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ABSTRACT

In this study, we apply optimal control theory to an immuno-
epidemiological model of HIV and opioid epidemics. For the multi-
scale model, we used four controls: treating the opioid use, reducing
HIV risk behaviour amongopioid users, entry inhibiting antiviral ther-
apy, and antiviral therapy which blocks the viral production. Two
population-level controls are combined with two within-host-level
controls. We prove the existence and uniqueness of an optimal con-
trol quadruple. Comparing the twopopulation-level controls,we find
that reducing the HIV risk of opioid users has a stronger impact on
the populationwho is both HIV-infected and opioid-dependent than
treating the opioid disorder. The within-host-level antiviral treat-
ment has an effect not only on the co-affected population but also
on the HIV-only infected population. Our findings suggest that the
most effective strategy formanaging theHIV and opioid epidemics is
combining all controls at both within-host and between-host scales.
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1. Introduction

Over the past two decades, opioid-related deaths in the United States have skyrocketed

from nearly 8500 in 2000 to almost 70,000 in 2020 [1]. The US Department of Health

and Human Services declared the opioid crisis a nationwide public health emergency

in 2017 [2]. The National Institutes of Health (NIH) has indicated a link between the

increased number of HIV diagnoses and the rising incidence of opioid disorders [3].

Increased HIV-risk behaviour among opioid users is found to be the primary cause of this

association [3].

The opioid epidemic and the HIV epidemic have been extensively modelled as sepa-

rate epidemics. The early models of the opioid epidemic focussed on heroin. White and

Comiskey [4] introduced a simple ODE model with users not in treatment and users in

treatment. A number of extensions of this model were also considered. Nyabadza and

Hove-Musekwa [5] studied the heroin epidemic in a South African Province. Samanta [6]

considered a non-autonomous version of a heroin model while articles [7–9] consid-

ered versions with distributed delay(s). Age-structured PDE models were also investi-

gated [10–13]. More recently the attention has turned to answering real-life questions with
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opioid models. Several articles address the prescription opioids as a vehicle toward illicit

drugs or target best treatment strategies [14–17]. Optimal control models have rarely been

investigated in the context of the opioid epidemic. The only studies we found are [18,19].

The HIV epidemic has been extensively modelled since its beginning. There are several

books devoted to HIV/AIDS epidemic modelling in both deterministic and stochastic

settings [20,21]. Optimal control of HIV has also been extensively investigated [22,23].

We have previously introduced several models of HIV and opioid epidemics to bet-

ter understand their interactions [24–27]. We initially started with a compartmental ODE

model of HIV and opioid dynamics [24], and then progressed to a multi-scale model that

included both the within-host and between-host dynamics of the two epidemics [25].

Finally, we developed a multi-scale model in which the HIV dynamics are defined on a

scale-free network [26]. With both HIV and opioid invasion numbers larger than one, the

initial model revealed that the two epidemics are in the coexisting regime in the United

States [24]. Elasticities of the invasion numbers indicated that opioid addiction treatment

and lowering HIV risk behaviour among opioid users would be the most effective control

strategies in decoupling the epidemics [24]. Furthermore, we applied optimal control to the

HIV-opioidODE compartmental model, and obtained similar results [27]. However, using

a network multi-scale model of HIV and opioid, without the optimal control, we discov-

ered conflicting conclusions. According to numerical simulations of a network multi-scale

model of HIV and opioid, the population of individuals who are both HIV-infected and

opioid users, termed as co-affected population, is not monotone with respect to the risk of

an opioid user being infected with HIV [26]. We observe that as the risk of opioid users

acquiring HIV decreases, the number of co-affected individuals may both increase and

decrease. A logical next step in identifying the most effective control measures in man-

aging the two epidemics would be to apply the optimal control theory to the multi-scale

model and incorporate controls at both scales.

Optimal control theory has been applied to immuno-epidemiological multi-scale mod-

els of HIV before [28–30]. In this study, we introduce an optimal control theory of

multi-scale models of two interacting epidemics. We incorporate two control measures at

the population scale; treating the opioid addiction and reducing theHIV risk among opioid

users. The two population scale controls are combined with two within-host scale control

measures; antiviral therapy blocking HIV entry to the target cells and antiviral therapy

preventing the infected target cells from producing new HIV particles. The steps prov-

ing the existence of optimal control for the first-order PDEs differs from the traditional

approaches. Ekeland’s Principle [31] allows us to prove the existence of an optimumcontrol

of multi-scale immuno-epidemiological models which are first-order PDEs. In Section 2,

we introduce themulti-scale immuno-epidemiological model of HIV and opioid, and then

incorporate controls to the between-host and within-host models. In Sections 3 and 4, we

prove the existence and uniqueness of the optimal control. In Section 5, we present the

numerical simulations. In Section 6, we summarize our results.

2. Themodel and its optimal control version

The states for the epidemic transmission process are divided into susceptible state S, opioid

state U, infected with HIV state V, co-affected state i(τ , t) and AIDS state A. Individuals

change states at rates given by the forces of infection. Susceptible individuals are recruited
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at the recruitment rate �. Susceptible, opioid, infected, co-affected and AIDS individuals

leave the system at a natural death rateμ or at disease-induced death rates du, dv, di(τ ), da.

A susceptible individual can be infected with HIV and change into an infected state, or can

become opioid-dependent and change into opioid state. HIV and opioid individuals can

get co-affected by adding the other disease. An opioid individual or co-affected individual

can move to a susceptible or HIV-infected state respectively due to treatment at a rate δ.

HIV-infected or co-affected individuals can move to the AIDS state at rates γv or γi.

Let S(t),U(t),V(t),A(t), be the number of susceptible, opioid-dependent, infected with

HIV and AIDS individuals, respectively, at time t, and i(τ , t) be the density of co-affected

individuals at time t and with co-affection age τ . The co-affection age τ starts when one

becomes both infected with HIV and opioid-addicted. Then we formulate the following

multi-scale model of HIV and opioid epidemics:
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dS(t)

dt
= � − λu(t)S(t) − λv(t)S(t) − μS(t) + δU(t),

dU(t)

dt
= λu(t)S(t) − qvλv(t)U(t) − (μ + du + δ)U(t),

dV(t)

dt
= λv(t)S(t) − quλu(t)V(t) − (μ + dv + γv)V(t) + δ

∫ ∞

0
σ(τ)i(t, τ) dτ ,

∂i(t, τ)

dt
+

∂ksi(t, τ)

dτ
= −(μ + di(τ ) + γi(τ ) + δσ (τ))i(t, τ),

ksi(t, 0) = qvλv(t)U(t) + quλu(t)V(t)

dA(t)

dt
= γvV(t) +

∫ ∞

0
γi(τ )i(t, τ) dτ − (μ + da)A(t).

(1)

The total population size isN(t) = S(t) + U(t) + V(t) +
∫∞
0 i(t, τ) dτ . We note here that

we assume that since AIDS individuals typically suffer from opportunistic illnesses, they

are too sick to participate in the population mixing. As a result of this simplifying assump-

tion, the class A is excluded from the total population N, as well as from the force of

infection of HIV. The force of HIV infection, λv(t), is given by:

λv(t) =
βv1V(t) +

∫∞
0 βv2(τ )i(t, τ) dτ

N(t)
. (2)

Thus, λv(t) denotes the force of infection of HIV, where βv1 is the transmission coefficient

fromV(t). Similarly, βv2(τ ) is the time-since-infection dependent transmission coefficient

from i(τ , t). The force of opioid addiction, λu(t), is given by

λu(t) = βu
U(t) +

∫∞
0 i(t, τ) dτ

N(t)
. (3)

We assume the addiction coefficient is the same for U and
∫∞
0 i(t, τ) dτ . We further note

that model (1) assumes that individuals can become opioid-addicted only through contact

with opioid-addicted person. We do not model the scenario of possible addiction through

prescription drugs [14].
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For the within-host model of co-affected individuals, we modify a well-known within-

host model of HIV [32,33] by explicitly including the opioid drug concentration C(τ ) and

its impact on the average susceptibility of target cells:
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dT

dτ
= s − dTT − k(C)ViT,

dTi

dτ
= k(C)ViT − δiTi,

dVi

dτ
= NvδiTi − cVi,

dC

dτ
= −dcC,

C(τ+
j ) = C(τ−

j ) + D.

(4)

Here, T are the healthy target cells, Ti are the infected target cells andVi is the virus (HIV).

Target cells are produced at rate s and cleared at rate dT . Infected cells die at a rate δi, and

when they die, they release Nv viral particles at bursting. The clearance rate of the virus

is denoted by c. In our model, opioid is taken at doses D at times τj, j = 1, 2, . . . , and it is

degraded at rate dc. Infection rate of target cells byHIV in the presence of opioid is given by

k(C) =
k1C(τ )

C0 + C(τ )
,

where C0 is the half-saturation constant and k1 is a maximal increase in infection rate due

to opioids. The resulting within-host model is a pharmacokinetic type of model. It is an

impulsive model, where τ+
j and τ−

j represent the right and left limit, respectively.

In order to link the within-host and between-host models, we use data in [34] to deter-

mine the form of the linking of the transmission coefficient βv2(τ ) to the viral load [35].

Fitting to the data, we obtain the following function for βv2(τ ):

βv2(τ ) =
β0V

r
i (τ )

B + Vr
i (τ )

,

where r ≈ 1. Further, we use the suggested functions in [36] to link the remaining

τ -dependent rates:

di(τ ) = d0 (T(0) − T(τ )) , γi(τ ) = γ0 (T(0) − T(τ )) , σ(τ) = σ0,

where d0, σ0,β0, γ0,B are given constants. The disease-induced death rate, di, of co-affected

individuals and their transition rate, γi, to AIDS does not depend explicitly on the viral

load because the viral load is high during the acute HIV phase but the rates γi(τ ) and

di(τ ) are not correspondingly high during the acute HIV stage. Because di and γi must

be small during the acute HIV stage when the viral load is very high, reference [36] sug-

gests that they depend on the target cells instead. Thus, we adopt the suggested form from

reference [36]. For simplicity, we choose σ(τ) as a constant which gives the fraction of

co-affected individuals successfully treated.

