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ABSTRACT

In this study, we apply optimal control theory to an immuno-
epidemiological model of HIV and opioid epidemics. For the multi-
scale model, we used four controls: treating the opioid use, reducing
HIV risk behaviour among opioid users, entry inhibiting antiviral ther-
apy, and antiviral therapy which blocks the viral production. Two
population-level controls are combined with two within-host-level
controls. We prove the existence and uniqueness of an optimal con-
trol quadruple. Comparing the two population-level controls, we find
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MATHEMATICS SUBJECT

that reducing the HIV risk of opioid users has a stronger impact on
the population who is both HIV-infected and opioid-dependent than
treating the opioid disorder. The within-host-level antiviral treat-
ment has an effect not only on the co-affected population but also
on the HIV-only infected population. Our findings suggest that the
most effective strategy for managing the HIV and opioid epidemics is
combining all controls at both within-host and between-host scales.

CLASSIFICATION
92D30

1. Introduction

Over the past two decades, opioid-related deaths in the United States have skyrocketed
from nearly 8500 in 2000 to almost 70,000 in 2020 [1]. The US Department of Health
and Human Services declared the opioid crisis a nationwide public health emergency
in 2017 [2]. The National Institutes of Health (NIH) has indicated a link between the
increased number of HIV diagnoses and the rising incidence of opioid disorders [3].
Increased HIV-risk behaviour among opioid users is found to be the primary cause of this
association [3].

The opioid epidemic and the HIV epidemic have been extensively modelled as sepa-
rate epidemics. The early models of the opioid epidemic focussed on heroin. White and
Comiskey [4] introduced a simple ODE model with users not in treatment and users in
treatment. A number of extensions of this model were also considered. Nyabadza and
Hove-Musekwa [5] studied the heroin epidemic in a South African Province. Samanta [6]
considered a non-autonomous version of a heroin model while articles [7-9] consid-
ered versions with distributed delay(s). Age-structured PDE models were also investi-
gated [10-13]. More recently the attention has turned to answering real-life questions with
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opioid models. Several articles address the prescription opioids as a vehicle toward illicit
drugs or target best treatment strategies [14-17]. Optimal control models have rarely been
investigated in the context of the opioid epidemic. The only studies we found are [18,19].
The HIV epidemic has been extensively modelled since its beginning. There are several
books devoted to HIV/AIDS epidemic modelling in both deterministic and stochastic
settings [20,21]. Optimal control of HIV has also been extensively investigated [22,23].

We have previously introduced several models of HIV and opioid epidemics to bet-
ter understand their interactions [24-27]. We initially started with a compartmental ODE
model of HIV and opioid dynamics [24], and then progressed to a multi-scale model that
included both the within-host and between-host dynamics of the two epidemics [25].
Finally, we developed a multi-scale model in which the HIV dynamics are defined on a
scale-free network [26]. With both HIV and opioid invasion numbers larger than one, the
initial model revealed that the two epidemics are in the coexisting regime in the United
States [24]. Elasticities of the invasion numbers indicated that opioid addiction treatment
and lowering HIV risk behaviour among opioid users would be the most effective control
strategies in decoupling the epidemics [24]. Furthermore, we applied optimal control to the
HIV-opioid ODE compartmental model, and obtained similar results [27]. However, using
a network multi-scale model of HIV and opioid, without the optimal control, we discov-
ered conflicting conclusions. According to numerical simulations of a network multi-scale
model of HIV and opioid, the population of individuals who are both HIV-infected and
opioid users, termed as co-affected population, is not monotone with respect to the risk of
an opioid user being infected with HIV [26]. We observe that as the risk of opioid users
acquiring HIV decreases, the number of co-affected individuals may both increase and
decrease. A logical next step in identifying the most effective control measures in man-
aging the two epidemics would be to apply the optimal control theory to the multi-scale
model and incorporate controls at both scales.

Optimal control theory has been applied to immuno-epidemiological multi-scale mod-
els of HIV before [28-30]. In this study, we introduce an optimal control theory of
multi-scale models of two interacting epidemics. We incorporate two control measures at
the population scale; treating the opioid addiction and reducing the HIV risk among opioid
users. The two population scale controls are combined with two within-host scale control
measures; antiviral therapy blocking HIV entry to the target cells and antiviral therapy
preventing the infected target cells from producing new HIV particles. The steps prov-
ing the existence of optimal control for the first-order PDEs differs from the traditional
approaches. Ekeland’s Principle [31] allows us to prove the existence of an optimum control
of multi-scale immuno-epidemiological models which are first-order PDEs. In Section 2,
we introduce the multi-scale immuno-epidemiological model of HIV and opioid, and then
incorporate controls to the between-host and within-host models. In Sections 3 and 4, we
prove the existence and uniqueness of the optimal control. In Section 5, we present the
numerical simulations. In Section 6, we summarize our results.

2. The model and its optimal control version

The states for the epidemic transmission process are divided into susceptible state S, opioid
state U, infected with HIV state V, co-affected state i(z, t) and AIDS state A. Individuals
change states at rates given by the forces of infection. Susceptible individuals are recruited
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at the recruitment rate A. Susceptible, opioid, infected, co-affected and AIDS individuals
leave the system at a natural death rate u or at disease-induced death rates d,,, d,, di(7), d,.
A susceptible individual can be infected with HIV and change into an infected state, or can
become opioid-dependent and change into opioid state. HIV and opioid individuals can
get co-affected by adding the other disease. An opioid individual or co-affected individual
can move to a susceptible or HIV-infected state respectively due to treatment at a rate 4.
HIV-infected or co-affected individuals can move to the AIDS state at rates y,, or y;.

Let S(¢), U(2), V(¢), A(), be the number of susceptible, opioid-dependent, infected with
HIV and AIDS individuals, respectively, at time ¢, and i(z, t) be the density of co-affected
individuals at time t and with co-affection age 7. The co-affection age 7 starts when one
becomes both infected with HIV and opioid-addicted. Then we formulate the following
multi-scale model of HIV and opioid epidemics:

% = A — L, ()S(t) — A, (D)S(t) — uS(t) + 8U(t),
dv(t) N '
3 = MO = gk (OV(E) = (u+dy + ) V() + 5/0 o(@)i(t,r)dr,

0itT) | OKIET) _ b dio) + (o) + 60 (1))it, T,

dt dr
ksi(t,0) = (/Zv)w(t) U + Qu)\u(t)v(t)
dA(t)

=m0+ /O yi(0)i(,7) dr — (i + d)A(H).

(1)

The total population size is N(¢t) = S(t) + U(¢) + V(¢) + fooo i(t, ) dt. We note here that
we assume that since AIDS individuals typically suffer from opportunistic illnesses, they
are too sick to participate in the population mixing. As a result of this simplifying assump-
tion, the class A is excluded from the total population N, as well as from the force of
infection of HIV. The force of HIV infection, A, (t), is given by:

B V() + [, B, (Dilt, T) dT

NG ()

Ay(t) =

Thus, A, (t) denotes the force of infection of HIV, where B,, is the transmission coefficient
from V (¢). Similarly, B, (7) is the time-since-infection dependent transmission coeflicient
from i(t, t). The force of opioid addiction, A, (?), is given by

U + [y i, t)de

NG 3)

)Vu(t) = ﬂu

We assume the addiction coefficient is the same for U and fooo i(t,7) dt. We further note
that model (1) assumes that individuals can become opioid-addicted only through contact
with opioid-addicted person. We do not model the scenario of possible addiction through
prescription drugs [14].
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For the within-host model of co-affected individuals, we modify a well-known within-
host model of HIV [32,33] by explicitly including the opioid drug concentration C(t) and
its impact on the average susceptibility of target cells:

dT
— =s—drT — k(O)V;T,
dr
dT;
—— =kOVIT - &T;,
dr
i _ Ny6iTi — cVi, @
dr
dc
v = _dC >
dr ¢
C(rj+) = C(r;) +D.

