitive assessment methods. Finally,
to our knowledge, none of the prior studies include usability
assessment [18], [19], [20].

C. Objective and Hypotheses

Motivated by the need to address the identified knowledge
gaps, the objective of this article was to experimentally com-
pare three existing EMG-based control modes for upper-limb
prostheses (DC, PR control, and CC) based on multiple test
tasks [CRT and Southampton Hand Assessment Procedure
(SHAP) - Door Handle Task (DHT)] and multifaceted human-
centered evaluation, including TP, cognitive load, and usability
assessment.

Based on the efficiency of control mode algorithms and
previous studies [18], [19], PR control and CC were expected
to produce superior TP [Hypothesis (H)1], lower cognitive
workload (H2), and greater perceived usability (H3) than DC.
In addition, since the SHAP-DHT requires fewer gestures and
simpler operations, as compared with the CRT, it was expected
that participants would experience higher cognitive workload
in CRT versus SHAP-DHT performance (H4). In general, the
results of this study were expected to highlight the advantages
and challenges of each EMG control mode and inform the fu-
ture design of EMG-based interfaces for upper-limb prostheses.
Furthermore, this study was expected to define an effective
evaluation protocol and metrics to assess EMG-based control
interfaces.

II. METHOD

A. Participants

The experimental protocol was approved by the Institutional
Review Board of the University of North Carolina at Chapel Hill.
A total of 36 participants without disabilities were recruited.
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TABLE I
PARAMETER COMPARISON AMONG THREE CONTROL MODES

Control mode DC PR control CC
Control method N/A LDA ANN
Number of EMG channels 2 4 4
Number of control gestures 4 4

DOF per control 1 1 Multiple
Co-contraction is required to switch control DOF Yes No No
Sequential control Yes Yes No

Note: DOF - “degree of freedom;” N/A - “not applicable;” LDA - “linear discriminant analysis;” and ANN - “artificial neural networks.”

Persons with prior experience using a prosthetic device and
researchers involved in the study were excluded from partici-
pation. All participants were assigned to either DC, PR control,
or CC control at random on a rolling basis while ensuring an
equal number assigned to each control mode and balancing
of the sample for gender. However, data from six participants
were excluded from the analysis. Five of these participants were
unable to complete the control mode training. Specifically, two
participants were unable to complete the PR mode training,
two were unable to complete the CC mode training, and one
was unable to complete the DC mode training. Moreover, we
had to exclude data from another participant whose notably
long eyelashes interfered with the eye-tracking system data
collection, causing near-zero confidence levels for observations.
Consequently, ten participants were included in the data analysis
for each of the three control modes. Out of the 30 participants,
12 were females. The mean and standard deviation of age across
participants were 22.9 years and 2.8 years, respectively. All
participants consented to the study and were compensated for
participation.

B. EMG Control Modes and Setup

One commercial prosthetic hand [ETD, Motion Control, Inc.,
USA], with 2-DOF of actuation in hand open/close and wrist
pronation/supination, was used to test all three control algo-
rithms in the CRT and SHAP-DHT. The EMG system was
equipped with an antialiasing low-pass filter set at 500 Hz
for all data collection. The total weight of the device, which
encompasses the hand, able-bodied adapter, and cable compo-
nents, was approximately 4.54 pounds. A custom prosthetic
hand adapter was designed and fabricated such that people
without amputation could control the prosthetic hand with their
right arm. The adapter was locked at 90° at the elbow but
allowed for a full range of motion at the hand and for prona-
tion/supination. Table I presents the setup for each of the three
control modes. The utilization of muscles for the control of
prosthetic limbs varies depending on the control mode em-
ployed. DC is a simple, nonmachine learning method where a
single agonist—antagonist muscle pair is used to control a single
DOF, such as the wrist or hand. The DOF is switched through
cocontraction. EMG signals from the flexor carpi radialis and
extensor carpi radialis longus were used for DC. On the other
hand, PR and CC modes require multiple muscle signals to
control multiple DOFs for a more intuitive control experience.
These methods use all four channels to predict the movement
and velocity of joints, eliminating the need for manual switching

between DOFs. Therefore, two additional EMG signals, mea-
sured from the flexor digitorum superficialis and the extensor
digitorum communis muscles, were used for PR control and
CC. Electrode placements were based on muscle palpation and
confirmation of EMG signal quality. An EMG system (MA400,
Motion Lab Systems, Inc., USA) captured signals at 1000 Hz.
The control algorithms for the DC and PR control modes have
been reported previously [15], [19]. Here, we briefly discuss
their implementation.

