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Abstract—The aim of this study was to experimentally test
the effects of different electromyographic-based prosthetic con-
trol modes on user task performance, cognitive workload, and
perceived usability to inform further human-centered design and
application of these prosthetic control interfaces. We recruited
30 able-bodied participants for a between-subjects comparison of
three control modes: direct control (DC), pattern recognition (PR),
and continuous control (CC). Multiple human-centered evalua-
tions were used, including task performance, cognitive workload,
and usability assessments. To ensure that the results were not
task-dependent, this study used two different test tasks, including
the clothespin relocation task and Southampton hand assessment
procedure-door handle task. Results revealed performance with
each control mode to vary among tasks. When the task had high-
angle adjustment accuracy requirements, the PR control outper-
formed DC. For cognitive workload, the CC mode was superior
to DC in reducing user load across tasks. Both CC and PR con-
trol appear to be effective alternatives to DC in terms of task
performance and cognitive load. Furthermore, we observed that,
when comparing control modes, multitask testing and multifaceted
evaluations are critical to avoid task-induced or method-induced
evaluation bias. Hence, future studies with larger samples and
different designs will be needed to expand the understanding of
prosthetic device features and workload relationships.
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I. INTRODUCTION

U
PPER-LIMB amputation causes a permanent disability.

Basic activities of daily living (ADL), such as grasp-

ing, eating, and using zippers on clothing, become difficult to

perform for individuals with upper-limb amputations [1]. To

restore their motor function and improve the quality of life,

advanced prosthesis technology is needed. Over the past decade,

significant technological advances have made powered, dexter-

ous prosthetic hands and arms commercially available. The key

challenge in making these modern devices functional for upper-

limb amputees is an intuitive human–machine interface for easy

prosthesis operation. Since electromyographic (EMG) signals

represent the user’s movement intent, EMG signals recorded

from residual muscles have been widely used as neural sources

in human–machine interfaces for powered prosthetic arm

control [2].

A. Prosthetic Control Modes

There are several EMG-based control modes described in

the literature that map EMG signals to prosthesis control com-

mands. Direct control (DC) has been widely used in clinics

for decades [3]. DC allows users to control one degree of

freedom (DOF) from EMG signals recorded from a single pair

of residual agonist–antagonist muscles. If more than 1-DOF

needs to be operated, the user must generate a special muscle

activation pattern, e.g., cocontraction, to switch the control

DOF and then use the same muscle pair to control another

joint, which is nonintuitive. Another control mode, EMG pat-

tern recognition (PR) [4], has become clinically available in

recent years. PR control recognizes a user’s intent based on

the activation patterns of residual muscles. At the core of PR

control is a classifier that maps the features of multichannel

EMG signals to discrete motion classes (i.e., hand open/close

and wrist pronation/supination). Compared with DC, PR control

is more intuitive to use. However, this method still only allows

for the control of 1-DOF at a time, leading to unnatural arm/hand

motions. To address this limitation, recent research has focused

on developing EMG-based control that can estimate multijoint

coordinated, continuous arm kinematics (i.e., position or veloc-

ity) for continuous control (CC) of multifunctional prostheses

[5], [6], [7], [8], [9], [10], [11], [12]. The capability of CC to drive

multiple DOFs simultaneously may allow users to adopt more

natural motion strategies to efficiently complete tasks. Since CC
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is relatively new, it has not been adopted by commercial pros-

theses yet. Theoretically, CC is more natural to use. However,

there are gaps in the objective and subjective comparison of

CC with other widely used control modes, such as DC and PR

control.

Despite tremendous engineering efforts in developing EMG-

based control modes for prosthetics, human-centered research

on how the different modes impact user cognition and physical

task performance (TP) has been limited. Rehabilitation engi-

neers often evaluate EMG-based control methods by the EMG

decoding accuracy in estimating user intent [6], [7], [8], [9],

[10], [11], [12], [13], [14]. TP of users wearing EMG-controlled

prostheses is sometimes included in these evaluations just to

show the feasibility of a new design. Cognitive function effects

have rarely been quantified.

B. Human-Centered Evaluation Measures

For assistive technologies, human-centered evaluations are

critical to understand how a device may be interpreted by a user

and to ensure the intended benefits for users. Such evaluations

quantify not only the performance of user tasks assisted by

the technology but also the demand on cognitive function (i.e.,

workload) and usability. Despite the importance of human-

centered evaluations, related research that uses human-centered

approaches to evaluate different EMG control modes for pros-

theses is quite limited.

Several clinical translational studies compared DC and PR

control modes. These evaluations have included the performance

of prosthesis users in various tasks and cognitive load [15], [16],

[17]. In these clinical trials, the evaluation of cognitive load

is primarily addressed by dual-task paradigms, using specific

tasks with overlapping or competing demands. In our previous

research, we evaluated the physical performance and associ-

ated cognitive load of human participants who used powered

upper-extremity prosthetics with either DC or PR control while

performing the clothespin relocation task (CRT) [18], [19], [20].

Regarding cognitive load assessment, a wide variety of met-

rics are documented in the literature, primarily due to the

multidimensional nature of the mental workload construct [21].

Several studies classify the measures of cognitive load into three

categories: physiological state, subjective reports, and dual-task

paradigms [21], [22]. The drawback of dual-task paradigms is

that they can distract/subtract from primary TP, which is unde-

sirable when studying the effectiveness of task interfaces [22].

Based on the literature, there are pros and cons for both subjec-

tive reports of workload and objective physiological indicators.

