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Abstract. For a nonlinear dynamical system that depends on parameters, this paper introduces
a novel tensorial reduced-order model (TROM). The reduced model is projection-based, and for
systems with no parameters involved, it resembles proper orthogonal decomposition (POD) combined
with the discrete empirical interpolation method (DEIM). For parametric systems, TROM employs
low-rank tensor approximations in place of truncated SVD, a key dimension-reduction technique
in POD with DEIM. Three popular low-rank tensor compression formats are considered for this
purpose: canonical polyadic, Tucker, and tensor train. The use of multilinear algebra tools allows
the incorporation of information about the parameter dependence of the system into the reduced
model and leads to a POD-DEIM type ROM that (i) is parameter-specific (localized) and predicts
the system dynamics for out-of-training set (unseen) parameter values, (ii) mitigates the adverse
effects of high parameter space dimension, (iii) has online computational costs that depend only
on tensor compression ranks but not on the full-order model size, and (iv) achieves lower reduced
space dimensions compared to the conventional POD-DEIM ROM. This paper explains the method,
analyzes its prediction power, and assesses its performance for two specific parameter-dependent
nonlinear dynamical systems.
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1. Introduction. The numerical solution of parametric dynamical systems is a
common problem in areas such as numerical optimal control, shape optimization, in-
verse modeling, and uncertainty quantification. If the system is described by a set of
evolutionary nonlinear partial differential equations (PDEs), then a straightforward
approach that involves repeatedly solving a fully resolved discrete model for various
parameter values can result in overwhelming computational costs. Reduced-order
models (ROMs) offer a possibility to alleviate these costs by replacing the fully re-
solved model, also referred to as the full-order model (FOM), with a low-dimensional
surrogate model [3, 18].

Reduced-order modeling for parametric dynamical systems has already attracted
considerable attention, as seen in works such as [8, 21, 11, 4, 7, 10]. This paper con-
tributes to the topic with a novel projection-based ROM that extends the ideas of
proper orthogonal decomposition (POD) and discrete empirical interpolation method
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1851

(DEIM) ROMs [31, 39, 13] to parametric systems using concepts and tools from tensor
algebra. We refer to this approach as ``tensorial reduced-order modeling"" (TROM).

In general, a projection-based ROM constructs the surrogate model by project-
ing the high-fidelity FOM onto a low-dimensional problem-dependent vector space
[8]. This space is computed from information provided by FOM solutions sampled at
specific time instances and parameter values, often referred to as solution snapshots.
When dealing with multiple and varying parameters, it can be challenging, or even
impossible, to build a universal low-dimensional space that adequately represents so-
lutions for all times and parameters of interest while still achieving sufficient order
reduction. TROM addresses this problem by using a ``low-rank tensor decomposition""
(LRTD) in place of truncated singular value decomposition (SVD), a key dimension-
reduction technique in both POD and DEIM. Similar to SVD, LRTD provides an
orthogonal basis for a ``universal"" reduced-order space that can be sufficiently large
to approximate the space of all observed snapshots. However, tensor low-rank repre-
sentations also preserve information about the parameter dependence in this universal
space, something that SVD/POD fail to offer. For any incoming parameter value, not
necessarily from the training set, TROM uses this additional information to find a
``parameter-specific"" local reduced space, which is a low-dimensional subspace of the
universal ROM space.

According to the outline above, dimension reduction in TROM is a two-stage
process. In the first, ``offline"" stage, two approximate LRTDs are computed: one
for the tensor of solution snapshots and another for the tensor of snapshots of the
nonlinear term of the dynamical system. The second LRTD is required for a hyper-
reduction DEIM-type method. The system is then projected onto the universal space
provided by the first LRTD, and DEIM is performed using the universal space of the
second LRTD. The resulting significantly reduced but still relatively large projected
system is then passed to the next stage along with certain information about both
LRTDs needed to compute the local reduced bases. In the second, ``online"" stage, for a
given incoming vector of parameters, TROM computes bases for the local parameter-
specific subspaces. These orthogonal bases are represented by their coordinates in
the universal spaces. This allows for easy projection of the system onto the local
reduced subspace and for performing a second (local) step of hyper-reduction. As
demonstrated below, computation of local reduced bases and projection onto the
local subspaces during the online stage involves operations only with low-dimensional
matrices and vectors, making it fast. The distinguishing features of TROM are as
follows: (i) it finds ``parameter-specific"" (local) reduced spaces during the online stage;
(ii) the additional online costs are small and depend only on tensor ranks, not on the
FOM resolution; (iii) depending on the low-rank tensor compression format used, the
adverse effects of parameter space dimension can be mitigated; and (iv) reduced space
dimensions are lower compared to the traditional POD--DEIM ROM for the same or
better accuracy.