DC: DC utilizes a pair of agonist—antagonist muscles to
control a single DOF (either hand open/close or wrist prona-
tion/supination) at one time. The movement speed of the pros-
thetic hand is set proportional to the magnitude of measured
EMG signals. Switching from 1-DOF to another is accomplished
with a cocontraction of the muscle pair (closing the hand and
clinching a fist). To enhance the integrity of the EMG signals,
high-pass (20 Hz) and low-pass (450 Hz) filters were applied
before further processing with a sliding window analysis tech-
nique. The analysis window had a size of 150 ms with a 50 ms
overlap, and the increment between consecutive windows was
100 ms. The latency for the DC control mode was half of
the window size, ensuring a responsive and efficient control
experience.

PR control: PR control classifies movement intent based on
the patterns of EMG features. In this study, five movement
classes were included: hand close, hand open, wrist pronation,
wrist supination, and no movement. To extract meaningful infor-
mation from the EMG signals, four time-domain features were
calculated, including mean absolute values (MAVs), number
of zero crossings, waveform length, and number of slope sign
changes. Similar to the DC mode, the collected EMG signals
were filtered with 20 and 450 Hz bandpass filters and processed
using a sliding window technique with a 150 ms window size,
a 50 ms overlap, a 100 ms increment between consecutive
windows, and half of the window size latency. The collected data
were used to train a linear discriminant analysis (LDA) classifier.
Intended movement classes were predicted in real time by the
classifier while the movement speed was set proportional to the
magnitudes of EMG signals.

CC: In this mode, EMG data are recorded simultaneously
with kinematic data from a leap motion controller (Leap Mo-
tion, Inc., USA). The controller uses a camera to accurately
estimate the positions of hand and forearm segments [31],
[32], [33], [34]. Position estimates for phalangeal, palm, and
forearm segments are recorded at 120 Hz and are used to
estimate wrist pronation/supination and metacarpophalangeal
(MCP) flexion/extension joint angles. Additionally, our prepro-
cessing for CC incorporated an MAV sliding window, which
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Fig. 1.  Control process for the CC mode.

served as a straightforward form of low-pass filtering. This
approach provided necessary refinement without compromising
the integrity of the data. Fig. 1 graphically presents the EMG
CC mode used in this study.

Data were first collected from participants while they per-
formed MCP flexion and extension and wrist pronation and
supination movements. All motions were performed in a pattern
in which participants moved their wrist/ MCP between a fully
flexed/pronated, relaxed, and fully extended/supinated position
to a metronome set at a 1 Hz frequency. Three 10-s trials were
recorded for each motion type to be used for training.

An artificial neural network (ANN) was created for each
participant for both the wrist and MCP using the deep learning
toolbox in MATLAB 2018b (Mathworks, Inc., USA). The ANNSs
were trained to map processed EMG signals to joint positions.
Velocity was estimated by differentiating the estimated positions

5 = 9(75)—1(:—&)

where 6 and 6 are the estimated position and velocity, respec-
tively, and ¢ is the current timestep. The value of At was tuned
to 100 ms to provide relatively smooth velocity estimations.
Additionally, estimated kinematics were smoothed in real time
using a moving average filter. Finally, to prevent constant small
motions in the prosthetic device, all estimated velocities that fell
below a predetermined threshold were set to 0.

To train the ANN, we collected three sets of 10-s duration
data for each type of movement, amounting to a total of 90 s of
data per participant. More specifically, we acquired three data
files for isolated hand movements, three for isolated wrist move-
ments, and three for simultaneous movements. The collected
data were then divided using 70% for ANN training, 15% for
validation, and 15% for testing. For each participant, multiple
parameters were manually adjusted by experimenters based on
offline performance achieved by the ANN and on the feedback
from participants testing basic motions in real time using the
prosthetic device. The number of hidden layers and then the
number of neurons in each hidden layer were incremented
until maximum performance was found. The optimal size for
the sliding windows was then determined by calculating the
MAV for windows in the range of 100-300 ms with a 100 ms
increment. The size of the sliding windows used for the moving
average filter was determined by gradually increasing values
starting from 0 ms (no smoothing) until participants indicated
they could comfortably control the device. If needed, the thresh-
olds were incremented starting from zero while subjects relaxed
their upper limb until any small movements of the prosthetic
motors were eliminated. The latency for the CC control mode
was half of the window size. Finally, based on participant
feedback, an output gain was adjusted to allow the motors to

#
/" Motor Speed

[

Derivative and
Smoothing Filters

Electromyogra
phy Electrodes

CRT Task

Fig. 2. Participant using the prosthetic adapter for CRT TP.

move at an appropriate speed proportional to the estimated
velocity.