Our prior results suggested two foci for control measures: targeting the drug abuse epi-

demic and reducing HIV risk in drug-users. As a part of this paper, we will compare and
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contrast these foci of control, obtained from elasticity analysis, with time-dependent opti-

mal control strategies. Optimal control has been applied in the past to multi-scale HIV

models [28,29,37–39], but to the best of our knowledge, it has not been applied to a multi-

scale model with two diseases. CDC [40] lists the control measures for HIV, with the

most effective measure being the antiretroviral therapy (ART). Multiple control measures

might affect HIV risk in drug users (e.g. preexposure prophylaxis, education for condom

use, availability of free syringes for injecting drug users). All these measures decrease the

parameter qv. We include treatment of opioid users in our model in the form of the param-

eter δ. Let u1(t) be the control variable corresponding to the treatment parameter δ and

u2(t) encompass control measures that reduce the HIV-risk behaviours in drug users, then

the between-host component of the multi-scale model (1) with optimal control takes the

form:
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dS(t)

dt
= � − λu(t)S(t) − λv(t)S(t) − μS(t) + δu1(t)U(t),

dU(t)

dt
= λu(t)S(t) − qv(1 − u2(t))λv(t)U(t) − (μ + du + δu1(t))U(t),

dV(t)

dt
= λv(t)S(t) − quλu(t)V(t) − (μ + dv + γv)V(t)

+δu1(t)

∫ ∞

0
σ(τ)i(t, τ) dτ ,

∂i(t, τ)

dt
+

∂ksi(t, τ)

dτ
= −(μ + di(τ ) + γi(τ ) + σ(τ)δu1(t))i(t, τ),

ksi(t, 0) = qv(1 − u2(t))λv(t)U(t) + quλu(t)V(t)

dA(t)

dt
= γvV(t) +

∫ ∞

0
γi(τ )i(t, τ) dτ − (μ + dA)A(t),

(5)

where the forces of infection (addiction) remain unchanged. Since the equation for the

AIDS individuals, A, is not connected to the rest of the systems, we can omit it in our

further analysis. Thus, we will consider the following between-host system
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dS(t)

dt
= � − λu(t)S(t) − λv(t)S(t) − μS(t) + δu1(t)U(t),

dU(t)

dt
= λu(t)S(t) − qv(1 − u2(t))λv(t)U(t) − (μ + du + δu1(t))U(t),

dV(t)

dt
= λv(t)S(t) − quλu(t)V(t) − (μ + dv + γv)V(t)

+δu1(t)

∫ ∞

0
σ(τ)i(t, τ) dτ ,

∂i(t, τ)

dt
+

∂ksi(t, τ)

dτ
= −(μ + di(τ ) + γi(τ ) + σ(τ)δu1(t))i(t, τ),

ksi(t, 0) = qv(1 − u2(t))λv(t)U(t) + quλu(t)V(t).

(6)
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We also include controls that mimic HIV treatment in the within-host model:
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dT

dτ
= s − dTT − k(C)(1 − u3(τ ))ViT,

dTi

dτ
= k(C)(1 − u3(τ ))ViT − δiTi,

dVi

dτ
= Nvδi(1 − u4(τ ))Ti − cVi,

dC

dτ
= D − dcC,

(7)

where the coefficient 1 − u3(t) represents the drug effect that reduces transmission of

healthy cells to infected cells as a result of interaction with the virus, while the coefficient

1 − u4(t) gives the effect of another drug that reduces the production of viral particles. We

implicitly assume here that all co-affected individuals are subject to the same treatment

regimen. We have modelled opioid intake with a simpler model of constant intake which

tracks the average change in the concentration very well while removing the oscillation of

an impulsivemodel. All controls are assumed bounded: 0 ≤ ul(t) ≤ ulmax for l = 1, . . . , 4.

The controls will be determined to minimize the number of HIV-infected individuals and

opioid users as well as the cost of implementing the control. The objective functional for

control problem is:

J (u) =
∫ tf

0

[

A1U(t) + A2V(t) + A3

∫ τf

0
i(τ , t) dτ

]

dt

+
∫ tf

0
(A4u1(t)U(t) + B1u

2
1(t) + B2u

2
2(t)) dt

+
∫ τf

0
(B3u

2
3(τ ) + B4u

2
4(τ )) dτ , (8)

where A1, A2, A3,A4, and Bk, k = 1, 2, 3, 4, are positive constants that balance the rela-

tive importance for the terms in J . In our objective functional, the first term with the A

coefficients represents the total of the diseased individuals over time to be minimized and

the term with the B coefficients represent the costs of implementing the controls. We note

that we assume that the AIDS individuals in the class A are not mixing in the population

and they do not affect the transmission of HIV. Hence, we do not include them in the cost

functional since reducing their numbers does not affect HIV prevalence significantly. In

principle, we want to keep our cost functional J as simple as possible but it can certainly

include other useful terms. In Equation (8), tf and τf are the final times for the control. The

optimal control problem that we will be solving is: Find (u1, u2, u3, u4) ∈ U such that

J (u∗
1 , u

∗
2 , u

∗
3 , u

∗
4) = min

(u1,u2,u3,u4)∈U
J (u1, u2, u3, u4),

where the control set U is

U = {(u1, u2, u3, u4) ∈ X | u1, u2 : (0, tf ) → [0, ui,max],

i = 1, 2; u3, u4 : (0, τf ) → [0, ujmax], j = 3, 4}
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and X is the space X = (L∞(0, tf ))
2 × (L∞(0, τf ))

2. This optimal control problem is novel

because it involves both within-host and between-host controls and two-disease structure.

In principle, the controls u are L1 controls and have to be handled differently than controls

in Hilbert spaces. In particular, to obtain the adjoint system, we first define a system of

sensitivities [28,29]. After we derive the adjoint system, we characterize the optimal con-

trol quadruple and use a modified forward-backward sweep method [28,41] to solve the

system numerically. Our two foci for control are modelled by controls u1 and u2, so we can

compare our two focal control strategies to other control strategies such as applying ART

only, or applying ART for those with HIV and treatment for drug users but not targeting

HIV risk for the latter. In the context of the multi-scale control problem, this means not

using control u2. Thus, contrasting our baseline control strategy to other optimal control

strategies will help evaluate its promise in public health.

3. The system of sensitivities and the adjoint problem

We prove the Lipschitz property for the state variables as depending on the control func-

tions u1, u2, u3, u4. This property is used to show the existence of the sensitivities as well as

the existence and uniqueness of the optimal control.

Theorem 3.1: The map (u1, u2, u3, u4) → (T,Ti,Vi,C, S,U,V , i)(u1, u2, u3, u4) is Lips-

chitz on the set

Y = {(T,Ti,Vi,C, S,U,V , i) ∈ [L∞(0, τf )]
4 × [L∞(0, tf )]

3

× L∞(0, tf ; L
1(0, τf )) : S ≥ ε > 0}

in the following way:

(i)

∫ τf

0
(|T − T̄| + |Ti − T̄i| + |Vi − V̄i| + |C − C̄| dτ

+
∫ tf

0
|S − S̄| + |U − Ū| + |V − V̄| dt +

∫ tf

0

∫ τf

0
|i − ī| dτ dt

≤ Cf

(∫ tf

0
|u1 − ū1| + |u2 − ū2| dt +

∫ τf

0
|u3 − ū3| + |u4 − ū4| dτ

)

.

(ii) ‖T − T̄‖L∞(0,τf ) + ‖Ti − T̄i‖L∞(0,τf ) + ‖Vi − V̄i‖L∞(0,τf ) + ‖C − C̄‖L∞(0,τf )

+ ‖S − S̄‖L∞(0,tf ) + ‖U − Ū‖L∞(0,tf )

+ ‖V − V̄‖L∞(0,tf ) + ‖i − ī‖L∞(0,tf )×L∞(0,τf )

≤ C̄f

(

‖u1 − ū1‖L∞(0,tf ) + ‖u2 − ū2‖L∞(0,tf )

+ ‖u3 − ū3‖L∞(0,τf ) + ‖u4 − ū4‖L∞(0,τf )

)

.

Proof: (i) We begin by showing the inequalities for the within-host system. First, we

establish the Lipshitz property for k(C). We have

|k(C) − k(C̄)| = |k′(ξ)||C − C̄|
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where ξ ∈ (C, C̄). We have:

|k′(ξ)| ≤
k1C0

(C0 + ξ)2
≤ κ ,

where κ is a constant independent of C. Subtracting the differential equations for T

and T̄, we have

d(T − T̄)

dt
= −dT(T − T̄) − k(C)(1 − u3)ViT + k(C̄)(1 − ū3)V̄iT̄

= −dT(T − T̄) − (k(C) − k(C̄))(1 − u3)ViT − k(C̄)(ū3 − u3)ViT

− k(C̄)(1 − ū3)(Vi − V̄i)T − k(C̄)(1 − ū3)V̄i(T − T̄).