Some subjective reporting methods have been demonstrated to

be usable and effective for capturing perceptions of workload but

inevitably have a bias due to memory dependencies and the influ-

ence of perceived TP [21], [23]. Opposite to this, physiological

state measures have shown advantages in providing objective

indicators of cognitive load with strong correlations between

pupillometry features and objective measures of task demands.

However, physiological measures can also be influenced by the

task environment and other cognitive demands, such as anxiety,

stress, and sexual arousal [23]. Given the limitations of each

technique, we elected to use a combination of subjective reports

and physiological measures, including eye-tracking responses,

which are noninvasive and highly sensitive to cognitive task

demands. The percent change in pupil size (PCPS) has been

used in previous research to assess the effect of prosthetic device

control modes on cognitive load [18]. It was found that PCPS

has a higher value in mentally complex tasks than in more

manageable tasks [24]. Blink rate (BR) has also been frequently

used as an indicator of cognitive load in other domains [25],

[26]. However, some studies suggest that this measure is only

adequate to assess visual workload [27]. The number of eye

blinks and blink duration decreases as visual workload increases

[27]. In addition to these eye-tracking measures, we also applied

the NASA task load index (TLX) as a subjective workload report

method, as this index has been used extensively in prior research,

including perceived workload in prosthesis device use [28], [29],

[30].

The existing human-centered evaluation studies reveal several

knowledge gaps. First, none of the previous studies considered

CC as a comparative design for EMG-based prosthetic control.

Second, when evaluating cognitive load, only one test task has

been used, which may challenge the generalizability of study

conclusions. In addition, the analysis of cognitive load has been

based on one type of physiological measure, such as pupil size,

electro-encephalography signals, and heart rate, or subjective

measures. Each measure has its own challenges, and there is no

“gold standard” among cognitive assessment methods. Finally,

to our knowledge, none of the prior studies include usability

assessment [18], [19], [20].

C. Objective and Hypotheses

Motivated by the need to address the identified knowledge

gaps, the objective of this article was to experimentally com-

pare three existing EMG-based control modes for upper-limb

prostheses (DC, PR control, and CC) based on multiple test

tasks [CRT and Southampton Hand Assessment Procedure

(SHAP) - Door Handle Task (DHT)] and multifaceted human-

centered evaluation, including TP, cognitive load, and usability

assessment.

Based on the efficiency of control mode algorithms and

previous studies [18], [19], PR control and CC were expected

to produce superior TP [Hypothesis (H)1], lower cognitive

workload (H2), and greater perceived usability (H3) than DC.

In addition, since the SHAP-DHT requires fewer gestures and

simpler operations, as compared with the CRT, it was expected

that participants would experience higher cognitive workload

in CRT versus SHAP-DHT performance (H4). In general, the

results of this study were expected to highlight the advantages

and challenges of each EMG control mode and inform the fu-

ture design of EMG-based interfaces for upper-limb prostheses.

Furthermore, this study was expected to define an effective

evaluation protocol and metrics to assess EMG-based control

interfaces.

II. METHOD

A. Participants

The experimental protocol was approved by the Institutional

Review Board of the University of North Carolina at Chapel Hill.

A total of 36 participants without disabilities were recruited.
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TABLE I
PARAMETER COMPARISON AMONG THREE CONTROL MODES

Persons with prior experience using a prosthetic device and

researchers involved in the study were excluded from partici-

pation. All participants were assigned to either DC, PR control,

or CC control at random on a rolling basis while ensuring an

equal number assigned to each control mode and balancing

of the sample for gender. However, data from six participants

were excluded from the analysis. Five of these participants were

unable to complete the control mode training. Specifically, two

participants were unable to complete the PR mode training,

two were unable to complete the CC mode training, and one

was unable to complete the DC mode training. Moreover, we

had to exclude data from another participant whose notably

long eyelashes interfered with the eye-tracking system data

collection, causing near-zero confidence levels for observations.

Consequently, ten participants were included in the data analysis

for each of the three control modes. Out of the 30 participants,

12 were females. The mean and standard deviation of age across

participants were 22.9 years and 2.8 years, respectively. All

participants consented to the study and were compensated for

participation.

B. EMG Control Modes and Setup

One commercial prosthetic hand [ETD, Motion Control, Inc.,

USA], with 2-DOF of actuation in hand open/close and wrist

pronation/supination, was used to test all three control algo-

rithms in the CRT and SHAP-DHT. The EMG system was

equipped with an antialiasing low-pass filter set at 500 Hz

for all data collection. The total weight of the device, which

encompasses the hand, able-bodied adapter, and cable compo-

nents, was approximately 4.54 pounds. A custom prosthetic

hand adapter was designed and fabricated such that people

without amputation could control the prosthetic hand with their

right arm. The adapter was locked at 90° at the elbow but

allowed for a full range of motion at the hand and for prona-

tion/supination. Table I presents the setup for each of the three

control modes. The utilization of muscles for the control of

prosthetic limbs varies depending on the control mode em-

ployed. DC is a simple, nonmachine learning method where a

single agonist–antagonist muscle pair is used to control a single

DOF, such as the wrist or hand. The DOF is switched through

cocontraction. EMG signals from the flexor carpi radialis and

extensor carpi radialis longus were used for DC. On the other

hand, PR and CC modes require multiple muscle signals to

control multiple DOFs for a more intuitive control experience.