C. Tasks Selection and Experimental Setup

In our prior research [35], we investigated the relationship
between human upper-body movements in real-world activities,
such as driving a vehicle and ADL, as documented in the
literature. Our study determined that the CRT and SHAP-DHT
encompass all upper-body movements necessary for such ac-
tivities (including shoulder, elbow, forearm, wrist, and hand
movements) and were identified as the most sensitive ADL
tests in previous research assessing the usability of prosthetic
devices. It is important to note that, while we did not collect
every combination of input gestures and classified outcomes, we
implemented a consistent calibration process for all participants
to minimize potential confounding factors arising from differ-
ences in calibration quality. Furthermore, all participants met the
training criteria for each device configuration, ensuring that any
unintentional correct hook movements for task completion, such
as closing, occurred consistently across the entire participant
pool.

CRT: The CRT [36] consists of a bin with a horizontal bar,
vertical bar, and three plastic clothespins (see Fig. 2). The
objective of the task is for participants to use 2-DOFs in motion
to transport clothespins between the two bars, as quickly as
possible.

SHAP: The DHT (see Fig. 3), as a part of the SHAP-DHT
[37], was also required in this study. The task involves grasping
the handle, rotating it downward and then back to its original
position, and releasing it as quickly as possible.

D. Human-Centered Evaluation Methods and Metrics

To evaluate the performance of the three control modes in
the two different tasks, we defined performance criteria for each
of the tasks. CRT performance was measured in terms of the
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Fig. 3. Participant using the prosthetic adapter for the SHAP-DHT.

number of pins moved by a participant in a 2-min period. The
easier a control mode was to use, the more pins a participant
could move and the better the TP evaluation for the control mode.
For the SHAP-DHT, we measured the time it took participants to
rotate the door handle five times in sequence. The more difficult
a control mode was to use, the longer the task time and the worse
the control mode evaluation. In this study, we used eye-tracking
measures (e.g., BR and PCPS) combined with NASA-TLX
scores to compare the cognitive load implications of different
device control modes for 2-DOF myoelectric prosthetics.

With respect to usability assessment, we evaluated several
commonly used methods, such as the modified client satisfac-
tion with device module of the orthotics and prosthetic users’
survey (CSD-OPUS), the system usability scale (SUS), the
trinity amputation and prosthesis experience scale (TAPES), the
Quebec user evaluation of satisfaction with assistive technology
(QUEST 2.0) method, and the usefulness, satisfaction, and ease
of use (USE) scale. Since this research involved the assessment
of prosthetic device control modes rather than a comparison of
existing commercial products, the QUEST 2.0 and USE scales
were identified as stronger fits for the study than the CSD-OPUS,
SUS, and TAPES. The QUEST 2.0 method was considered to be
particularly relevant, as the survey includes an assistive device
section, specifically designed for prosthetic devices. The overall
structure of our human-centered evaluation of the EMG-based
upper-limb prosthetic control modes is presented in Fig. 4.

E. Procedures

The experiment took place in a laboratory with constant
illumination to limit the effect of fluctuations in lighting level
on pupillometry. Based on multiple photometer readings during
the experiment, the illuminance level was relatively consistent
at 170-200 lux in the area where participants were tested. Par-
ticipants wore a head-mounted eye-tracking system throughout
the experiment to capture changes in their pupil size and BR.
Participants also donned the upper-extremity prosthetic adapter.
EMG electrodes were placed on the skin surface based on the
assigned control mode. A verbal description of the prosthesis
DOFs and control strategy was provided for participants. They
practiced controlling the device until they reported comfort
with the assigned control mode. Participants then advanced to a
formal study training period.

The training session required participants to use the prosthesis
to perform the CRT task while an experimenter recorded the time

to move three clothespins. Training criteria were established
based on pilot test data and a learning curve analysis revealing
when participants achieve asymptotic performance (on average)
with the specific device and at what level (i.e., minimum task
time). If the average task completion time of three sequential
trials was within 15-25 s for the PR control, 20-35 s for the DC,
and 16-23 s for the CC mode, the participant passed the training
sessions and proceeded to actual experimental trials.

Upon completion of the training trials, the eye-tracking sys-
tem was calibrated for participants, and they were permitted to
begin experiment trials after a 5-min break.

During the experiment, all participants completed a total of
three trials for both the CRT and SHAP-DHT. After each test
trial, participants filled out the NASA-TLX questionnaire and
had a 2-min rest period. The QUEST 2.0 and USE forms were
presented after a participant had completed all trials for a specific
task and were used to collect usability assessments of the control
mode during the experiment.