Here, T are the healthy target cells, T; are the infected target cells and V; is the virus (HIV).
Target cells are produced at rate s and cleared at rate dr. Infected cells die at a rate §;, and
when they die, they release N, viral particles at bursting. The clearance rate of the virus
is denoted by c. In our model, opioid is taken at doses D at times 7j,j = 1,2,..., and it is
degraded at rate d.. Infection rate of target cells by HIV in the presence of opioid is given by

where Cj is the half-saturation constant and k; is a maximal increase in infection rate due
to opioids. The resulting within-host model is a pharmacokinetic type of model. It is an
impulsive model, where 7,7 and 7, represent the right and left limit, respectively.

In order to link the within-host and between-host models, we use data in [34] to deter-
mine the form of the linking of the transmission coefficient B,,(7) to the viral load [35].
Fitting to the data, we obtain the following function for 8,, (t):

BoVi(7)

B, (7) = B+ V)’

where r &~ 1. Further, we use the suggested functions in [36] to link the remaining
7-dependent rates:

di(t) = do (T(0) — T(1)), ¥i(r) =y (T(0) = T(v)), o(r) =00,

where dy, 00, Bo Y0, B are given constants. The disease-induced death rate, d;, of co-affected
individuals and their transition rate, y;, to AIDS does not depend explicitly on the viral
load because the viral load is high during the acute HIV phase but the rates y;(7) and
di(t) are not correspondingly high during the acute HIV stage. Because d; and y; must
be small during the acute HIV stage when the viral load is very high, reference [36] sug-
gests that they depend on the target cells instead. Thus, we adopt the suggested form from
reference [36]. For simplicity, we choose o (7) as a constant which gives the fraction of
co-affected individuals successfully treated.

Our prior results suggested two foci for control measures: targeting the drug abuse epi-
demic and reducing HIV risk in drug-users. As a part of this paper, we will compare and
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contrast these foci of control, obtained from elasticity analysis, with time-dependent opti-
mal control strategies. Optimal control has been applied in the past to multi-scale HIV
models [28,29,37-39], but to the best of our knowledge, it has not been applied to a multi-
scale model with two diseases. CDC [40] lists the control measures for HIV, with the
most effective measure being the antiretroviral therapy (ART). Multiple control measures
might affect HIV risk in drug users (e.g. preexposure prophylaxis, education for condom
use, availability of free syringes for injecting drug users). All these measures decrease the
parameter g,. We include treatment of opioid users in our model in the form of the param-
eter 8. Let u; (f) be the control variable corresponding to the treatment parameter § and
uy(t) encompass control measures that reduce the HIV-risk behaviours in drug users, then
the between-host component of the multi-scale model (1) with optimal control takes the
form:

dS(t)
S = A = S0 — 10S0) — kSO + S (U,
dU
D 2 5080 ~ 401 — wOLOUD) — (1 +du+ 5OV,
dv
D 2 MOS0 ~ @ OVO — e+ dy + VD
+8uy (t) /ooo(r)i(t,r) dr, (5)
0
0i(t,t)  0ksi(t, T) .
+ = —(n +di(v) + yi(r) + o (r)dur(1))i(t, 7),
dt dt
Ki(1,0) = (1 — O OUD + qua (V)
dA o
LD = v+ /0 Vi(0)i(t, 7) dr — (o + da)A(D),

where the forces of infection (addiction) remain unchanged. Since the equation for the
AIDS individuals, A, is not connected to the rest of the systems, we can omit it in our
further analysis. Thus, we will consider the following between-host system

dS(t)

TR A = 2y (£)S(8) — 2y (D)S(#) — pS(t) + Sur (HU (1),

dU(t)

I Au()S@) — qv(1 — w2 (A (HU @) — (n + dy + Sur () U(1),
dV(t)—)» HS(t) — qur,(OV (@) — (u + d, + Vit

T = Ay (®)S( Guru (D V( (1 v+ V(@) (6)

—I—Bul(t)f o (7)i(t,7)dr,
0

31(5,:) + aks;(: D —(u 4+ di(t) + yi(r) + o (v)duy (1))i(t, T),

ksi(t,0) = %/(1 —u())A @ U() + Qu)\u(t) V().
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We also include controls that mimic HIV treatment in the within-host model:

dT

e s—drT — k(C)(1 — u3(1)) Vi T,
T

dT;

e k(O — usz(r))ViT — §;T;,
‘ (7)

dv;

— = Ny§i(1 —ug(r)Ti — cVj,

dr

dC

— =D-4d.C,

dr

where the coefficient 1 — u3(#) represents the drug effect that reduces transmission of
healthy cells to infected cells as a result of interaction with the virus, while the coeflicient
1 — uy(2) gives the effect of another drug that reduces the production of viral particles. We
implicitly assume here that all co-affected individuals are subject to the same treatment
regimen. We have modelled opioid intake with a simpler model of constant intake which
tracks the average change in the concentration very well while removing the oscillation of
an impulsive model. All controls are assumed bounded: 0 < () < Uy forl=1,...,4.
The controls will be determined to minimize the number of HIV-infected individuals and
opioid users as well as the cost of implementing the control. The objective functional for
control problem is:

T,

t
ﬂm:/fpﬂm+MWﬂ+&fimﬂhkt
0 0

t
+/QMmmmo+&ﬁm+&@mmt
0

f
+ / (Bat(7) + By(1)) dr, (8)
0

where A}, Ay, A3,A4, and By, k = 1, 2, 3, 4, are positive constants that balance the rela-
tive importance for the terms in 7. In our objective functional, the first term with the A
coefficients represents the total of the diseased individuals over time to be minimized and
the term with the B coeflicients represent the costs of implementing the controls. We note
that we assume that the AIDS individuals in the class A are not mixing in the population
and they do not affect the transmission of HIV. Hence, we do not include them in the cost
functional since reducing their numbers does not affect HIV prevalence significantly. In
principle, we want to keep our cost functional 7 as simple as possible but it can certainly
include other useful terms. In Equation (8), t; and ¢ are the final times for the control. The
optimal control problem that we will be solving is: Find (u1, u3, u3, us) € U such that

T (uf, u5, u, u)) = min : uj(ul,uz,u3,u4),
U1,U2,U3,Us) €

where the control set U/ is

U = {(u1, uz, u3, ug) € X |ug,uz: (0,2) — [0, ttimax],

i=1,2 Us, Uyg : (Os Tf) - [0> ujmax]:j = 3a4}
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and X is the space X = (L*°(0, tf))2 x (L*(0, tf))z. This optimal control problem is novel
because it involves both within-host and between-host controls and two-disease structure.
In principle, the controls u are L! controls and have to be handled differently than controls
in Hilbert spaces. In particular, to obtain the adjoint system, we first define a system of
sensitivities [28,29]. After we derive the adjoint system, we characterize the optimal con-
trol quadruple and use a modified forward-backward sweep method [28,41] to solve the
system numerically. Our two foci for control are modelled by controls #; and u;, so we can
compare our two focal control strategies to other control strategies such as applying ART
only, or applying ART for those with HIV and treatment for drug users but not targeting
HIV risk for the latter. In the context of the multi-scale control problem, this means not
using control u,. Thus, contrasting our baseline control strategy to other optimal control
strategies will help evaluate its promise in public health.

3. The system of sensitivities and the adjoint problem

We prove the Lipschitz property for the state variables as depending on the control func-
tions u1, Uz, u3, ug. This property is used to show the existence of the sensitivities as well as
the existence and uniqueness of the optimal control.