These methods use all four channels to predict the movement

and velocity of joints, eliminating the need for manual switching

between DOFs. Therefore, two additional EMG signals, mea-

sured from the flexor digitorum superficialis and the extensor

digitorum communis muscles, were used for PR control and

CC. Electrode placements were based on muscle palpation and

confirmation of EMG signal quality. An EMG system (MA400,

Motion Lab Systems, Inc., USA) captured signals at 1000 Hz.

The control algorithms for the DC and PR control modes have

been reported previously [15], [19]. Here, we briefly discuss

their implementation.

DC: DC utilizes a pair of agonist–antagonist muscles to

control a single DOF (either hand open/close or wrist prona-

tion/supination) at one time. The movement speed of the pros-

thetic hand is set proportional to the magnitude of measured

EMG signals. Switching from 1-DOF to another is accomplished

with a cocontraction of the muscle pair (closing the hand and

clinching a fist). To enhance the integrity of the EMG signals,

high-pass (20 Hz) and low-pass (450 Hz) filters were applied

before further processing with a sliding window analysis tech-

nique. The analysis window had a size of 150 ms with a 50 ms

overlap, and the increment between consecutive windows was

100 ms. The latency for the DC control mode was half of

the window size, ensuring a responsive and efficient control

experience.

PR control: PR control classifies movement intent based on

the patterns of EMG features. In this study, five movement

classes were included: hand close, hand open, wrist pronation,

wrist supination, and no movement. To extract meaningful infor-

mation from the EMG signals, four time-domain features were

calculated, including mean absolute values (MAVs), number

of zero crossings, waveform length, and number of slope sign

changes. Similar to the DC mode, the collected EMG signals

were filtered with 20 and 450 Hz bandpass filters and processed

using a sliding window technique with a 150 ms window size,

a 50 ms overlap, a 100 ms increment between consecutive

windows, and half of the window size latency. The collected data

were used to train a linear discriminant analysis (LDA) classifier.

Intended movement classes were predicted in real time by the

classifier while the movement speed was set proportional to the

magnitudes of EMG signals.

CC: In this mode, EMG data are recorded simultaneously

with kinematic data from a leap motion controller (Leap Mo-

tion, Inc., USA). The controller uses a camera to accurately

estimate the positions of hand and forearm segments [31],

[32], [33], [34]. Position estimates for phalangeal, palm, and

forearm segments are recorded at 120 Hz and are used to

estimate wrist pronation/supination and metacarpophalangeal

(MCP) flexion/extension joint angles. Additionally, our prepro-

cessing for CC incorporated an MAV sliding window, which
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Fig. 1. Control process for the CC mode.

served as a straightforward form of low-pass filtering. This

approach provided necessary refinement without compromising

the integrity of the data. Fig. 1 graphically presents the EMG

CC mode used in this study.

Data were first collected from participants while they per-

formed MCP flexion and extension and wrist pronation and

supination movements. All motions were performed in a pattern

in which participants moved their wrist/MCP between a fully

flexed/pronated, relaxed, and fully extended/supinated position

to a metronome set at a 1 Hz frequency. Three 10-s trials were

recorded for each motion type to be used for training.

An artificial neural network (ANN) was created for each

participant for both the wrist and MCP using the deep learning

toolbox in MATLAB 2018b (Mathworks, Inc., USA). The ANNs

were trained to map processed EMG signals to joint positions.

Velocity was estimated by differentiating the estimated positions

θ̇ (t) =
θ (t)− θ (t−∆t)

∆t

where θ and θ̇ are the estimated position and velocity, respec-

tively, and t is the current timestep. The value of ∆t was tuned

to 100 ms to provide relatively smooth velocity estimations.

Additionally, estimated kinematics were smoothed in real time

using a moving average filter. Finally, to prevent constant small

motions in the prosthetic device, all estimated velocities that fell

below a predetermined threshold were set to 0.

To train the ANN, we collected three sets of 10-s duration

data for each type of movement, amounting to a total of 90 s of

data per participant. More specifically, we acquired three data

files for isolated hand movements, three for isolated wrist move-

ments, and three for simultaneous movements. The collected

data were then divided using 70% for ANN training, 15% for

validation, and 15% for testing. For each participant, multiple

parameters were manually adjusted by experimenters based on

offline performance achieved by the ANN and on the feedback

from participants testing basic motions in real time using the

prosthetic device. The number of hidden layers and then the

number of neurons in each hidden layer were incremented

until maximum performance was found. The optimal size for

the sliding windows was then determined by calculating the

MAV for windows in the range of 100–300 ms with a 100 ms

increment. The size of the sliding windows used for the moving

average filter was determined by gradually increasing values

starting from 0 ms (no smoothing) until participants indicated

they could comfortably control the device. If needed, the thresh-

olds were incremented starting from zero while subjects relaxed

their upper limb until any small movements of the prosthetic

motors were eliminated. The latency for the CC control mode

was half of the window size. Finally, based on participant

feedback, an output gain was adjusted to allow the motors to

Fig. 2. Participant using the prosthetic adapter for CRT TP.

move at an appropriate speed proportional to the estimated

velocity.

C. Tasks Selection and Experimental Setup

In our prior research [35], we investigated the relationship

between human upper-body movements in real-world activities,

such as driving a vehicle and ADL, as documented in the

literature. Our study determined that the CRT and SHAP-DHT

encompass all upper-body movements necessary for such ac-

tivities (including shoulder, elbow, forearm, wrist, and hand

movements) and were identified as the most sensitive ADL

tests in previous research assessing the usability of prosthetic

devices. It is important to note that, while we did not collect

every combination of input gestures and classified outcomes, we

implemented a consistent calibration process for all participants

to minimize potential confounding factors arising from differ-

ences in calibration quality. Furthermore, all participants met the

training criteria for each device configuration, ensuring that any

unintentional correct hook movements for task completion, such

as closing, occurred consistently across the entire participant

pool.