F. Experimental Design

This study followed a 3 x 2 mixed within—between-subjects
experimental design, with three prosthetic control modes (DC,
PR control, and CC) and two types of test tasks (CRT and SHAP-
DHT). Each participant was assigned a unique control mode to
perform the CRT and SHAP-DHT, each of which was repeated
three times. Therefore, our experimental design ensured an equal
number of observations across device control modes and tasks.

G. Data Processing

For the CRT, the number of pins moved in a 2-min period was
recorded. For the SHAP-DHT, the time required to rotate the
door handle five times was recorded.

Although we strictly controlled the lab illumination level and
performed calibration of the eye-tracking system, such devices
are highly sensitive to environmental conditions and physiology
states. Consequently, we applied rigorous postprocessing to the
tracking data. Pupil size estimation depends on the accurate 3-D
eye model. Unfortunately, headset slippage during testing can
seriously affect pupillometry. To address this issue, we used
the approach of regularly updating the 3-D model for each
participant [38]. However, in some cases, this periodic update
process can lead to increases in the likelihood of incorrect pupil
size measurements, specifically if there is no slippage in the
headset [38]. To further address this issue, we analyzed the
system confidence level in pupil size (or data quality). When
values were less than 0.9 (90% confidence), the data were
excluded for experimental evaluation. This confidence level was
determined based on discussions with the manufacturer (Pupil
Labs) and has been used in prior studies with eye-tracking
devices [19], [39]. In addition, we watched recorded videos
of test trials to assess the device calibration for pupil tracking
and to identify inaccurate 3-D eye models. This procedure was
recommended by the manufacturer and has been applied to other
studies [40], [41]. We then calculated the PCPS by subtracting
the baseline pupil size (collected prior to the experiment and
when the participant was looking at a black monitor display in a
relaxed state) from the measured pupil size in each trial and then
divided by the baseline pupil size. BR is defined as the number of
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Fig. 4.

eye closures in a given period [19]. The eye-tracking system we
used automatically captures blink information, including each
blink time and blink duration. Based on this information, we
used blinks per minute to represent BR.

Regarding the subjective workload measure, the NASA-TLX
includes six dimensions of demand, including mental, physical,
temporal, performance, effort, and frustration [42]. Participants
were required to rank each dimension at the start of the exper-
iment, based on their task training session. Subsequently, after
each trial, participants were asked to further rate the dimensions
for the specific test conditions. The NASA-TLX total score was
calculated as a rank-weighted sum of demand ratings from 0
to 100.

Usability was measured using the two questionnaires, in-
cluding QUEST 2.0 and USE. Although the QUEST 2.0 and
USE surveys are both usability quantification methods, they
focus on different aspects of the target technology. The QUEST
2.0 questionnaire assesses user satisfaction with the assistive
technology across eight different dimensions, including device
size, weight, durability, comfort, effectiveness, ease of use, ease
in adjustment, safety, and security [43]. The USE survey is a
composite assessment, including four components of USE and
ease of learning. The USE satisfaction component, for example,
presents seven questions, such as whether the user is satisfied,
whether they would recommend the device to a friend, whether
the device is “fun to use,” and other questions [44]. In general,
the USE survey focuses more on user experience evaluation,
while the QUEST 2.0 survey focuses more on characteristics of
the technology, relative to design for usability. Participants were
asked to rate the usability of the device after the last test trial.
Due to variability in subjective evaluations, normalization was
applied to QUEST 2.0 and USE scores.

H. Data Analysis

Descriptive statistical analyses were performed on all re-
sponse measures, including the calculation of means and stan-
dard deviations, along with graphical analysis. In the graph-
ical analysis, the error bars reflect the standard error of the
mean. These analyses were conducted to identify the overall
distribution of datasets, relationships between the independent
and dependent variables, and whether there was evidence of

Structure of human-centered evaluation of EMG-based upper-limb prosthetic control modes.

interactions among the independent factors. The descriptive
statistics provided a basis for additional inferential analyses.

Based on the experimental design, the statistical model for
inferential analysis was a three-way mixed effects model with
two fixed effects and one random effect. Since there was a full
crossing of control mode and task factor settings, the model also
included an interaction term. The random subject effect was
a product of convenience sampling from the population. The
subject term was involved in multiple interactions, which were
pooled in the model error term.