The concept of tensorial ROM was introduced recently in [32]. That paper ex-
plained the computation of universal and local projection spaces for three popular
low-rank tensor formats (canonical polyadic, Tucker, and tensor train) and applied
the method to two parameterized linear systems. This paper extends TROM for
reduced-order modeling of nonlinear systems, which requires the application of a
hyper-reduction technique, and introduces the concept of a tensor two-stage DEIM.
We show that finding a local parameter-dependent representation of the nonlinear
terms can be done in two stages, including LRTD in the offline stage and low-
dimensional computations in the online stage. We provide an interpolation estimate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

4/
24

 to
 1

29
.7

.1
58

.4
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



A1852 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

for tensorial DEIM in terms of tensor decomposition accuracy, interpolation bounds
in the parameter domain, and singular values of some local matrices.

The literature on tensor methods in reduced-order modeling of dynamical systems
is rather limited. In addition to [32], we mention two papers [33, 34] that review tensor
compressed formats and discuss their possible use for sparse function representation
and reduced-order modeling, as well as a series of publications on the tensorization of
algebraic systems resulting from the stochastic and parametric Galerkin finite element
method; see, e.g., [9, 5, 6, 28, 27]. In [23], a POD-ROM was combined with an LRTD
of a mapping from parameter space onto an output domain. Different approaches to
making projection-based ROMs parameter-specific can be found in [17, 16, 2, 1, 40].

The rest of this paper is organized into six sections. Section 2 sets up the problem
of interest. Section 3 summarizes the standard POD-DEIM ROM. Section 4 intro-
duces the necessary tensor algebra preliminaries and reviews the concept of tensor
rank. Section 5 explains TROM. Section 6 addresses the analysis of TROM, includ-
ing the representation capacity of local reduced spaces and the interpolation property
of tensorial DEIM. Finally, section 7 assesses the performance of TROM for two ex-
amples of parameterized dynamical systems and compares it to that of the standard
POD--DEIM ROM.

Notation conventions. The TROM and its analysis involve vectors, matrices,
and tensors tailored to the full model, the reduced model, and some intermediate
constructions. To assist the reader in navigating through the paper, we follow several
notation conventions: we use lowercase letters for scalars, bold lowercase letters for
vectors, upright capital letters for matrices, and all tensors will be denoted with bold
uppercase letters (e.g., v is a scalar, v is a vector, V is a matrix, and V would be a
tensor). For dimensions associated with the full-order model, we use uppercase Latin
letters like N , M , K, K1, and so on. To denote low-rank approximations of full-order
tensors and related quantities, we use the tilde symbol. For example, if \Phi is a full-
order tensor, then \widetilde \Phi represents its low-rank approximation. We may also use \widetilde N , \widetilde M ,
or \widetilde R1, and so forth to denote tensor ranks. Vector spaces are denoted by uppercase
Latin letters such as V , U , Y , and so on (Note: these should not be confused with
upright capitals V, U, Y used for matrices). We reserve the letter ``n"" to represent
the final reduced dimension of a ROM. When it's necessary to distinguish between
the final reduced dimensions of the ROM projection and DEIM interpolation spaces,
we use n\Phi and n\Psi , respectively.

2. Problem formulation. The TROM framework we develop applies to steady-
state and evolutionary systems arising from PDEs depending on parameters. We for-
mulate the problem in the form of a general nonlinear dynamical system. Specifically,
for a given \bfitalpha = (\alpha 1, . . . , \alpha D) from the parameter domain \scrA \subset RD, find the trajectory
u= u(t,\bfitalpha ) : [0, T )\rightarrow RM solving

ut =A\bfitalpha u+ f\bfitalpha (t,u), t\in (0, T ), and u| t=0 = u0,(2.1)

with parameter dependent matrix A\bfitalpha \in RM\times M , continuous flow field f\bfitalpha : (0, T ) \times 
RM \rightarrow RM , and an initial condition u0. We assume that the unique solution exists
on (0, T ) for all \bfitalpha \in \scrA .

One can think about (2.1) as a system of ODEs resulting from a spatial discretiza-
tion of a (nonlinear) parabolic problem, where the coefficients, boundary conditions,
or the computational domain (through a mapping into a reference domain) are pa-
rameterized by \bfitalpha .
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1853

Our focus is on a projection-based ROM, where, for any given \bfitalpha \in \scrA , we seek an
approximation to u(\bfitalpha ) by solving a lower-dimensional system of equations obtained
by projecting (2.1) onto a reduced space, known as the ROM space. For effective
order reduction, it is essential that the ROM space is both problem-dependent and
specific to \bfitalpha .

