

1 **Sox10 is required for systemic initiation of bone mineralization**

2

3 Stefani Gjorcheska¹, Sandhya Paudel¹, Sarah McLeod¹, Louisa Snape², Karen Camargo Sosa²,

4 Cunming Duan³, Robert Kelsh², Lindsey Barske^{1,4*}

5

6 ¹Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA

7 ²Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK

8 ³Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann
9 Arbor, MI, USA

10 ⁴Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA

11

12 *Correspondence: lindsey.barske@cchmc.org

13

14 **Abstract**

15 Heterozygous variants in the gene encoding the SOX10 transcription factor cause congenital
16 syndromes affecting pigmentation, digestion, hearing, and neural function. Most of these
17 symptoms are attributable to failed differentiation and loss of neural crest cells. Extensive
18 research on mouse and zebrafish models has confirmed that Sox10 is essential for most non-
19 skeletal crest derivatives, but seemingly dispensable for skeletal development. We challenge that
20 concept here by revealing a novel requirement for Sox10 in skeletal mineralization. Neither neural
21 crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish *sox10* mutants,
22 despite normal osteoblast differentiation and matrix production. We show that mutants are
23 deficient in the ionocyte subpopulation tasked with taking up calcium from the environment
24 through the Trpv6 epithelial calcium channel, leading to a severe calcium deficit that explains the
25 lack of mineralization. As these ionocytes do not derive from a *sox10*+ lineage, we hypothesized
26 that the primary defect instead resides in a separate organ that regulates ionocyte numbers or

27 calcium uptake at a systemic level. Screening of the endocrine hormones known to regulate
28 calcium homeostasis in adult vertebrates revealed significantly elevated levels of stanniocalcin
29 (Stc1a), an anti-hypercalcemic hormone, in larval *sox10* mutants. Previous studies demonstrated
30 that Stc1a inhibits calcium uptake in fish by repressing *trpv6* expression and blocking proliferation
31 of Trpv6+ ionocytes. Our epistasis assays indicate that excess Stc1a is the proximate cause of
32 the calcium deficit in *sox10* mutants. Lineage tracing shows that the pronephros-derived glands
33 that synthesize Stc1a interact with *sox10*+ neural crest-derived cells, and that the latter are
34 missing in mutants. We conclude that a subpopulation of *Sox10*+ neural crest non-cell-
35 autonomously limit Stc1a production to allow the inaugural wave of calcium uptake necessary for
36 the initiation of bone mineralization.

37

38 **Keywords: Sox10, bone mineralization, neural crest, calcium, stanniocalcin**

39

40 **Introduction**

41 Sry-box transcription factor 10 (SOX10) is essential for pigmentation of the hair and skin, the
42 ability to perceive sound and smell, and for digestive peristalsis. People with only one functional
43 copy of the SOX10 gene present pigment anomalies such as iris heterochromia and a white
44 forelock, sensorineural hearing loss, deficient enteric innervation, anosmia, neurological
45 abnormalities, neuropathy, and/or stalled puberty¹. Cases range from mild to potentially lethal and
46 are assigned to one of four congenital syndromes with overlapping clinical features: Waardenburg
47 syndrome types 2E and 4C, Kallmann syndrome, or PCWH (Peripheral demyelinating
48 neuropathy, Central dysmyelination, Waardenburg syndrome, and Hirschsprung disease)¹.
49 Besides the inner ear and central nervous system phenotypes, these symptoms are largely
50 attributable to failed neural crest (NC) differentiation. This transient, migratory population of
51 embryonic cells gives rise to pigment cells, sensory and enteric neurons and glia, the adrenal
52 medulla, and bone, cartilage, and connective tissues of the facial skeleton². All NC cells (NCCs)

53 activate SOX10 expression upon specification, prior to migration. The cranial subpopulation
54 destined to give rise to the facial skeleton turn it off upon reaching their destination in the
55 pharyngeal arches^{3,4}. The remaining, non-skeletal NC populations retain Sox10 expression longer
56 to activate programs for differentiation into pigment, glia, and sensory or enteric neurons, among
57 other cell types⁵; in mutants, migration and differentiation stall, and the cells die⁶. Sox10 is also
58 expressed in differentiating chondrocytes of both neural crest and mesodermal origin, but it is not
59 critical there, as cartilage develops normally in zebrafish *sox10* mutants⁷. Accordingly, decades
60 of research on heterozygous patients as well as homozygous mouse and zebrafish models has
61 culminated in the notion that SOX10 is essential for non-skeletal neural crest derivatives but
62 dispensable for formation of the skeleton⁶⁻¹⁰.

63

64 Bones mineralize by packing an organic collagenous extracellular matrix (ECM) with
65 hydroxyapatite crystals of calcium and phosphate in a highly ordered manner¹¹. Mature bone-
66 forming osteoblasts secrete collagen I/X-rich ECM as well as enzymes (e.g. Alkaline
67 phosphatase, Phospho1) and accessory glycoproteins (e.g. Osteopontin, Osteonectin) involved
68 in synthesis and organization of the hydroxyapatite crystals¹²⁻¹⁴. Failed osteoblast maturation,
69 disturbed matrix formation, and calcium-phosphate imbalances can disrupt ossification^{15,16}.

70

71 Endocrine factors, particularly parathyroid hormone, vitamin D, and calcitonin, work in concert to
72 maintain calcium and phosphate homeostasis in adults through actions on bone, intestine, and
73 kidney¹⁷⁻²¹. Adult vertebrates obtain calcium and phosphate for all their cellular needs via dietary
74 sources, environmental uptake, and renal reabsorption, as well as by breaking down bone²².
75 However, how the initial wave of calcium and phosphate uptake in the developing embryo is
76 regulated remains a gap in knowledge. Mammalian fetuses obtain minerals largely through the
77 placenta²³, while fish larvae take them from maternal yolk stores or directly out of the water
78 through ionocytes in the skin and gills^{24,25}. Indeed, zebrafish larvae obtain the necessary amount

79 of phosphate through phospholipid metabolism in the yolk and do not require additional
80 environmental phosphate uptake²⁶⁻²⁸. Conversely, calcium uptake from the environment is
81 required for skeletal mineralization²⁹. The major route of calcium ingress is the constitutively open
82 epithelial calcium channel (ECaC) encoded by *trpv6* (Transient Receptor Potential channel family,
83 Vanilloid subfamily member 6)²⁹⁻³¹. Of the five major types of ionocytes in fish, only the Na^+/H^+ -
84 ATPase-rich (NaR) subpopulation expresses *trpv6*^{25,30}. *Trpv6* expression is also highly enriched
85 in both maternal and fetal cells of the mammalian placenta³². Because *Trpv6* is constitutively
86 open, regulation of calcium uptake occurs through modulating levels of *trpv6* transcription or the
87 proliferation/quiescence of *trpv6*⁺ cells³⁰. Whether the major endocrine hormones involved in
88 calcium and phosphate homeostasis in adults also control the initiation of calcium uptake via
89 *Trpv6* for skeletal mineralization in the embryo remains largely unknown.

90

91 One factor known to not drive but rather limit calcium uptake in both embryonic and adult fish is
92 an anti-hypercalcemic hormone called stanniocalcin³³. Stanniocalcin (Stc1) is a glycoprotein
93 secreted by a variety of tissues in mammals (e.g. kidney, intestine), where it is involved in local
94 calcium homeostasis³⁴⁻³⁸. Stc1a was first isolated from the Corpuscles of Stannius (CS),
95 intermediate mesoderm-derived endocrine organs unique to teleost fish^{35,39,40}. Surgical removal
96 of the CS or mutation of the *stc1a* gene causes severe hypercalcemia, kidney stone formation,
97 and an increase in NaR cell numbers in fishes^{35,41,42}. Conversely, exposure to high environmental
98 calcium increases *stc1a* mRNA levels and serum Stc1a content, in turn leading to decreased
99 calcium uptake³³. Stc1a's anti-hypercalcemic activity involves inhibition of both *trpv6* expression
100 and NaR cell proliferation, working through a Pappa-Igfbp5a-Igf-Igfr cascade that impacts PI3K,
101 mTor, and Akt signaling⁴²⁻⁴⁶. In normal or low calcium, active Pappa cleaves the Igf-binding
102 protein Igfbp5a, releasing Igf ligands to activate downstream signaling and NaR cell proliferation.
103 In conditions of high environmental calcium, Stc1a inhibits Pappa's protease activity, keeping
104 NaR cells quiescent⁴²⁻⁴⁶.

105

106 In this study, we present a previously undescribed systemic requirement for Sox10 in the initiation
107 of skeletal mineralization in fish. We provide evidence of a striking *Stc1a* increase in *sox10*
108 mutants that severely reduces *trpv6*+ ionocyte number and whole-body calcium content. We find
109 *sox10*+ neural crest-derived cells interacting with the Corpuscles of Stannius in control but not
110 mutant fish, indicating that they may serve to moderate *stc1a* levels in the embryo, allowing the
111 massive wave of calcium uptake required to initiate bone mineralization

112

113 **Results**

114 **Delayed onset of skeletal mineralization in zebrafish *sox10* mutants**

115 Though Sox10 expression is activated in all NCCs upon specification^{5,6,47,48}, it is quickly
116 downregulated in the subset of cranial crest that will go on to form the facial skeleton⁴. These
117 skeletal progenitor cells were presumed to not require Sox10 function, as our early studies noted
118 no defects in the Alcian blue-labeled cartilages of the zebrafish *sox10* mutant facial skeleton⁷.
119 However, while recently performing a routine bone stain in *sox10* mutants, we unexpectedly
120 noticed a striking absence of mineralization when the skeleton is first differentiating at 3-4 days
121 post fertilization (dpf) (Fig. 1A). At these stages, calcium deposits in newly mineralizing bones are
122 readily apparent by Alizarin red staining in sibling controls. Weak staining appears in mutants by
123 5 dpf and increases until larval lethality around 8 dpf, but never attains control levels. Mutants are
124 not edemic or developmentally delayed, ruling out these common explanations for poor
125 mineralization. The phenotype is also indiscriminate of ossification type (endochondral,
126 intramembranous, and even odontogenic) and bone developmental origin in the mesoderm
127 versus neural crest (Fig. 1B).

128

129 As deficient mineralization has not been reported in any of the many existing mouse, fish, or frog
130 Sox10 loss-of-function models, we questioned whether it could be a neomorphism specific to our

131 $sox10^{ci3020}$ allele⁴⁹. $ci3020$ is a 1495-bp deletion that removes part of the 5'UTR and the first coding
132 exon, encoding the homodimerization domain and part of the DNA-binding high mobility group
133 (HMG) domain (Fig. S1A). Some transcription still occurs from the deletion allele⁴⁹, and the first
134 in-frame methionine downstream of the deletion could conceivably produce an N-terminally
135 truncated protein lacking the HMG box but retaining the transactivation domain¹. $sox10^{ci3020/ci3020}$
136 embryos otherwise present the classic *colourless* phenotypes associated with *sox10* loss-of-
137 function (Fig. S1B-C)⁵⁰, lacking melanocytes and xanthophores, with malformed otic vesicles and
138 otoliths but normal facial cartilages. To test whether deficient mineralization is specific to the
139 $ci3020$ allele, we performed Alizarin red staining on homozygotes for the *m618* (L142Q) missense
140 allele first reported in 1996⁵¹. The same near-absence of staining was observed between 4 and
141 6 dpf (Fig. S1D), demonstrating that this phenotype is a general consequence of loss of *sox10*
142 function, at least in zebrafish. We further validated the Alizarin red results in $ci3020$ mutants
143 (hereafter *sox10* mutants) using Von Kossa and Calcein stains (Fig. 1C, S1C'), which both label
144 calcium deposits,⁵²⁻⁵⁵ as well as Osteoimage (Fig. 1D), a stain that specifically detects
145 hydroxyapatite⁵⁶. These stains confirmed that mineralization gradually initiates around 5 dpf, first
146 apparent by Von Kossa staining (Fig. 1C). Supporting that the recovery is incomplete, fluorescent
147 Calcein staining in older 7 dpf larvae revealed a lack of endochondral bone collars around the
148 mutant hyomandibula and ceratohyal cartilages (Fig. S1C').