For inferential statistical analysis, we adopted various meth-
ods depending on the type of response measure. For responses
that were continuous in observation and satisfied parametric test
assumptions, including PCPS, BR, TP, and the NASA-TLX,
we applied an analysis of variance (ANOVA) to the statistical
model along with Tukey’s post-hoc tests [honestly significant
difference (HSD)] for multiple condition comparisons. For the
usability measures, which did not uphold parametric model
assumptions due to their discrete quantitative nature, we applied
nonparametric methods. Tests included the Kruskal-Wallis test,
as a one-way alternative to the ANOVA, and the Wilcoxon rank
sum test for multiple comparisons of significant factor settings.
In order to provide a clear and effective visual representation
of our results, in all graphs, we use error bars to represent the
standard error of the mean and asterisks to denote significant
differences in the control modes as well as interactions. Specifi-
cally, one asterisk is used when p < 0.05, two asterisks are used
when p < 0.01, and three asterisks are used when p < 0.001.

III. RESULTS

The results of the inferential analyses are summarized in
Table II. For the training portion of the study, results indicated
that, on average, participants using the PR control mode required
fewer trials to meet the training criteria, as compared with those
using the DC and CC modes. The means and standard errors
were as follows: PR = 7.4 4+ 1.16 trials; DC = 8.2 4= 1.51 trials;
and CC = 8.2 £ 1.25 trials.

A. Task Performance

Fig. 5(a) and (b) presents the mean TP for the CRT and SHAP-
DHT by control modes, accordingly. Fig. 5(a) reveals that, on
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TABLE II
SUMMARY OF ANALYSIS RESULTS FOR ALL RESPONSES

Responses Device control mode Task Interaction
TP CRT: Sign.(p=0.028), DC<PR; SHAP: NS.  N/A N/A
PCPS Sign. (p= 0.044); DC>CC NS. Sign. (p=0.047);
BR NS. Sign. (p<0.001); CRT < SHAP NS.
NASA-TLX NS. Sign. (p<0.001); CRT > SHAP Sign. (p<0.001)
QUEST NS. N/A N/A
USE NS. N/A N/A
Note: Sign. means statistically significant effect (p < 0.05); NS means not significant; and N/A means not applicable.
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Error bars represent the standard errors on means. (a) Mean number of clothes
pins moved using different device control modes. (Significant difference be-
tween DC and PR (p < 0.05) indicated by an asterisk.) Moving more pins
indicates superior performance. (b) Mean task completion time using different
device control modes, where a shorter duration indicates better performance.

average, when performing the CRT task, participants exhibited
the highest performance when using the PR control mode and the
lowest TP when using the DC mode (CC =9.23 pins; DC =7.33;
and PR = 10.50). However, as shown in Fig. 5(b), on average,
participants achieved greater performance in the SHAP-DHT
when using the DC device and worse performance when using
the CC device (CC =94.53 s; DC = 60.63 s; and PR = 65.27 s).

Since the TP measures for both tasks were continuous with
random effects, the three-way ANOVA model was applied
to both the CRT and SHAP-DHT responses. Normality tests
(Shapiro-Wilks test: pcrr) = 0.16; psuap) = 0.42) indi-
cated no parametric test assumption violations. ANOVA re-
sults revealed that, for the CRT, participant performance dif-
fered significantly among control modes (F(, 27) = 4.08, p =
0.03, and n? = 0.23). Tukey’s tests showed that the number
of clothes’ pins relocated using DC mode was significantly
less than for PR control (p < 0.05). The asterisks on the his-
tograms indicate statistically significant differences between the
means. However, no significant differences were detected among
control modes when participants performed the SHAP-DHT
(Fl2, 27y = 1.87, p=0.17, and n? = 0.12).

indicated by an asterisk.) (b) Mean BR by control modes and task group.

B. Cognitive Workload Measurements

Fig. 6(a) and (b) presents the mean PCPS and BR values by
device control mode and task type. The descriptive statistics
indicated that participants, whether performing the CRT or
SHAP-DHT, exhibited the highest PCPS and lowest BR when
using the DC mode. Fig. 6(a) also reveals that when participants
used the CC and PR control to perform the same or different test
tasks, on average, there were no apparent differences in PCPS
responses. In contrast, as shown in Fig. 6(b), participant BR
responses were higher when performing the SHAP-DHT versus
the CRT, regardless of the device control mode, indicating that
the CRT was likely more demanding. However, when consider-
ing the same task type, the influence of the CC and PR control
modes on BR responses appeared to be similar.

As with the TP variable, the three-way ANOVA was applied
to the PCPS and BR response data. Normality assumption vi-
olations led to a transformation in each response (specifically,
Y' =Y ) and statistical outliers were replaced with within-
group averages [45]. Shapiro-Wilks tests subsequently con-
firmed the normality of the transformed responses ( ppcps) =
0.24; pblink rate) = 0.09). Furthermore, according to Larson
[46], the ANOVA is robust for balanced or near-balanced designs
when the data are determined to be normal, even in the presence
of heterogeneity of variance.
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Fig.7. Mean NASA-TLX scores by control mode and task group. (Significant
difference between CRT and SHAP-DHT tasks when using DC control mode
(p<0.001) indicated by asterisks. Error bars represent the standard errors on
means.)