Integrating from (0, τ) and using L∞ bounds on the states, we have

|T − T̄|(τ ) ≤ C1

∫ τf

0
|u3 − ū3| ds + C2

∫ τ

0
|T − T̄| + |Vi − V̄i| + |C − C̄| ds. (9)

Similarly, we have

|Ti − T̄i|(τ ) ≤ C1

∫ τf

0
|u3 − ū3| ds + C3

∫ τ

0
|T − T̄|

+ |Ti − T̄i| + |Vi − V̄i| + |C − C̄| ds. (10)

|Vi − V̄i|(τ ) ≤ C4

∫ τf

0
|u4 − ū4| ds + C5

∫ τ

0
|Ti − T̄i| + |Vi − V̄i| ds

|C − C̄|(τ ) ≤ dc

∫ τ

0
|C − C̄| ds. (11)

Combining Equations (9)–(11), we have

(|T − T̄| + |Ti − T̄i| + |Vi − V̄i| + |C − C̄|)(τ )

≤ C6

∫ τf

0
|u3 − ū3| + |u4 − ū4| ds + C7

∫ τ

0
|T − T̄|

+ |Ti − T̄i| + |Vi − V̄i| + |C − C̄| ds.

Applying Gronwall’s inequality, we have

(|T − T̄| + |Ti − T̄i| + |Vi − V̄i| + |C − C̄|)(τ )

≤ C6(1 + C7τf e
C7τf )

∫ τf

0
|u3 − ū3| + |u4 − ū4| ds. (12)

Integrating both sides of Equation (12), we have

∫ τf

0
|T − T̄| + |Ti − T̄i| + |Vi − V̄i| + |C − C̄|)(τ ) dτ

≤ C6τf (1 + C7τf e
C7τf )

∫ τf

0
|u3 − ū3| + |u4 − ū4| ds. (13)
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Next, we consider the between-host system. First, we show the Lipschitz property for

the forces of infection λu and λv.

λv − λ̄v =
βv1V +

∫ τf
0 βv2(τ )i(τ , t) dτ

N
−

βv1V̄ +
∫ τf
0 β̄v2(τ )ī(τ , t) dτ

N̄

=
βv1V +

∫ τf
0 βv2(τ )i(τ , t) dτ

NN̄
(N̄ − N) +

βv1(V − V̄)

N̄

+
1

N̄

∫ τf

0
βv2(τ )(i − ī) dτ +

1

N̄

∫ τf

0
(βv2 − β̄v2)ī dτ

We recall S, S̄ > ε since they belong to Y and hence N, N̄ > ε. Further,

i(τ , t) ≤

⎧

⎨

⎩

i(0, t − τ)π1(τ ) τ < t

i0(τ − t)
π1(τ )

π1(τ − t)
τ > t,

where

π1(τ ) = e−
∫ τ
0 (μ+γi(ξ)+di(ξ)) dξ .

It is not hard to see that |i(0, t − τ)| < K, where K is a constant and therefore

|i(τ , t)| ≤ K1 for all τ ∈ [0, τf ] and t ∈ [0, tf ] and all i0(·) ≤ K1. Hence,

|λv − λ̄v| ≤ C10(|S − S̄| + |U − Ū| + |V − V̄|) + C11

∫ τf

0
|i − ī| dτ

+ C12

∫ τf

0
|Vi − V̄i| dτ).

Similarly, we can show that

|λu − λ̄u| ≤ C13(|S − S̄| + |U − Ū| + |V − V̄|) + C11

∫ τf

0
|i − ī| dτ .

Next, we derive inequalities for the between host state variables. In particular, we have

|S − S̄| ≤ C20

∫ t

0
|S − S̄| + |U − Ū| + |V − V̄| +

∫ τf

0
|i − ī| dτ ds

+ C21

∫ t

0
|u1 − ū1| ds + C22

∫ τf

0
|Vi − V̄i| dτ . (14)

Similarly, we have

|U − Ū| ≤ C25

∫ t

0
|S − S̄| + |U − Ū| + |V − V̄| +

∫ τf

0
|i − ī| dτ ds

+ C26

∫ t

0
|u1 − ū1| + |u2 − ū2| ds + C27

∫ τf

0
|Vi − V̄i| dτ .

|V − V̄| ≤ C30

∫ t

0
|S − S̄| + |U − Ū| + |V − V̄| +

∫ τf

0
|i − ī| dτ ds
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+ C31

∫ t

0
|u1 − ū1| ds + C32

∫ τf

0
|Vi − V̄i| dτ , (15)

where we have taken into account that σ(τ) = σ0. Integrating the partial differential

equation to obtain i(τ , t), we get

i(τ , t) =
{

B(t − τ) e−
∫ τ
0 μ+γi(τ−ξ)+di(τ−ξ)+σ(τ−ξ)δu1(t−ξ) dξ τ < t

i0(τ − t) e−
∫ t
0 μ+γi(τ−ξ)+di(τ−ξ)+σ(τ−ξ)δu1(t−ξ) dξ τ > t,

where B(t) := i(0, t). To show the Lipschitz condition for the exponents, which

depend on the within-host variables as well as the control, we use the following

inequality. For x, y ≥ 0, we have

|e−x − e−y| ≤ |x − y|.

Hence,

|e−
∫ t
0 μ+γi(τ−ξ)+di(τ−ξ)+σ0δu1(t−ξ) dξ − e−

∫ t
0 μ+γ̄i(τ−ξ)+d̄i(τ−ξ)+σ0δū1(tξ) dξ |

≤
∫ t

0
|γi − γ̄i|(τ − ξ) + |di − d̄i|(τ − ξ) + σ0|u1 − ū1|(t − ξ) dξ

≤ (d0 + γ0)

∫ t

0
|T − T̄|(τ − ξ) dξ + σ0δ

∫ t

0
|u1 − ū1|(s) ds.

Similarly,

|e−
∫ τ
0 μ+γi(τ−ξ)+di(τ−ξ)+σ0δu1(t−ξ) dξ − e−

∫ τ
0 μ+γ̄i(τ−ξ)+d̄i(τ−ξ)+σ0δū1(tξ) dξ |

≤
∫ τ

0
|γi − γ̄i|(τ − ξ) + |di − d̄i|(τ − ξ) + σ0|u1 − ū1|(t − ξ) dξ

≤ (d0 + γ0)

∫ τ

0
|T − T̄|(τ − ξ) dξ + σ0δ

∫ τ

0
|u1 − ū1|(t − ξ) dξ .

Thus,
∫ τf

t
|i − ī| dτ

=
∫ τf

t
i0(τ − t)(|e−

∫ t
0 μ+γi(τ−ξ)+di(τ−ξ)+σ0δu1(t−ξ) dξ

− e−
∫ t
0 μ+γ̄i(τ−ξ)+d̄i(τ−ξ)+σ0δū1(tξ) dξ |) dτ

≤
∫ τf

t
i0(τ − t)[(d0 + γ0)

∫ τ

0
|T − T̄|(s) ds + σ0δ

∫ t

0
|u1 − ū1|(s) ds] dτ

≤ C50

∫ τf

0
|T − T̄|(s) ds + C51

∫ t

0
|u1 − ū1|(s) ds.

Furthermore,
∫ t

0
|i − ī| dτ =

∫ t

0
|B(t − τ) e−

∫ t
0 μ+γi(τ−ξ)+di(τ−ξ)+σ0δu1(t−ξ) dξ
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− B̄(t − τ) e−
∫ t
0 μ+γ̄i(τ−ξ)+d̄i(τ−ξ)+σ0δū1(tξ) dξ |) dτ

≤ C60

∫ τf

0
|T − T̄|(s) ds +

∫ t

0
|B − B̄| dτ + C61

∫ t

0
|u1 − ū1|(s) ds.

We need to express the integral of B − B̄ in terms of integrals of the state variables.

∫ t

0
|B − B̄|(τ ) dτ ≤

1

ks

∫ t

0
|qvλvU + quλuV − qvλ̄vU − quλ̄uV̄| dτ

≤
qv

ks

∫ t

0
λv|U − Ū| + |λv − λ̄v|Ū dτ

+
qu

ks

∫ t

0
λu|V − V̄| + |λu − λ̄u|V̄ dτ .

Using the estimates for λv − λ̄v and λu − λ̄u we obtain the following estimate for

B − B̄:

∫ t

0
|B − B̄| dτ ≤ C70

∫ t

0
|S − S̄| + |U − Ū| + |V − V̄| +

∫ τf

0
|i − ī| dτ ds

+ C71

∫ t

0

∫ τf

0
|Vi − V̄i| dτ ds.

Combining the integrals for i − ī, we have

∫ τf

0
|i − ī| dτ ≤

∫ t

0
|i − ī| dτ +

∫ τf

t
|i − ī| dτ

≤ C80

∫ τf

0
|T − T̄| + |Vi − V̄i| dτ + C81

∫ t

0
|S − S̄| + |U − Ū|

+ |V − V̄| +
∫ τf

0
|i − ī| dτ ds + C82

∫ t

0
|u1 − ū1| ds. (16)

Combining all estimates for the between host variables, we have

|S − S̄|(t) + |U − Ū|(t) + |V − V̄|(t) +
∫ τf

0
|i − ī| dτ

≤ C100

∫ t

0
|S − S̄|(t) + |U − Ū|(t) + |V − V̄|(t) +

∫ τf

0
|i − ī| dτ ds

+ C101

∫ tf

0
|u1 − ū1| + |u2 − ū2| ds

Applying Grownwall’s inequality, we have

|S − S̄|(t) + |U − Ū|(t) + |V − V̄|(t) +
∫ τf

0
|i − ī| dτ

≤ C101(1 + C100 e
C100tf )

∫ tf

0
|u1 − ū1| + |u2 − ū2| ds. (17)
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Thus,
∫ tf

0
(|S − S̄|(t) + |U − Ū|(t) + |V − V̄|(t) +

∫ τf

0
|i − ī| dτ) dt

≤ C101tf (1 + C100 e
C100tf )

∫ tf

0
|u1 − ū1| + |u2 − ū2| ds. (18)

Finally, combining the within-host variables’ estimates (13) and the between host

variables’ estimates (18), we get
∫ τf

0
|T − T̄| + |Ti − T̄i| + |Vi − V̄i| + |C − C̄|(τ ) dτ

+
∫ tf

0
|S − S̄|(t) + |U − Ū|(t) + |V − V̄|(t) +

∫ τf

0
|i − ī| dτ dt

≤ Cf [

∫ tf

0
|u1 − ū1| + |u2 − ū2| ds +

∫ τf

0
|u3 − ū3| + |u4 − ū4|(τ ) dτ ],

where Cf = max{C6τf (1 + C7τf e
C7τf ),C101tf (1 + C100 e

C100tf )}. This completes the

proof of part (i).