149
150 Osteoblasts are essential for mineralization, but do not themselves express Sox10 (Fig. 2A-B)⁵⁷.
151 The subset of osteoblasts derived from the cranial neural crest did transiently express *sox10* and
152 accordingly express the SOX10:Cre neural crest lineage label (by a human neural crest-specific
153 SOX10 promoter)^{5,48}, but those derived from mesoderm never pass through a *sox10*+ state. We
154 therefore presumed that the broad mineralization deficit would not be cell-autonomous to
155 osteoblasts, though it was still possible that their differentiation could be impacted by extrinsic
156 factors. Osteoblasts are evident as early as 3 dpf at the site of the future opercle (op) bone⁵⁸. To

157 evaluate mutant osteoblasts, we used established transgenic markers *RUNX2:mCherry*⁵⁹,
158 *sp7:EGFP*⁶⁰ and *osc:EGFP*²⁹, which are respectively activated in osteoprogenitors and early and
159 maturing osteoblasts. Live imaging of the op bone in *sox10* mutants and sibling controls from 3
160 to 7 dpf revealed seemingly normal patterns for each marker (Fig. 2C-C"). Visualization of
161 *sp7:GFP* in combination with live Alizarin red staining confirmed that individual elements are
162 growing similarly between mutants and controls (Fig. 2D). Colorimetric *in situ* for the major bone
163 ECM component *col10a1a* also revealed normal expression in mutants (Fig. 2E). These findings
164 suggest that mutant osteoblasts are still differentiating and making collagenous matrix despite not
165 being able to mineralize it.

166

167 To determine whether the mineralization machinery is intact in *sox10* mutant osteoblasts, we
168 performed *in situ* and/or semi-quantitative rt-PCR for *phospho1*, *spp1* (Osteopontin), *sparc*
169 (Osteonectin), *alpl* (Alkaline phosphatase), *enpp1*, *entpd5*, *phex*, *fgf23*, *runx2a*, and *runx2b* (Fig.
170 2E, S2)). These genes encode for secreted proteins and enzymes associated with matrix
171 formation, phosphate and calcium regulation, and hydroxyapatite synthesis, in addition to the
172 Runx2 transcription factors required for osteoblast specification. In rt-PCRs performed on cDNA
173 made from pooled 4-dpf embryos, we detected mild increases in *alpl* and *entpd5* in the mutants
174 ($p<0.05$, unpaired t-tests; Fig. S2A). We also observed slight decreases in *spp1*, *phospho1*,
175 *enpp1*, and *fgf23* in the mutants ($p<0.05$, unpaired t-tests; Fig. S2A), a pattern opposite than
176 observed in the zebrafish *enpp1* mutant, which shows increased mineralization⁶¹. There was no
177 change in *sparc* or *phex*⁶¹ ($p>0.05$, unpaired t-tests) in mutant compared to wild-type embryos
178 (Fig. S2A). *In situ* hybridizations revealed unchanged *runx2a* and *runx2b* expression (Fig. S2B),
179 aligning with the live-imaging *RUNX2:mCherry* experiment (Fig. 2D). *spp1* was strikingly reduced,
180 consistent with the rt-PCR result (Fig. S2A-B). However, inconsistent with the rt-PCR results,
181 *phospho1* expression in forming bones appeared largely unchanged in mutant heads (Fig. 2E),
182 while *sparc* appeared reduced (Fig. S2B). Discrepancies may be due to altered expression in

183 other tissues not captured by the *in situ*. These findings nonetheless demonstrate for the first
184 time that multiple factors linked with mineralization anomalies in animal models and human
185 patients⁶²⁻⁶⁵ are dysregulated in *sox10* mutants.

186

187 **sox10 mutants are calcium-deficient**

188 Disrupted mineral homeostasis caused by mutations in the phosphate regulators *enpp1* and
189 *entpd5* impacts the expression of many other mineralization-regulating factors, including many of
190 the genes we assayed^{61,62}. To test whether the observed dysregulation in our mutant could also
191 be a consequence of a systemic mineral imbalance, we measured calcium and phosphate levels
192 in our mutants. As it is not possible to directly measure serum mineral contents in larval fish, we
193 used a colorimetric assay (Fig. 3B) on pooled whole-body samples between 36 and 168 hpf,
194 following standard practice in the field^{33,42,66}. In wild-type zebrafish, Ca²⁺ content begins to
195 increase around 3 dpf as the first bones mineralize and continues to rise with age (Fig. 3A)⁶⁷. By
196 contrast, *sox10* mutants had lower Ca²⁺ content compared with controls starting at 3 dpf (p=0.03,
197 unpaired t-test; Fig. 3A-B). Consistent with the bone staining in mutants first appearing around 5
198 dpf (Fig. 1A), we found that mutant Ca²⁺ levels at 5 dpf were approximately equivalent to control
199 levels at 3 dpf (0.01 µg/embryo), suggesting this may be the minimal Ca²⁺ threshold required to
200 initiate mineralization. To further investigate this possibility, we raised wild-type embryos in
201 medium completely devoid of Ca²⁺ and found that mineralization was absent everywhere except
202 the otoliths inside the otic vesicles (Fig. S3A'). These are made of calcium carbonate rather than
203 hydroxyapatite^{68,69} and also still form in *trpv6* mutants that cannot take up external calcium^{29,30}.
204 The Ca²⁺ content of these wild-type fish raised in 0 mM Ca²⁺ was approximately the same as that
205 of mutants raised in 1 mM Ca²⁺ (Fig. S3A), supporting that this low level is below the threshold
206 needed for bone mineralization. On the other hand, phosphate levels were seemingly unaffected
207 in mutants between 36 and 168 hpf (Fig. S3B), suggesting that lack of calcium is the major cause
208 of the delayed and deficient hydroxyapatite formation (Fig. 1D).

209

210 Other zebrafish mutants with poor mineralization but seemingly normal osteoblasts, e.g., *msp* and
211 *trpv6*, can be rescued by simply increasing the concentration of Ca^{2+} in the media^{29,70}. We tested
212 whether this would also improve our phenotype using Ca^{2+} concentrations two- and ten-fold higher
213 than our standard embryo media (2 and 10 mM versus 1 mM, respectively, following^{62,70} (Fig. 3C-
214 D)). However, Alizarin red staining at 4 dpf revealed no increase in mineralization in mutants
215 reared in either high- Ca^{2+} medium (Fig. 3D). We then quantified their Ca^{2+} contents at 4 dpf to
216 specifically assess the calcium deficit, finding that mutants raised in the highest- Ca^{2+} environment
217 did show a non-significant increase in Ca^{2+} content, but they remained at a severe deficit relative
218 to controls (Fig. 3D'). Lowering or increasing the phosphate concentration likewise had no impact
219 on mineralization in mutants (Fig. S3C). The mineralization delay in the *sox10* mutants may thus
220 have a more complex etiology than other mutant lines with similar phenotypes.

221

222 Calcium is taken up from the environment in fish larvae through *Trpv6* channels present on the
223 surface of specialized NaR ionocytes in the skin⁷¹. NaR cells also uniquely express *igfbp5a*^{44,72}
224 and comprise a subset of ionocytes expressing Na^+/K^+ ATPase²⁵. Immunostaining for Na^+/K^+
225 ATPase combined with the *SOX10:Cre* lineage label (driven by a human neural crest-specific
226 enhancer^{5,48}) in otherwise wild-type fish confirmed that these skin ionocytes do not derive from
227 neural crest (Fig. 4A), in line with previous work tracing them to the ectoderm⁷³. We questioned
228 whether the persistently low calcium content of *sox10* mutants could be due to a deficiency of
229 *trpv6* expression or total NaR ionocytes. Though rt-PCR revealed no overt change in whole-body
230 *trpv6* levels (Fig. 4B), we did detect significant decreases in the numbers of *trpv6*+ and *igfbp5a*+

231 cells at 4 dpf, with mild recovery by 7 dpf (Fig. 4C-D'). These patterns support reduced NaR
232 number (rather than *trpv6* transcription) as the cause of the systemic calcium deficit and the
233 associated lack of bone mineralization. Published scRNAseq data confirm that differentiating NaR

234 cells contain no *sox10* transcripts⁷⁴. The NaR deficit in *sox10* mutants therefore cannot be
235 explained by a simple cell-autonomous requirement for Sox10.

236

237 NaR cell numbers fluctuate depending on the amount of calcium in the environment, with low Ca²⁺
238 stimulating their proliferation and thereby increasing Ca²⁺ uptake, versus minimal proliferation and
239 uptake under high Ca²⁺^{24,75}. These fluctuations still occur in *sox10* mutants (Fig. S4A), indicating
240 that they are still capable of responding to environmental conditions. However, the increase in
241 NaR cells observed in mutants raised at low Ca²⁺ is dampened relative to controls, apparently
242 insufficient to raise total Ca²⁺ content (Fig. S3A) or permit robust skeletal mineralization (Fig.
243 S3A').

244

245 **Endocrine suppression of NaR ionocyte expansion in *sox10* mutants**

246 The fact that the number of *trpv6*+ NaR cells remains so low in *sox10* mutants despite their clear
247 need for calcium struck us as paradoxical. We reasoned that mutants might be lacking a factor
248 needed to stimulate NaR proliferation, or, conversely, have too much of a different factor that
249 blocks their increase. In an rt-PCR screen of candidate endocrine factors, we identified
250 stanniocalcin-1a (*stc1a*) as being 3-fold upregulated in *sox10* mutants at 4 dpf (Fig. 5A). *Stc1a* is
251 an anti-hypercalcemic hormone triggered by high environmental calcium through activation of the
252 Calcium-Sensing Receptor (CaSR)^{33,76-78}. *Stc1a* reduces calcium uptake to maintain
253 physiologically safe levels by inhibiting proliferation of NaR cells and suppressing *trpv6*
254 expression^{42,45}. The dominant sources of *Stc1a* in fish larvae are the Corpuscles of Stannius,
255 teleost-specific glands that bud off the distal pronephros by 50 hpf and are positioned to either
256 side of the posterior cardinal vein with their own vascular supply by 3 dpf (Fig. 6A-B)^{40,79,80}. *stc1a*
257 expression is detectable prior to completion of CS extrusion⁴⁰ and is thus potentially involved in
258 maintaining calcium balance as early as 24 hpf⁴⁰.

259

260 Aberrantly elevated *stc1a* expression in *sox10* mutants might thus explain their reduced number
261 of NaR cells and calcium uptake. *In situ* analyses showed that the robust increase first becomes
262 apparent after completion of CS extrusion (after 36 hpf; Fig. 5C), is most obvious at 4 dpf (Fig.
263 5B-C), then begins to level out by 7 dpf (Fig. 5C), when both *trpv6*+ NaR cell numbers and
264 mineralization are partially recovering. The *stc1a* increase is due at least in part to higher numbers
265 of *stc1a*+ cells in the mutant CS between 45 hpf and 4 dpf ($p<0.001$, unpaired t-test; Fig. 5D).
266 Interestingly, in low- Ca^{2+} medium, *stc1a* expression is undetectable in controls but merely reduced
267 in mutants (Fig. S4B), possibly explaining why mutants still have fewer NaR cells and less calcium
268 uptake than their siblings under these conditions (Fig. S3A, S4A).