Theorem 3.1: The map (uy, up, us, us) — (T, T3, Vi, C, S, U, V, i) (uy, uy, u3, ug) is Lips-
chitz on the set

Y = {(T, T, Vi, G, S, U, V, i) € [L(0, 70)]* x [L®(0, )]
x L0, t5;1'(0,77)) : S = € > 0}

in the following way:

ki _ _ _ _
(i)/ (T —T|+|Ti — Ti| + |Vi — Vi| + |C — C|dt
0
fr - _ _ oy
+/ |S—S|+|U—U|+|V—V|dt+/ / li —i|dr dt
0 0 0

I 7
= Cf(/ [u1 —ﬁl|+|uz—ﬁ2|dt+/ |u3—ﬁ3|+|u4—ﬁ4|dr).
0 0
(i) 1T = Tl + ITi = Tillz,zp + 1Vi = Villzoo,g) + 1€ = Cllzop)
+1IS = Sllzqg) + 1U = llzqoy)
IV = Viizey + i = illzo 0. x12(0.5)
=G <”“1 — ooy + lluz — 2l (o)

+ llus — usllizeeo,z) + llua — 114||L00(o,rf)) :

Proof: (i) We begin by showing the inequalities for the within-host system. First, we
establish the Lipshitz property for k(C). We have

k(C) = k(C)| = [K'(§)IIC—C|
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where £ € (C, C). We have:

, ki1Co
K¢ < Coror <k,

where « is a constant independent of C. Subtracting the differential equations for T
and T, we have

d(Td; D o _ar(T =) = KO = ) ViT + KO (1 — i) VT

= —dr(T = T) — (k(C) = k(O) (1 — u3) ViT — k(C) (it — u3) ViT
— k()1 = u3)(V; = V)T = k(O)(1 — #3) Vi(T — T).
Integrating from (0, t) and using L bounds on the states, we have
_ K T _ _ -
T-TI0 <G [ —mlds+ Ca [ IT=T1+1Vi= Tl +IC=Clds. 9)
0 0
Similarly, we have
_ ki T _
1T = [ = inlds G [T T)
0 0
+1T; = Til + |Vi = Vil + |C — C| ds. (10)
_ I T _ _
|Vi— Vil(r) = C4f lug — tig| ds + Cs/ ITi = Til + |Vi — Vil ds
0 0
- T -
|C—C|(r)§dc/ |C— C|ds. (11)
0
Combining Equations (9)-(11), we have
(T =TI +1T; = Til + Vi = Vil +1C = C(v)
7 T _
< Cs/ us —ﬂ3|+|u4—ﬁ4|d5+c7/ |T —T]
0 0
+|Ti — Til + |Vi — Vil + |C — C| ds.
Applying Gronwall’s inequality, we have
(T =TI +1T; = Tyl + |Vi = Vil +1C = C)(v)
I
< C5(1+C7‘L’fec7rf)/ |us — us| + |ug — ug| ds. (12)
0
Integrating both sides of Equation (12), we have

7 - _ _ ,
/ IT =TI+ |Ti = Til + |Vi = Vil + |C = C)(7) dr
0

i
< GCetr(1 + Crry ecﬂf)/ luz — u3| + |ug — gl ds. (13)
0
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Next, we consider the between-host system. First, we show the Lipschitz property for
the forces of infection A, and A,,.

- BV [y Buitt,hdr B,V + [ B, (i, 1) de

Ay — Ay
N N
7 . 5
_ BV + f() ﬂvi(f)l(fat) dr (N “N)+ ,Bvl(v_ V)
NN

1 ki . —.d 1 ki Q _'d
+ﬁ£ mum—0r+ﬁﬂ(m—mmr

We recall S, S > € since they belong to Y and hence N, N > e. Further,

i(0,t — T)mi(T) T <t
i(T,0) = 4. (1)
IO(T — t)m T >t

where
71(7) = e Jo Hvi©)+di()) dg

It is not hard to see that |i(0,t — )| < K, where K is a constant and therefore
li(r,t)] < Ky forall T € [0,77] and £ € [0, ] and all ip(-) < K;. Hence,

_ _ _ - I -
Ay — Ay| = Cro(IS =S|+ U - Ul + |V — V|)+C11/ li —ilde
0
I -
+Cn [ 1Vi-Tidn),
0
Similarly, we can show that
— - - _ I -
Ay —Aul = C3(IS=SI+|U-Ul+ |V =V +C11/ |i —ildz.
0
Next, we derive inequalities for the between host state variables. In particular, we have
— t _ _ - K -
IS—§| < Czo/ |S—S|+|U—U|+|V—V|+/ li —ildrds
0 0

t T _
+C21/ |u1—ﬁ1|dS+C22/ |Vi — Vildr. (14)
0 0

Similarly, we have

T,

_ t _ _ - f _
|U—U|§C25/|S—S|+|U—U|+|V—V|+/ li — | dr ds
0 0

t Tf _
+C26/ |u1_1_41|+|u2_1_42|d5+c27/ |Vi — Vildr.
0 0

T,

- t _ - - f _
|V—V|§C30/|S—S|+|U—U|+|V—V|+/ |i —ildr ds
0 0
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t Tf _
+ C31/ lug — up|ds + C32/ |Vi — Vildr, (15)
0 0

where we have taken into account that o (t) = oy. Integrating the partial differential
equation to obtain i(7, t), we get

B(t — 1) e~ Jo mHHE -t O toc-Im-)dE L _y
iT.1) = io(z — £) e~ Jo HAVE—E HT—E)Fo(t-EBu -5 1 ¢

where B(t) := i(0,t). To show the Lipschitz condition for the exponents, which
depend on the within-host variables as well as the control, we use the following
inequality. For x, y > 0, we have

le™ —e™| < |x—yl.
Hence,

—j;)’ nAyi(t—=€)+di(t—&)+oodur (t—§)dé —fot uA7i(T—E)+di(r—&)+o0diu (t) dE
e e |
t —
s/ i — 11T — &) + |ds — l(x — &) + 0oy — i | (£ — £) d&
0

t t
=< (do+Vo)/O IT—Tl(z — §)d& +003/0 luy — w1 |(s) ds.

Similarly,

e~ Jo HNE=E)+diT—E)Fo0dur(t=8) dE _ o= Jg nt7i(T—E)+di(T—E)Fo0diin (t6) d§
T -
< / Vi = vil(t = &) + |di — dil(r — &) + ooluy — i |(£ — &) d&
0

< (do+yo)f0 T T)(c — &) dé +Uo5/0 uy — iy (£ — £) dE.

Thus,
T
/ li —i|dt
t
i t ; )
_ / io(T — £)(|e= o mHr(T =6 HdiT—E)+oodu (1—£) d
t
— e Jo HATT—E)Hdi(T=E)+o0din (16) d |y 41
11 T _ t
sf io(T—f)[(do-i-Vo)/ IT—TI(S)dS+Uo5/ juy — 1](s) ds] de
t 0 0
‘L'f _ t
< Cso/ - T|(s)ds+651f s — | () d.
0 0

Furthermore,

t t
/ i —7de = / B(t — 1) e— Jo HEvi(r—6)+di(r—8)Fondus (1=6) dé
0 0
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— B(t — 1) e Jo AT (T-E)Fo0din (1) d§ ) g

T _ t B t
< C60/ |T — T|(s) ds+/ |B— B|dr + C61/ luy — u1](s) ds.

0 0 0
We need to express the integral of B — B in terms of integrals of the state variables.
t _ 1 t - -
/ |IB— B|(t)dr < k_/ gy U + quAnV — g2 U — quA, V] dr
0 s Jo
4 | - T
fk_ )LV|U_U|+|)W_)W|UdT

s JO

t
+ % Ml V= V] + Ay — 2| V dt.

s JO

Using the estimates for A, — Xy and A, — A, we obtain the following estimate for
B—B:

t _ t _ _ _ Tf _
/|B—B|d‘c§C7o/|S—S|+|U—U|+|V—V|+/ li —ildrds
0 0 0

Ly _
+C71f / |V; — V;i|dt ds.
0 JO

Combining the integrals for i — i, we have
‘[f _ t _ ‘[f B
/ |i—i|dt§/|i—i|dr+/ |i —i|dt
0 0 t
¥ _ _ t _ _
ngo/ |T—T|+|V,'—Vi|d‘[+C31/|S—S|+|U—U|
0 0
- I - t
+|V—V|+/ |i—i|drds+C82/ |ug — 1y ds. (16)
0 0
Combining all estimates for the between host variables, we have
_ _ _ I _
IS—S|(t) +|U—U|@®) + |V —V]|(¢) +/ li —i|dt
0
t _ _ _ T B
< Cmo/ IS —S|(t) +|U = U|(t) + |V — V|(®) +/ |i —ildt ds
0 0

fr
+ Cio1 / luy — 1| + |up — iz ds
0
Applying Grownwall’s inequality, we have

_ _ - I -
|S—S|(t)—|—|U—U|(t)—|—|V—V|(t)+/ li —i|dr
0

i
< Cro1(1 + Cioo ecwotf)/ luy — w1 ] + |up — uz| ds. (17)
0
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(ii)