(ii) Considering Equation (12), we have

|T − T̄| ≤ C̄6(τf )

∫ τf

0
(|u3 − ū3| + |u4 − ū4|) ds

≤ C̄6(τf )τf (‖u3 − ū3‖L∞(0,τf ) + ‖u4 − ū4‖L∞(0,τf )).

Similarly,

|Ti − T̄i|, |Vi − V̄i|, |C − C̄| ≤ C̄6(τf )τf (‖u3 − ū3‖L∞(0,τf ) + ‖u4 − ū4‖L∞(0,τf )).

Next, considering Equation (17), we have

|S − S̄| ≤ C̄101(tf )

∫ tf

0
(|u1 − ū1| + |u2 − ū2|) ds

≤ C̄101(tf )tf (‖u1 − ū1‖L∞(0,tf ) + ‖u2 − ū2‖L∞(0,tf )).

Similarly, |U − Ū|, |V − V̄| ≤ C̄101(tf )tf (‖u1 − ū1‖L∞(0,tf ) + ‖u2 − ū2‖L∞(0,tf )). It

can be shown that |i − ī| ≤ C̄101(tf )tf (‖u1 − ū1‖L∞(0,tf ) + ‖u2 − ū2‖L∞(0,tf )) for all

t ∈ (0, tf ) and τ ∈ (0, τf ). Hence, inequality (ii) follows by taking essential supremum

over all t ∈ (0, tf ) and τ ∈ (0, τf ). �

To derive the optimal control pair, we first derive the so-called ‘sensitivities’. The

sensitivities are the derivatives of the state variables with respect to the controls.

Theorem 3.2: The map (u1, u2, u3, u4) → (T,TiVi,C, S,U,V , i)(u1, u2, u3, u4) is differen-

tiable in the following sense

(T,TiVi,C, S,U,V , i)(u1 + εl1, u2 + εl2, u3 + εl3, u4 + εl4)

−(T,TiVi,C, S,U,V , i)(u1, u2, u3, u4)

ε
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→ (x, y,φ,ψ , ξ , η, θ ,ω)

in (L∞(0, τf ))
4 × (L∞(0, tf ))

3 × L∞(0, tf ; L
1(0, τf )) as ε → 0 with (u1 + εl1, u2 + εl2, u3

+ εl3, u4 + εl4) and (u1, u2, u3, u4) ∈ U and (l1, l2, l3, l4) ∈ (L∞(0, tf ))
2 × (L∞(0, τf ))

2.

The sensitivities satisfy the system

x′ = −dTx − k′(C)(1 − u3)ψViT + k(C)l3ViT

− k(C)(1 − u3)φT − k(C)(1 − u3)Vix

y′ = k′(C)(1 − u3)ψViT − k(C)l3ViT + k(C)(1 − u3))φT

+ k(C)(1 − u3)Vix − δiy

φ′ = −Nvδil4Ti + Nvδi(1 − u4)y − cφ

ψ ′ = −dcψ

ξ ′ = −λ′
uS − λuξ − λ′

vS − λvξ − μξ + δl1U + δu1η

η′ = λ′
uS + λuξ + qvl2λvU − qv(1 − u2)λ

′
vU

− qv(1 − u2)λvη − δl1U − (μ + du + δu1)η

θ ′ = λ′
vS + λvξ − quλ

′
uV − quλuθ − (μ + dv + γv)θ

+ δl1

∫ ∞

0
σ0i(τ , t) dτ + δu1

∫ ∞

0
σ0ω(τ , t) dτ

∂ω

∂t
+

∂ω

∂τ
= (d0x + γ0x − σ0δl1)i − (μ + di + γi + σ0δu1)ω

ksω(t, 0) = −qvl2λvU + qv(1 − u2)λ
′
vU + qv(1 − u2)λvη + quλ

′
uV + quλuθ

(19)

where

k′(C) =
k1C0

(C0 + C)2

λ′
u(t) = βu

η(t) +
∫∞
0 ω(t, τ) dτ

N(t)

− βu
U(t) +

∫∞
0 i(t, τ) dτ

N2(t)

(

ξ + η + θ +
∫ ∞

0
ω(τ , t) dτ

)

, (20)

λ′
v(t) =

βv1θ(t) +
∫∞
0 β ′

v2
(τ )φ(τ)i(t, τ) + βv2(τ )ω(t, τ) dτ

N(t)

−
βv1V(t) +

∫∞
0 βv2(τ )i(t, τ) dτ

N2(t)

(

ξ + η + θ +
∫ ∞

0
ω(t, τ) dτ

)

(21)

and

β ′
v2

(τ ) =
β0B

(B + Vi)2
,

with r = 1. The initial and boundary conditions are given by

x(0) = 0, y(0) = 0, φ(0) = 0, ψ(0) = 0, ξ(0) = 0, η(0) = 0,



14 E. NUMFOR ET AL.

θ(0) = 0, ω(τ , 0) = 0, ∀ τ ∈ (0, τf ).

Proof: Theorem 3.1 implies that the map (u1, u2, u3, u4) → (T,T,Vi,C, S,U,V , i) is Lips-

chitz and by Barbu [42], it is Gateaux differentiable. Its Gateaux derivatives are the sensitiv-

ities. Taking the derivatives with respect to ε gives us the sensitivities (x, y,φ,ψ , ξ , η, θ ,ω)

and the differential equations they satisfy. �

From the sensitivities, we obtain the equations of the adjoint variables. Denote by

α1, , . . . ,α4 the adjoint variables of x, y,φ,ψ and by p, r, h, m the adjoint variables of

ξ , η, θ ,ω. To obtain the equations of the adjoint variables, we divide the sensitivity equa-

tions in Theorem 3.2 into three operators L1, L2 and L3, depending on the independent

variables. Thus, the sensitivity operators and sensitivity equations in Theorem 3.2 are

L1

⎛

⎜

⎜

⎝

x

y

φ

ψ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

k(C)l3ViT

−k(C)l3ViT

−Nvδil4Ti

0

⎞

⎟

⎟

⎠

, L2

⎛

⎝

ξ

η

θ

⎞

⎠ =

⎛

⎜

⎜

⎝

δl1U

qvl2λvU − δl1U

δσ0l1

∫ ∞

0
i(τ , t) dτ

⎞

⎟

⎟

⎠

, L3ω = −σ0δl1i.

We find adjoint operators L∗
j , j = 1, 2, 3 such that

∫ τf

0
(α1,α2,α3,α4)L1(x, y,φ,ψ) dτ +

∫ tf

0
(p, r, h)L2(ξ , η,φ) dt +

∫ tf

0

∫ τf

0
ωL3m dτ dt

=
∫ τf

0
(x, y,φ,ψ)L∗

1(α1,α2,α3,α4) dτ +
∫ tf

0
(ξ , η,φ)L∗

2(p, r, h) dt

+
∫ tf

0

∫ τf

0
mL∗

3ω dτ dt (22)

with adjoint equations

L∗
1

⎛

⎜

⎜

⎝

α1

α2

α3

α4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0

0

0

0

⎞

⎟

⎟

⎠

, L∗
2

⎛

⎝

p

r

h

⎞

⎠ =

⎛

⎝

0

A1 + A4u1
A2

⎞

⎠ , L∗
3m = A3.

Applying Equation (22), the adjoint equations of the first four variables (the within-host

system) are given by

−α′
1 = −(dT + k(C)(1 − u3)Vi)α1 + k(C)(1 − u3)Viα2

+ (d0 + γ0)

∫ tf

0
i(t, τ)m(t, τ) dt

−α′
2 = −δiα2 + Nvδi(1 − u4)α3

−α′
3 = −cα3 + k(C)(1 − u3)Tα2 − k(C)(1 − u3)Tα1 −

∫ tf

0
Sp

β ′
v2
i(t, τ)

N
dt

−
∫ tf

0
qv(1 − u2)U

β ′
v2
i(t, τ)

N
r(t) dt +

∫ tf

0
S
β ′
v2
i(t, τ)

N
h(t) dt
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+
∫ tf

0
qv(1 − u2)Um(t, 0)

β ′
v2
i(t, τ)

N
dt

−α′
4 = −dcα4 + k′(C)(1 − u3)ViT(α2 − α1) (23)

The remaining equations for the adjoint variables are given below. We start with the

equation for p:

−p′ = −λup − λvp − μp +
βv1V +

∫ τf
0 βv2 i(t, τ) dτ

N2
Sp + βu

U +
∫ τf
0 i(t, τ) dτ

N2
Sp

+ λur + λvh − qv(1 − u2)Um(t, 0)
βv1V +

∫ τf
0 βv2(τ )i(t, τ) dτ

N2

− quVm(t, 0)βu
U +

∫ τf
0 i(t, τ) dτ

N2

− βuSr
U +

∫ τf
0 i(t, τ) dτ

N2
+ qv(1 − u2)Ur

βv1V +
∫ τf
0 βv2(τ )i(t, τ) dτ

N2

× Sh
βv1V +

∫ τf
0 βv2(τ )i(t, τ) dτ

N2
+ quVhβu

U +
∫ τf
0 i(t, τ) dτ

N2

= −λ̃up

(

1 −
S

N

)

− λ̃vp

(

1 −
S

N

)

− μp + λ̃ur

(

1 −
S

N

)

+ rqv(1 − u2)
Uλ̃v

N

+ λ̃vh

(

1 −
S

N

)

+ quh
Vλ̃u

N
− m(t, 0)qv(1 − u2)

Uλ̃v

N
− m(t, 0)qu(1 − u2)

Vλ̃u

N
,

(24)

where λ̃u(t) and λ̃v(t) are defined as

λ̃u(t) = βu
U(t) +

∫ τf
0 i(t, τ) dτ

N(t)
, λ̃v(t) =

βv1V(t) +
∫ τf
0 βv2(τ )i(t, τ) dτ

N(t)
.