CRT: The CRT [36] consists of a bin with a horizontal bar,

vertical bar, and three plastic clothespins (see Fig. 2). The

objective of the task is for participants to use 2-DOFs in motion

to transport clothespins between the two bars, as quickly as

possible.

SHAP: The DHT (see Fig. 3), as a part of the SHAP-DHT

[37], was also required in this study. The task involves grasping

the handle, rotating it downward and then back to its original

position, and releasing it as quickly as possible.

D. Human-Centered Evaluation Methods and Metrics

To evaluate the performance of the three control modes in

the two different tasks, we defined performance criteria for each

of the tasks. CRT performance was measured in terms of the

Authorized licensed use limited to: Texas A M University. Downloaded on October 24,2024 at 14:00:33 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: HUMAN-CENTERED EVALUATION OF EMG-BASED UPPER-LIMB PROSTHETIC CONTROL MODES 275

Fig. 3. Participant using the prosthetic adapter for the SHAP-DHT.

number of pins moved by a participant in a 2-min period. The

easier a control mode was to use, the more pins a participant

could move and the better the TP evaluation for the control mode.

For the SHAP-DHT, we measured the time it took participants to

rotate the door handle five times in sequence. The more difficult

a control mode was to use, the longer the task time and the worse

the control mode evaluation. In this study, we used eye-tracking

measures (e.g., BR and PCPS) combined with NASA-TLX

scores to compare the cognitive load implications of different

device control modes for 2-DOF myoelectric prosthetics.

With respect to usability assessment, we evaluated several

commonly used methods, such as the modified client satisfac-

tion with device module of the orthotics and prosthetic users’

survey (CSD-OPUS), the system usability scale (SUS), the

trinity amputation and prosthesis experience scale (TAPES), the

Quebec user evaluation of satisfaction with assistive technology

(QUEST 2.0) method, and the usefulness, satisfaction, and ease

of use (USE) scale. Since this research involved the assessment

of prosthetic device control modes rather than a comparison of

existing commercial products, the QUEST 2.0 and USE scales

were identified as stronger fits for the study than the CSD-OPUS,

SUS, and TAPES. The QUEST 2.0 method was considered to be

particularly relevant, as the survey includes an assistive device

section, specifically designed for prosthetic devices. The overall

structure of our human-centered evaluation of the EMG-based

upper-limb prosthetic control modes is presented in Fig. 4.

E. Procedures

The experiment took place in a laboratory with constant

illumination to limit the effect of fluctuations in lighting level

on pupillometry. Based on multiple photometer readings during

the experiment, the illuminance level was relatively consistent

at 170–200 lux in the area where participants were tested. Par-

ticipants wore a head-mounted eye-tracking system throughout

the experiment to capture changes in their pupil size and BR.

Participants also donned the upper-extremity prosthetic adapter.

EMG electrodes were placed on the skin surface based on the

assigned control mode. A verbal description of the prosthesis

DOFs and control strategy was provided for participants. They

practiced controlling the device until they reported comfort

with the assigned control mode. Participants then advanced to a

formal study training period.

The training session required participants to use the prosthesis

to perform the CRT task while an experimenter recorded the time

to move three clothespins. Training criteria were established

based on pilot test data and a learning curve analysis revealing

when participants achieve asymptotic performance (on average)

with the specific device and at what level (i.e., minimum task

time). If the average task completion time of three sequential

trials was within 15–25 s for the PR control, 20–35 s for the DC,

and 16–23 s for the CC mode, the participant passed the training

sessions and proceeded to actual experimental trials.

Upon completion of the training trials, the eye-tracking sys-

tem was calibrated for participants, and they were permitted to

begin experiment trials after a 5-min break.

During the experiment, all participants completed a total of

three trials for both the CRT and SHAP-DHT. After each test

trial, participants filled out the NASA-TLX questionnaire and

had a 2-min rest period. The QUEST 2.0 and USE forms were

presented after a participant had completed all trials for a specific

task and were used to collect usability assessments of the control

mode during the experiment.

F. Experimental Design

This study followed a 3 × 2 mixed within–between-subjects

experimental design, with three prosthetic control modes (DC,

PR control, and CC) and two types of test tasks (CRT and SHAP-

DHT). Each participant was assigned a unique control mode to

perform the CRT and SHAP-DHT, each of which was repeated

three times. Therefore, our experimental design ensured an equal

number of observations across device control modes and tasks.

G. Data Processing

For the CRT, the number of pins moved in a 2-min period was

recorded. For the SHAP-DHT, the time required to rotate the

door handle five times was recorded.