Thus,

T,

t
/f(IS—SI(t)—l-lU— Ul(t)-i—|V—\7|(t)+/f|i—?|dr)dt
0 0

i
< Cio1t(1 + Cioo ecmotf)f lur — | + |up — tz] ds. (18)
0

Finally, combining the within-host variables’ estimates (13) and the between host
variables’ estimates (18), we get

] - . _ _
/ IT =TI+ |Ti — Til + |Vi = Vil + |C = C|(v) dt
0

i _ _ _ I _
+/ |S—S|(t)+|U—U|(t)+|V—V|(t)+/ |i —i|dt dt
0 0

tf
- cf[/ 1 — it + sz — a2|ds+/ 43 — fis| + [ug — | (7) ],
0 0

where Cf = max{Cst7(1 + C717 €77), Cui (1 + Ciop €9%)). This completes the
proof of part (i).
Considering Equation (12), we have

S ]
IT-T| < C6(Tf)/ (luz — us| + |ug — ug]) ds
0
< Cs(tp)r(lus — 3l (0,1p) + lltha = BallLoo(0,2p)-
Similarly,

|Ti = Til, IVi = Vil, IC = C| < Co(zp)tr(llus — B3llzoe(o,zp) + llua — Halloe(o,zp)-

Next, considering Equation (17), we have

- b
IS =8| < C101(l‘f)/ (lur — 1| + luz — ua]) ds
0
< Ciot(t)tr(lur — i llee (o) + Nl — B2 llz=(o,p)-

Similarly, [U — U, |V = V| < Cii(t9)t(lur — iz co) + ll42 — Ballzeqoygy)- It
can be shown that |i —i| < Cyo1(tp)tf([lug — 1 ||Loc(0’tf) + |lup — 17{2||Loc(0’tf)) for all
t € (0,tr) and T € (0, 77). Hence, inequality (ii) follows by taking essential supremum
overall t € (0,¢) and T € (0, 7f). [

To derive the optimal control pair, we first derive the so-called ‘sensitivities. The

sensitivities are the derivatives of the state variables with respect to the controls.

Theorem 3.2: The map (uy, uz, uz, ug) — (T, T;V;, C, S, U, V, i) (u1, uz, us, ug) is differen-
tiable in the following sense

(T, T;V;, C,S, U, V, D) (uy + €ly, up + €l us + €ls, uq + €ly)
—(T, T,'V,', C, S, U, V, i) (l/ll, us, us, u4)

€
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- %0V, 8,1,0,0)

in (L0, 7p))* x (L(0, £r))* x L®(0, t; L1 (0, 7)) as € — 0 with (uy + €ly, uz + €b, u3
+ 6133 Uy + 614) and (ul) Uz, us, U4) eU and (lla ZZ, 13’ l4) € (LOO(O) t:f))z X (LOO(O) Tf))z'

The sensitivities satisfy the system
¥ = —drx — KO —u)y ViT + k(OLV;T
— k(O = u3)¢pT — k(C)(1 — u3) Vix
Yy =K (O = u3)y ViT = k(OLViT + kO — u3))¢pT
+ k(O)(1 — u3) Vix — 8y
¢ = —Ny8ilsTi + Ny8i(1 — ug)y — c¢

W = —dcy
E/ = —)JuS - )»uf - )»;S - )wf - Mf + 811U+5u1n

7]/ = )\.;S + )»uf + QVIZ)WU — qv(l — le))\.;U (19)
—qy(1 —up)hyn — LU — (u +dy + Sup)n
0" = 1,8+ MéE — quh,V — quiu® — (i + dy + 1,0
o o
+ 8 / ooi(t,t) dt + duy f oow(t,t)dt
0 0
dow Jw .
E + 5 = (dox + yox — 098l1)i — (U + d; + yi + opdu))w
ksow(t,0) = _CIVZZ)WU + QV(I - le))\;U + QV(I —up)hyn + Qu)h;v + Qukue
where
k1C0
K =—
(© (Co+ 0)?
n® + 3wt t)de
)\L(t) = ,Bu fO
N(1)
U@+ [T it,t)de o0
— Bu N2(D) (S+n+0+/0 a)(‘L’,t)d‘L’), (20)
A(t) = Brn6®) + [3° Bl (D (D)ilt, T) + By, (D (t, ) dt
v N(t)
,31/1 V(t) + f()oo IBVZ(T)i(t’ ‘C) d‘[ o
— 0 t,7)d 21
e £+ +/O obodr) @D
and

l _ BoB
p® = G v

with r = 1. The initial and boundary conditions are given by

x(0) =0, y(0)=0, ¢#0)=0, ¥(0)=0, §0)=0, 7n(0)=0,
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0(0) =0, w(r,00=0, V7e(r1)

Proof: Theorem 3.1 implies that the map (uy, up, us, uq) — (T, T V;,C, S, U, V, i) is Lips-
chitz and by Barbu [42], it is Gateaux differentiable. Its Gateaux derivatives are the sensitiv-
ities. Taking the derivatives with respect to € gives us the sensitivities (x, y, ¢, ¥, &, 1,0, w)
and the differential equations they satisfy. |

From the sensitivities, we obtain the equations of the adjoint variables. Denote by
o1,,...,04 the adjoint variables of x,y,¢,v¥ and by p, r, h, m the adjoint variables of
&,n,6,w. To obtain the equations of the adjoint variables, we divide the sensitivity equa-
tions in Theorem 3.2 into three operators £, £, and L3, depending on the independent
variables. Thus, the sensitivity operators and sensitivity equations in Theorem 3.2 are

X k(C)lg,ViT £ SLU
—k(OLVT LA, U — LU ,
L 3; = —I(\] 3331 ,11,, , Lrln]= avh2 vy 1 . Lsw = —oyshi.
P 0 30011/ i(r,t)drt
14 0 A

We find adjoint operators E;-‘ , j = 1,2,3 such that

I ty ¥ ru
f (a1, a2, 03,04) L1 (6, 9, ¢, ¥) dt —|—/ O, L2, 1, 9) dt—l—/ f wlsmdr dt
0 0 o Jo

i tr
Z/() (x;yﬂﬁ)¢)ET(01,02>063,6¥4)C1T+/0 (S,Uafﬁ)E;(P,f,h) dt

rory
+ / / mL3w dt dt (22)
o Jo

with adjoint equations

(03} 0 0
x| &2 0 * P *
o3 0 h A
2
(07} 0

Applying Equation (22), the adjoint equations of the first four variables (the within-host
system) are given by

—o} = —(dr + k(O)(1 — u3) V)ay + k(C)(1 — u3) Vi
i
+ (do + Vo)/ i(t, T)m(t, ) dt
0
—Oté = —8,’0(2 =+ NVS,‘(I — u4)a3

Y pritt)

—Olg = —caz + k(C)(A — u3)Tay — k(CO)(1 — u3) Ty — / N

0
ty ﬁf’z i(t,7) ty ﬁéz i(t,7)
- /O gv(1 — UZ)UTT(t) dt + /0 STh(t) dt
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tr ! i(t,
—}—/ qv(1 — uy)Um(t, O)M dt
0 N

—ay = —dcag + K (O — u3) ViT(ez — 1) (23)

The remaining equations for the adjoint variables are given below. We start with the
equation for p:

V+ [ Bi(t,t)dr 5

U+ [ itt)de
N2 u Sp

+8 N2

BV + [y B, (D)i(t,7) dr
N2

_p/ _ —)»up—)»vp—up-i- .81/1

+ Ayt + Ayh — gy (1 — uz) Um(t, 0)

U+ forf i(t,7)dr
NZ

U+ forf i(t,7)dr
NZ

—qu Vm(t,0)B,

BuV + Jy Bn(Ditt,7)dr
N2
BV + [ B (0)ilt,T) dt U+ [ itt,t)de
x Sh
N2 N2

— (1= ip(1-3 +7\1S+(1)mW
= up N vp N up ul N rqy U N

Vi
N b
(24)