Next, we give the equation for r which is the adjoint for U

−r′ = βu
S

N
r − βuSr

U +
∫ τf
0 i(t, τ) dτ

N2
+ qv(1 − u2)U

βv1V +
∫ τf
0 βv2(τ )i(t, τ) dτ

N2
r

− βu
S

N
p + βuSp

U +
∫ τf
0 i(t, τ) dτ

N2
+

βv1V +
∫ τf
0 βv2 i(t, τ) dτ

N2
Sp

+ δu1p − qv(1 − u2)λvr − (μ + du + δu1)r

+ qv(1 − u2)λvm(t, 0) − qv(1 − u2)Um(t, 0)
βv1V +

∫ τf
0 βv1 i(t, τ) dτ

N2

+ quVm(t, 0)
βu

N

(

1 −
U +

∫ τf
0 i(t, τ) dτ

N

)

− Sh
βv1V +

∫ τf
0 βv2(τ )i(t, τ) dτ

N2
+ quVhβu

U +
∫ τf
0 i(t, τ) dτ

N2
− quβuh

V

N
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+ quλum(t, 0) + A1 + A4u1

=
[

(λ̃v − βu)
S

N
+

Sλ̃u

N
+ δu1

]

p

+
[

(βu − λ̃u)
S

N
− qv(1 − u2)

(

1 −
U

N

)

λ̃v − (μ + du + δu1)

]

r

−
[

Sλ̃v

N
+ qu(βu − λ̃u)

V

N

]

h

+
[

qv(1 − u2)

(

1 −
U

N

)

λ̃v + qu(βu − λ̃u)
V

N

]

m(t, 0) + A1 + A4u1. (25)

Next, we derive the equation for the adjoint variable h which is adjoint to V :

−h′ = βv1

S

N
h − Sh

βv1V +
∫ τf
0 βv2 i(t, τ) dτ

N2

+ quVβuh
U +

∫ τf
0 i(t, τ) dτ

N2
− quλuh − (μ + dv + γv)h

+ Spβu
U +

∫ τf
0 i(t, τ) dτ

N2
− p

S

N
βv1 + Sp

βv1V +
∫ τf
0 βv2 i(t, τ) dτ

N2

− Srβu
U +

∫ τf
0 i(t, τ) dτ

N2
− qv(1 − u2)βv1r

U

N

+
(

quλu + qv(1 − u2)U
βv1

N
− qv(1 − u2)U

βv1V +
∫ τf
0 βv2(τ )i(t, τ) dτ

N2

)

m(t, 0)

− quVm(t, 0)βu
U +

∫ τf
0 i(t, τ) dτ

N2

+ qv(1 − u2)Ur
βv1V +

∫ τf
0 βv2(τ )i(t, τ)sτ

N2
+ A2

=
[

(λ̃u − βv1)
S

N
+

S

N
λ̃v

]

p

+
[

(βv1 − λ̃v)
S

N
+ quλ̃u

(

V

N
− 1

)

− (μ + dv + γv)

]

h

−
[

S

N
λ̃u + qv(1 − u2)

U

N
(βv1 − λ̃v)

]

r + [qv(1 − u2)
U

N
(βv1 − λ̃v)

+ quλ̃u

(

1 −
V

N

)

]m(t, 0) + A2. (26)

Finally, we derive the equations for the adjoint variablem which is adjoint to i.

−
∂m

∂t
− ks

∂m

∂τ
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= −(μ + di + γi + σ0δu1)m − qv(1 − u2)U
βv1V +

∫ τf
0 βv2(τ )i(t, τ) dτ

N2
m(t, 0)

+ qv(1 − u2)βv2

U

N
m(t, 0) + quVm(t, 0)

βu

N

(

1 −
U +

∫ τf
0 i(t, τ) dτ

N

)

− βu
Sp

N
+ βuSp

U +
∫ τf
0 i(t, τ) dτ

N2
− βv2(τ )

Sp

N
+ Sp

βv1V +
∫ τf
0 βv2(τ )i(t, τ) dτ

N2

+ βu
Sr

N
− βuSr

U +
∫ τf
0 i(t, τ) dτ

N2
− qv(1 − u2)βv2(τ )

Ur

N
+ βv2(τ )

Sh

N
− quβu

Vh

N

+ qv(1 − u2)Ur
βv1V +

∫ τf
0 βv2(τ )i(t, τ) dτ)

N2
− Sh

βv1V +
∫ τf
0 βv2(τ )i(t, τ) dτ)

N2

+ quVhβu
U +

∫ τf
0 i(t, τ)sτ

N2
+ δu2σ0h

=
[

S

N
(λ̃u + λ̃v) −

S

N
(βu + βv2)

]

p +
[

S

N
(βu − λ̃u) + qv(1 − u2)

V

N
(λ̃v − βv2)

]

r

+
[

S

N
(βv2 − λ̃v) + qu

V

N
(λ̃u − βu) + δu1σ0

]

h − (μ + di + γi + σ0δu1)m

+
[

qv(1 − u2)
U

N
(βv2 − λ̃v) + qu

V

N
(βu − λ̃u)

]

m(t, 0) + A3. (27)

The system of the adjoint variables is equipped with the following boundary conditions:

αj(τf ) = 0, j = 1, . . . , 4.

p(tf ) = r(tf ) = h(tf ) = 0,

m(τ , tf ) = 0, for τ ∈ (0, τf )

m(τf , t) = 0, for t ∈ (0, tf ).

(28)

We establish a Lipschitz property for the adjoint system in terms of the optimal control

quadruple. This property will be used in the proof of the uniqueness of optimal control.

Theorem 3.3: For (u1, u2, u3, u4) ∈ U , the adjoint system (23)–(28) has a weak solution

(α1,α2,α3,α4, p, r, h,m) in (L∞(0, τf ))
4 × (L∞(0, tf ))

3 × L∞(0, tf ; L
1(0, τf )) such that

4
∑

i=1

‖αi − ᾱi‖L∞(0,τf ) +
∥

∥p − p̄
∥

∥

L∞(0,tf )
+ ‖r − r̄‖L∞(0,tf ) +

∥

∥h − h̄
∥

∥

L∞(0,tf )

+ ‖m − m̄‖L∞(0,tf ;L1(0,τf ))

≤ Ck

⎛

⎝

2
∑

i=1

‖ui − ūi‖L∞(0,tf ) +
4
∑

j=3

∥

∥uj − ūj
∥

∥

L∞(0,τf )

⎞

⎠ .

Proof: Follows as in the proof of Theorem 3.1. �
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4. Existence, characterization and uniqueness of optimal control

4.1. Characterization of optimal control quadruple

We use Ekeland’s principle [31] to characterize the optimal control quadruple

(u1, u2, u3, u4) ∈ U , since solutions of first-order PDEs are known for non-smoothness.

To do this, we embed the objective functional J into the L1(�) × L1(Q) space, with

� = (0, τf ) and Q = (0, tf ) × �, by defining

J =
{

J (u1, u2, u3, u4), (u1, u2, u3, u4) ∈ U

+∞, (u1, u2, u3, u4) /∈ U .
(29)

Theorem 4.1: If (u∗
1 , u

∗
2 , u

∗
3 , u

∗
4) ∈ U is an optimal control quadruple minimizing the objec-

tive functional (29), and if (T∗,T∗
1 ,V

∗
i ,C

∗, S∗,U∗,V∗, i∗) and (α1,α2,α3,α4, p, r, h,m) are

corresponding state and adjoint solutions, then the optimal control quadruple is character-

ized by

u∗
1(t) = K1

⎛

⎜

⎜

⎜

⎝

δU∗(t)(r(t) − p(t)) − δσ0h(t)
∫ τf
0 i∗(t, τ) dτ

+δσ0
∫ τf
0 i∗(t, τ)m(t, τ) dτ − A4U

∗(t)

2B1

⎞

⎟

⎟

⎟

⎠

u∗
2(t) = K2

(

qvλ
∗
v(t)U

∗(t)(m(t, 0) − r(t))

2B2

)

u∗
3(τ ) = K3

(

k(C∗(τ ))V∗
i (τ )T∗(τ )(α2(τ ) − α1(τ ))

2B3

)

u∗
4(τ ) = K4

(

NvδiT
∗
i (τ )α3(τ )

2B4

)

,

(30)

where

Ki(y) =

⎧

⎪

⎨

⎪

⎩

0, y < 0

y, 0 ≤ y ≤ ui,max

ui,max, y > ui,max, i = 1, 2, 3, 4.