Although we strictly controlled the lab illumination level and

performed calibration of the eye-tracking system, such devices

are highly sensitive to environmental conditions and physiology

states. Consequently, we applied rigorous postprocessing to the

tracking data. Pupil size estimation depends on the accurate 3-D

eye model. Unfortunately, headset slippage during testing can

seriously affect pupillometry. To address this issue, we used

the approach of regularly updating the 3-D model for each

participant [38]. However, in some cases, this periodic update

process can lead to increases in the likelihood of incorrect pupil

size measurements, specifically if there is no slippage in the

headset [38]. To further address this issue, we analyzed the

system confidence level in pupil size (or data quality). When

values were less than 0.9 (90% confidence), the data were

excluded for experimental evaluation. This confidence level was

determined based on discussions with the manufacturer (Pupil

Labs) and has been used in prior studies with eye-tracking

devices [19], [39]. In addition, we watched recorded videos

of test trials to assess the device calibration for pupil tracking

and to identify inaccurate 3-D eye models. This procedure was

recommended by the manufacturer and has been applied to other

studies [40], [41]. We then calculated the PCPS by subtracting

the baseline pupil size (collected prior to the experiment and

when the participant was looking at a black monitor display in a

relaxed state) from the measured pupil size in each trial and then

divided by the baseline pupil size. BR is defined as the number of
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Fig. 4. Structure of human-centered evaluation of EMG-based upper-limb prosthetic control modes.

eye closures in a given period [19]. The eye-tracking system we

used automatically captures blink information, including each

blink time and blink duration. Based on this information, we

used blinks per minute to represent BR.

Regarding the subjective workload measure, the NASA-TLX

includes six dimensions of demand, including mental, physical,

temporal, performance, effort, and frustration [42]. Participants

were required to rank each dimension at the start of the exper-

iment, based on their task training session. Subsequently, after

each trial, participants were asked to further rate the dimensions

for the specific test conditions. The NASA-TLX total score was

calculated as a rank-weighted sum of demand ratings from 0

to 100.

Usability was measured using the two questionnaires, in-

cluding QUEST 2.0 and USE. Although the QUEST 2.0 and

USE surveys are both usability quantification methods, they

focus on different aspects of the target technology. The QUEST

2.0 questionnaire assesses user satisfaction with the assistive

technology across eight different dimensions, including device

size, weight, durability, comfort, effectiveness, ease of use, ease

in adjustment, safety, and security [43]. The USE survey is a

composite assessment, including four components of USE and

ease of learning. The USE satisfaction component, for example,

presents seven questions, such as whether the user is satisfied,

whether they would recommend the device to a friend, whether

the device is “fun to use,” and other questions [44]. In general,

the USE survey focuses more on user experience evaluation,

while the QUEST 2.0 survey focuses more on characteristics of

the technology, relative to design for usability. Participants were

asked to rate the usability of the device after the last test trial.

Due to variability in subjective evaluations, normalization was

applied to QUEST 2.0 and USE scores.

H. Data Analysis

Descriptive statistical analyses were performed on all re-

sponse measures, including the calculation of means and stan-

dard deviations, along with graphical analysis. In the graph-

ical analysis, the error bars reflect the standard error of the

mean. These analyses were conducted to identify the overall

distribution of datasets, relationships between the independent

and dependent variables, and whether there was evidence of

interactions among the independent factors. The descriptive

statistics provided a basis for additional inferential analyses.

Based on the experimental design, the statistical model for

inferential analysis was a three-way mixed effects model with

two fixed effects and one random effect. Since there was a full

crossing of control mode and task factor settings, the model also

included an interaction term. The random subject effect was

a product of convenience sampling from the population. The

subject term was involved in multiple interactions, which were

pooled in the model error term.

For inferential statistical analysis, we adopted various meth-

ods depending on the type of response measure. For responses

that were continuous in observation and satisfied parametric test

assumptions, including PCPS, BR, TP, and the NASA-TLX,

we applied an analysis of variance (ANOVA) to the statistical

model along with Tukey’s post-hoc tests [honestly significant

difference (HSD)] for multiple condition comparisons. For the

usability measures, which did not uphold parametric model

assumptions due to their discrete quantitative nature, we applied

nonparametric methods. Tests included the Kruskal–Wallis test,

as a one-way alternative to the ANOVA, and the Wilcoxon rank

sum test for multiple comparisons of significant factor settings.

In order to provide a clear and effective visual representation

of our results, in all graphs, we use error bars to represent the

standard error of the mean and asterisks to denote significant

differences in the control modes as well as interactions. Specifi-

cally, one asterisk is used when p < 0.05, two asterisks are used

when p < 0.01, and three asterisks are used when p < 0.001.

III. RESULTS

The results of the inferential analyses are summarized in

Table II. For the training portion of the study, results indicated

that, on average, participants using the PR control mode required

fewer trials to meet the training criteria, as compared with those

using the DC and CC modes. The means and standard errors

were as follows: PR = 7.4 ± 1.16 trials; DC = 8.2 ± 1.51 trials;

and CC = 8.2 ± 1.25 trials.

A. Task Performance

Fig. 5(a) and (b) presents the mean TP for the CRT and SHAP-

DHT by control modes, accordingly. Fig. 5(a) reveals that, on
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TABLE II
SUMMARY OF ANALYSIS RESULTS FOR ALL RESPONSES

Fig. 5. Comparison of TP across different prosthetic device control modes.
Error bars represent the standard errors on means. (a) Mean number of clothes
pins moved using different device control modes. (Significant difference be-
tween DC and PR (p < 0.05) indicated by an asterisk.) Moving more pins
indicates superior performance. (b) Mean task completion time using different
device control modes, where a shorter duration indicates better performance.

average, when performing the CRT task, participants exhibited

the highest performance when using the PR control mode and the

lowest TP when using the DC mode (CC= 9.23 pins; DC= 7.33;

and PR = 10.50). However, as shown in Fig. 5(b), on average,

participants achieved greater performance in the SHAP-DHT

when using the DC device and worse performance when using

the CC device (CC = 94.53 s; DC = 60.63 s; and PR = 65.27 s).