Among the projection-based approaches for model reduction in time-dependent
differential equations, one of the most common techniques is proper orthogonal de-
composition enhanced with the discrete empirical interpolation method (POD--DEIM)
to handle nonlinear terms [24, 37, 29, 30]. We provide an outline of the POD--DEIM
ROM below for reference and for the purpose of comparison in section 7. Addition-
ally, reviewing the POD--DEIM ROM is instructive since the Tensorial Reduced Order
Modeling (TROM) can be viewed as a natural extension of POD--DEIM to parametric
problems.

3. Model reduction via POD--DEIM. Here we recap the conventional POD--
DEIM ROM for non-linear systems adapted for the parametric case. Consider a train-
ing set of K parameters sampled from the parameter domain, \widehat \scrA := \{ \widehat \bfitalpha 1, . . . , \widehat \bfitalpha K\} \subset \scrA .
Hereafter we use hats to denote parameters from the training set \widehat \scrA . At the first offline
stage of POD--DEIM, one computes through FOM numerical simulations a collection
of solution snapshots

\bfitphi j(\widehat \bfitalpha k) = u(tj , \widehat \bfitalpha k)\in RM , j = 1, . . . ,N, k= 1, . . . ,K,(3.1)

and non-linear term snapshots

\bfitpsi j(\widehat \bfitalpha k) = f\widehat \bfitalpha k
(tj ,u(tj , \widehat \bfitalpha k))\in RM , j = 1, . . . ,N, k= 1, . . . ,K,(3.2)

further referred to as u- and f -snapshots, respectively, at times 0\leq t1 \leq \cdot \cdot \cdot \leq tN \leq T ,
and for \widehat \bfitalpha k from the training set \widehat \scrA . For a desired reduced space dimension n\ll M , one
computes the reduced space basis \{ upod

i \} ni=1 \subset RM , referred to as the POD basis, such
that the projection subspace span

\bigl\{ 
upod
1 , . . . ,upod

n

\bigr\} 
approximates the space spanned

by all u-snapshots in the best possible way. This is achieved by assembling the matrix
of all u-snapshots

\Phi pod = [\bfitphi 1(\bfitalpha 1), . . . ,\bfitphi N (\bfitalpha 1), . . . ,\bfitphi 1(\bfitalpha K), . . . ,\bfitphi N (\bfitalpha K), ]\in RM\times NK(3.3)

and computing its SVD

\Phi pod =U\Sigma VT .(3.4)

Then, the POD reduced basis vectors upod
i , i = 1, . . . , n, are taken to be the first n

left singular vectors of \Phi pod, i.e., the first n columns of U or in MATLAB notation
Upod =U:,1:n.

At the second online stage, the POD--ROM solution urom is found through its
vector of coordinates \bfitbeta in the space range(Upod), i.e., u

rom =Upod\bfitbeta , which solves the
projected system

\bfitbeta t =UT
podA\bfitalpha Upod\bfitbeta +UT

podf\bfitalpha (t,Upod\bfitbeta ), t\in (0, T ), and \bfitbeta | t=0 =UT
podu0.

(3.5)

While the precomputation of the projected matrix UT
podA\bfitalpha Upod during the off-

line stage enables fast matrix-vector multiplications for evaluating (3.5), efficiently
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A1854 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

evaluating the nonlinear term in (3.5) during the online stage is generally challeng-
ing. The discrete empirical interpolation method (DEIM) addresses this challenge
effectively. In this widely-used hyper-reduction technique, the nonlinear term is ap-
proximated within a lower-dimensional subspace of span\{ \psi j(\bfitalpha k)\} j=1,...,N,k=1,...,K ,
the space spanned by all FOM f -snapshots. SVD is employed to find the basis
\{ ypod

i \} ni=1 \subset RM for this subspace, where ypod
i represents the ith left singular vector

of the matrix:

\Psi pod = [\bfitpsi 1(\bfitalpha 1), . . . ,\bfitpsi N (\bfitalpha 1), . . . ,\bfitpsi 1(\bfitalpha K), . . . ,\bfitpsi N (\bfitalpha K)]\in RM\times NK ,(3.6)

comprising all f -snapshots. To ease notation, also take n first left singular vectors of
(3.6) to form Ypod = [ypod

1 , . . . ,ypod
n ]. For stability and accuracy considerations, it's

possible for Ypod and Upod to contain different numbers of vectors. In such cases, we
refer to these dimensions as n\Psi and n\Phi , respectively. We refer to range(Ypod) as the
POD--DEIM reduced f -space and the columns of Ypod as the POD--DEIM reduced
f -basis. Then, DEIM approximates the nonlinear term of (2.1) via

f\bfitalpha (t,u)\approx Ypod(P
TYpod)

 - 1PT f\bfitalpha (t,u),(3.7)

where the ``selection"" matrix is defined as

P=P(\bfiteta ) := [e\eta 1 , . . . ,e\eta n ]\in RM\times n.(3.8)

This matrix, P, is constructed so that for any f \in RM , the vector PT f contains
n entries selected from f with indices \bfiteta = [\eta 1, . . . , \eta n]

T \in Rn. DEIM determines \bfiteta 
entirely based on the information within Ypod using a greedy algorithm, as detailed
in [13].