Proof: Since (u∗
1 , u

∗
2 , u

∗
3 , u

∗
4) ∈ U is an optimal control quadruple and we seek tominimize

our objective functional in Equation (29), we have

0 ≤ lim
ε→0+

J(uε
1, u

ε
2, u

ε
3, u

ε
4) − J(u∗

1 , u
∗
2 , u

∗
3 , u

∗
4)

ε
, uε

i = u∗
i + εli

= lim
ε→0+

∫ tf

0

[

A1
(Uε − U∗)

ε
+ A2

(Vε − V∗)

ε
+ A3

∫ τf

0

(

iε − i∗

ε

)

dτ

]

dt

+ lim
ε→0+

∫ tf

0

(

B1(u
ε
1 − u∗

1)(u
ε
1 + u∗

1)

ε
) +

B2(u
ε
2 − u∗

2)(u
ε
2 + u∗

2)

ε

)

dt

+ lim
ε→0+

∫ τf

0

(

B3(u
ε
3 − u∗

3)(u
ε
3 + u∗

3)

ε
) +

B4(u
ε
4 − u∗

4)(u
ε
4 + u∗

4)

ε

)

dt
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+ lim
ε→0+

∫ tf

0

(

A4
uε
1(U

ε − U)

ε
+ A4

U(uε
1 − u1)

ε

)

dt

=
∫ tf

0
[A1η(t) + A2θ(t) + A3

∫ τf

0
ω(t, τ) dτ ] dt + 2

∫ tf

0
(u∗

1(t)l1(t) + u∗
2(t)l2(t)) dt

+ 2

∫ τf

0
(u∗

3(τ )l3(τ ) + u∗
4(τ )l4(τ )) dτ

+
∫ tf

0
(A4ηu1 + A4Ul1)

=
∫ τf

0
(x, y,φ,ψ)

⎡

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎦

dτ +
∫ tf

0
(ξ , η, θ)

⎡

⎣

0

A1 + Auu1
A2

⎤

⎦ dt +
∫ tf

0

∫ τf

0
A3ω(t, τ) dτ dt

+ 2

∫ τf

0
(B3u

∗
3(τ )l3(τ ) + B4u

∗
4(τ )l4(τ )) dτ

+ 2

∫ tf

0
(A4U

∗l1 + B1u
∗
1(t)l1(t) + B2u

∗
2(t)l2(t)) dt. (31)

Using the adjoint system (23)–(27), and the relationship between the sensitivities and

adjoint operators, we have:

∫ τf

0
(x, y,φ,ψ)

⎡

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎦

dτ +
∫ tf

0
(ξ , η, θ)

⎡

⎣

0

A1 + Auu1
A2

⎤

⎦ dt +
∫ tf

0

∫ τf

0
A3ω(t, τ) dτ dt

=
∫ τf

0
x

[

− α′
1 + dTα1 + k(C)(1 − u3)Viα1 − k(C)(1 − u3)Viα2

− d0

∫ tf

0
i(t, τ)m(t, τ) dt − γ0

∫ tf

0
i(t, τ)m(t, τ) dt

]

dτ

+
∫ τf

0
y
[

−α′
2 + δiα2 − Nvδi(1 − u4)α3

]

dτ

+
∫ τf

0
φ
[

−α′
3 + cα3 − k(C)(1 − u3)Tα2 + k(C)(1 − u3)Tα1

+
∫ tf

0

S

N
pβ ′

v2
(τ )i(t, τ) dt +

∫ tf

0
qv(1 − u2)U

β ′
v2

(τ )i(t, τ)

N
r(t) dt

−
∫ tf

0
S
β ′
v2

(τ )i(t, τ)

N
h(t) dt −

∫ tf

0
qv(1 − u2)Um(t, 0)

β ′
v2

(τ )i(t, τ)

N
dt

]

dτ

+
∫ τf

0
ψ
[

−α′
4 + dcα4 − k′(C)(1 − u3)ViTα2 + k′(C)(1 − u3)ViTα1

]

dτ

+
∫ tf

0
ξ

[

−p′ + λ̃up

(

1 −
S

N

)

+ λ̃vp

(

1 −
S

N

)

+ μp − λ̃ur

(

1 −
S

N

)
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− rqv(1 − u2)
Uλ̃v

N
− λ̃vh

(

1 −
S

N

)

− quh
Vλ̃u

N

+ m(t, 0)qv(1 − u2)
Uλ̃v

N
+ m(t, 0)qu(1 − u2)

Vλ̃u

N

]

dt

+
∫ tf

0
η

[

−r′ −
(

(λ̃v − βu)
S

N
+

Sλ̃u

N
+ δu1

)

p

−
[

(βu − λ̃u)
S

N
− qv(1 − u2)

(

1 −
U

N

)

λ̃v − (μ + du + δu1)

]

r

+
(

Sλ̃v

N
+ qu(βu − λ̃u)

V

N

)

h

−
[

qv(1 − u2)

(

1 −
U

N

)

λ̃v + qu(βu − λ̃u)
V

N

]

m(t, 0)

]

dt

+
∫ tf

0
θ

[

−h′ −
(

(λ̃u − βv1)
S

N
+

S

N
λ̃v

)

p

−
(

(βv1 − λ̃v)
S

N
+ quλ̃u

(

V

N
− 1

)

− (μ + dv + γv)

)

h

+
(

S

N
λ̃u + qv(1 − u2)

U

N
(βv1 − λ̃v)

)

r

−
[

qv(1 − u2)
U

N
(βv1 − λ̃v) + quλ̃u

(

1 −
V

N

)]

m(t, 0)

]

dt

+
∫ tf

0

∫ τf

0
ω

[

−
∂m

∂t
− ks

∂m

∂τ
−
[

S

N
(λ̃u + λ̃v) −

S

N
(βu + βv2)

]

p

−
[

S

N
(βu − λ̃u) + qv(1 − u2)

V

N
(λ̃v − βv2)

]

r

−
[

S

N
(βv2 − λ̃v) + qu

V

N
(λ̃u − βu) + δu1σ0

]

h + (μ + di + γi + σ0δu1)m

−
[

qv(1 − u2)
U

N
(βv2 − λ̃v) + qu

V

N
(βu − λ̃u)

]

m(t, 0)

]

dτ dt,

where we temporarily dropped the asterisks for notational simplicity. Using integra-

tion by parts, the sensitivity system in Equation (19), the transversality conditions (28),

and standard optimal control techniques, we obtain the optimal control characterization

(u∗
1 , u

∗
2 , u

∗
3 , u

∗
4) ∈ U in Equation (30). �

4.2. Existence of optimal control quadruple

In this subsection, we establish the existence of an optimal control quadruple via Ekeland’s

principle [31]. In order to use Ekeland’s principle, we establish the lower semicontinuity

of the objective functional J in Equation (29) with respect to L1-convergence.
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Theorem 4.2: The functional J : (L∞(0, tf ))
2 × (L∞(0, τf ))

2 → (−∞,∞] is lower semi-

continuous.

Proof: Follows as in Numfor [43] and Numfor et al. [37,38] �

Since the functional J is lower semicontinuous with respect to L1-convergence, Eke-

land’s principle guarantees the existence of a minimizing sequence: For ε > 0, there exist

(uε
1, u

ε
2, u

ε
3, u

ε
4) ∈ (L∞(0, tf ))

2 × (L∞(0, τf ))
2 such that

(i) J(uε
1, u

ε
2, u

ε
3, u

ε
4) ≤ inf

(u1,u2,u3,u4)∈U
J(u1, u2, u3, u4) + ε

(ii) J(uε
1, u

ε
2, u

ε
3, u

ε
4) ≤ min

(u1,u2,u3,u4)∈U
Jε(u1, u2, u3, u4),

where

Jε(u1, u2, u3, u4)

= J(u1, u2, u3, u4) +
√

ε

⎛

⎝

2
∑

i=1

∥

∥uε
i − ui

∥

∥

L1(0,tf )
+

4
∑

j=3

∥

∥

∥
uε
j − uj

∥

∥

∥

L1(0,τf )

⎞

⎠ .

Theorem4.3: If (uε
1, u

ε
2, u

ε
3, u

ε
4) is an optimal control quadrupleminimizing the approximate

functional Jε , then

(uε
1, u

ε
2, u

ε
3, u

ε
4) = F

(

Gε
1 −

√
εκε

1

2B1
,
Gε
2 −

√
εκε

2

2B2
,
Gε
3 −

√
εκε

3

2B3
,
Gε
4 −

√
εκε

4

2B4

)

,

where

Gε
1 = δUε(t)(rε(t) − pε(t))

− δσ0h
ε(t)

∫ τf

0
iε(t, τ) dτ + δσ0

∫ τf

0
iε(t, τ)mε(t, τ) dτ − A4U

ε

Gε
2 = qvλ

ε
v(t)U

ε(t)(mε(t, 0) − rε(t))

Gε
3 = k(Cε(τ ))Vε

i (τ )Tε(τ )(αε
2(τ ) − αε

1(τ ))

Gε
4 = NvδiT

ε
i (τ )αε

3(τ ),

(32)

with κ1, κ2 ∈ L∞(0, tf ), κ3, κ4 ∈ L∞(0, τf ), |κ1(t)| ≤ 1 and |κ2(t)| ≤ 1, ∀t ∈ (0, tf ), and

|κ3(τ )| ≤ 1 and |κ4(τ )| ≤ 1, ∀τ ∈ (0, τf ).

Proof: Since (uε
1, u

ε
2, u

ε
3, u

ε
4) ∈ U is an optimal control quadruple minimizing the approx-

imate functional Jε , we have

0 ≤ lim
ξ→0+

Jε(u
ε
1 + ξ l1, u

ε
2 + ξ l2, u

ε
3 + ξ l3, u

ε
4 + ξ l4) − Jε(u

ε
1, u

ε
2, u

ε
3, u

ε
4)

ξ

= lim
ξ→0+

J(uε
1 + ξ l1, u

ε
2 + ξ l2, u

ε
3 + ξ l3, u

ε
4 + ξ l4) − J(uε

1, u
ε
2, u

ε
3, u

ε
4)

ξ
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+
√

ε

2
∑

i=1

∥

∥lεi
∥

∥

L1(0,tf )
+

√
ε

4
∑

j=3

∥

∥

∥
lεj

∥

∥

∥

L1(0,τf )
.

The remainder of the proof follows from Theorem 4.1 with κε
i = |lεi |

lεi
∈ (0, tf ) for i = 1, 2,

and κε
j =

|lεj |
lεj

∈ (0, τf ) for j = 3, 4. �

4.3. Uniqueness of optimal control quadruple

We use the Lipschitz properties of the state and adjoint solutions given in Theorems 3.1

and 3.3, respectively, as well as the minimizing sequence obtained from the Ekeland’s

principle to establish uniqueness of optimal control quadruple.