269

270 The *stc1a*-expressing Corpuscles are derived from intermediate mesoderm^{40,81} and never pass
271 through a *sox10*+ state, so their dysfunction in *sox10* mutants must also be indirect. We looked
272 for *sox10* lineage+ cells in or surrounding the glands, predicting that they may be aberrant or
273 missing in mutants. We tracked neural crest using *SOX10:Cre*^{5,48} in combination with the
274 *actb2:BFP>DsRed Cre* reporter⁸² and all recently *sox10*-expressing cells using *sox10:DsRed*
275 (driven by the 4.9-kb zebrafish *sox10* promoter⁸³). All traces were performed in combination with
276 the *Tp1:VenusPEST* Notch reporter⁸⁴ or the *her6:mCherry* reporter⁸⁵, both of which are expressed
277 in the CS after ~36 hpf. We detected a close physical interaction between *sox10:DsRed*+ cells
278 and the CS as early as 50 hpf (Fig. 6C), after the glands had fully formed. The closest cells appear
279 to turn off *sox10* shortly thereafter, as they became harder to find, though lineage-traced crest
280 were present in the vicinity of the CS up to 7 dpf (Fig. 6D-E). Strikingly, *sox10* mutants lack
281 *SOX10:Cre* lineage-labeled cells around the CS at all stages examined (Fig. 6D-E). This is
282 consistent with the complete or near-complete loss of many neural crest cell sublineages
283 previously reported in *sox10* mutant models^{6,7,86}. Mutant *VenusPEST*+ CS cells are less
284 organized, and mutant gland volume is larger ($p<0.0001$ at 58 and 72 hpf, $p=0.003$ at 96 hpf, ns
285 at 168 hpf; unpaired t-tests; Fig. 5E'). These patterns suggest that *sox10*+ crest-derived cells may

286 act locally to restrain CS growth and *stc1a* expression to regulate embryonic calcium
287 homeostasis.

288

289 ***stc1a* is epistatic to *sox10* and the proximate cause of the mineralization deficit**

290 Our results thus far suggested that the absence of *sox10*⁺ cells leads to unrestrained growth and
291 *Stc1a* production by the Corpuscles, in turn inhibiting NaR cell proliferation and preventing
292 sufficient calcium uptake for mineralization. To test this model, we performed an epistasis assay
293 of *stc1a* on the *sox10* mutant background using the previously reported *stc1a*^{*mi610*} mutant⁴².
294 *sox10*^{*ci3020*}; *stc1a*^{*mi610*} double mutants present both the trademark lack of pigmentation and
295 underdeveloped inner ears of *sox10* single mutants alongside the characteristic cardiac edema of
296 *stc1a* mutants (Fig. 7A), supporting that these phenotypes are genetically independent. However,
297 bone mineralization was strikingly improved in double mutants relative to *sox10* single mutants at
298 4 dpf (Fig. 7B). Eighty percent of the double mutants (24 out of 30) stained with Alizarin red: 13
299 weakly, 10 intermediate, and 1 strongly (Fig. 7E, also see Fig. S5B for examples). It is worth
300 noting that the presence of cardiac edema in the double mutants may have compromised bone
301 formation in some individuals. For comparison, among 23 *sox10*^{-/-}; *stc1a*^{+/+} individuals, 14 had no
302 staining, 5 had weak staining, 3 intermediate, and 1 strong (Fig. S5B; p=0.0206, Chi-square test).
303 In the original *sox10*^{*ci3020*} single mutant crosses, only 3/48 single mutants showed intermediate or
304 weak staining; the other 45 had none (Fig. S5A), suggesting the presence of genetic modifiers.
305 We further noted significant improvement in NaR cell number and calcium content in the double
306 *sox10*; *stc1a* mutants relative to *sox10* single mutants (Fig. 7C'-D), further supporting that *stc1a*
307 is epistatic to *sox10* in mineral regulation.

308

309 **Discussion**

310 **Novel *Sox10* requirement in bone mineralization**

311 This study challenges the decades-old paradigm that *Sox10* is not required for skeletal
312 development by revealing a previously undescribed, indirect role in mineralization. Two
313 independent *sox10* mutant lines exhibit delayed and reduced mineralization of all bones, no
314 matter their embryonic origin or ossification type. Mutant osteoblasts appear to differentiate
315 normally (Fig. 2D) and gradually lay down ECM to create typically-sized bone templates (Fig. 2C-
316 E). However, their transcriptomes may be subtly altered: we detected changes in whole-body
317 mRNA levels of genes encoding osteoblast-enriched enzymes involved in regulation of phosphate
318 availability and homeostasis (*phospho1*, *alpl*, *enpp1*, *entpd5*) or bone accessory proteins (*spp1*
319 (osteopontin) (Fig. S2A-B). We posit that these shifts may reflect secondary transcriptional
320 responses of osteoblasts to the major systemic calcium deficit or to changes in inorganic
321 phosphate availability incurred by the lack of calcium. Reduced levels of some of these factors
322 may exacerbate the mineralization defect in *sox10* mutants, as other studies have demonstrated
323 that partial or complete genetic loss of some of these accessory proteins and enzymes can lead
324 to decreased bone mineral density and/or mineralization deficits⁶²⁻⁶⁵.

325

326 We noted with interest the changes in phosphate regulators, given that we did not measure any
327 consistent differences in mutants' total phosphate content by a colorimetric assay (Fig. S3B). It is
328 possible that the assay is insufficiently sensitive or overwhelmed by maternally deposited yolk
329 stores²⁶⁻²⁸. However, how osteoblast-engendered inorganic phosphate intended for
330 hydroxyapatite formation is managed when calcium is not available is an intriguing question. Of
331 note, in our comparison of bone stains, we observed recovery of Von Kossa staining before that
332 of Alizarin red, Calcein, or OsteolImage (hydroxyapatite). In Von Kossa staining, silver cations
333 from the silver nitrate staining solution interact with calcium phosphate to produce a yellowish
334 silver phosphate, which subsequently blackens surrounding organic matter^{52,87,88}. It is possible
335 that the early recovery of this stain reflects a reaction with inorganic phosphate accumulating in
336 the bone matrix due to the calcium deficit.

337

338 How calcium uptake and bone mineralization begin to recover in *sox10* mutants is still an open
339 question. One possibility is that other endocrine hormones come 'online' and begin to counteract
340 elevated *Stc1a* activity. Parathyroid hormone and vitamin D are reported to have hypercalcemic
341 properties in fish as well as in mammals, acting to increase *Trpv6*-mediated calcium uptake^{21,89,90}.
342 Zebrafish lack parathyroid glands, but express parathyroid hormones in the central nervous
343 system and sensory neuromasts⁹¹. Similarly, fish synthesize vitamin D as early as 3 dpf in
344 response to decreased environmental calcium⁸⁹. Other physiological changes are occurring in
345 fish larvae at the same time that mineralization begins to recover, including maturation of the
346 digestive tract and auxiliary endodermal organs⁹² and depletion of the yolk²⁶. Though *sox10*
347 mutants lack an enteric nervous system⁷ and are not fed in our experiments, it is possible that
348 passage of embryo medium through the digestive tract allows calcium uptake through intestinal
349 enterocytes, contributing to the mutants' partial recovery. We have also observed ectopic
350 calcium/hydroxyapatite deposits in the yolk area of mutants at 3 and 4 dpf that begin to resolve
351 coincident with the onset of bone mineralization (Fig. 1C-D). The calcium in those deposits could
352 conceivably be remobilized and made available for forming bones as the yolk is depleted. Two
353 other zebrafish mutants that lack mineralization during larval stages (*msp*⁷⁰, *her9*⁵⁸) also naturally
354 recover to some extent, supporting robustness or complementarity in mechanisms driving calcium
355 uptake for skeletal mineralization.

356

357 **Sox10 drives bone mineralization indirectly through interactions with endocrine glands**
358 **involved in calcium homeostasis**

359 The most striking finding from the whole-body transcriptional analysis was the tripled *stc1a* mRNA
360 levels in *sox10* mutants (Fig. 5A). High *Stc1a* blocks proliferation of *trpv6*⁺ ionocytes⁴², reducing
361 calcium uptake. That elevated *stc1a* is the major driver of the calcium deficit in *sox10* mutants
362 was confirmed by our epistasis studies (Fig. 7). However, whether the increase in *stc1a* mRNA is

363 attributable solely to the higher cell number in the mutant Corpuscles (Fig. 5C-D) or also to a per-
364 cell increase in transcription is not yet clear. Previous studies have shown that high external
365 calcium upregulates *stc1a* transcription at least in part via the Calcium-Sensing Receptor (CaSR),
366 which is also expressed in the CS⁷⁷. Aberrant activity of CaSR in the absence of *sox10*+ lineage
367 cells could therefore potentially boost *stc1a* transcription. In support of the idea that the *stc1a*
368 increase is more complex than just increased CS cell number, another mineral-regulating
369 hormone enriched in the CS, *fgf23*^{93,94}, is downregulated in *sox10* mutants (Fig. S2A) despite the
370 increased size of the Corpuscles. *Fgf23* has anti-hypercalcemic effects similar to *Stc1a*, reducing
371 Ca^{2+} uptake in conditions of high systemic calcium, in addition to regulating phosphate
372 homeostasis^{77,95,96}; its low expression in *sox10* mutants is consistent with their calcium deficit⁷⁷.
373 Published scRNAseq data⁷⁴ shows that Corpuscle cells also express receptors for other
374 endocrine factors involved in mineralization between 2 and 4 dpf, including receptors for calcitonin
375 (*calcr*), cortisol (*nr3c1*), vitamin D (*vdrb*), *Fgf23* (*fgfr1b*), and Msp (*mst1rb*). It remains to be seen
376 how these pathways are affected in the absence of *sox10*+ cells and whether they are involved
377 in *stc1a* upregulation.

378
379 Why the Corpuscles, derived from a *sox10*-negative mesodermal lineage, are so profoundly
380 affected by loss of *sox10* is not fully resolved. We did not observe an increase in *stc1a*+ cell
381 number before 2 dpf, i.e., only after the glands had fully extruded from the pronephros, ruling out
382 expanded CS specification as the explanation for the larger glands (as previously found in other
383 mutant lines^{80,97}). Our experiments instead revealed that a *sox10*+ sublineage interacts with these
384 glands post-extrusion, and that these NC-derived cells are missing in *sox10* mutants (Fig. 6C-E),
385 like so many other crest derivatives⁶⁻⁹. A tantalizing possibility is that they may be precursors of
386 the sympathetic neurons that will innervate the CS in adults^{79,98}. Sympathetic neurons derive from
387 *sox10*+ neural crest, in particular from Schwann cell precursors (SCPs)⁹⁹. Differentiating Schwann
388 cells and SCPs are thought to be the predominant *sox10*+ cell types lining the trunk sensory and

389 motor axon tracts that pass by the Corpuscles^{3,99}, from which we see cells emerging to contact
390 the glands directly (Fig. 6C). Schwann cells and SCPs are largely absent in *sox10* mutant fish
391 and mice^{7,10}. Interestingly, hallmark signs of sympathetic neuronal differentiation in the trunk are
392 not evident in wild-type zebrafish until around 7 dpf¹⁰⁰, well after this CS phenotype arises. The
393 regulatory interaction between the *sox10*+ lineage cells and the CS is thus expected to be non-
394 neuronal in nature at these early stages. Though mutant lethality makes it challenging to study
395 the onset of sympathetic control, we expect that the requirement for *sox10*+ lineage cells in
396 managing stanniocalcin production and/or secretion and thus calcium homeostasis persists
397 throughout the lifespan.

398

399 Humans and other mammals do make stanniocalcin hormones, but we do not develop a gland
400 homologous to the Corpuscles of Stannius³⁵. If loss of *sox10* in fish impacts mineralization solely
401 through dysregulation of Corpuscle development and function, as our data support, it is
402 conceivable that mammals lacking *Sox10* will show no equivalent signs of mineral dysregulation.
403 However, our studies also prompt the more general notion that crest-derived cells destined to
404 become part of the sympathetic nervous system may make contact with and begin regulating their
405 target organs' growth and activity earlier in embryonic development than previously appreciated.
406 This could potentially drive physiological and endocrinological symptoms in individuals with
407 congenital neurocristopathies caused by deficient crest production or survival¹⁰¹.