— BuSr

+ QV(I — up)Ur

+ q,VhB,

+ 001 S + hVX” (t,0)g,(1 )UX” (t,0)qu (1 )
v N qu N m(t,0)qy 2%} N m(t,V)qu 2%}

where A, (t) and 4, (¢) are defined as

U + [yl it t)de f o BuV @+ 17 B, (it ) dr
N(t) B N(t) '

hu(®) = Bu
Next, we give the equation for r which is the adjoint for U

U+ forf i(t,t)dr BV + forf By, (0)i(t, ) dT
I\f2 N2 r
U+ [y itt,oyde By V+ fy Bunilt,t)dr
N2 + N2 Sp
+du1p — gv(1 — up)dyr — (0 + dy + Sup)r

S
—r = lguﬁr — BuSr + %/(1 —u)U

S
- ,Buﬁp + ﬁusp

BV + [y Buit,T)dr
N2

+ gy (1 — up)Aym(t,0) — g, (1 — uy)Um(t,0)

Bu (1 B U+f0Tf i(t,7) d‘L’)

Vm(t,0)—
+ qu m( )N N

U+ [/ itt,7)de
NZ

Ki .
g PVl P @it D) de

\%
N2 - QM,BuhN

+ qu Vh,Bu
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+ quAum(t,0) + Ay + Aguy

_la S Shu g
= (V_'BM)ITI+N+MIP

BT - u—-)<r—g)i—(-+d+a )
(Bu Wy qv uz N v 192 u up)|r

_Siu ( i)V h
N quﬂu uN

Next, we derive the equation for the adjoint variable 4 which is adjoint to V:

BV + [y Bui(t,t)dt
NZ

U+ [y i(t,7)de
N2

U+ fotf i(t,7)dt
NZ

U+ fOTf i(t,7)dr

N2

S
W = P ch— Sh

+ ‘ZuV,Buh - Qu)huh —(n+dy,+n)h

BuV + [y Bui(t,t)dt
NZ

S
+ Spﬂu - Pﬁﬁvl + SP

— SrBy,

U
— qv(1 —up) By, '~

Bu

i U\ - -V
+ | gv(1 — up) <1 - N) Ay + qu(Bu — )\u)ﬁ] m(t,0) + Ay + Agu;.

BuV + [y Bu,(Di(t,T) dr

—gy(1 —up)U

N2

+ (qu)»u +q,(1 —u)U N

U+ [ili(t,7)de
N2
BV + [y B, (D)i(t, T)st
N2 +4

— quVm(t,0) By

+qy(1 —up)Ur 2

= |:()~\u - ﬂvl)E + EX{|P
N N
+ |:(,3v1 - XV)E + QM)NW (K - 1> —(u+d, + Vv)] h
N N
- [ﬁiu T (1= U)o (B — m} r+ (31 — w) = (B — &)
N N N

~ \%4
+ quAy (1 - N)]m(t> 0) + A,.

Finally, we derive the equations for the adjoint variable m which is adjoint to i.

aom aom

ot ar

(25)

) m(t,0)

(26)
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V+ [y B, (0)ilt,T) dr
NZ

Bu (1 B U+f0Tf i(t,T) dr)

= —(u +d;i + yi + oodu)m — q,(1 — uz)Uﬁv1

m(t,0)

U
+ %/(1 - ”2),31/2 Nm(ta 0) + qum(t’ O)N N

Sp U+ [yl i(t,7)de p . BuVH+ [y B0t T)dr
Bu N + BuSp N2 ,31/2 () N + Sp N2
a5 GUT R itndr G up ¥ 4@ g Y
,BuN BuSr N2 Qv U) By, (T N B, (T N GuBu N
BuV+ Jy ity dr) BuV + [y B (D)ilt,T) d)
+ gv(1 — up) Ur—2 0 sz — shtt 0 sz
U+ [ it

N2

56 45,_8 S 8.7 l—u~@
= [ﬁ( ut+Ay) — N(,Bu +,3v2):|P+ [N(,Bu — Ay) +QV( - UZ)N( v _,Bv2)i| r
S - vV .
+ [N('sz —Ay) + quﬁ()\u — Bu) + 514100:| h— (u+d;i + y; + oodur)m

U ~ |4 ~
+ [qv(l - Mz)ﬁ(ﬂvz — M)+ QMﬁ(ﬁu - )»u)] m(t,0) + As. (27)

The system of the adjoint variables is equipped with the following boundary conditions:

aj(tr) =0, j=1,...,4
tr) = r(tr) = h(ty) =0,
ptr) = r(ty) = h(ty) (28)
m(t,t) =0, fort € (0,7)

m(tp,t) =0, fort e (0,%).

We establish a Lipschitz property for the adjoint system in terms of the optimal control
quadruple. This property will be used in the proof of the uniqueness of optimal control.

Theorem 3.3: For (u1, uy, u3, us) € U, the adjoint system (23)-(28) has a weak solution
(0[1) 02, 03,04, P51, h) m) in (LOO (0> .Cf))4 X (LOO (0> tf))3 x L™ (0> tf; Ll (0> Tf)) such that

4
Z llo; — &i”L"O(O,rf) + ||P _pHLoo(o)tf) +[r— ;”LOO(OJf) + ||h - ITIHLOO(O,tf)

i=1

+ llm = mll e 0,451 0,5
2 4
< Ci | D i — il + 2 45 = ] 1 .
i—1 j=3

Proof: Follows as in the proof of Theorem 3.1. |
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4. Existence, characterization and uniqueness of optimal control
4.1. Characterization of optimal control quadruple

We use Ekeland’s principle [31] to characterize the optimal control quadruple
(u1, up, U3, ug) € U, since solutions of first-order PDEs are known for non-smoothness.
To do this, we embed the objective functional 7 into the L'(2) x L'(Q) space, with
Q=(0,77) and Q = (0, tr) x €, by defining

7= J (ur,uz, u3, ug), (U1, u,us, ug) €U (29)

400, (ul, Uz, us, u4) ¢ U.

Theorem 4.1: If (u}, u3, u}, u;) € U is an optimal control quadruple minimizing the objec-
tive functional (29), and if (T*, T}, V}, C*, §*, U*, V*,i*) and (a1, o2, @3, ot p, 1, h, m) are
corresponding state and adjoint solutions, then the optimal control quadruple is character-

ized by

SU* (1) (r(t) — p(1)) — Sooh(t) [y i*(t ) dt
+800 [y i*(t,T)m(t, 7) dr — ALU*(t)

u’f(t) =K 2B,
Wit = (qvx*(t) U*(t)(nza 0) - r(t))) 30)
« k(C* () Vi (t) T*(t)(a2(T) — 1(1))
u3(7) = 2B;
N N,é; T*(T)Ots(f)
uy(t) = ( ) >
where
0, y<0
Ki(y) = Vs 0 <y < tjmax

”i,maxa )’ > ui,max, l = 1> 2a 3a 4

Proof: Since (uj, u3, u3,uy;) € U is an optimal control quadruple and we seek to minimize
our objective functional in Equation (29), we have

J(uiy uga uga ui) - J(“T’ u;a u;a UZ)