Theorem 4.4: If
Cf

2

∑4
k=1

1
Bk

is sufficiently small, then there exists a unique optimal control

quadruple (u∗
1 , u

∗
2 , u

∗
3 , u

∗
4) ∈ U minimizing the objective functional J.

Proof: Let F(x, y, z,w) = (F1(x),F2(y),F3(z),F4(w)), and define L : U → U by

L(u1, u2, u3, u4) = F

(

G1

2B1
,
G2

2B2
,
G3

2B3
,
G4

2B4

)

,

where Gj, j = 1, 2, 3, 4 are defined in Equation (32). Using the Lipschitz properties of the

state and adjoint systems in Theorems 3.1 and 3.3, respectively, we have

‖L(u1, u2, u3, u4) − L(ū1, ū2, ū3, ū4)‖

≡
2
∑

i=1

‖F(ui) − F(ūi)‖L∞(0,tf ) +
4
∑

j=3

∥

∥F(uj) − F(ūj)
∥

∥

L∞(0,τf )

≤
δ

2B1

∥

∥

∥

∥

U(r − p) − Ū(r̄ − p̄) − σ0

(

h

∫ τf

0
i(t, τ) dτ − h̄

∫ τf

0
ī(t, τ) dτ

)

− A4(U − Ū)

∥

∥

∥

∥

L∞(0,tf )

+
δσ0

2B1

∥

∥

∥

∥

∫ τf

0
(i(t, τ)m(t, τ) − ī(t, τ)m̄(t, τ)) dτ

∥

∥

∥

∥

L∞(0,tf )

+
qv

2B2

∥

∥λvU(m(t, 0) − r) − λ̄vŪ(m̄(t, 0) − r̄)
∥

∥

L∞(0,tf )

+
1

2B3

∥

∥k(C)ViT(α2 − α1) − k(C̄)V̄iT̄(ᾱ2 − ᾱ1)
∥

∥

L∞(0,τf )

+
Nvδi

2B4

∥

∥Tiα3 − T̄iᾱ3

∥

∥

L∞(0,τf )

≤
C̃f

2

4
∑

k=1

1

Bk

⎛

⎝

2
∑

i=1

‖ui − ūi‖L∞(0,tf ) +
4
∑

j=3

∥

∥uj − ūj
∥

∥

L∞(0,τf )

⎞

⎠ , (33)
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by Theorems 3.1 and 3.3. The constant C̃f depends on the L∞ bounds of the state and

adjoint solutions, and the Lipschitz constants. If
C̃f

2

∑4
k=1

1
Bk

< 1, then L admits a unique

fixed point (u∗
1 , u

∗
2 , u

∗
3 , u

∗
4). We use theminimizer, (uε

1, u
ε
2, u

ε
3, u

ε
4), from Ekeland’s principle

in Theorem 4.3, and the corresponding states (Tε ,Tε
1 ,V

ε
i ,C

ε , Sε ,Uε ,Vε , iε) and adjoints

(αε
1 ,α

ε
2 ,α

ε
3 ,α

ε
4 , p

ε , rε , hε ,mε) to show that this fixed point is the optimal control quadruple.

Now,

∥

∥

∥

∥

L(uε
1, u

ε
2, u

ε
3, u

ε
4) − F

(

Gε
1 −

√
εκε

1

2B1
,
Gε
2 −

√
εκε

2

2B2
,
Gε
3 −

√
εκε

3

2B3
,
Gε
4 −

√
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Furthermore, we show that (uε
1, u

ε
2, u

ε
3, u

ε
4) → (u∗

1 , u
∗
2 , u

∗
3 , u

∗
4) in (L∞(0, tf ))

2 × (L∞(0,

τf ))
2 as ε → 0+ by using the fixed-point estimate (33) and the estimate from the approxi-

mate minimizer (34). Now,

‖(u∗
1 , u

∗
2) − (uε

1, u
ε
2)‖L∞(0,tf ) + ‖(u∗

3 , u
∗
4) − (uε

3, u
ε
4)‖L∞(0,τf )

=
2
∑

i=1

‖u∗
i − uε

i ‖L∞(0,tf ) +
4
∑

j=3

‖u∗
j − uε

j ‖L∞(0,τf )

=
2
∑

i=1

∥

∥

∥

∥

Fi

(

G∗
i

2Bi

)

− Fi

(

Gε
i −

√
εκε

i

2Bi

)∥

∥

∥

∥

L∞(0,tf )

+
4
∑

j=3

∥

∥

∥

∥

∥

Fj

(

G∗
j

2Bj

)

− Fj

(

Gε
j −

√
εκε

j

2Bj

)∥

∥

∥

∥

∥

L∞(0,τf )

≤
∥

∥L(u∗
1 , u

∗
2) − L(uε

1, u
ε
2)
∥

∥

L∞(0,tf )

+
∥

∥

∥

∥

L(uε
1, u

ε
2) − F

(

Gε
1 −

√
εκε

1

2B1
,
Gε
2 −

√
εκε

2

2B2

)
∥

∥

∥

∥

L∞(0,tf )

+
∥

∥L(u∗
3 , u

∗
4) − L(uε

3, u
ε
4)
∥

∥

L∞(0,τf )

+
∥

∥

∥

∥

L(uε
3, u

ε
4) − F

(

Gε
3 −

√
εκε

3

2B3
,
Gε
4 −

√
εκε

4

2B4

)
∥

∥

∥

∥

L∞(0,τf )

≤
C̃f

2

4
∑

k=1

1

Bk

⎛

⎝

2
∑

i=1
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by Equations (33) and (34). It follows from Equation (35) that
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Finally, we show that (u∗
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4) is a minimizer of J given in Equation (29). Since

the objective functional J is lower semicontinuous, it follows that J(uε
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5. Numerical simulations

In this section, we approximate solutions of the optimality system, consisting of the state

system (6)–(7), adjoint system (23)–(27) and control characterization (30). To approximate

the first-order partial differential equation in our state system, we replace the time deriva-

tive with a forward difference, and the time-since-infection derivative with a backward

difference on a discrete mesh. Since inj is an approximation to the solution of the partial

differential equation (PDE) at time level tn and grid point τj, we approximate the PDE in

i by

∂i(t, τ)

∂t
+ ks

∂i(t, τ)

∂τ
≈

in+1
j+1 − inj+1

�t
+ ks

(

inj+1 − jnj

�τ

)

.

We write a MATLAB code based on the equations in the previous sections, and with the

assumption that�τ = ks�t. To fully implement our numerical scheme for theHIV-opioid

model, we use the forward–backward sweep method [44], whereby solutions to the state

system are obtained using a forward sweep method and solutions to the adjoint system

are obtained using a backward sweep method. The controls are updated using a convex

combination of the previous controls and the values from the characterizations.

Equations (1)–(4) have already been fitted to data and parameters have been identified

in our previous work [25]. In article [25] we fit the model without control to five data

sets: data on the within-host viral load and CD4 cells in monkeys treated with opioid, and
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Figure 1. Simulations for u1-only when u
max
1 = 0.4 and βu = 0.385676 (fitted value).

between host data on AIDS diagnoses, number of deaths due toHIV and number of deaths

due to opioids in theUS and estimate the parameters. To implement our optimality system,

we borrow the parameter values from [25], and assume� = 10,μ = 1/(365 ∗ 78), ks = 1

and σ0 = 0.5 ∗ d0. In what follows, we consider the following control scenarios and we

compare their outcomes.

(A) Only opioid-affected individuals are treated, that is, control u1 is on, and the other

controls are off.

(B) Control measures are taken to reduce the transmission rate of HIV to opioid-affected

individuals, that is, control u2 is on and the other controls are off.

(C) Treatment with medication that prohibits HIV from infecting the target cells such as

entry inhibitors, that is, control u3 is on and the other controls are off.

(D) Control measures are taken to reduce the transmission rate of HIV to opioid-affected

individuals and co-affected individuals are treated with medication that prohibits

HIV from infecting the target cells, that controls u2 and u3 are on and the others

are off.

(E) Opioid-affected individuals are treated and controlmeasures are taken so that opioid-

affected individuals are less prone to getting HIV, that is controls u1 and u2 are on,

the others are off.
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Figure 2. Simulations for u1-only when u
max
1 = 0.4 and βu = 0.1 × 0.385676.

(F) All control strategies are on, that is all controls are on.

We first simulate scenarioAwith umax
1 = 0.4. These results are shown in Figures 1 and 2.

In Figure 1, βu is fixed at its fitted value, and in Figure 2, βu is fixed at 1/10 of its fitted

value. The figures show that opioid treatment decreases the number of opioid cases and

co-affected individuals but leads to an increase in the number of HIV cases. This last effect

is quite pronounced in Figure 1. In the absence of control the HIV-infected decline to zero

(this is the long-term outcome with fitted parameters) but with control the number of HIV

explodes. The optimal control suggests that treatment should be applied at the maximal

possible level regardless of βu. The explosion of HIV cases in the presence of control sug-

gests that the two diseases are in a competitive regime with the fitted parameter values;

suppressing one of them with control leads to an increase in the number of cases of the

other. This is the outcome regardless of βu. In comparison to the case without any form of

control, there is approximately a 3.7% decrease in the number of co-affected individuals

at the end of the time horizon when strategy A is applied. When βu is at 1/10 of its fitted

value, the difference in the susceptible, opioid, HIV and co-affected populations with and

without control is more pronounced compared to the case when βu is at the fitted value.