Since the TP measures for both tasks were continuous with

random effects, the three-way ANOVA model was applied

to both the CRT and SHAP-DHT responses. Normality tests

(Shapiro–Wilks test: p(CRT) = 0.16; p(SHAP) = 0.42) indi-

cated no parametric test assumption violations. ANOVA re-

sults revealed that, for the CRT, participant performance dif-

fered significantly among control modes (F(2, 27) = 4.08, p =

0.03, and η2 = 0.23). Tukey’s tests showed that the number

of clothes’ pins relocated using DC mode was significantly

less than for PR control (p < 0.05). The asterisks on the his-

tograms indicate statistically significant differences between the

means. However, no significant differences were detected among

control modes when participants performed the SHAP-DHT

(F(2, 27) = 1.87, p = 0.17, and η2 = 0.12).

Fig. 6. Comparison of prosthetic device control modes. Error bars represent
the standard errors on means. (a) Mean PCPS by control modes and task group.
(Significant difference between CC and DC in SHAP-DHT task (p<0.05)
indicated by an asterisk.) (b) Mean BR by control modes and task group.

B. Cognitive Workload Measurements

Fig. 6(a) and (b) presents the mean PCPS and BR values by

device control mode and task type. The descriptive statistics

indicated that participants, whether performing the CRT or

SHAP-DHT, exhibited the highest PCPS and lowest BR when

using the DC mode. Fig. 6(a) also reveals that when participants

used the CC and PR control to perform the same or different test

tasks, on average, there were no apparent differences in PCPS

responses. In contrast, as shown in Fig. 6(b), participant BR

responses were higher when performing the SHAP-DHT versus

the CRT, regardless of the device control mode, indicating that

the CRT was likely more demanding. However, when consider-

ing the same task type, the influence of the CC and PR control

modes on BR responses appeared to be similar.

As with the TP variable, the three-way ANOVA was applied

to the PCPS and BR response data. Normality assumption vi-

olations led to a transformation in each response (specifically,

Y ′ =
√
Y ) and statistical outliers were replaced with within-

group averages [45]. Shapiro–Wilks tests subsequently con-

firmed the normality of the transformed responses ( p(PCPS) =
0.24; p(blink rate) = 0.09). Furthermore, according to Larson

[46], the ANOVA is robust for balanced or near-balanced designs

when the data are determined to be normal, even in the presence

of heterogeneity of variance.
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Fig. 7. Mean NASA-TLX scores by control mode and task group. (Significant
difference between CRT and SHAP-DHT tasks when using DC control mode
(p<0.001) indicated by asterisks. Error bars represent the standard errors on
means.)

ANOVA results on PCPS revealed significant differences

among control modes (F(2, 27) = 3.53, p = 0.044, and η2 =
0.21) and the interaction between the control mode and task

(F(2, 147) = 3.12, p = 0.047, and η2 = 0.04). Post-hoc anal-

ysis using Tukey’s HSD tests revealed participants to exhibit

significantly lower PCPS when using the CC mode than with the

DC mode (p < 0.05). Furthermore, the CC condition produced

the lowest PCPS, while the DC mode led to the highest PCPS

in the SHAP-DHT (p < 0.05).
ANOVA results on the BR response revealed signifi-

cant differences among task types (F(1, 147) = 14.32, p <

0.001, and η2 = 0.09). The SHAP-DHT appeared to produce

the highest BR across control modes. However, the control

mode had no significant effect on the BR of participants. In

addition, from the BR measurement, there was no significant

interaction between the control mode and task. The asterisks

on the histograms indicate statistically significant differences

between the means.

Fig. 7 presents the results of the cognitive workload assess-

ment using the NASA-TLX rating method. When performing the

CRT task, participants indicated the highest average workload

levels (TLX scores) for the DC mode, while NASA-TLX scores

appeared similar for the CC and PR control modes (DC =
65.17; CC = 56.89; and PR = 54.46). When performing the

SHAP-DHT, participant NASA-TLX scores were highest when

using the CC mode (DC-52.66; CC-54.56; and PR-49.79). In

addition, when using the DC mode, participant NASA-TLX

scores appeared to be much lower for the SHAP-DHT than the

CRT task.

Given that the NASA-TLX score is a continuous response, and

the data did not violate the normality assumption, the three-way

ANOVA model was applied to the response. Test results revealed

that participant TLX scores varied significantly between tasks

(F(1, 27) = 33.53, p < 0.001, and η2 = 0.19). In addition,

there was a significant interaction between the control mode

and task type for the TLX response (F(2, 147) = 7.52, p <

0.001, and η2 = 0.09). The asterisks on the histograms indi-

cate statistically significant differences between the means. By

analyzing the ratings for the different demand components of the

NASA-TLX, we found a trend of responses across components

to support the general trend of the total cognitive workload score.

C. Usability Assessments

Fig. 8 presents the mean usability scores from the QUEST 2.0

and USE surveys for each device control mode. The PR control

Fig. 8. Mean usability assessments’ scores using different device control
modes. Error bars represent the standard errors on means.

mode produced the lowest scores for both the QUEST 2.0 and

USE methods. Meanwhile, the CC mode produced the highest

scores for QUEST 2.0 and the DC mode generated the highest

score for the USE survey. Due to a small dataset and variation

in survey response residuals, a nonparametric analysis method

was applied to normalized QUEST 2.0 and USE scores. Results

of the Kruskal–Wallis test revealed no significant differences

in participant usability evaluations among the different control

modes for either the QUEST 2.0 (χ2 = 0.16 and p = 0.92) or

USE (χ2 = 0.08 and p = 0.96) methods.