ANOVA results on PCPS revealed significant differences
among control modes (F{3, 27y = 3.53, p=10.044, and n? =
0.21) and the interaction between the control mode and task
(Fl2, 147y = 3.12, p=10.047, and n? = 0.04). Post-hoc anal-
ysis using Tukey’s HSD tests revealed participants to exhibit
significantly lower PCPS when using the CC mode than with the
DC mode (p < 0.05). Furthermore, the CC condition produced
the lowest PCPS, while the DC mode led to the highest PCPS
in the SHAP-DHT (p < 0.05).

ANOVA results on the BR response revealed signifi-
cant differences among task types (F(i, 147) = 14.32, p <
0.001, and n? = 0.09). The SHAP-DHT appeared to produce
the highest BR across control modes. However, the control
mode had no significant effect on the BR of participants. In
addition, from the BR measurement, there was no significant
interaction between the control mode and task. The asterisks
on the histograms indicate statistically significant differences
between the means.

Fig. 7 presents the results of the cognitive workload assess-
mentusing the NASA-TLX rating method. When performing the
CRT task, participants indicated the highest average workload
levels (TLX scores) for the DC mode, while NASA-TLX scores
appeared similar for the CC and PR control modes (DC =
65.17; CC = 56.89; and PR = 54.46). When performing the
SHAP-DHT, participant NASA-TLX scores were highest when
using the CC mode (DC-52.66; CC-54.56; and PR-49.79). In
addition, when using the DC mode, participant NASA-TLX
scores appeared to be much lower for the SHAP-DHT than the
CRT task.

Given that the NASA-TLX score is a continuous response, and
the data did not violate the normality assumption, the three-way
ANOVA model was applied to the response. Test results revealed
that participant TLX scores varied significantly between tasks
(F(1, 27y = 33.53, p <0.001, and n? = 0.19). In addition,
there was a significant interaction between the control mode
and task type for the TLX response (F(o, 147) = 7.52, p <
0.001, and n? = 0.09). The asterisks on the histograms indi-
cate statistically significant differences between the means. By
analyzing the ratings for the different demand components of the
NASA-TLX, we found a trend of responses across components
to support the general trend of the total cognitive workload score.

C. Usability Assessments

Fig. 8 presents the mean usability scores from the QUEST 2.0
and USE surveys for each device control mode. The PR control
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Fig. 8. Mean usability assessments’ scores using different device control
modes. Error bars represent the standard errors on means.

mode produced the lowest scores for both the QUEST 2.0 and
USE methods. Meanwhile, the CC mode produced the highest
scores for QUEST 2.0 and the DC mode generated the highest
score for the USE survey. Due to a small dataset and variation
in survey response residuals, a nonparametric analysis method
was applied to normalized QUEST 2.0 and USE scores. Results
of the Kruskal-Wallis test revealed no significant differences
in participant usability evaluations among the different control
modes for either the QUEST 2.0 (x2 = 0.16 and p = 0.92) or
USE (x? = 0.08 and p = 0.96) methods.

IV. DISCUSSION

The evidence obtained in this study provides partial support
for H1. According to TP results, we inferred that, when partici-
pants performed the CRT task, the DC mode was less favorable
in comparison with the PR control mode operation, as found in
the previous studies [18], [19], [20]. However, when participants
used CC, their TP was between the DC and PR control modes
and suggested that the performance of participants who used
the CC mode was similar to that of the DC and PR control
modes in the CRT. In addition to the CRT, we also included the
SHAP-DHT in our study. Results indicated that the prosthesis
control modes were comparable in TP when performing the
SHAP-DHT. From this result, we reviewed the experimental
videos and conducted a detailed task analysis. During the CRT,
participants had to accurately adjust the angle of the device to
grasp and release pins successfully, as a part of relocations.
Achieving this control sequence with the DC mode, while en-
suring the accurate angle control, was challenging. In the course
of the SHAP-DHT, however, participants only had to adjust
the angle of the device one time before they grasped the door
handle. The rest of the task did not require angle adjustments.
Therefore, in the case of SHAP-DHT, the disadvantage of the
DC mode was not pronounced. This analysis reveals that the
DC mode, compared with PR, has limitations for activities that
require frequent prosthetic joint angle adjustment. However, for
activities that do not require frequent and accurate angle control,
TP for the DC, PR control, and CC modes was not significantly
different.