The singular values of \Phi pod and \Psi pod provide information about the representa-

tion power of span\{ upod
1 , . . . ,upod

n \} and span\{ ypod
1 , . . . ,ypod

n \} , respectively. In partic-
ular, the following estimate holds

K\sum 
k=1

N\sum 
i=1

\bigm\| \bigm\| \bigm\| \bigm\| \bfitphi i(\bfitalpha k) - 
n\sum 

j=1

\Bigl\langle 
\bfitphi i(\bfitalpha k),u

pod
j

\Bigr\rangle 
upod
j

\bigm\| \bigm\| \bigm\| \bigm\| 2
\ell 2
\leq 

NK\sum 
j=n+1

\sigma 2
i (\Phi pod)(3.9)

for representation of the solution states, and similarly for ypod
j and f -snapshots

\bfitpsi i(\bfitalpha k).
Summarizing, the POD--DEIM ROM of (2.1) takes the form

\bfitbeta t =UT
podA\bfitalpha Upod\bfitbeta + (UT

podYpod)(P
TYpod)

 - 1PT f\bfitalpha (t,Upod\bfitbeta ), t\in (0, T ),(3.10)

with the initial condition \bfitbeta | t=0 = UT
podu0 for \bfitbeta (t) : [0, T ] \rightarrow Rn so that u(t) is

approximated by urom(t) : [0, T ]\rightarrow span\{ upod
1 , . . . ,upod

n \} , where urom(t) =Upod\bfitbeta (t).
A key requirement for the efficient evaluation of the nonlinear term is that for a

fixed t and u\in RM , an arbitrary given entry fi of vector f\bfitalpha can be computed quickly,
with costs independent of dimensionsM and N . To meet this requirement, we assume
that each fi depends on a few entries of u, i.e., fi(t,u) = fi(t, up1(i), . . . , upC(i)), with
C independent on M and N .

Please note that the POD--DEIM reduced bases capture cumulative rather than
localized information about the dependence of u- and f -snapshots on \bfitalpha . Without this
parameter-specificity, both bases may lack robustness for parameter values outside
the training set, and this limitation can even apply to in-sample parameters if the
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1855

reduced dimension is not sufficiently high. In other words, POD--DEIM bases might
not perform well away from the reference FOM simulations. This poses a significant
challenge when applying POD-based ROMs in tasks like inverse modeling. To address
this challenge, we introduce tensor techniques with the aim to preserve the information
about parameter dependence in lower-dimensional spaces and next to benefit from it
at the online stage. We continue with some preliminaries from multilinear algebra.

4. Multilinear algebra preliminaries and tensor decompositions. As-
sume that the parameter domain \scrA is the D-dimensional box

\scrA =
D\bigotimes 
i=1

[\alpha min
i , \alpha max

i ].(4.1)

Also, let the training set \widehat \scrA be a Cartesian grid: distribute Ki nodes \{ \widehat \alpha j
i\} j=1,...,Ki

within each of the intervals [\alpha min
i , \alpha max

i ] in (4.1) for i= 1, . . . ,D, and let

\widehat \scrA =
\Bigl\{ \widehat \bfitalpha = (\widehat \alpha 1, . . . , \widehat \alpha D)T : \widehat \alpha i \in \{ \widehat \alpha j

i\} j=1,...,Ki
, i= 1, . . . ,D

\Bigr\} 
.(4.2)

The cardinality of \widehat \scrA is obviously K =
\prod D

i=1Ki.
Given the structure (4.2) of the training set, the FOM solution u- and f -snapshots

are naturally organized in the multidimensional arrays

(\Phi ):,j1,...,jD,k =\bfitphi k(\widehat \alpha j1
1 , . . . , \widehat \alpha jD

D ), (\Psi ):,j1,...,jD,k =\bfitpsi k(\widehat \alpha j1
1 , . . . , \widehat \alpha jD

D ),(4.3)

which are tensors of order D+2 and size M \times K1 \times \cdot \cdot \cdot \times KD \times N , i.e., ji = 1, . . . ,Ki,
i= 1, . . . ,D, k= 1, . . . ,N . We reserve the first and last indices of \Phi , \Psi for dimensions
corresponding to the spatial and temporal resolution, respectively.