IV. DISCUSSION

The evidence obtained in this study provides partial support

for H1. According to TP results, we inferred that, when partici-

pants performed the CRT task, the DC mode was less favorable

in comparison with the PR control mode operation, as found in

the previous studies [18], [19], [20]. However, when participants

used CC, their TP was between the DC and PR control modes

and suggested that the performance of participants who used

the CC mode was similar to that of the DC and PR control

modes in the CRT. In addition to the CRT, we also included the

SHAP-DHT in our study. Results indicated that the prosthesis

control modes were comparable in TP when performing the

SHAP-DHT. From this result, we reviewed the experimental

videos and conducted a detailed task analysis. During the CRT,

participants had to accurately adjust the angle of the device to

grasp and release pins successfully, as a part of relocations.

Achieving this control sequence with the DC mode, while en-

suring the accurate angle control, was challenging. In the course

of the SHAP-DHT, however, participants only had to adjust

the angle of the device one time before they grasped the door

handle. The rest of the task did not require angle adjustments.

Therefore, in the case of SHAP-DHT, the disadvantage of the

DC mode was not pronounced. This analysis reveals that the

DC mode, compared with PR, has limitations for activities that

require frequent prosthetic joint angle adjustment. However, for

activities that do not require frequent and accurate angle control,

TP for the DC, PR control, and CC modes was not significantly

different.

The observations from this study provide support for H2 and

H4, regarding the influence of control modes and task types

on cognitive workload responses. Based on the PCPS results,

we can infer that the DC mode imposed a higher cognitive

load on participants, as compared with CC. In general, the CC

mode was more intuitive and natural than the DC mode. When

using CC, participants were required to perform fewer cognitive,
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perceptual, and motor operations to complete tasks based on our

detailed task analyses. Furthermore, we found that DC and CC

differed more significantly in SHAP-DHT performance than in

the CRT. This observation may be explained by the experimental

design. Since all participants completed three trials of the CRT

followed by the SHAP-DHT trials, this sequence could have

resulted in the second task (SHAP-DHT) amplifying the effect

of each control mode on the participant cognitive load. However,

there were no significant differences in PCPS for PR control

versus DC or CC, when participants performed either the CRT

or the SHAP-DHT. It was not surprising that there was no

difference between CC and PR control because the two modes

were controlled based on the user’s intent. Although the CC

mode allowed simultaneous joint operations and natural arm

motion in control, since the number of controllable joints in our

study was limited to two, from a user’s perspective, the cognitive

demand in operating the prosthetic arm with CC and PR control

was similar. Unlike our previous study [19], no significant

differences in PCPS were detected between PR control and DC.

Looking at Fig. 6, we can see that, on average, there was indeed a

difference between the modes; however, variability in participant

performance could have resulted in a lack of statistical sensitivity

in our analysis.

Different from the PCPS results, both BR and the NASA-TLX

response suggested that there were no significant differences in

cognitive load among the three control modes. It is possible that

the prior claim that BR measures visual workload, rather than

cognitive load, is an accurate assessment. In addition, another

recent study evaluated the capability of the NASA-TLX for per-

ceptual and mental workload measurement. The study criticized

the TLX for not measuring the mental construct it claims to

measure [47]. The particular claim was that the TLX measures

perceived task difficulty and not perceived mental load. These

issues could have led to the absence of significant differences in

the responses among our device control modes. However, both

the BR and NASA-TLX measures indicated that it was plausible

that the CRT imposed a greater visual and perceptual workload

on participants than the SHAP-DHT. On this basis, we inferred

that participants experienced a higher subjective cognitive load

when performing the CRT as compared with the SHAP-DHT.

The interaction effect also indicated that participants perceived

higher cognitive load when performing the CRT with the DC

mode, as compared with all other control mode and task type

combinations.

H3 and H4 were not supported in terms of the influence

of control modes and tasks on device usability assessments.

From a usability perspective, participants did not perceive any

differences across the three control modes. Relevant to this

finding, the USE questionnaire was not specifically designed

for evaluating prosthetic devices. The USE method addresses

technology usefulness, ease of use, and ease of learning, which

are broad concepts. It is possible that the measure is too general

in inquiries to differentiate among prosthetic device control

modes, which differ in terms of the control algorithms and DOFs.

Although QUEST 2.0 was specifically designed for prosthetic

devices, it focuses on user satisfaction. It is possible that this

limited definition of usability could have led to the lack of

observation of significant differences among the three control

modes. We, therefore, suggest that it is necessary to develop

or improve the existing usability analysis methods so that they

can be used specifically for the evaluation of prosthetic device

control features.

Finally, by comparison with other prior studies [15], [16],

[17], [18], [19], [20], we adopted a multifaceted human-centered

approach to the evaluation of the impact of the three EMG-based

control modes on users in terms of TP, cognitive workload ex-

periences, and usability responses. Furthermore, we integrated

three different subjective and objective measures of cognitive

load to promote sensitivity or likelihood of detection of dif-

ferences in workload among device control modes. Based on

the above discussion, we found that these three methods indeed

amplified different aspects of workload and, therefore, may

be complementary to each other in this type of analysis. In

summary, the human-centered evaluation method applied in

this study may be helpful for a more comprehensive under-

standing and comparison of prosthetic device control modes

and providing design guidance for future EMG-based interface

technologies.