408

409 **Materials & Methods**

410 *Zebrafish husbandry and lines*

411 Zebrafish embryos were grown at 28.5°C in standard embryo medium (EM)¹⁰² unless otherwise
412 noted: 15 mM NaCl, 0.5 mM KCl, 1 mM CaCl₂•2H₂O, 0.15 mM KH₂PO₄, 0.06 mM NaH₂PO₄ and
413 1 mM MgSO₄•7H₂O. Published mutant and transgenic lines used here include *sox10*^{c3020}⁴⁹
414 *sox10*^{m618}⁵¹, *stc1*^{lmi610}⁴², *Tg(Hsa.RUNX2:mCherry)*^{zf3244} (alias *RUNX2:mCherry*)⁵⁹,

415 *Tg(sp7:EGFP)^{b1212}*⁶⁰, *Tg(Ola.Bglap:EGFP)^{hu4008}* (alias *osc:EGFP*)²⁹, *Tg(Mmu.Sox10-Mmu-*
416 *Fos:Cre*)^{zf384} (alias *SOX10:Cre*)⁴⁸, *Tg(EPV.TP1-Mmu.Hbb:Venus-Mmu.Odc1)*^{sd940} (alias
417 *Tp1:VenusPEST*)⁸⁴, *Tg(fli1:EGFP)^{y1}*¹⁰³, *Tg(Xla.Eef1a1:loxP-DsRed2-loxP-EGFP)*^{zf284} (alias
418 *ef1a:DsRed>EGFP*)⁴⁸, *Tg(actb2:LOXP-BFP-LOXP-DsRed)*^{sd27} (alias *actb2:BFP>DsRed*)⁸² and
419 *Tg(her6:mCherry)*^{sd64}⁸⁵. Lines were maintained as hetero- or hemizygotes.

420

421 *Bone staining*

422 For all fixed bone stains, zebrafish larvae were fully anesthetized with MS-222 (aka Tricaine,
423 Syndel, USA) at the desired stage and then fixed in 2% paraformaldehyde (PFA) (250 µl embryo
424 medium, 250 µl 4% PFA, and 500 µl PBS with 0.1% Tween) overnight at 4°C or for 1 hour at room
425 temperature. For Alizarin red-only staining, following fixation, larvae were rinsed twice in 25%
426 glycerol in 0.5% KOH for 10 minutes each and stained with 0.01% Alizarin in 25% glycerol/100
427 mM Tris pH 7.5 for 4 hours at room temperature. They were then bleached for 10 minutes in 3%
428 H₂O₂ in 0.5% KOH under a light source. Specimens were stored and imaged in 50% glycerol in
429 0.5% KOH or 100% glycerol immediately to prevent fading (adapted from¹⁰⁴). Combined Alcian
430 blue and Alizarin red staining was performed as described previously¹⁰⁵. For Von Kossa staining,
431 fixed embryos were rinsed with deionized water and stained with 2.5% silver nitrate solution
432 (Abcam ab150687) under a light source for 20 minutes. The reaction was stopped with 5% sodium
433 thiosulfate to prevent overstaining, and larvae were imaged immediately^{106,107}. For the
434 Osteoimage™ Mineralization Assay (Lonza PA-1503), we followed the manufacturer's protocol
435 after fixing. Briefly, fixed larvae were rinsed with diluted wash buffer then stained in diluted
436 Staining Reagent for 30 minutes at room temperature in the dark. Before imaging, they were
437 rinsed three times with wash buffer for five minutes each. For live staining, larvae were incubated
438 in Alizarin red (0.03 mg/ml in 30 ml EM) for 2 hours at 28.5°C or in Calcein green (0.1 mg/ml in

439 30 ml EM) at 28.5°C overnight⁵⁵. For each round of each bone staining experiment, a minimum
440 of six individuals were stained and imaged per genotype/stage/group.

441

442 *Calcium and phosphate supplementation and depletion treatments*

443 For calcium treatments, the amount of CaCl₂•2H₂O was increased two or ten-fold for 2 mM and
444 10 mM treatments, respectively, completely removed (0 mM), or decreased to 0.02 mM⁷⁰). For
445 the high phosphate treatment (adapted from ⁶²), the concentrations of KH₂PO₄ and NaH₂PO₄ were
446 raised to 0.5 mM and 9.5 mM, respectively, to increase the total PO₄³⁻ to 10 mM, therefore
447 maintaining the proportional K⁺/Na⁺ ratio as in the control EM. The 'No PO₄³⁻' treatment included
448 neither KH₂PO₄ nor NaH₂PO₄ in the media. A minimum of six control and six mutant larvae were
449 used per treatment group, and all treatments were repeated at least twice.

450

451 *Whole mount in situ hybridization and immunostaining*

452 cDNAs for *stc1a*, *trpv6*, *igfbp5a*, *col10a1a*, *phospho1*, *sparc*, *spp1*, *runx2a*, and *runx2b*¹⁰⁸ were
453 amplified by Herculase II Fusion DNA Polymerase (Agilent) (see Table S1 for primer sequences)
454 and inserted into the pCR-Blunt II-TOPO vector (ThermoFisher). After sequence confirmation and
455 linearization by restriction digest, antisense probes were synthesized from each plasmid using
456 Sp6 or T7 polymerase and digoxigenin (DIG)-tagged nucleotides (Roche). Colorimetric and
457 fluorescent *in situ* hybridizations were performed as described previously¹⁰⁹. Colorimetric *in situ*s
458 were developed with either NBT-BCIP or BM Purple (Sigma-Aldrich), whereas fluorescent *in situ*s
459 were developed with TSA Cyanine 3 (Akoya Biosciences). Immunostaining was performed as
460 described⁴⁹. Primary antibodies included anti-Na⁺/K⁺ ATPase (1:400, DSHB a5) and anti-Sox10
461 (1:500, Genetex GTX128374), used with AlexaFluor 647-conjugated goat anti-mouse and donkey
462 anti-rabbit secondary antibodies (1:250, ThermoFisher A32728 and B40956). In both procedures,
463 permeabilization steps were skipped for markers limited to surface expression (*trpv6*, *igfb5a* and

464 a5). A minimum of six control and six mutant larvae were stained and imaged for each marker,
465 and the experiments were repeated at least twice.

466

467 *Semi-quantitative reverse-transcriptase PCR (rt-PCR)*

468 rt-PCRs were performed to estimate transcript levels of mineralization-associated genes in
469 *sox10*^{ci3020} mutants. Each sample consisted of 10-15 mutant and 10-15 stage-matched wild-type
470 controls that were pooled at 4 dpf and frozen at -80°C. RNA was extracted using the RNAqueous-
471 4PCR Total RNA Isolation Kit (Invitrogen), and equivalent amounts were used to synthesize cDNA
472 with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). rt-PCR was run
473 with a minimum of three biological replicates per genotype, and *eef1g* expression was used for
474 normalization (following ⁴⁹). Band intensity was quantified with Image Lab (BioRad) and analyzed
475 with Prism 10 (GraphPad). Primers, product sizes, and cycling conditions for each gene are listed
476 in Table S2.

477

478 *Quantification of mineral content*

479 Whole-body Ca²⁺ and PO₄³⁻ contents were quantified using colorimetric assay kits (Abcam
480 ab102505 and ab65622). For Ca²⁺ measurements, 10-15 larvae were pooled at the desired stage
481 in an Eppendorf tube without any liquid, dehydrated at 60°C for 1 hour, then digested for at least
482 4 hours in 125 µL of freshly prepared 1M HCl in an Eppendorf Thermomixer set at 95°C and 750
483 rpm. The samples were then centrifuged at 4°C for 45 minutes at 15,000 rpm. Supernatants were
484 distributed on a clear 96-well polystyrene flat-bottomed plate alongside the standard curve
485 reagents prepared according to the protocol provided with the kits. Absorbances were measured
486 on a SpectraMax M5 plate reader. The same procedure was followed for PO₄³⁻ quantification, with
487 the modification that the supernatants were diluted in deionized water to avoid precipitation.

488

489 *Imaging and image analysis*

490 Skeletal stains, brightfield images and colorimetric *in situ* were imaged on a Zeiss SteREO
491 Discovery.V8 or Zeiss Axioimager.Z1 microscopes, whereas fluorescent *in situ*, fluorescent bone
492 stains, live transgenic fish, and immunostained specimens were imaged on a Nikon C2 confocal.
493 *trpv6+/igfbp5a+* ionocytes and *stc1a+* cells were quantified using the 'spots' option in Imaris
494 10.1.1. CS volumes were measured with the surface labeling option in Imaris 10.1.1. A minimum
495 of six replicates were counted for each genotype/stage combination.

496

497 **Data analysis**

498 Data analysis was performed with GraphPad Prism (Version 10.2.3). p-values were calculated
499 with Chi-square tests or unpaired two-tailed t-tests as noted in the figure legends.

500

501 **Acknowledgments**

502 We are grateful to members of the Barske lab for helping with molecular biology experiments and
503 imaging; Kristina Preusse and Benjamin Liou for assistance with mineral quantification; Evan
504 Brooks and Samantha Brugmann for helping to set up Von Kossa and OsteolImage staining; Colin
505 Kenny, Chunyue Yin, Claire Arrata, and Gage Crump for sharing fish lines; Flynn Littleton, Eric
506 Alley and the CCHMC Division of Veterinary Services for fish care; and Josh Gross, James
507 Nichols, Jessica Nelson, and Rolf Stottmann for helpful discussions and/or manuscript
508 suggestions. Funding for this project was provided to L.B. by Cincinnati Children's Center for
509 Pediatric Genomics and the Cincinnati Children's Research Foundation; funding for L.S. and
510 K.C.S. was provided by BBSRC grant BB/S015906/1 to R.N.K.

511

512 **Author Contributions**

513 The project was conceived by S.G. and L.B. Zebrafish experiments were performed by S.G., S.P.,
514 S.M. L.S., K.C.S., and L.B. Crucial fish lines and guidance were provided by C.D. and R.K. Writing
515 and interpretation were performed primarily by S.G. and L.B. with input from C.D. and R.K.

516 **Reference List**

517

518 1. Pingault, V., Zerad, L., Bertani-Torres, W. & Bondurand, N. SOX10: 20 years of phenotypic
519 plurality and current understanding of its developmental function. *J Med Genet* **59**, 105-
520 114 (2022).

521 2. Martik, M.L. & Bronner, M.E. Regulatory Logic Underlying Diversification of the Neural
522 Crest. *Trends Genet* **33**, 715-727 (2017).

523 3. Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I. & Wegner, M. Sox10, a
524 novel transcriptional modulator in glial cells. *J Neurosci* **18**, 237-50 (1998).

525 4. Blentic, A. *et al.* The emergence of ectomesenchyme. *Dev Dyn* **237**, 592-601 (2008).

526 5. Antonellis, A. *et al.* Identification of neural crest and glial enhancers at the mouse Sox10
527 locus through transgenesis in zebrafish. *PLoS Genet* **4**, e1000174 (2008).

528 6. Dutton, K.A. *et al.* Zebrafish colourless encodes sox10 and specifies non-
529 ectomesenchymal neural crest fates. *Development* **128**, 4113-25 (2001).

530 7. Kelsh, R.N. & Eisen, J.S. The zebrafish colourless gene regulates development of non-
531 ectomesenchymal neural crest derivatives. *Development* **127**, 515-25 (2000).

532 8. Herbarth, B. *et al.* Mutation of the Sry-related Sox10 gene in Dominant megacolon, a
533 mouse model for human Hirschsprung disease. *Proc Natl Acad Sci U S A* **95**, 5161-5
534 (1998).

535 9. Southard-Smith, E.M., Kos, L. & Pavan, W.J. Sox10 mutation disrupts neural crest
536 development in Dom Hirschsprung mouse model. *Nat Genet* **18**, 60-4 (1998).

537 10. Britsch, S. *et al.* The transcription factor Sox10 is a key regulator of peripheral glial
538 development. *Genes Dev* **15**, 66-78 (2001).

539 11. Blair, H.C., Zaidi, M. & Schlesinger, P.H. Mechanisms balancing skeletal matrix synthesis
540 and degradation. *Biochem J* **364**, 329-41 (2002).

541 12. Yamate, T. *et al.* Osteopontin expression by osteoclast and osteoblast progenitors in the
542 murine bone marrow: demonstration of its requirement for osteoclastogenesis and its
543 increase after ovariectomy. *Endocrinology* **138**, 3047-55 (1997).

544 13. Millan, J.L. The role of phosphatases in the initiation of skeletal mineralization. *Calcif
545 Tissue Int* **93**, 299-306 (2013).

546 14. Bianco, P., Silvestrini, G., Termine, J.D. & Bonucci, E. Immunohistochemical localization of
547 osteonectin in developing human and calf bone using monoclonal antibodies. *Calcif Tissue
548 Int* **43**, 155-61 (1988).