Throughout the rest of this section, \Theta is a generic tensor of the same order and
size as the u- and f -snapshots tensors. Unfolding of \Theta is reordering of its elements
into a matrix. If all 1st-mode fibers of \Theta , i.e., all vectors (\Theta ):,j1,...,jD,k \in RM , are
organized into columns of a M \times NK matrix, we get the 1st-mode unfolding matrix,
denoted by \Theta (1). A particular ordering of the columns in \Theta (1) is not important for
the purposes of this paper. Thus, \Phi pod and \Psi pod are 1st-mode unfolding matrices of
tensors \Phi and \Psi . We seek to replace the (truncated) SVDs of \Phi pod and \Psi deim with
low-rank approximations of \Phi and \Psi directly in tensor format.

Unlike the matrix case, the notion of tensor rank is ambiguous. The problem
of defining a tensor rank(s) has been extensively addressed in the literature; see,
e.g., [19]. For our purpose we choose three tensor formats which lead to different
definitions of a rank and offer three compressed tensor representations or LRTD.
These three formats: canonical polyadic (CP), Tucker (a.k.a. high-order singular value
decomposition, HOSVD), and tensor train (TT), are recalled below.

In the CP format [22, 12, 25, 26], one represents a tensor \Theta by the sum of R
outer products of D+ 2 vectors ur \in RM , \bfitsigma r

i \in RKi , i= 1, . . . ,D, and vr \in RN ,

\Theta \approx \widetilde \Theta =

\widetilde R\sum 
r=1

ur \circ \bfitsigma r
1 \circ \cdot \cdot \cdot \circ \bfitsigma r

D \circ vr.(4.4)

Here \widetilde R is the so-called CP-rank and an outer product of d vectors a(j) \in RNj is defined
as an N1\times \cdot \cdot \cdot \times Nd rank one tensorA= a(1)\circ \cdot \cdot \cdot \circ a(d) with entriesAi1...id = a

(1)
i1
. . . a

(d)
id

.
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A1856 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

The HOSVD represents a tensor \Theta in the Tucker format [41, 26]:

\Theta \approx \widetilde \Theta =

\widetilde M\sum 
j=1

\widetilde K1\sum 
q1=1

\cdot \cdot \cdot 
\widetilde KD\sum 

qD=1

\widetilde N\sum 
k=1

(C)j,q1,...,qD,ku
j \circ \bfitsigma q1

1 \circ \cdot \cdot \cdot \circ \bfitsigma qD
D \circ vk,(4.5)

with a core tensor C and vectors uj \in RM , \bfitsigma qi
i \in RKi , and vk \in RN . The sizes of core

tensor in all dimensions, i.e., \widetilde M , \widetilde K1, \cdot \cdot \cdot , \widetilde KD and \widetilde N , are referred to as Tucker ranks
of \widetilde \Theta .

Finally, the TT decomposition [36] represents a tensor in the TT-format:

\Theta \approx \widetilde \Theta =

\widetilde R1\sum 
j1=1

\cdot \cdot \cdot 
\widetilde RD+1\sum 

jD+1=1

uj1 \circ \bfitsigma j1,j2
1 \circ \cdot \cdot \cdot \circ \bfitsigma jD,jD+1

D \circ vjD+1 ,(4.6)

with uj1 \in RM , \bfitsigma 
ji,ji+1

i \in RKi , and vjD+1 \in RN , where the positive integers \widetilde Ri are
referred to as the compression ranks (or TT-ranks) of the decomposition. For higher
order tensors the TT format is, in general, more efficient compared to HOSVD. This
may be beneficial for larger D. Note that unlike CP or HOSVD formats, compression
ranks of TT decomposition may depend on the order in which the snapshots are
organized in tensors \Phi and \Psi . Throughout this paper we use the ordering as in (4.3).
However, a different order may decrease the compression ranks further.

All three decompositions can be viewed as extensions of SVD to multidimensional
arrays but having different numerical and compression properties. In particular, find-
ing the best approximation of tensor by a fixed-ranks tensor in Tucker and TT format
is a well-posed problem with constructive algorithms known to deliver quasi-optimal
solutions [14, 36]. Furthermore, using these algorithms based on truncated SVD for
a sequence of unfolding matrices, one may find \widetilde \Theta (in Tucker or TT format) that
satisfies \bigm\| \bigm\| \widetilde \Theta  - \Theta 

\bigm\| \bigm\| 
F
\leq \varepsilon 
\bigm\| \bigm\| \Theta \bigm\| \bigm\| 

F
(4.7)

for given \varepsilon > 0. Corresponding Tucker or TT ranks are then recovered in the course
of factorization. Here and further, \| \Theta 

\bigm\| \bigm\| 
F

denotes the tensor Frobenius norm, which
is simply the square root of the sum of the squares of all entries of \Theta .