The observations from this study provide support for H2 and
H4, regarding the influence of control modes and task types
on cognitive workload responses. Based on the PCPS results,
we can infer that the DC mode imposed a higher cognitive
load on participants, as compared with CC. In general, the CC
mode was more intuitive and natural than the DC mode. When
using CC, participants were required to perform fewer cognitive,
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perceptual, and motor operations to complete tasks based on our
detailed task analyses. Furthermore, we found that DC and CC
differed more significantly in SHAP-DHT performance than in
the CRT. This observation may be explained by the experimental
design. Since all participants completed three trials of the CRT
followed by the SHAP-DHT trials, this sequence could have
resulted in the second task (SHAP-DHT) amplifying the effect
of each control mode on the participant cognitive load. However,
there were no significant differences in PCPS for PR control
versus DC or CC, when participants performed either the CRT
or the SHAP-DHT. It was not surprising that there was no
difference between CC and PR control because the two modes
were controlled based on the user’s intent. Although the CC
mode allowed simultaneous joint operations and natural arm
motion in control, since the number of controllable joints in our
study was limited to two, from a user’s perspective, the cognitive
demand in operating the prosthetic arm with CC and PR control
was similar. Unlike our previous study [19], no significant
differences in PCPS were detected between PR control and DC.
Looking at Fig. 6, we can see that, on average, there was indeed a
difference between the modes; however, variability in participant
performance could have resulted in a lack of statistical sensitivity
in our analysis.

Different from the PCPS results, both BR and the NASA-TLX
response suggested that there were no significant differences in
cognitive load among the three control modes. It is possible that
the prior claim that BR measures visual workload, rather than
cognitive load, is an accurate assessment. In addition, another
recent study evaluated the capability of the NASA-TLX for per-
ceptual and mental workload measurement. The study criticized
the TLX for not measuring the mental construct it claims to
measure [47]. The particular claim was that the TLX measures
perceived task difficulty and not perceived mental load. These
issues could have led to the absence of significant differences in
the responses among our device control modes. However, both
the BR and NASA-TLX measures indicated that it was plausible
that the CRT imposed a greater visual and perceptual workload
on participants than the SHAP-DHT. On this basis, we inferred
that participants experienced a higher subjective cognitive load
when performing the CRT as compared with the SHAP-DHT.
The interaction effect also indicated that participants perceived
higher cognitive load when performing the CRT with the DC
mode, as compared with all other control mode and task type
combinations.

H3 and H4 were not supported in terms of the influence
of control modes and tasks on device usability assessments.
From a usability perspective, participants did not perceive any
differences across the three control modes. Relevant to this
finding, the USE questionnaire was not specifically designed
for evaluating prosthetic devices. The USE method addresses
technology usefulness, ease of use, and ease of learning, which
are broad concepts. It is possible that the measure is too general
in inquiries to differentiate among prosthetic device control
modes, which differ in terms of the control algorithms and DOFs.
Although QUEST 2.0 was specifically designed for prosthetic
devices, it focuses on user satisfaction. It is possible that this
limited definition of usability could have led to the lack of
observation of significant differences among the three control
modes. We, therefore, suggest that it is necessary to develop

or improve the existing usability analysis methods so that they
can be used specifically for the evaluation of prosthetic device
control features.

Finally, by comparison with other prior studies [15], [16],
[17],[18], [19], [20], we adopted a multifaceted human-centered
approach to the evaluation of the impact of the three EMG-based
control modes on users in terms of TP, cognitive workload ex-
periences, and usability responses. Furthermore, we integrated
three different subjective and objective measures of cognitive
load to promote sensitivity or likelihood of detection of dif-
ferences in workload among device control modes. Based on
the above discussion, we found that these three methods indeed
amplified different aspects of workload and, therefore, may
be complementary to each other in this type of analysis. In
summary, the human-centered evaluation method applied in
this study may be helpful for a more comprehensive under-
standing and comparison of prosthetic device control modes
and providing design guidance for future EMG-based interface
technologies.

V. CONCLUSION

The objective of this study was to experimentally test the
effects of different EMG-based prosthetic control modes on
user TP, cognitive load, and usability assessments. In addition,
we aimed to generate multifaceted human-centered evaluations
to inform the future design and application of EMG-based
interfaces for prosthesis control. To achieve the objective, we
compared three control modes (DC, PR control, and CC) in
terms of performance in two different tasks representing ADL
(CRT and SHAP-DHT). Results revealed performance with
each control mode to vary from task to task. The DC mode
produced limitations in tasks with angle adjustments (i.e., the
CRT), as compared with PR control. However, TP with CC
was not significantly different from PR control. In general,
the PR control demonstrated superior performance over DC in
the CRT and exhibited comparable efficacy to CC. However,
when considering the SHAP-DHT, no significant differences in
performance were observed among control modes.