549 15. Michigami, T. Skeletal mineralization: mechanisms and diseases. *Ann Pediatr Endocrinol
550 Metab* **24**, 213-219 (2019).

551 16. Ponzetti, M. & Rucci, N. Osteoblast Differentiation and Signaling: Established Concepts
552 and Emerging Topics. *Int J Mol Sci* **22**(2021).

553 17. Hanna, R.M., Ahdoot, R.S., Kalantar-Zadeh, K., Ghobry, L. & Kurtz, I. Calcium Transport in
554 the Kidney and Disease Processes. *Front Endocrinol (Lausanne)* **12**, 762130 (2021).

555 18. Guo, Y.C. & Yuan, Q. Fibroblast growth factor 23 and bone mineralisation. *Int J Oral Sci* **7**,
556 8-13 (2015).

557 19. Areco, V.A., Kohan, R., Talamoni, G., Tolosa de Talamoni, N.G. & Peralta Lopez, M.E.
558 Intestinal Ca(2+) absorption revisited: A molecular and clinical approach. *World J
559 Gastroenterol* **26**, 3344-3364 (2020).

560 20. Waung, J.A., Bassett, J.H. & Williams, G.R. Thyroid hormone metabolism in skeletal
561 development and adult bone maintenance. *Trends Endocrinol Metab* **23**, 155-62 (2012).

562 21. Khundmiri, S.J., Murray, R.D. & Lederer, E. PTH and Vitamin D. *Compr Physiol* **6**, 561-601
563 (2016).

564 22. Wongdee, K., Rodrat, M., Teerapornpuntakit, J., Krishnamra, N. & Charoenphandhu, N.
565 Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent
566 excessive calcium uptake. *J Physiol Sci* **69**, 683-696 (2019).

567 23. Kovacs, C.S. Bone development and mineral homeostasis in the fetus and neonate: roles
568 of the calciotropic and phosphotrophic hormones. *Physiol Rev* **94**, 1143-218 (2014).

569 24. Lin, C.H. & Hwang, P.P. The Control of Calcium Metabolism in Zebrafish (*Danio rerio*). *Int J
570 Mol Sci* **17**(2016).

571 25. Hwang, P.P. & Chou, M.Y. Zebrafish as an animal model to study ion homeostasis.
572 *Pflugers Arch* **465**, 1233-47 (2013).

573 26. Quinlivan, V.H. & Farber, S.A. Lipid Uptake, Metabolism, and Transport in the Larval
574 Zebrafish. *Front Endocrinol (Lausanne)* **8**, 319 (2017).

575 27. Fraher, D. *et al.* Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is
576 Metabolically Active in Processing Lipid. *Cell Rep* **14**, 1317-1329 (2016).

577 28. Miyares, R.L., de Rezende, V.B. & Farber, S.A. Zebrafish yolk lipid processing: a tractable
578 tool for the study of vertebrate lipid transport and metabolism. *Dis Model Mech* **7**, 915-27
579 (2014).

580 29. Vanoevelen, J. *et al.* Trpv5/6 is vital for epithelial calcium uptake and bone formation.
581 *FASEB J* **25**, 3197-207 (2011).

582 30. Xin, Y. *et al.* Cell-autonomous regulation of epithelial cell quiescence by calcium channel
583 Trpv6. *Elife* **8**(2019).

584 31. Khattar, V., Wang, L. & Peng, J.B. Calcium selective channel TRPV6: Structure, function,
585 and implications in health and disease. *Gene* **817**, 146192 (2022).

586 32. Fecher-Trost, C. *et al.* Maternal Transient Receptor Potential Vanilloid 6 (Trpv6) Is Involved
587 In Offspring Bone Development. *J Bone Miner Res* **34**, 699-710 (2019).

588 33. Tseng, D.Y. *et al.* Effects of stanniocalcin 1 on calcium uptake in zebrafish (*Danio rerio*)
589 embryo. *Am J Physiol Regul Integr Comp Physiol* **296**, R549-57 (2009).

590 34. Deol, H., Stasko, S.E., De Niu, P., James, K.A. & Wagner, G.F. Post-natal ontogeny of
591 stanniocalcin gene expression in rodent kidney and regulation by dietary calcium and
592 phosphate. *Kidney Int* **60**, 2142-52 (2001).

593 35. Yeung, B.H., Law, A.Y. & Wong, C.K. Evolution and roles of stanniocalcin. *Mol Cell
594 Endocrinol* **349**, 272-80 (2012).

595 36. Yoshiko, Y. & Maeda, N. In situ hybridization analysis of stanniocalcin mRNA expressing
596 cells in the mouse kidney. *Mol Cell Endocrinol* **141**, 37-40 (1998).

597 37. Kobayashi, R. *et al.* Expression of stanniocalcin-1 in gastrointestinal tracts of neonatal and
598 mature rats. *Biochem Biophys Res Commun* **389**, 478-83 (2009).

599 38. Madsen, K.L. *et al.* Stanniocalcin: a novel protein regulating calcium and phosphate
600 transport across mammalian intestine. *Am J Physiol* **274**, G96-102 (1998).

601 39. Pang, P.K., Pang, R.K. & Sawyer, W.H. Effects of environmental calcium and replacement
602 therapy on the killifish, *Fundulus heteroclitus*, after the surgical removal of the corpuscles
603 of Stannius. *Endocrinology* **93**, 705-10 (1973).

604 40. Naylor, R.W., Chang, H.G., Qubisi, S. & Davidson, A.J. A novel mechanism of gland
605 formation in zebrafish involving transdifferentiation of renal epithelial cells and live cell
606 extrusion. *Elife* **7**(2018).

607 41. Fenwick, J.C. & So, Y.P. A perfusion study of the effect of staniectomy on the net influx of
608 calcium 45 across an isolated eel gill (1). *J Exp Zool* **188**, 125-31 (1974).

609 42. Li, S. *et al.* Calcium State-Dependent Regulation of Epithelial Cell Quiescence by
610 Stanniocalcin 1a. *Front Cell Dev Biol* **9**, 662915 (2021).

611 43. Oxvig, C. The role of PAPP-A in the IGF system: location, location, location. *J Cell
612 Commun Signal* **9**, 177-87 (2015).

613 44. Dai, W. *et al.* Calcium deficiency-induced and TRP channel-regulated IGF1R-PI3K-Akt
614 signaling regulates abnormal epithelial cell proliferation. *Cell Death Differ* **21**, 568-81
615 (2014).

616 45. Liu, C. *et al.* The metalloproteinase Papp-aa controls epithelial cell quiescence-
617 proliferation transition. *Elife* **9**(2020).

618 46. Li, S., Li, H., Wang, Z. & Duan, C. Stanniocalcin 1a regulates organismal calcium balance
619 and survival by suppressing Trpv6 expression and inhibiting IGF signaling in zebrafish.
620 *Front Endocrinol (Lausanne)* **14**, 1276348 (2023).

621 47. Stine, Z.E. et al. Oligodendroglial and pan-neural crest expression of Cre recombinase
622 directed by Sox10 enhancer. *Genesis* **47**, 765-70 (2009).

623 48. Kague, E. et al. Skeletogenic fate of zebrafish cranial and trunk neural crest. *PLoS One* **7**,
624 e47394 (2012).

625 49. Okeke, C. et al. Control of cranial ectomesenchyme fate by Nr2f nuclear receptors.
626 *Development* **149**(2022).

627 50. Kelsh, R.N. et al. Zebrafish pigmentation mutations and the processes of neural crest
628 development. *Development* **123**, 369-89 (1996).

629 51. Malicki, J. et al. Mutations affecting development of the zebrafish ear. *Development* **123**,
630 275-83 (1996).

631 52. Puchtler, H. & Meloan, S.N. Demonstration of phosphates in calcium deposits: a
632 modification of von Kossa's reaction. *Histochemistry* **56**, 177-85 (1978).

633 53. Du, S.J., Frenkel, V., Kindschi, G. & Zohar, Y. Visualizing normal and defective bone
634 development in zebrafish embryos using the fluorescent chromophore calcein. *Dev Biol*
635 **238**, 239-46 (2001).

636 54. Schneider, M.R. Von Kossa and his staining technique. *Histochem Cell Biol* **156**, 523-526
637 (2021).

638 55. Teng, C.S. et al. Altered bone growth dynamics prefigure craniosynostosis in a zebrafish
639 model of Saethre-Chotzen syndrome. *Elife* **7**(2018).

640 56. Sim, A.M. et al. A novel fluorescein-bisphosphonate based diagnostic tool for the detection
641 of hydroxyapatite in both cell and tissue models. *Sci Rep* **8**, 17360 (2018).

642 57. Gomez-Picos, P., Ovens, K. & Eames, B.F. Limb Mesoderm and Head Ectomesenchyme
643 Both Express a Core Transcriptional Program During Chondrocyte Differentiation. *Front
644 Cell Dev Biol* **10**, 876825 (2022).

645 58. Stenzel, A. et al. Distinct and redundant roles for zebrafish her genes during mineralization
646 and craniofacial patterning. *Front Endocrinol (Lausanne)* **13**, 1033843 (2022).

647 59. Barske, L. et al. Evolution of vertebrate gill covers via shifts in an ancient Pou3f3
648 enhancer. *Proc Natl Acad Sci U S A* **117**, 24876-24884 (2020).

649 60. DeLaurier, A. et al. Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation,
650 skeletogenesis, and bone regeneration. *Genesis* **48**, 505-11 (2010).

651 61. Apschner, A., Huijtema, L.F., Ponsioen, B., Peterson-Maduro, J. & Schulte-Merker, S.
652 Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of
653 generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE).
654 *Dis Model Mech* **7**, 811-22 (2014).

655 62. Huijtema, L.F. et al. Entpd5 is essential for skeletal mineralization and regulates phosphate
656 homeostasis in zebrafish. *Proc Natl Acad Sci U S A* **109**, 21372-7 (2012).

657 63. Yadav, M.C. et al. Loss of skeletal mineralization by the simultaneous ablation of
658 PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of
659 initiation of skeletal calcification. *J Bone Miner Res* **26**, 286-97 (2011).

660 64. Christov, M. & Juppner, H. Insights from genetic disorders of phosphate homeostasis.
661 *Semin Nephrol* **33**, 143-57 (2013).

662 65. Si, J., Wang, C., Zhang, D., Wang, B. & Zhou, Y. Osteopontin in Bone Metabolism and
663 Bone Diseases. *Med Sci Monit* **26**, e919159 (2020).

664 66. Suarez-Bregua, P. et al. Pth4, an ancient parathyroid hormone lost in eutherian mammals,
665 reveals a new brain-to-bone signaling pathway. *FASEB J* **31**, 569-583 (2017).

666 67. Pan, T.C., Liao, B.K., Huang, C.J., Lin, L.Y. & Hwang, P.P. Epithelial Ca(2+) channel
667 expression and Ca(2+) uptake in developing zebrafish. *Am J Physiol Regul Integr Comp
668 Physiol* **289**, R1202-11 (2005).

669 68. Rozycka, M.O. *et al.* Effect of Gel Exposition on Calcium and Carbonate Ions Determines
670 the Stm-1 Effect on the Crystal Morphology of Calcium Carbonate. *Biomacromolecules* **24**,
671 4042-4050 (2023).

672 69. Lundberg, Y.W., Xu, Y., Thiessen, K.D. & Kramer, K.L. Mechanisms of otoconia and otolith
673 development. *Dev Dyn* **244**, 239-53 (2015).

674 70. Huitema, L.F. *et al.* Macrophage-stimulating protein and calcium homeostasis in zebrafish.
675 *FASEB J* **26**, 4092-101 (2012).

676 71. Dymowska, A.K., Hwang, P.P. & Goss, G.G. Structure and function of ionocytes in the
677 freshwater fish gill. *Respir Physiol Neurobiol* **184**, 282-92 (2012).

678 72. Dai, W. *et al.* Duplicated zebrafish insulin-like growth factor binding protein-5 genes with
679 split functional domains: evidence for evolutionarily conserved IGF binding, nuclear
680 localization, and transactivation activity. *FASEB J* **24**, 2020-9 (2010).