The k-mode tensor-vector product \Theta \times k a of a tensor \Theta \in RN1\times \cdot \cdot \cdot \times Nm of order m
and a vector a\in RNk is a tensor of orderm - 1 and sizeN1\times \cdot \cdot \cdot \times Nk - 1\times Nk+1\times \cdot \cdot \cdot \times Nm:

(\Theta \times k a)j1,...,jk - 1,jk+1,...,jm =

Nk\sum 
jk=1

\Theta j1,...,jmajk .(4.8)

Analogously, the k-mode tensor-matrix product \Theta \times k A of a tensor \Theta \in RN1\times \cdot \cdot \cdot \times Nm

and a matrix A \in RJ\times Nk is a tensor of order m and size N1 \times \cdot \cdot \cdot \times Nk - 1, J,Nk+1 \times 
\cdot \cdot \cdot \times Nm:

(\Theta \times k A)j1,...,jk - 1,i,jk+1,...,jm =

Nk\sum 
jk=1

\Theta j1,...,jmaijk .(4.9)

In what follows we assume that \widetilde \Phi and \widetilde \Psi are compressed representations of u-
and f -snapshot tensors \Phi and \Psi , respectively, in one of the formats discussed above.
To minimize notation burden, we assume they satisfy (4.7) with some \varepsilon which is the
same for both \Phi and \Psi compression.
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1857

5. TROM for nonlinear dynamical systems.

5.1. Universal and local reduced spaces. Each of the two stages of the
TROM algorithm is associated with distinct reduced spaces. The reduced spaces
computed during the offline stage are referred to as the ``universal"" reduced spaces,
while the ``local"" reduced spaces are employed in the online stage. We will describe
both types of reduced spaces below.

Universal reduced spaces are the spans of all 1st-mode fibers of the compressed
tensors, i.e., \widetilde U = range

\bigl( \widetilde \Phi (1)

\bigr) 
and \widetilde Y = range

\bigl( \widetilde \Psi (1)

\bigr) 
.(5.1)

The dimension of \widetilde U is equal to the first Tucker or TT rank of \widetilde \Phi (if Tucker or TT
formats are used) and it does not exceed R for the CP compression format. We also
denote by U and Y the matrices with columns that form orthonormal bases for \widetilde U and\widetilde Y , respectively.

The universal spaces represent all observed u- and f -snapshots up to the tensor
compression accuracy. Indeed, let U= [u1, . . . ,u \widetilde N ], where \widetilde N =dim(\widetilde U), then it holds
that

K\sum 
k=1

N\sum 
i=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitphi i(\bfitalpha k) - 
\widetilde N\sum 

j=1

\langle \bfitphi i(\bfitalpha k),uj\rangle uj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\ell 2

(5.2)

=
\bigm\| \bigm\| (I - UUT )\times 1 \Phi 

\bigm\| \bigm\| 2
F
=
\bigm\| \bigm\| \bigm\| (I - UUT )\times 1

\Bigl( 
\Phi  - \widetilde \Phi \Bigr) \bigm\| \bigm\| \bigm\| 2

F

\leq 
\bigm\| \bigm\| I - UUT

\bigm\| \bigm\| 2 \bigm\| \bigm\| \bigm\| \Phi  - \widetilde \Phi \bigm\| \bigm\| \bigm\| 2
F
\leq 
\bigm\| \bigm\| \bigm\| \Phi  - \widetilde \Phi \bigm\| \bigm\| \bigm\| 2

F
\leq \varepsilon 2

\bigm\| \bigm\| \Phi \bigm\| \bigm\| 2
F
,

where we used \| A\times kB\| F = \| AB(k)\| F \leq \| A\| \| B(k)\| F = \| A\| \| B\| F for a matrix A and
a tensor B of compatible sizes, and spectral matrix norm \| \cdot \| . We also used \| P\| = 1
for the orthogonal projection matrix P= I - UUT .