0 < lim ,uf =uf + el
e—0t €
f Ut — U* Ve — y* N
. [Al( )+A2( )+A3/ (1 z>dr}dt

oo J c I3 0 £

+ lim fr <Bl(”§ —up @] + ”T)) 4 Balty = up) sy + uj)) d
e—0t € ¢

i 7 (33(u§ _ u;)(ug + u;‘)) i B4(ui — uz)(“i + HI)) dt
e—0t € &
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tf & Us U U &
+ lim <A4 #( ) T Ay () ul)) dt
0 & &

e—07F

fr ki fr
=/[Am®+ﬁﬁ0%h%f wmﬂdﬂ&+2/(@mhm+wﬁmxmdt
0 0 0
T
+2A<@@muy+ﬁumu»w
ty
+/ (Agnuy + A4UL)
0

fr 0 tr oY
dr +/ &,n,0) | A1 +Auu; dt-l-/ / Asw(t,t)dr dt
0 A, 0o Jo

I
+2/0 (B3uj(7)l3(7) + Bauj(t)la(1)) dt

i
= /0 CHX D)

oS O O O

t,
+z/fmuﬁh+3wﬁmmo+3wamxmdt (31)
0

Using the adjoint system (23)-(27), and the relationship between the sensitivities and
adjoint operators, we have:

f 0 b
dt +/ (S) 7)>9) Al +Auu1 dt+ / / A3C!)(t, T) dr dt
0 A, o Jo

I
= / x [ — o) +drag + k(C)(1 — uz) Viay — k(C)(1 — uz) Vi
0

i
/0 (6,0, ¥)

oS O O O

tf tf
- dO/ i(t, )ym(t, ) dt — yo/ i(t, T)m(t, 7) dt] dr
0 0
i
+ / y [—O{é + §ijap — N,,6;(1 — u4)oz3] dr
0
I
+/ ¢ [—(xg + ca3 — k(C)(1 — uz)Tay + k(C)(1 — u3)Tay
0

fr S 'y y, (D)i(t, T) (0 dt
N — 7

t
+/ —Pﬁéz(r)i(t,r)dt+/ gv(1 —u)U
0 0

t / H / .
- /f Swh(t) dt — /tf qv(1 — up) Um(t, 0)M dt} dr
0 N 0 N

Kl
+ / ¥ [—af + deats — K'(C)(1 — u3) ViTa, + K'(C)(1 — u3) ViTay | dr
0

+/tf§—/+i =N sip (1= wp—ir(1=2
A p up N Y N up ul N
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Uy - S Vi
—rgy(1 — MZ)TV — Ayh (1 - N) — quh Nu

UL VA
+ m(t,0)g,(1 — uz)Tv + m(t,0)q,(1 — u2) N”} dt

+/tf L (Gu— S+ S
A n r v Wy N up | p

-~ S U\ -~
- |:(,Bu - )\u)ﬁ - (/Zv(l — u) (1 - N) Ay — (u+ dy +5u1):| r

Shy -V
+ (W + qu(lgu - )Vu)ﬁ) h
1 - Y)x 0L met,0) | d
- CIV( _uZ)( _N) v+Qu(,3u_ u)ﬁ m(t, 0) t

Tol-w—(a S 435
/0 |:_ _((u_ﬁvl)ﬁ"i‘ﬁ V>P

~ ~ 14
(Bv1 — Av) = + quru (N - 1) —(u+d,+ Vv)) h

_l’_

S - U -
+ (N)\u + QV(l - uZ)N(.Bvl - )\v)) r

U ~ ~ Vv
- QV(I - UZ)N(IBVI —Ay) + Qu)\u (1 - N)] m(t, 0):| dt

+

¥ i om om S - ~ S
/(; /0 w[—ﬁ—ksg_ [N(ku“‘)\v)_ﬁ(ﬂu‘l‘ﬂﬂ)]p

. V.
- [—(ﬂvz —Ay) + quﬁ(ku — Bu) + Suloo} h+ (u+d;i + yi + 0odur)m

Zl»

- V -
Bu — ) + QV(l - UZ)N()\V - /3v2)i| r

PARY

L= ) L (Bra = 7) + Gue (B — & 0) |drd
- |:QV( _uz)ﬁ(ﬁvz_ v)+QuN(,3u_ u)] m(t, )] T dt,

where we temporarily dropped the asterisks for notational simplicity. Using integra-
tion by parts, the sensitivity system in Equation (19), the transversality conditions (28),
and standard optimal control techniques, we obtain the optimal control characterization
(uf,u3, u3, u}) € U in Equation (30). n

4.2. Existence of optimal control quadruple

In this subsection, we establish the existence of an optimal control quadruple via Ekeland’s
principle [31]. In order to use Ekeland’s principle, we establish the lower semicontinuity
of the objective functional J in Equation (29) with respect to L!-convergence.
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Theorem 4.2: The functional J : (L*°(0, tf))2 x (L*°(0, tf))2 — (—00,00] is lower semi-
continuous.

Proof: Follows as in Numfor [43] and Numfor et al. [37,38] [ |

Since the functional J is lower semicontinuous with respect to L!-convergence, Eke-
land’s principle guarantees the existence of a minimizing sequence: For ¢ > 0, there exist
(uf, us, u§, uf) € (L°°(0, 1)) x (L°°(0,75))? such that

@) Jws, us, u5, uy) < ( inf )Euﬂ(ul,uz,u3,u4) +¢
Uuy,U,u3,u4

(i) J(uy, uy, u3, uy) < ( min )euJa(ul,uz,u3,u4),
Uy,u,us,uq

where

Je(ul’ uz, us, u4)

L1(0,77)

2 4
= Jus, 1, us,us) + Ve Z i = ui”Ll(OJf) + Z H”; —Y
i=1 j=3

Theorem 4.3: If (u}, u5, u5, uy) is an optimal control quadruple minimizing the approximate
functional J, then

& & & & £ & £ &
(1, 1, 1) = ]_—(Gl — Vekp G — Jers Gi— Jer§ Gy — \/EK4>
1> %2> ¥3>5 Uy) — Bl b b > >

2 2B, 2B3 2By
where
Gl =8U () (r* () — p° (1)

Tf ff
— Sogh® (1) / i#(t,7)dt + 809 / Et,)m(t, 1) dr — A4U®
0 0

2
£ — g (O U () (i (1,0) — ¥ (1) (32)

3 =k(C (@) Vi (DT () (5 (7) — i (7))
Gi = N8, TS (1)l (1),

with K1,K2 € LOO(()’ t:f)» K3,K4 € LOO(Oa tf)) |K1(t)| = 1 and |K2(t)| = 1, Vt e (0’ itf)) and
lk3(7)] < 1and |[ka(t)| < 1, VT € (0, 7).

Proof: Since (u}, u5, u5, uj) € U is an optimal control quadruple minimizing the approx-
imate functional J., we have

0< lim Js(u{i: + gll’ ui + 512: U§ + 513) Mi + 514) - Je(ui) MS’ u§> Mi)
T g0t §
— lim JWi + &l us + ED, uf + &3, uf + E1y) — J(uf, us, uf, u})
E—>0F §
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2
N
i=1

o) |

The remainder of the proof follows from Theorem 4.1 with x} = ll l € (0,tp) fori = 1,2,
1]

andKjg— T € (0,7f) forj = 3, 4. [ |
4.3. Uniqueness of optimal control quadruple

We use the Lipschitz properties of the state and adjoint solutions given in Theorems 3.1
and 3.3, respectively, as well as the minimizing sequence obtained from the Ekeland’s
principle to establish uniqueness of optimal control quadruple.

Theorem 4.4: If Z k=1 B is sufficiently small, then there exists a unique optimal control
quadruple (uf, u3, u3, uy) € u minimizing the objective functional J.