681 73. Janicke, M., Carney, T.J. & Hammerschmidt, M. Foxi3 transcription factors and Notch
682 signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish
683 embryo. *Dev Biol* **307**, 258-71 (2007).

684 74. Sur, A. *et al.* Single-cell analysis of shared signatures and transcriptional diversity during
685 zebrafish development. *Dev Cell* **58**, 3028-3047 e12 (2023).

686 75. Kwong, R.W., Auprix, D. & Perry, S.F. Involvement of the calcium-sensing receptor in
687 calcium homeostasis in larval zebrafish exposed to low environmental calcium. *Am J*
688 *Physiol Regul Integr Comp Physiol* **306**, R211-21 (2014).

689 76. Radman, D.P., McCudden, C., James, K., Nemeth, E.M. & Wagner, G.F. Evidence for
690 calcium-sensing receptor mediated stanniocalcin secretion in fish. *Mol Cell Endocrinol*
691 **186**, 111-9 (2002).

692 77. Lin, C.H., Hu, H.J. & Hwang, P.P. Molecular Physiology of the Hypocalcemic Action of
693 Fibroblast Growth Factor 23 in Zebrafish (*Danio rerio*). *Endocrinology* **158**, 1347-1358
694 (2017).

695 78. Lin, C.H., Su, C.H. & Hwang, P.P. Calcium-sensing receptor mediates Ca(2+) homeostasis
696 by modulating expression of PTH and stanniocalcin. *Endocrinology* **155**, 56-67 (2014).

697 79. Wendelaar Bonga, S.E., Greven, J.A. & Veenhuis, M. Vascularization, innervation, and
698 ultrastructure of the endocrine cell types of stannius corpuscles in the teleost *Gasterosteus*
699 *aculeatus*. *J Morphol* **153**, 225-43 (1977).

700 80. Cheng, C.N. & Wingert, R.A. Nephron proximal tubule patterning and corpuscles of
701 Stannius formation are regulated by the sim1a transcription factor and retinoic acid in
702 zebrafish. *Dev Biol* **399**, 100-116 (2015).

703 81. Naylor, R.W. *et al.* BMP and retinoic acid regulate anterior-posterior patterning of the non-
704 axial mesoderm across the dorsal-ventral axis. *Nat Commun* **7**, 12197 (2016).

705 82. Kobayashi, I. *et al.* Jam1a-Jam2a interactions regulate haematopoietic stem cell fate
706 through Notch signalling. *Nature* **512**, 319-23 (2014).

707 83. Das, A. & Crump, J.G. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme
708 potential of the cranial neural crest. *PLoS Genet* **8**, e1002710 (2012).

709 84. Ninov, N., Borius, M. & Stainier, D.Y. Different levels of Notch signaling regulate
710 quiescence, renewal and differentiation in pancreatic endocrine progenitors. *Development*
711 **139**, 1557-67 (2012).

712 85. Kraus, J.M. *et al.* Notch signaling enhances bone regeneration in the zebrafish mandible.
713 *Development* **149**(2022).

714 86. Carney, T.J. *et al.* A direct role for Sox10 in specification of neural crest-derived sensory
715 neurons. *Development* **133**, 4619-30 (2006).

716 87. Meloan SNP, H. Chemical Mechanisms of staining methods: Von Kossa's technique: what
717 von Kossa really wrote and a modified reaction for selective demonstration of inorganic
718 phosphates. *J Histotechnol* **8**(185).

719 88. Santos, J.M.A., Laize, V., Gavaia, P.J., Conceicao, N. & Cancela, M.L. Zebrafish Models to
720 Study Ectopic Calcification and Calcium-Associated Pathologies. *Int J Mol Sci* **24**(2023).

721 89. Lin CH, L., S. T., Wang, Y. C., Tsou, Y. L. & Hu, H. J. Vitamin D regulates transepithelial
722 acid secretion in zebrafish (*Danio rerio*) larvae. *Front Mar Sci* **9**(2022).

723 90. Lin, C.H., Su, C.H., Tseng, D.Y., Ding, F.C. & Hwang, P.P. Action of vitamin D and the
724 receptor, VDR_A, in calcium handling in zebrafish (*Danio rerio*). *PLoS One* **7**, e45650
725 (2012).

726 91. Hogan, B.M. *et al.* Duplicate zebrafish pth genes are expressed along the lateral line and
727 in the central nervous system during embryogenesis. *Endocrinology* **146**, 547-51 (2005).

728 92. Guerrera, M.C., De Pasquale, F., Muglia, U. & Caruso, G. Digestive enzymatic activity
729 during ontogenetic development in zebrafish (*Danio rerio*). *J Exp Zool B Mol Dev Evol* **324**,
730 699-706 (2015).

731 93. Elizondo, M.R., Budi, E.H. & Parichy, D.M. trpm7 regulation of in vivo cation homeostasis
732 and kidney function involves stanniocalcin 1 and fgf23. *Endocrinology* **151**, 5700-9 (2010).

733 94. Mangos, S. *et al.* Expression of fgf23 and alphaklotho in developing embryonic tissues and
734 adult kidney of the zebrafish, *Danio rerio*. *Nephrol Dial Transplant* **27**, 4314-22 (2012).

735 95. Martinez-Heredia, L., Canelo-Moreno, J.M., Garcia-Fontana, B. & Munoz-Torres, M. Non-
736 Classical Effects of FGF23: Molecular and Clinical Features. *Int J Mol Sci* **25**(2024).

737 96. Rodrat, M. *et al.* Modulation of fibroblast growth factor-23 expression and transepithelial
738 calcium absorption in Caco-2 monolayer by calcium-sensing receptor and calcineurin
739 under calcium hyperabsorptive state. *Biochem Biophys Res Commun* **659**, 105-112
740 (2023).

741 97. Drummond, B.E., Li, Y., Marra, A.N., Cheng, C.N. & Wingert, R.A. The tbx2a/b
742 transcription factors direct pronephros segmentation and corpuscle of Stannius formation
743 in zebrafish. *Dev Biol* **421**, 52-66 (2017).

744 98. Krishnamurthy, V.G. & Bern, H.A. Innervation of the corpuscles of Stannius. *Gen Comp
745 Endocrinol* **16**, 162-5 (1971).

746 99. Kamenev, D. *et al.* Schwann cell precursors generate sympathoadrenal system during
747 zebrafish development. *J Neurosci Res* **99**, 2540-2557 (2021).

748 100. An, M., Luo, R. & Henion, P.D. Differentiation and maturation of zebrafish dorsal root and
749 sympathetic ganglion neurons. *J Comp Neurol* **446**, 267-75 (2002).

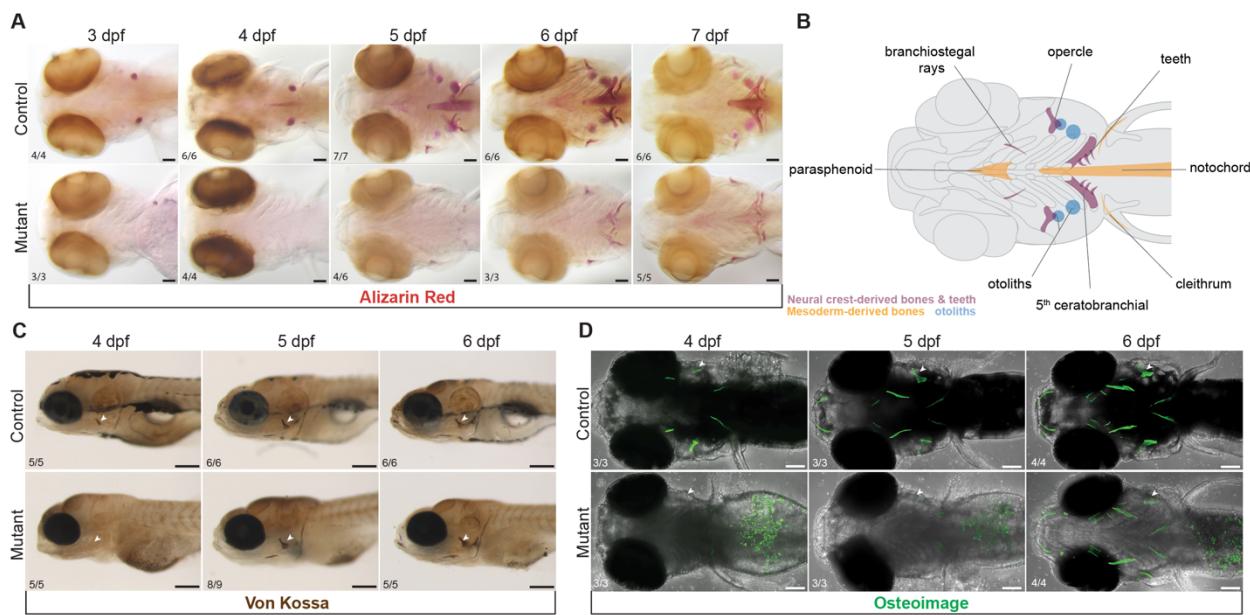
750 101. Vega-Lopez, G.A., Cerrizuela, S., Tribulo, C. & Aybar, M.J. Neurocristopathies: New
751 insights 150 years after the neural crest discovery. *Dev Biol* **444 Suppl 1**, S110-S143
752 (2018).

753 102. M., W. *The zebrafish book. A guide for the laboratory use of zebrafish (*Danio rerio*.)*,
754 (University of Oregon Press, Eugene, 2007).

755 103. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using
756 transgenic zebrafish. *Dev Biol* **248**, 307-18 (2002).

757 104. Jiang, Y. *et al.* Glucocorticoids induce osteoporosis mediated by glucocorticoid receptor-
758 dependent and -independent pathways. *Biomed Pharmacother* **125**, 109979 (2020).

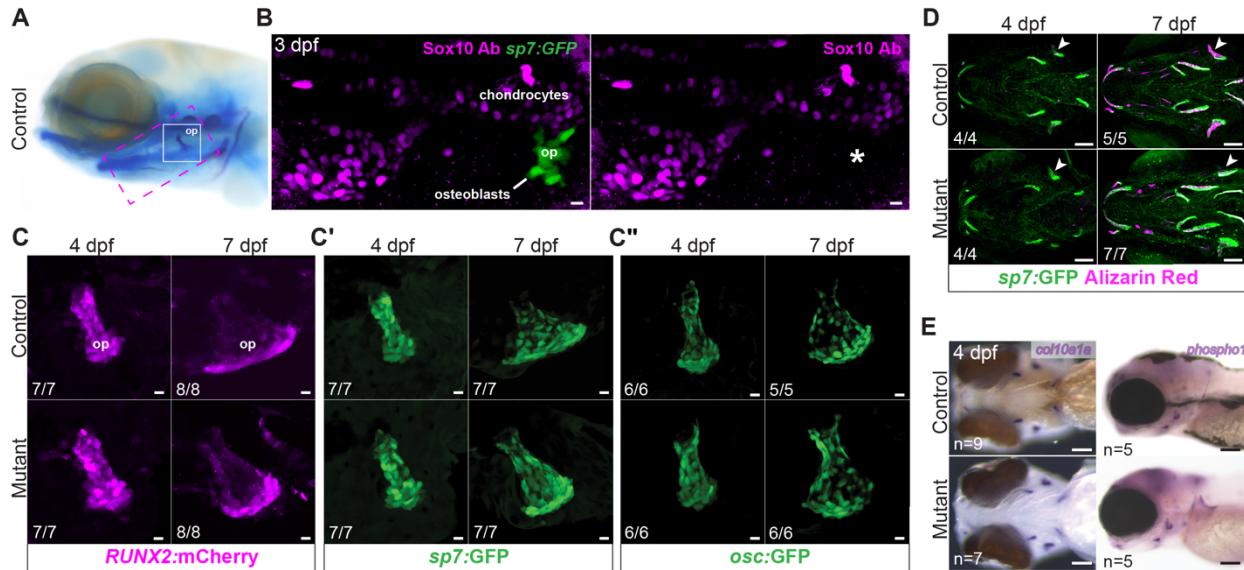
759 105. Walker, M.B. & Kimmel, C.B. A two-color acid-free cartilage and bone stain for zebrafish
760 larvae. *Biotech Histochem* **82**, 23-8 (2007).