The bound (5.2) and a similar bound for f -snapshots resembles the POD optimal
representation property (3.9). Universal spaces \widetilde U and \widetilde Y can be seen as TROM coun-
terparts of POD--DEIM ROM spaces Upod and Ypod In fact, if SVD-based algorithms
from [14, 36] are applied to find \Psi and \Phi in Tucker or TT-formats, then it holds that\widetilde U = Upod and \widetilde Y = Ypod if \widetilde N = npod and the same training set is used for both POD

and TROM. The advantage of LRTD over POD is that \widetilde \Phi and \widetilde \Psi contain information
about variation of u- and f -snapshots with respect to \bfitalpha . This additional information
enables us to find the subspaces of \widetilde U and \widetilde Y referred to as local reduced spaces that
are best suitable for the representation of u(t,\bfitalpha ) and f\bfitalpha (t,u(t,\bfitalpha )) for any specific
\bfitalpha \in \scrA . These local reduced spaces are then used for online TROM's stage. Their
dimensions can be (much) lower than the dimensions of \widetilde U and \widetilde Y , thus the universal
spaces can be allowed to be sufficiently large (by choosing \varepsilon small enough) to accu-
rately represent all u- and f -snapshots without any decrease of ROM performance at
the online stage.

To define parameter-specific local reduced spaces for an arbitrary \bfitalpha = (\alpha 1, . . . ,
\alpha D)T \in \scrA , we need an interpolation procedure in parameter domain

ei : \bfitalpha \rightarrow RKi , i= 1, . . . ,D.(5.3)

such that for a smooth function g : [\alpha min
i , \alpha max

i ]\rightarrow R one approximates

g(\alpha i)\approx 
Ki\sum 
j=1

eij(\bfitalpha )g(\widehat \alpha j
i ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

4/
24

 to
 1

29
.7

.1
58

.4
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



A1858 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

where ei(\bfitalpha ) = (ei1(\bfitalpha ), . . . , e
i
Ki

(\bfitalpha ))T , and \widehat \alpha j
i , j = 1, . . . ,Ki, are the grid nodes on

[\alpha min
i , \alpha max

i ]. In this paper we consider (5.3) corresponding to Lagrange interpolation

of order p - 1: for a given \bfitalpha \in \scrA let \widehat \alpha i1
i , . . . , \widehat \alpha ip

i be the p closest grid nodes to \alpha i in
[\alpha min

i , \alpha max
i ], for i= 1, . . . ,D, then

eij(\bfitalpha ) =

\left\{       
p\prod 

m=1,
m\not =k

(\widehat \alpha im
i  - \alpha i)

\Big/ p\prod 
m=1,
m\not =k

(\widehat \alpha im
i  - \widehat \alpha j

i ) if j = ik \in \{ i1, . . . , ip\} ,

0 otherwise,

(5.4)

Lagrange interpolation is not the only possible option, of course.
With the help of (5.3) we introduce the local snapshot matrices \widetilde \Phi (\bfitalpha ) and \widetilde \Psi (\bfitalpha )

via the following ``extraction--interpolation"" procedure:\widetilde \Phi (\bfitalpha ) = \widetilde \Phi \times 2 e
1(\bfitalpha )\times 3 e

2(\bfitalpha ) \cdot \cdot \cdot \times D+1 e
D(\bfitalpha )\in RM\times N ,(5.5) \widetilde \Psi (\bfitalpha ) = \widetilde \Psi \times 2 e

1(\bfitalpha )\times 3 e
2(\bfitalpha ) \cdot \cdot \cdot \times D+1 e

D(\bfitalpha )\in RM\times N .

If \bfitalpha = \widehat \bfitalpha \in \widehat \scrA is a parameter from the training set, then ei(\widehat \bfitalpha ) encodes the position of\widehat \alpha i among the grid nodes on [\alpha min
i , \alpha max

i ]. Therefore, for \varepsilon = 0 the matrices \widetilde \Phi (\widehat \bfitalpha ), \widetilde \Psi (\widehat \bfitalpha )
are exactly the matrices of all u- and f -snapshots for the particular \widehat \bfitalpha (``extraction"").
Otherwise, for a general \bfitalpha \in \scrA matrices \widetilde \Phi (\bfitalpha ), \widetilde \Psi (\bfitalpha ) are the result of interpolation
between precomputed snapshots.

Finally, we have all the required pieces to define the local spaces. For arbitrary
given \bfitalpha \in \scrA the parameter-specific local reduced u-space of dimension n is the space
spanned by the first n left singular vectors of \widetilde \Phi (\bfitalpha ), where n\leq rank(\widetilde \Phi (\bfitalpha )). Similarly,
the parameter-specific local reduced f -space of dimension n is spanned by the first n
left singular vectors of \widetilde \Psi (\bfitalpha ), n\leq rank(\widetilde \Psi (\bfitalpha )). It is quite remarkable that orthogonal
bases for each of these local spaces can be calculated quickly (i.e., using only low-
dimensional calculations) through their coordinates in the corresponding universal
spaces without assembling \widetilde \Phi (\bfitalpha ) or \widetilde \Psi (\bfitalpha ) explicitly. TROM framework performs this
``on the fly"" during the online stage for any incoming \bfitalpha , as explained later.