From our investigation, in the performance of the SHAP-
DHT, the CC and PR control modes appear to be more fa-
vorable than DC in terms of cognitive load, as indicated by
PCPS. However, these differences were not always statistically
significant, and CC was not significantly different from DC
control. It appears that, while CC and PR control might offer
some advantages over DC in terms of potential better TP and
lower cognitive load, these advantages are dependent on the
task-at-hand and the response measures. On this basis, these
findings should be applied with caution. For example, prosthetic
designers may consider the use of a DC mode by optimizing the
degree of precision in the control of device angle adjustments to
reduce user cognitive load and potentially improve TP.

It was also clear from our analysis that using multiple types of
test tasks and multiple types of human-centered evaluation meth-
ods allowed us to avoid task-induced bias in the assessment of
the various control modes and to promote sensitivity in detecting
differences in performance and workload when they did occur.
As for the usability assessment results, we found that widely
used methods, such as QUEST and USE, have limitations for
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evaluating prosthetic control modes by able-bodied individuals.
Therefore, we believe it is necessary to develop a new usability
evaluation framework to allow for sensitive testing of such
devices and control mode features.

Although we designed and conducted this study with the
greatest possible care, there were still several limitations. First,
the participants were healthy young individuals, not traumatic
amputees, which may make our control mode findings differ
from real-world device applications. The decision to work with
an able-bodied population was made due to the limited number
of transradial amputees in the surrounding area. In addition,
since most patients currently use devices with DC modes (com-
monly used in myoelectric control), recruiting such patients
could have produced a bias in their performance. We plan to
include traumatic amputees in future studies to address this
limitation.

Given the difficulty of donning the experimental devices, and
potential for fatigue of participants due to the length of testing,
we elected to follow a between-subjects experimental design to
compare the control modes. Beyond this, the control actions for
DC differ from CC and PR. The presentation of all three modes
to a single user could create mode confusion and lead to learning
interference; thereby potentially compromising the reliability of
experimental results. However, we recognize that our choice of a
between-subjects design could have biased test results due to in-
terindividual differences in TP, pupillary changes, blinking, and
subjective assessments of workload (the NASA-TLX scores)
and usability (the QUEST 2.0 and USE responses). Another
limitation of our study was the nonrandomized order of tasks,
which may have caused learning effects among participants.
However, we conducted a statistical analysis on trial order, which
did not reveal any significant effect on our findings. Nonetheless,
it is still possible that the order of tasks influenced participant
performance. Future studies may consider a randomized task
order method. In addition, we only tested three prosthetic control
modes (DC, PR control, and CC). There are many commercial
devices on the market that have yet to be tested for performance,
workload, and usability outcomes.

Another limitation of the present study was a manual selection
of classification algorithm hyperparameters. The possibility that
amore optimal set of hyperparameters exists for each participant
is an aspect that future research could consider. Additional
research should maximize the performance of the control al-
gorithms relative to task demands.

For future work, we plan to use virtual reality (VR) to evaluate
the performance of the three control modes, eliminating the
constraints of physical prosthetic use and fatigue. We believe
that this work will also lead to the development of novel methods
for training on prosthetic device control methods in VR and
their generalization to practical applications. In our forthcoming
design, we plan to increase our sample size to ensure a richer
dataset for analyses. Furthermore, our aim is to quantify the pre-
diction accuracy and robustness of the three control methods. For
the PR method, we will use classification accuracy as the primary
performance metric. This measure represents the percentage of
correctly classified motion classes relative to the total number of
classes and is highly relevant for evaluating the PR method. For
the CC method, we plan to employ the root-mean-square error
or the mean absolute error to assess performance. These metrics
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measure the difference between the predicted and actual joint
angles or velocities, making them suitable for evaluating CC
methods. However, we would like to note that the DC method
does not have an associated “accuracy” metric. This is because
DC is not based on machine learning, and as such, it does not
make predictions or have ground truth values. We believe that
this research will contribute to the advancement of prosthetic
technology and can improve the lives of those who rely on these
devices.

In conclusion, the number of participants in the present study
was limited, which inherently restricts the statistical power and
generalizability of our findings. Furthermore, the experiment
followed a between-subjects design, which may introduce ad-
ditional variability in results due to variations among individual
participants. While our results provide some insights into the
impact of different control modes and tasks on TP and cognitive
workload, these findings should be interpreted with caution.
Future studies with larger samples and perhaps within-subject
designs could help confirm our results and expand on under-
standing of prosthetic device features and workload relation-
ships. The present work serves as an initial step in a broader
assessment of such dynamics.
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