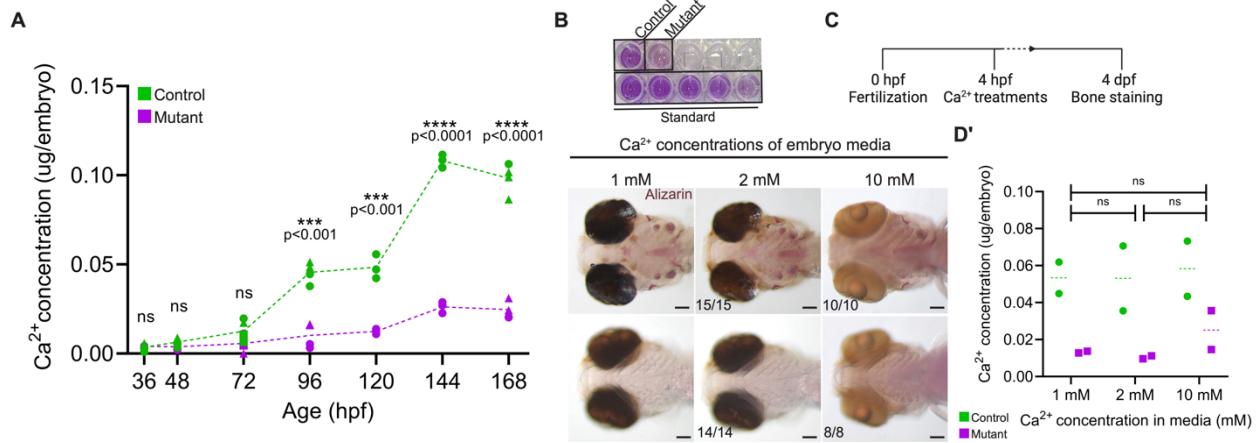

761 106. Paese CLB, C., C. F., Kristeková, D. & Brugmann. Pharmacological intervention of the
762 FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. *Disease. Disease
763 Models and Mechanisms* **15**(2022).

764 107. Khristoforova, I. *et al.* Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast
765 regulation. *Front Endocrinol (Lausanne)* **13**, 985304 (2022).

766 108. Paul, S. *et al.* Ihha induces hybrid cartilage-bone cells during zebrafish jawbone
767 regeneration. *Development* **143**, 2066-76 (2016).

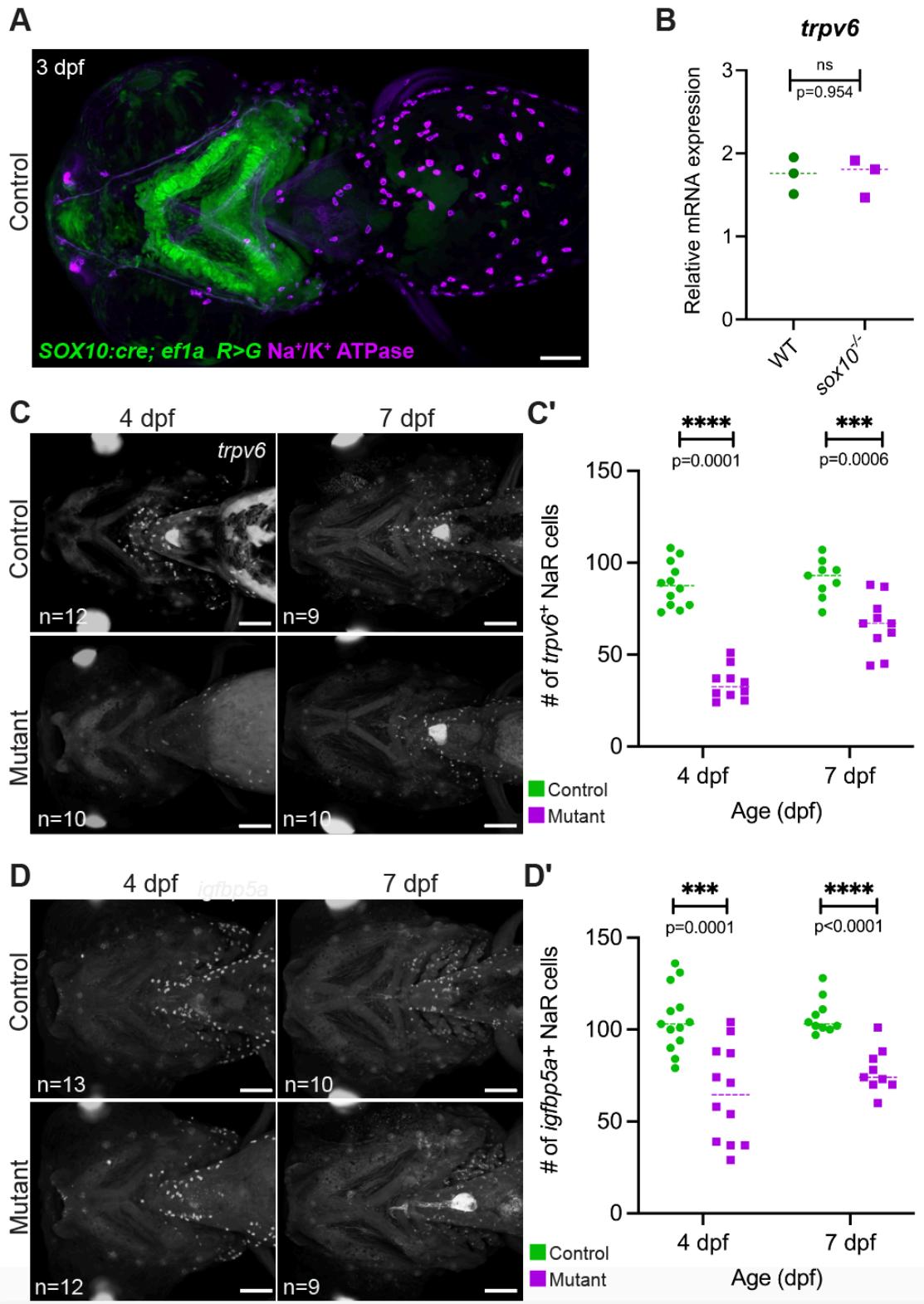
768 109. Barske, L. *et al.* Essential Role of Nr2f Nuclear Receptors in Patterning the Vertebrate
769 Upper Jaw. *Dev Cell* **44**, 337-347 e5 (2018).


770 **Figures**


771

772 **Figure 1. Mineralization deficit in zebrafish *sox10* mutants. (A)** A major delay in initiation of
773 bone mineralization in *sox10* mutants between 3 and 7 dpf is revealed by Alizarin red staining.
774 Some mineralization is present by 5 dpf but never achieves control levels before lethality at 8 dpf.
775 Scale bar: 100 μ m. Schematic representation of the affected mineralized structures and their
776 embryonic origins. **(C, D)** Von Kossa (C, scale bar: 200 μ m), and Osteoimage (D, scale bar: 100
777 μ m) staining show absent calcium deposition and hydroxyapatite formation in *sox10* mutants at 4
778 dpf and gradual recovery starting at 5 dpf. Arrowheads pointing at the opercle (op). Numbers in
779 all panels indicate the proportion of larvae of that genotype with the presented phenotype.

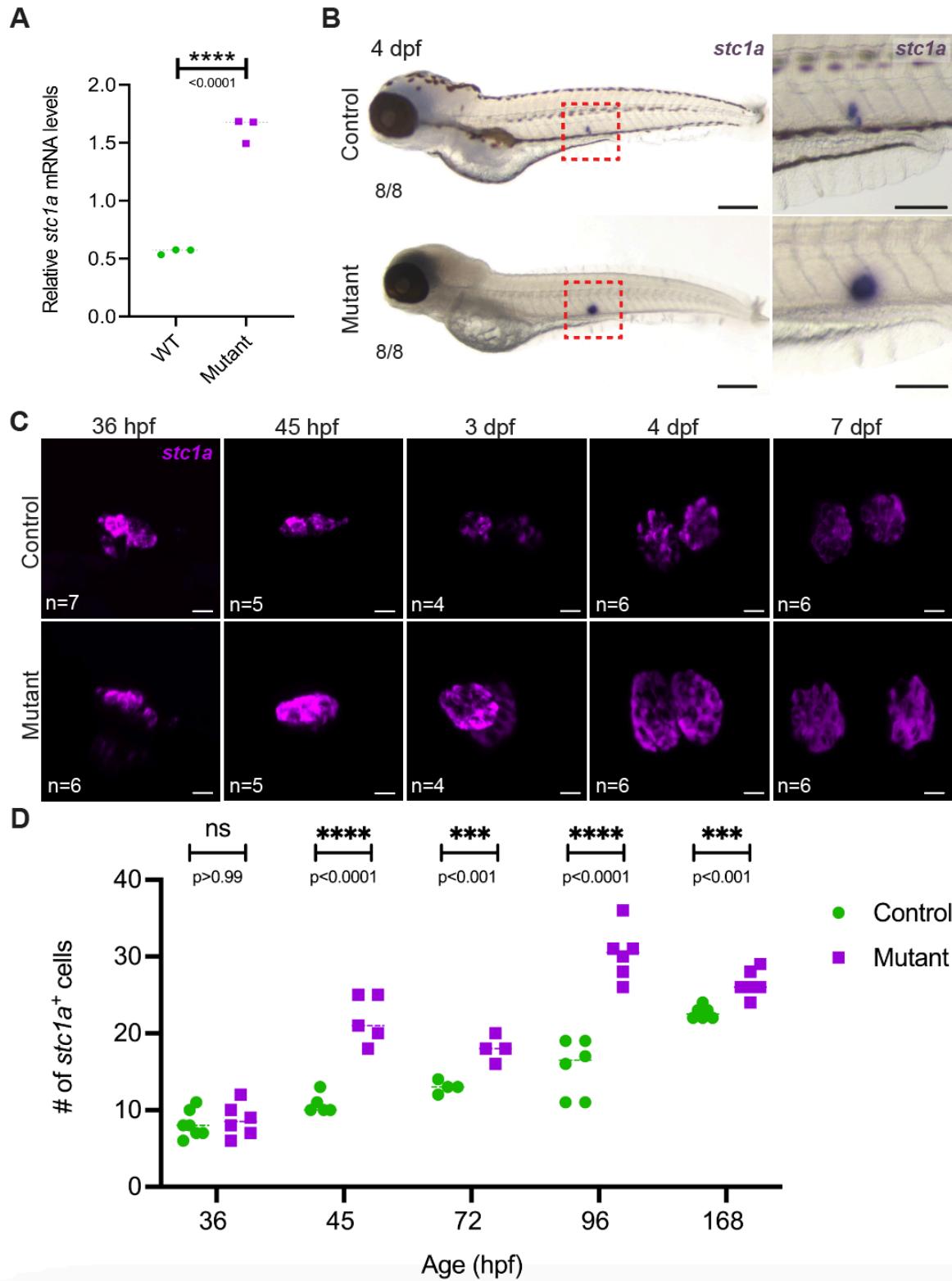
780



781 **Figure 2. Normal patterns of growth and differentiation in sox10 mutant osteoblasts. (A)**
782 Reference image of a larva stained with Alcian blue and Alizarin red, with locations of skeletal
783 elements shown in B (magenta dashed line) and C (white line) highlighted. op, opercle. **(B)**
784 Immunostaining with an anti-Sox10 antibody reveals strong expression in chondrocytes but a lack
785 of Sox10 protein (asterisk) in mineralizing osteoblasts (sp7:GFP+) forming the op bone at 3 dpf.
786 Scale bar: 10 μ m. **(C)** Normal growth of sox10 mutant op (arrowhead) as well as other bones
787 despite minimal calcium accumulation, revealed by live imaging of Alizarin red-stained sp7:GFP+
788 embryos at 4 and 7 dpf. Scale bar: 100 μ m. **(D-D")** Sequential live imaging shows normal patterns
789 of RUNX2:mCherry, sp7:GFP and osc:GFP transgene expression in mutant osteoblasts of the op
790 at 4 and 7 dpf. Scale bar: 10 μ m. **(E)** Colorimetric *in situ* hybridizations for col10a1a and phospho1,
791 encoding key bone matrix components, revealed no overt abnormalities in sox10 mutants at 4
792 dpf. Scale bar: 100 μ m.
793

795

796 **Figure 3. *sox10* mutants have a severe whole-body calcium deficit. (A-B)** Colorimetric
797 calcium assay reveals significantly lower levels of Ca²⁺ in *sox10* mutants after mineralization is
798 initiated at 3 dpf. Each data point represents a pool of 10-15 embryos. Different shapes represent
799 biological replicates assayed on different days (unpaired t-tests: 36 hpf: p=0.580, df=8; 48 hpf:
800 p=0.083, df=8; 72 hpf: p=0.091, df=7; 96 hpf: p=0.0002, df=6; 120 hpf: p=0.0008, df=4; 144 hpf:
801 p=0.000008, df=4; 168 hpf: p=0.000005, df=6). B is an example of the colorimetric assay, showing
802 a clear reduction in mutants. **(C)** Schematic representation of the Ca²⁺ treatment protocol. **(D-D')**
803 Increasing ambient Ca²⁺ levels to 2 or 10 mM does not rescue the mineralization deficit (D; scale
804 bar: 100 μ m) or Ca²⁺ content (D') (unpaired t-tests: 1 vs. 2 mM: p=0.963, df=2; 1 vs. 10 mM:
805 p=0.778, df=2; 2 vs. 10 mM: p=0.748, df=2). Ratios reflect the number of imaged larvae of that
806 genotype with the presented phenotype. In D', bars indicate the median; significance determined
807 by unpaired t-test. Scale bar: 100 μ m.