Proof: Let F(x,y,z,w) = (F1(x), Fo(y), F3(2), Fa(w)), and define £ : U — U by

Gt G Gs G4)

Lu,up,uz,uy) =F | —, —, —, —
(1, 12, 13, 114) (231 2B,” 2B; 2B4

where Gj, j = 1, 2, 3, 4 are defined in Equation (32). Using the Lipschitz properties of the
state and adjoint systems in Theorems 3.1 and 3.3, respectively, we have

| £(ur, uz, us, us) — L(U1, t, U3, Us) ||

2 4
D NF @) = F@ i + ) 1F@) = F@)| 1o
i=1 j=3

zi U(r—p)— UF —p) — oo (h/rf i(t,7)dr — ft/rf?(t,r) dr)
0 0
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by Theorems 3.1 and 3.3. The constant éf depends on the L* bounds of the state and

adjoint solutions, and the Lipschitz constants. If 7f Zi:l BL < 1, then £ admits a unique
fixed point (u7, u3, u}, u}). We use the minimizer, (u], u5, u5, uy), from Ekeland’s principle
in Theorem 4.3, and the corresponding states (T¢, T}, V;, C%, §°, U, V¥, i®) and adjoints

(of, 05, a5, af, p°,r°, h®, m®) to show that this fixed point is the optimal control quadruple.
Now,

H,C(u*f, us, u,uy) — F

<G§—ﬁf<f G5 — VEK§ G — V/EKS Gi—ﬁxi)H

ZBI ’ 232 ’ 233 ’ 2B4

_| Gl G G G
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2

B 2B, ~  2B; 2B

5 4
Z ek _¥eg L (34)
Py ZB; L®(0,t) =3 2BJ L>(0,77) 2 k=1 By

Furthermore, we show that (uf,u5, u5, uy) — (uf,u}, u},u}) in (L*°(0, tJ,c))2 x (L*°(0,
77))* as ¢ — 0T by using the fixed-point estimate (33) and the estimate from the approxi-
mate minimizer (34). Now,
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by Equations (33) and (34). It follows from Equation (35) that

Z ”” — Y ”LOO(O )

L°°(0 )

2 4 JE 4
P Z||u’_u1||L°°(0tf)+Z“uJ Bl | + 5 22 5

k=1 k i=1 k=1 k

This gives
JVE 4 1
Z HU 2 Zk:l Br
L>®0,7) ¢ 4 1
! - 7f D k=1 Br

It follows that (u], u5) — (u,u3) in (L>°(0, tf))2 and (u5, ug) — (u3,u}) in (L*°(0, rf))2

-0, ase— 0",

ase — 07 if %f S, Blk is sufficiently small. We have established that

W, u5, us, uy) — (i, u3, u,uf) in (L0, tf))2 x (L*(0, rf))2 ase — 07,

Finally, we show that (u},u}, u3, u}) is a minimizer of J given in Equation (29). Since
the objective functional J is lower semicontinuous, it follows that J(uj, u5, u5, uy) <
1 3 & € & & * * * *

inf () u,us,u0) et J (U1, U, U3, ug) + €. Moreover, since (uf, u5, u5, uy) — (uj, u3, us, uy) as
& — 07, we have Tl w3, u3, uy) < inf(yy uus,ueu J(U, Uz, u3, ug). [ |

5. Numerical simulations

In this section, we approximate solutions of the optimality system, consisting of the state
system (6)-(7), adjoint system (23)-(27) and control characterization (30). To approximate
the first-order partial differential equation in our state system, we replace the time deriva-
tive with a forward difference, and the time-since-infection derivative with a backward
difference on a discrete mesh. Since i is an approximation to the solution of the partial
differential equation (PDE) at time level ¢, and grid point zj, we approximate the PDE in
i by

+1 . .

dit7) | 81(t 7) J+1 — i i —Jf

+ ks .
ot 0T At AT

We write a MATLAB code based on the equations in the previous sections, and with the
assumption that At = k;At. To fully implement our numerical scheme for the HIV-opioid
model, we use the forward-backward sweep method [44], whereby solutions to the state
system are obtained using a forward sweep method and solutions to the adjoint system
are obtained using a backward sweep method. The controls are updated using a convex
combination of the previous controls and the values from the characterizations.
Equations (1)-(4) have already been fitted to data and parameters have been identified
in our previous work [25]. In article [25] we fit the model without control to five data
sets: data on the within-host viral load and CD4 cells in monkeys treated with opioid, and
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Figure 1. Simulations for u-only when u"™® = 0.4 and 8, = 0.385676 (fitted value).

between host data on AIDS diagnoses, number of deaths due to HIV and number of deaths
due to opioids in the US and estimate the parameters. To implement our optimality system,
we borrow the parameter values from [25], and assume A = 10, u = 1/(365 % 78), ks = 1
and oy = 0.5 * dy. In what follows, we consider the following control scenarios and we
compare their outcomes.

(A)
(B)
©

(D)

(E)

Only opioid-affected individuals are treated, that is, control u; is on, and the other
controls are off.

Control measures are taken to reduce the transmission rate of HIV to opioid-affected
individuals, that is, control u, is on and the other controls are off.

Treatment with medication that prohibits HIV from infecting the target cells such as
entry inhibitors, that is, control u3 is on and the other controls are off.

Control measures are taken to reduce the transmission rate of HIV to opioid-affected
individuals and co-affected individuals are treated with medication that prohibits
HIV from infecting the target cells, that controls u; and u3 are on and the others
are off.

Opioid-affected individuals are treated and control measures are taken so that opioid-
affected individuals are less prone to getting HIV, that is controls u; and u; are on,
the others are off.
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Figure 2. Simulations for u1-only when u"® = 0.4 and 8, = 0.1 x 0.385676.

(F) All control strategies are on, that is all controls are on.

We first simulate scenario A with u]** = 0.4. These results are shown in Figures 1 and 2.
In Figure 1, B, is fixed at its fitted value, and in Figure 2, B, is fixed at 1/10 of its fitted
value. The figures show that opioid treatment decreases the number of opioid cases and
co-affected individuals but leads to an increase in the number of HIV cases. This last effect
is quite pronounced in Figure 1. In the absence of control the HIV-infected decline to zero
(this is the long-term outcome with fitted parameters) but with control the number of HIV
explodes. The optimal control suggests that treatment should be applied at the maximal
possible level regardless of 8,. The explosion of HIV cases in the presence of control sug-
gests that the two diseases are in a competitive regime with the fitted parameter values;
suppressing one of them with control leads to an increase in the number of cases of the
other. This is the outcome regardless of 8. In comparison to the case without any form of
control, there is approximately a 3.7% decrease in the number of co-affected individuals
at the end of the time horizon when strategy A is applied. When B, is at 1/10 of its fitted
value, the difference in the susceptible, opioid, HIV and co-affected populations with and
without control is more pronounced compared to the case when g, is at the fitted value.

In scenario B, we apply only control measures which decrease the coefficient
through which opioid-addicted individuals get HIV, namely gq,. Without control, the fitted
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Figure 3. Simulations for u-only when u}® = 0.4 and 8, = 0.385676 (fitted value).

value suggested that coefficient g, is much higher than one. Decreasing it with control is
shown in Figures 3 and 4. Both figures are obtained with control u; being on with maxi-
mum uy** = 0.4. In Figure 3, B, is at its fitted value while in Figure 4, B, is at 1/10 of its
fitted value. From both figures we infer that the impact of this control is relatively mini-
mal in the susceptible, opioid and HIV-only populations, but with about a 42% decrease
in the number of co-affected individuals at the end of the time horizon when strategy B is
applied compared to the case with no control. The control can both increase or decrease
opioid cases but in Figure 4, it is clearly seen that it decreases the HIV cases and with about
a 56% decrease in the number of co-affected individuals at the end of the time horizon. The
control also has a significant impact on co-affected individuals in both figures. The impact
of control u; on co-affected individuals is more pronounced than the impact of control u;
with the fitted value of 8,,. The optimal control suggests that the measures should gear up
to the maximum quickly and be applied at the maximum possible value for the duration
of the control.

Figures 5 and 6 depict the between-host and within-host impact of control u3. Control
u3 serves as an entry inhibitor, which decreases the infection rate of healthy T cells at the
within-host level. With a maximum control of u3"* = 0.4, results of simulations shown
in Figure 5 depict a decrease in the within-host infected T cells, T;, and viral load V; but
relatively minimal increase in healthy T cells. Unlike in Figure 3 where there is a minimal



28 (&) E.NUMFORETAL.

5 5
10 x10 6 x10 80
5
» 8 A - 60
< > =
o] - =
2 6 33 § 40
3 & >
% 2 T
4 W/ Control 20
W/o Control 1
2 0 0
0 20 40 60 0 20 40 60 0 20 40 60
Time Time Time
600 04
u2
500
_ 03
B 400 ;é_
3 300 =02
3 2
o) )
© 200 o 0.1
100
0 0
0 20 40 60 0 20 40 60
Time Time

Figure 4. Simulations for u;-only when u}® = 0.4 and 8, = 0.1 x 0.385676.

effect in the S, U and V populations with u,-only, Figure 6 shows that at the between-host
level, there is a minimal effect in the S and U populations when strategy C is applied with
the biggest effect of the control in HIV-only infected individuals and co-affected individ-
uals. In HIV-only individuals, the control decreases the peak of the number of infected
individuals, and has a similar effect on the co-affected individuals. The control has almost
no impact on opioid-only affected individuals and susceptible individuals. What is unex-
pected is that the optimal control is at maximal value for about 20 time units and zero for
most of the remaining time suggesting that treatment is optimal with interruptions.