V. CONCLUSION

The objective of this study was to experimentally test the

effects of different EMG-based prosthetic control modes on

user TP, cognitive load, and usability assessments. In addition,

we aimed to generate multifaceted human-centered evaluations

to inform the future design and application of EMG-based

interfaces for prosthesis control. To achieve the objective, we

compared three control modes (DC, PR control, and CC) in

terms of performance in two different tasks representing ADL

(CRT and SHAP-DHT). Results revealed performance with

each control mode to vary from task to task. The DC mode

produced limitations in tasks with angle adjustments (i.e., the

CRT), as compared with PR control. However, TP with CC

was not significantly different from PR control. In general,

the PR control demonstrated superior performance over DC in

the CRT and exhibited comparable efficacy to CC. However,

when considering the SHAP-DHT, no significant differences in

performance were observed among control modes.

From our investigation, in the performance of the SHAP-

DHT, the CC and PR control modes appear to be more fa-

vorable than DC in terms of cognitive load, as indicated by

PCPS. However, these differences were not always statistically

significant, and CC was not significantly different from DC

control. It appears that, while CC and PR control might offer

some advantages over DC in terms of potential better TP and

lower cognitive load, these advantages are dependent on the

task-at-hand and the response measures. On this basis, these

findings should be applied with caution. For example, prosthetic

designers may consider the use of a DC mode by optimizing the

degree of precision in the control of device angle adjustments to

reduce user cognitive load and potentially improve TP.

It was also clear from our analysis that using multiple types of

test tasks and multiple types of human-centered evaluation meth-

ods allowed us to avoid task-induced bias in the assessment of

the various control modes and to promote sensitivity in detecting

differences in performance and workload when they did occur.

As for the usability assessment results, we found that widely

used methods, such as QUEST and USE, have limitations for
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evaluating prosthetic control modes by able-bodied individuals.

Therefore, we believe it is necessary to develop a new usability

evaluation framework to allow for sensitive testing of such

devices and control mode features.

Although we designed and conducted this study with the

greatest possible care, there were still several limitations. First,

the participants were healthy young individuals, not traumatic

amputees, which may make our control mode findings differ

from real-world device applications. The decision to work with

an able-bodied population was made due to the limited number

of transradial amputees in the surrounding area. In addition,

since most patients currently use devices with DC modes (com-

monly used in myoelectric control), recruiting such patients

could have produced a bias in their performance. We plan to

include traumatic amputees in future studies to address this

limitation.

Given the difficulty of donning the experimental devices, and

potential for fatigue of participants due to the length of testing,

we elected to follow a between-subjects experimental design to

compare the control modes. Beyond this, the control actions for

DC differ from CC and PR. The presentation of all three modes

to a single user could create mode confusion and lead to learning

interference; thereby potentially compromising the reliability of

experimental results. However, we recognize that our choice of a

between-subjects design could have biased test results due to in-

terindividual differences in TP, pupillary changes, blinking, and

subjective assessments of workload (the NASA-TLX scores)

and usability (the QUEST 2.0 and USE responses). Another

limitation of our study was the nonrandomized order of tasks,

which may have caused learning effects among participants.

However, we conducted a statistical analysis on trial order, which

did not reveal any significant effect on our findings. Nonetheless,

it is still possible that the order of tasks influenced participant

performance. Future studies may consider a randomized task

order method. In addition, we only tested three prosthetic control

modes (DC, PR control, and CC). There are many commercial

devices on the market that have yet to be tested for performance,

workload, and usability outcomes.

Another limitation of the present study was a manual selection

of classification algorithm hyperparameters. The possibility that

a more optimal set of hyperparameters exists for each participant

is an aspect that future research could consider. Additional

research should maximize the performance of the control al-

gorithms relative to task demands.

For future work, we plan to use virtual reality (VR) to evaluate

the performance of the three control modes, eliminating the

constraints of physical prosthetic use and fatigue. We believe

that this work will also lead to the development of novel methods

for training on prosthetic device control methods in VR and

their generalization to practical applications. In our forthcoming

design, we plan to increase our sample size to ensure a richer

dataset for analyses. Furthermore, our aim is to quantify the pre-

diction accuracy and robustness of the three control methods. For

the PR method, we will use classification accuracy as the primary

performance metric. This measure represents the percentage of

correctly classified motion classes relative to the total number of

classes and is highly relevant for evaluating the PR method. For

the CC method, we plan to employ the root-mean-square error

or the mean absolute error to assess performance. These metrics

measure the difference between the predicted and actual joint

angles or velocities, making them suitable for evaluating CC

methods. However, we would like to note that the DC method

does not have an associated “accuracy” metric. This is because

DC is not based on machine learning, and as such, it does not

make predictions or have ground truth values. We believe that

this research will contribute to the advancement of prosthetic

technology and can improve the lives of those who rely on these

devices.

In conclusion, the number of participants in the present study

was limited, which inherently restricts the statistical power and

generalizability of our findings. Furthermore, the experiment

followed a between-subjects design, which may introduce ad-

ditional variability in results due to variations among individual

participants. While our results provide some insights into the

impact of different control modes and tasks on TP and cognitive

workload, these findings should be interpreted with caution.

Future studies with larger samples and perhaps within-subject

designs could help confirm our results and expand on under-

standing of prosthetic device features and workload relation-

ships. The present work serves as an initial step in a broader

assessment of such dynamics.
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