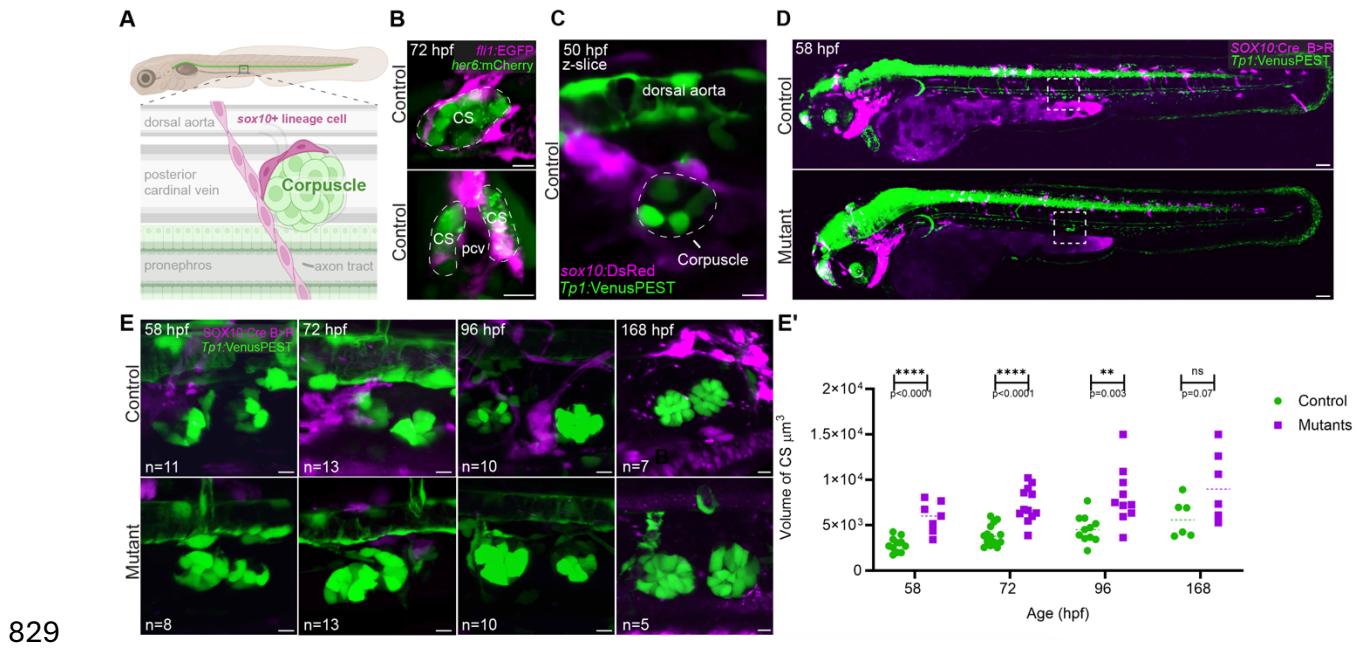

808

809 **Figure 4. Reduction in *trpv6*⁺ NaR cell number in the *sox10* mutants. (A)** Immunostaining of

810 a 3 dpf *SOX10:Cre; ef1a: DsRed>GFP* larva with an antibody against the Na^+/K^+ ATPase pump

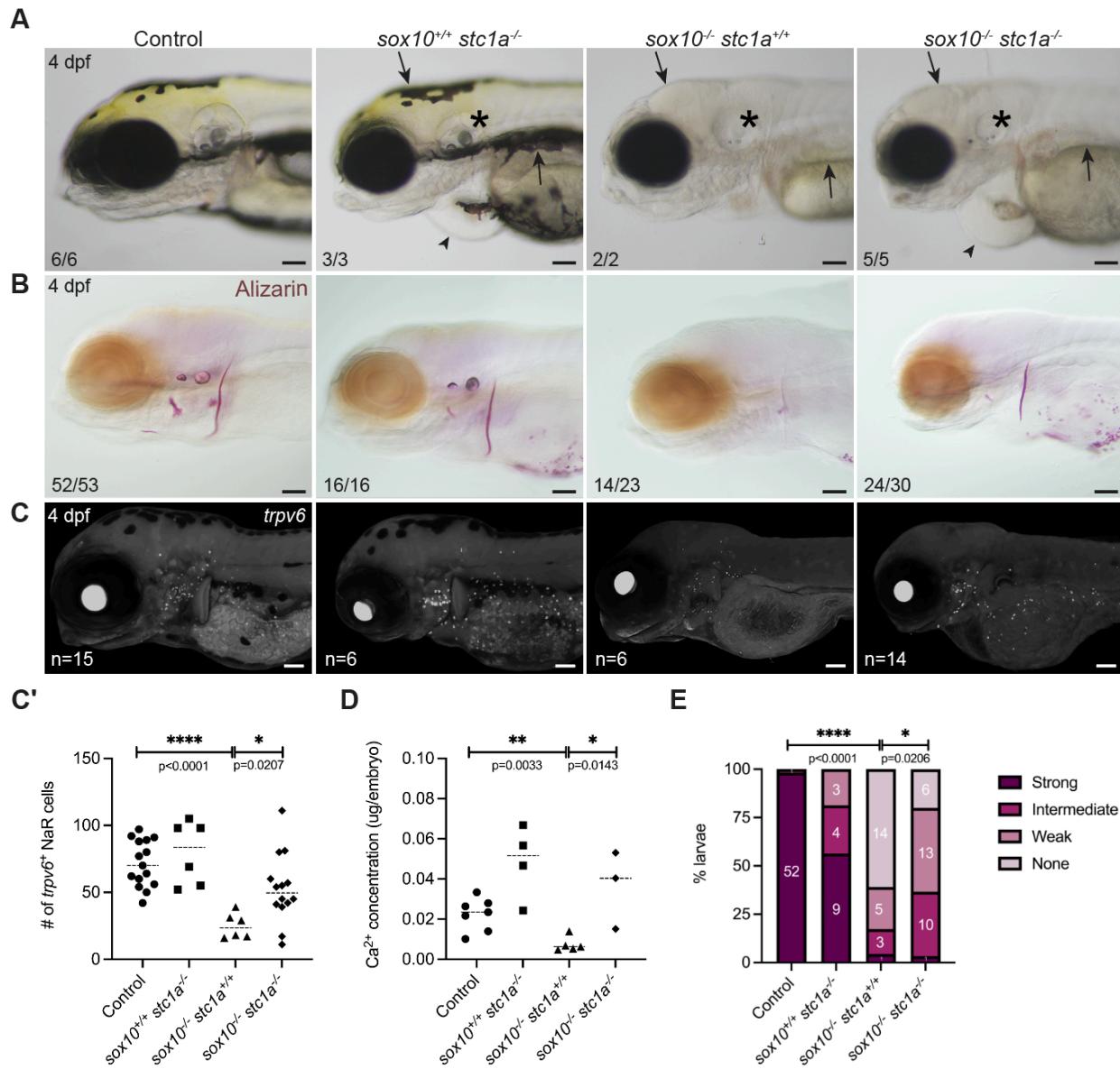
811 confirms that NaR ionocytes do not derive from neural crest. Scale bar: 100 μ m. **(B)** rt-PCR
812 demonstrates that *trpv6* transcription is not overtly altered at the whole-body level at 4 dpf. Each
813 point represents a pool of 10-15 embryos (unpaired t-test: $p=0.954$, $df=4$). **(C-D')** Fluorescent *in*
814 *situ* hybridizations for *igfbp5a* and *trpv6* (C,D) both demonstrate a striking and significant
815 reduction in the number of NaR cells in mutants at 4 dpf (quantified in C', D'), with partial recovery
816 by 7 dpf (unpaired t-tests; *trpv6*: 4 dpf: $p<0.000001$, $df=20$; 7 dpf: $p=0.0006$, $df=17$; *igfbp5a*: 4 dpf:
817 $p=0.0001$, $df=23$; 7 dpf: $p<0.0001$, $df=17$). Scale bar: 100 μ m.

818


819

820 **Figure 5. Upregulation of anti-hypercalcemic hormone *stc1a* in *sox10* mutants.** (A-B) Both

821 semi-quantitative rt-PCR (A) and *in situ* hybridization (B) detect a robust upregulation of *stc1a*


822 mRNA in *sox10* mutants at 4 dpf (unpaired t-test in A, $p<0.0001$, $df=4$). Scale bars: 200 μ m in B
823 and 100 μ m in inset. (C-D) The increase in *stc1a* transcript levels is due at least in part to an
824 increase in the number of *stc1a*+ cells in *sox10* mutant Corpuscles, first detected at 45 hpf and
825 resolving at 7 dpf (unpaired t-tests; 36 hpf: $p=0.640$, $df=11$; for 45 hpf: $p=0.00009$, for $df=8$; for 72
826 hpf: $p=0.002$, $df=6$; for 96 hpf: $p=0.00003$, $df=10$; for 168 hpf: $p=0.0007$, $df=10$. Scale bars in C:
827 10 μ m.

828

845 measured (unpaired t-tests; 58 hpf: $p=0.0001$, $df=16$; 72 hpf: $p=0.00001$, $df=24$; 96 hpf: $p=0.003$,
846 $df=19$; 168 hpf: $p=0.068$, $df=10$). Scale bars: B and D: 10 μm , C: 100 μm .

847

848

849 **Figure 7. *stc1a* is epistatic to *sox10* in control of systemic calcium content. (A)** Brightfield
 850 images of *sox10* and *stc1a* controls and mutants at 4 dpf. Double mutants phenocopy the loss of
 851 pigment (arrow) and the inner ear malformations (asterisk) of single *sox10* mutants and the
 852 cardiac edema of the *stc1a* mutant (arrowhead). **(B-C')** Loss of *stc1a* on the *sox10* mutant
 853 background improves mineralization **(B)** and the number of *trpv6*+ ionocytes **(C)** at 4 dpf,
 854 quantified in C' (unpaired t-test; p=0.0207, df=18). Dashed bars indicate the median. **(D)** Calcium
 855 quantification shows an increase (unpaired t-test; p=0.143, df=6) in calcium levels in *sox10*-/-;

856 *stc1a*^{-/-} compared to *sox10*^{-/-}. Dashed bars indicate the median. **(E)** Quantitation of mineralization
857 levels in *sox10*; *stc1a* clutches grouped based on the intensity of the Alizarin red staining. There
858 was a significant increase in the proportion of double mutants with detectable mineralization
859 compared with *sox10* single mutants (Chi-square; p=0.0206, df=3). In C'-E, 'control' includes wild-
860 type and heterozygous larvae. Scale bars: 100 μ m.