In the remaining Figures, we explore scenarios which combine several controls. In
Figure 7, we explore scenario D, that is, controls u, and u3 are on and the remaining
controls are off. In this scenario, treatment is applied to co-affected individuals with HIV
medications that prevent the fusion of HIV with target cells and control measures are
applied, designed to decrease the coeflicient of infection of opioid-affected individuals with
HIV. Control u, is a between-host control while control u3 is a within-host control. It is
striking that the effect of this combined control strategy on the between host level is very
similar to the effect of the within-host control u3 only (see Figure 6). The main difference is
in the level of co-affected individuals whose density is further decreased; there is approx-
imately a 47% decrease in the number of co-affected individuals at the end of the time
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Figure 5. Simulations of the within-host model for us-only when u'®* = 0.4.

horizon when strategy D is applied compared to the case with no control. For the opti-
mal control, control u, should be applied at maximal level within the first 80 time units.
The optimal control u3 is very similar as in scenario C. The optimal control u3 should be
applied at maximum between approximately 20 and 60 time units and then it should be at
or near zero the remaining time.

In Figure 8, we simulate scenario E. In scenario E the between-host controls u; and
uy are on and the within-host controls are off. The results of these simulations are very
similar to the results of simulations with scenario A. The controls increase the number of
susceptible individuals and decrease the number the opioid-only affected individuals. The
biggest impact of this control scenario is on HIV-only infected individuals which increase
with controls while going to zero without the controls. Co-affected individuals are also
very impacted by the between-host controls with their density dropping to 47% from its
uncontrolled maximum relative to 3.7% when strategy A is applied, as depicted in Figure 1.
The optimal controls are at the maximum value for the duration they are applied. The main
difference between the results in scenario A and scenario E are in the density of co-affected
individuals. Their density is significantly reduced with the controls in scenario E.

Finally, we explore scenario F in Figure 9. In scenario F all controls are on with u"** =
0.3 and )™ = uf™ = u}™® = 0.4. The outcomes of the application of all four controls are
complex. The susceptible individuals are increased. However, both the opioid-only indi-
viduals and the HIV-only individuals are impacted one way until some threshold time ¢*
and then they are impacted the other way. In particular, the number of opioid-only indi-
viduals is decreased till time unit 70 or so and then it is increased. The number of HIV-only
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Figure 6. Simulations of the between-host model for u3-only when uf'®* = 0.4.

individuals is also decreased but until time unit 18 or so and then it is increased by the con-
trols. The maximum of the density of the co-affected individuals is decreased maximally
compared to all control scenarios we explored, with approximately a 53% decrease in the
number of co-affected individuals at the end of the time horizon. The optimal control of
each control is different but most controls need to be applied at maximum for some dura-
tion of time and then switched off. In particular, controls u; and u; are applied at maximum
until time unit 80, and then turned off. Control u3 is applied at maximum for time units
between 20 and 40 and gradually turned off. Control uy is applied at maximum until time
unit 90 and then gradually turned off.

Direct comparison of all strategies suggests that the best strategy is strategy F with all
controls applied. This means that treating HIV-infected individuals and opioid-addicted
individuals has to be coupled with control measures that reduce the propensity of opioid-
addicted individuals to get HIV. This conclusion is further ascertained by evaluating the
values of the objective functional in Equation (8) for strategies A, B, C, D, E and F, depicted
in Table 1.

Strategy F has the lowest value of the objective functional, followed by strategy D.
Previously, we have reported that treating opioid-addicted individuals and reducing HIV
infection of opioid-addicted individuals is the best strategy [25], which corresponds to
strategy D. Here, we find that in terms of optimal strategies, combining the two measures
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Figure 7. Simulations of the between-host model when uJ'®* = u3'® = 0.4.

Table 1. Values of the objective functional for different strategies.

Strategy A B C D E F
Valuesof 7 14410 x 108 1.1189 x 108 1.3903 x 108 1.0022 x 108 1.0048 x 108 8.7781 x 107

in strategy D with HIV treatment is expected to reduce the number of affected individuals
better.

6. Discussion

We developed a multi-scale model of HIV and opioid epidemics to get a comprehensive
understanding of how these two diseases interact with each other [25,26]. The multi-scale
model includes HIV and opioid dynamics at within-host and between-host scales. In this
study, we apply the optimal control theory to the multi-scale model of the two diseases and
evaluate the control measures adopted against HIV and opioid at both scales.

Our previous study with a single-scale model of the two epidemics suggested that the
most effective control measures are preventing the opioid abuse (u;(t)) and reducing the
HIV risk among opioid users (u2(¢)). While (u;(¢)) and (u»(t)) are the population-level
control approaches, the most effective defense strategy against HIV, the anti-retro-viral
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Figure 8. Simulations of the between-host model when u"® = uJ'™™ = 0.4.

therapy (ART), as it is described by CDC acts at the within-host level. We used two con-
trol measures at this scale, antiviral therapy preventing the HIV from entering target cells
(u3(t)) and antiviral therapy preventing the infected target cells from producing new HIV
particles (u4(t)). While other control strategies against HIV and opioid addiction are pos-
sible, we focus on these four as the most promising control strategies in combating the two
diseases.

We formulated an optimal control problem with the objective of minimizing the number
of infected, addicted and co-affected individuals as well as the cost of the control strategies.
We first proved that the states of the multi-scale model are Lipschitz as a function of the
controls 1y, uz, u3, us. Then we proved the existence and uniqueness of the optimal control
strategy using Ekeland’s principle.

Our numerical simulations show that when only opioid-addicted individuals are
treated, the number of opioid users and the co-affected individuals decrease, but that
strategy leads to an increase in the number of HIV-infected individuals. This outcome is
unexpected, since in the absence of control the number of HIV-infected individuals drops
to zero, but with this control strategy the number of HIV-infected individuals increases.
This might be due to the fact that the two diseases, HIV and opioid are in competition,
suppressing one leads to increase in the other. When we reduced the risk of an opioid user
being infected with HIV, this second control strategy impact on the opioid and HIV-only
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Figure 9. Simulations of the between-host model when u"®* = 0.3, ul'®™ = u'™ = u"® = 04.

populations is minimal, but its impact on the co-affected populations is significant. The
effect of the control u; on the opioid population is not clear; depending on the addic-
tion rate, B,, we observe both an increase and decrease in the number of opioid users.
In comparing the two population levels controls, #; and u,, we notice that u; has more
pronounced effect on the co-affected population.

When co-affected individuals receive entry inhibitor antiviral medication, we observe
a decrease in both the co-affected and HIV-only populations. Antiviral treatment of co-
affected individuals, in particular, lowers the peak number of HIV-infected population,
which is an important public health goal. If the antiviral therapy is combined with reducing
the risk of HIV in opioid users, we again observe a decrease in both the co-affected and
HIV-only populations.

The maximal reduction in co-affected individuals is observed when multiple controls
are active, that is in the cases when u; and u3 are simultaneously active or when u; and u;
are simultaneously active. When u; and u3 are simultaneously active, the HIV-only pop-
ulation declines to zero with or without the controls but the opioid-addicted population
experiences no decline. When u; and u, are simultaneously active, the opioid population
experiences decline but the HIV-only population increases after a period of decrease. These
two opposing effects are best combined when all four controls are active. With all four con-
trols active, the co-affected population experiences maximum decline, the opioid-addicted
population declines and the ultimate increase in the HIV-only population is reduced. Thus
we suggest that our best strategy among the ones investigated is the strategy where all four
controls are active. In other words, from a public heath perspective, it is best to treat opioid-
addicted individuals, treat co-affected individuals with ART, and prevent opioid addicted
individuals from contracting HIV.
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