In scenario B, we apply only control measures which decrease the coefficient

through which opioid-addicted individuals get HIV, namely qv. Without control, the fitted
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Figure 3. Simulations for u2-only when u
max
2 = 0.4 and βu = 0.385676 (fitted value).

value suggested that coefficient qv is much higher than one. Decreasing it with control is

shown in Figures 3 and 4. Both figures are obtained with control u2 being on with maxi-

mum umax
2 = 0.4. In Figure 3, βu is at its fitted value while in Figure 4, βu is at 1/10 of its

fitted value. From both figures we infer that the impact of this control is relatively mini-

mal in the susceptible, opioid and HIV-only populations, but with about a 42% decrease

in the number of co-affected individuals at the end of the time horizon when strategy B is

applied compared to the case with no control. The control can both increase or decrease

opioid cases but in Figure 4, it is clearly seen that it decreases the HIV cases and with about

a 56% decrease in the number of co-affected individuals at the end of the time horizon. The

control also has a significant impact on co-affected individuals in both figures. The impact

of control u2 on co-affected individuals is more pronounced than the impact of control u1
with the fitted value of βu. The optimal control suggests that the measures should gear up

to the maximum quickly and be applied at the maximum possible value for the duration

of the control.

Figures 5 and 6 depict the between-host and within-host impact of control u3. Control

u3 serves as an entry inhibitor, which decreases the infection rate of healthy T cells at the

within-host level. With a maximum control of umax
3 = 0.4, results of simulations shown

in Figure 5 depict a decrease in the within-host infected T cells, Ti, and viral load Vi but

relatively minimal increase in healthy T cells. Unlike in Figure 3 where there is a minimal
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Figure 4. Simulations for u2-only when u
max
2 = 0.4 and βu = 0.1 × 0.385676.

effect in the S, U and V populations with u2-only, Figure 6 shows that at the between-host

level, there is a minimal effect in the S and U populations when strategy C is applied with

the biggest effect of the control in HIV-only infected individuals and co-affected individ-

uals. In HIV-only individuals, the control decreases the peak of the number of infected

individuals, and has a similar effect on the co-affected individuals. The control has almost

no impact on opioid-only affected individuals and susceptible individuals. What is unex-

pected is that the optimal control is at maximal value for about 20 time units and zero for

most of the remaining time suggesting that treatment is optimal with interruptions.

In the remaining Figures, we explore scenarios which combine several controls. In

Figure 7, we explore scenario D, that is, controls u2 and u3 are on and the remaining

controls are off. In this scenario, treatment is applied to co-affected individuals with HIV

medications that prevent the fusion of HIV with target cells and control measures are

applied, designed to decrease the coefficient of infection of opioid-affected individuals with

HIV. Control u2 is a between-host control while control u3 is a within-host control. It is

striking that the effect of this combined control strategy on the between host level is very

similar to the effect of the within-host control u3 only (see Figure 6). Themain difference is

in the level of co-affected individuals whose density is further decreased; there is approx-

imately a 47% decrease in the number of co-affected individuals at the end of the time
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Figure 5. Simulations of the within-host model for u3-only when u
max
3 = 0.4.

horizon when strategy D is applied compared to the case with no control. For the opti-

mal control, control u2 should be applied at maximal level within the first 80 time units.

The optimal control u3 is very similar as in scenario C. The optimal control u3 should be

applied at maximum between approximately 20 and 60 time units and then it should be at

or near zero the remaining time.

In Figure 8, we simulate scenario E. In scenario E the between-host controls u1 and

u2 are on and the within-host controls are off. The results of these simulations are very

similar to the results of simulations with scenario A. The controls increase the number of

susceptible individuals and decrease the number the opioid-only affected individuals. The

biggest impact of this control scenario is on HIV-only infected individuals which increase

with controls while going to zero without the controls. Co-affected individuals are also

very impacted by the between-host controls with their density dropping to 47% from its

uncontrolledmaximum relative to 3.7%when strategy A is applied, as depicted in Figure 1.

The optimal controls are at themaximum value for the duration they are applied. Themain

difference between the results in scenario A and scenario E are in the density of co-affected

individuals. Their density is significantly reduced with the controls in scenario E.

Finally, we explore scenario F in Figure 9. In scenario F, all controls are on with umax
1 =

0.3 and umax
2 = umax

3 = umax
4 = 0.4. The outcomes of the application of all four controls are

complex. The susceptible individuals are increased. However, both the opioid-only indi-

viduals and the HIV-only individuals are impacted one way until some threshold time t∗

and then they are impacted the other way. In particular, the number of opioid-only indi-

viduals is decreased till time unit 70 or so and then it is increased. The number of HIV-only
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Figure 6. Simulations of the between-host model for u3-only when u
max
3 = 0.4.

individuals is also decreased but until time unit 18 or so and then it is increased by the con-

trols. The maximum of the density of the co-affected individuals is decreased maximally

compared to all control scenarios we explored, with approximately a 53% decrease in the

number of co-affected individuals at the end of the time horizon. The optimal control of

each control is different but most controls need to be applied at maximum for some dura-

tion of time and then switched off. In particular, controls u1 and u2 are applied atmaximum

until time unit 80, and then turned off. Control u3 is applied at maximum for time units

between 20 and 40 and gradually turned off. Control u4 is applied at maximum until time

unit 90 and then gradually turned off.

Direct comparison of all strategies suggests that the best strategy is strategy F with all

controls applied. This means that treating HIV-infected individuals and opioid-addicted

individuals has to be coupled with control measures that reduce the propensity of opioid-

addicted individuals to get HIV. This conclusion is further ascertained by evaluating the

values of the objective functional in Equation (8) for strategiesA, B,C,D, E and F, depicted

in Table 1.

Strategy F has the lowest value of the objective functional, followed by strategy D.

Previously, we have reported that treating opioid-addicted individuals and reducing HIV

infection of opioid-addicted individuals is the best strategy [25], which corresponds to

strategy D. Here, we find that in terms of optimal strategies, combining the two measures
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Figure 7. Simulations of the between-host model when umax
2 = u

max
3 = 0.4.

Table 1. Values of the objective functional for different strategies.

Strategy A B C D E F

Values ofJ 1.4410 × 108 1.1189 × 108 1.3903 × 108 1.0022 × 108 1.0048 × 108 8.7781 × 107

in strategyD with HIV treatment is expected to reduce the number of affected individuals

better.

6. Discussion

We developed a multi-scale model of HIV and opioid epidemics to get a comprehensive

understanding of how these two diseases interact with each other [25,26]. The multi-scale

model includes HIV and opioid dynamics at within-host and between-host scales. In this

study, we apply the optimal control theory to the multi-scale model of the two diseases and

evaluate the control measures adopted against HIV and opioid at both scales.

Our previous study with a single-scale model of the two epidemics suggested that the

most effective control measures are preventing the opioid abuse (u1(t)) and reducing the

HIV risk among opioid users (u2(t)). While (u1(t)) and (u2(t)) are the population-level

control approaches, the most effective defense strategy against HIV, the anti-retro-viral
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Figure 8. Simulations of the between-host model when umax
1 = u

max
2 = 0.4.

therapy (ART), as it is described by CDC acts at the within-host level. We used two con-

trol measures at this scale, antiviral therapy preventing the HIV from entering target cells

(u3(t)) and antiviral therapy preventing the infected target cells from producing new HIV

particles (u4(t)). While other control strategies against HIV and opioid addiction are pos-

sible, we focus on these four as the most promising control strategies in combating the two

diseases.

We formulated an optimal control problemwith the objective ofminimizing the number

of infected, addicted and co-affected individuals as well as the cost of the control strategies.

We first proved that the states of the multi-scale model are Lipschitz as a function of the

controls u1, u2, u3, u4. Then we proved the existence and uniqueness of the optimal control

strategy using Ekeland’s principle.

Our numerical simulations show that when only opioid-addicted individuals are

treated, the number of opioid users and the co-affected individuals decrease, but that

strategy leads to an increase in the number of HIV-infected individuals. This outcome is

unexpected, since in the absence of control the number of HIV-infected individuals drops

to zero, but with this control strategy the number of HIV-infected individuals increases.

This might be due to the fact that the two diseases, HIV and opioid are in competition,

suppressing one leads to increase in the other. When we reduced the risk of an opioid user

being infected with HIV, this second control strategy impact on the opioid and HIV-only
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Figure 9. Simulations of the between-host model when umax
1 = 0.3, umax

2 = u
max
3 = u

max
4 = 0.4.

populations is minimal, but its impact on the co-affected populations is significant. The

effect of the control u2 on the opioid population is not clear; depending on the addic-

tion rate, βu, we observe both an increase and decrease in the number of opioid users.

In comparing the two population levels controls, u1 and u2, we notice that u2 has more

pronounced effect on the co-affected population.

When co-affected individuals receive entry inhibitor antiviral medication, we observe

a decrease in both the co-affected and HIV-only populations. Antiviral treatment of co-

affected individuals, in particular, lowers the peak number of HIV-infected population,

which is an important public health goal. If the antiviral therapy is combinedwith reducing

the risk of HIV in opioid users, we again observe a decrease in both the co-affected and

HIV-only populations.

The maximal reduction in co-affected individuals is observed when multiple controls

are active, that is in the cases when u2 and u3 are simultaneously active or when u1 and u2
are simultaneously active. When u2 and u3 are simultaneously active, the HIV-only pop-

ulation declines to zero with or without the controls but the opioid-addicted population

experiences no decline. When u1 and u2 are simultaneously active, the opioid population

experiences decline but theHIV-only population increases after a period of decrease. These

two opposing effects are best combined when all four controls are active.With all four con-

trols active, the co-affected population experiences maximum decline, the opioid-addicted

population declines and the ultimate increase in the HIV-only population is reduced. Thus

we suggest that our best strategy among the ones investigated is the strategy where all four

controls are active. In other words, from a public heath perspective, it is best to treat opioid-

addicted individuals, treat co-affected individuals with ART, and prevent opioid addicted

individuals from contracting HIV.
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