In summary, the universal spaces, within a compression accuracy of \varepsilon , encompass
the spaces formed by all observed snapshots. These spaces resemble those utilized by
the conventional POD-DEIM ROM, where the SVD of matrices containing all u- and
f -snapshots is truncated based on the desired dimension or approximation accuracy.
In the TROM framework, this truncated SVD is substituted with LRTD in one of
the formats (4.4)--(4.6). Beyond the universal reduced spaces, the two-stage TROM
framework also takes advantage of \bfitalpha -specific ``subspaces"" within the universal spaces,
known as the local reduced spaces. We illustrate the usefulness of local reduced
spaces through a numerical example of the parametrized Allen--Cahn equations (for
a complete problem description, see section 7) in Figure 1. This figure compares the
singular values of \Psi pod =\Psi (1) with the singular values of \widetilde \Psi (\bfitalpha ) for a random sampling

of \bfitalpha \in \scrA . Truncation by \sigma n(\Psi pod) and \sigma n(\widetilde \Psi (\bfitalpha )) determines the representation power
of the standard POD-DEIM ROM interpolation space and the TROM local space of
a fixed dimension n. We observe a significant enhancement in the representation
power of TROM local spaces compared to POD-DEIM ROM spaces, demonstrating
the benefits of taking into account information on \bfitalpha -dependence during the offline
decomposition stage.

5.2. Two-stage TROM-DEIM process. With all the preliminaries in order,
we are now ready to introduce the two-stage process for computing TROM that
incorporates DEIM to handle nonlinearity. One may formulate at least three variants
of this process, each corresponding to the considered LRTD format. However, the
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1859

Fig. 1. Singular values \sigma n(\Psi \mathrm{p}\mathrm{o}\mathrm{d}) and \sigma n(\widetilde \Psi (\bfitalpha )) for an example of the parametrized Allen--Cahn
equations from section 7.2.

main steps remain the same for all three variants. Therefore, we will present the
TT version of the TROM-DEIM process, with additional comments regarding the
necessary adjustments for other LRTD formats provided at the end of this section.

Offline stage. The first calculation is to compute the truncated TT decomposi-
tion to both u-snapshot tensor \Phi and f -snapshot tensor \Psi , satisfying (4.7):

\Phi \approx \widetilde \Phi =

\widetilde R\Phi 
1\sum 

j1=1

\cdot \cdot \cdot 
\widetilde R\Phi 
D+1\sum 

jD+1=1

uj1 \circ \bfitsigma j1,j2
1,\Phi \circ \cdot \cdot \cdot \circ \bfitsigma jD,jD+1

D,\Phi \circ vjD+1 ,(5.6)

\Psi \approx \widetilde \Psi =

\widetilde R\Psi 
1\sum 

j1=1

\cdot \cdot \cdot 
\widetilde R\Psi 
D+1\sum 

jD+1=1

yj1 \circ \bfitsigma j1,j2
1,\Psi \circ \cdot \cdot \cdot \circ \bfitsigma jD,jD+1

D,\Psi \circ zjD+1 ,

with uj1 ,yj1 \in RM , \bfitsigma 
ji,ji+1

i,\Phi ,\bfitsigma 
ji,ji+1

i,\Psi \in RKi , and vjD+1 ,zjD+1 \in RN . The truncated TT

decompositions \widetilde \Phi , \widetilde \Psi may be found by using a stable algorithm based on truncated
SVD for a sequence of unfolding matrices [36, 35] with computational costs similar to
finding \Phi pod and \Psi pod for the conventional POD--DEIM ROM. We organize vectors
from (5.6) into matrices

U= [u1, . . . ,u
\widetilde R\Phi 
1 ]\in RM\times \widetilde R\Phi 

1 , V= [v1, . . . ,v
\widetilde R\Phi 
D+1 ]\in RN\times \widetilde R\Phi 

D+1 ,(5.7)

Y = [y1, . . . ,y
\widetilde R\Psi 
1 ]\in RM\times \widetilde R\Psi 

1 , Z= [z1, . . . ,z
\widetilde R\Psi 
D+1 ]\in RN\times \widetilde R\Psi 

D+1 ,(5.8)

where \widetilde R\Theta 
1 and \widetilde R\Theta 

D+1 are the first and last TT ranks of both snapshot tensors \widetilde \Theta \in 
\{ \widetilde \Phi , \widetilde \Psi \} , respectively. We also consider third order tensors S\Theta 

i \in R \widetilde R\Theta 
i \times Ki\times \widetilde R\Theta 

i+1 , defined
entrywise as\bigl[ 

S\Theta 
i

\bigr] 
jkq

=
\Bigl[ 
\bfitsigma jq

i,\Theta 

\Bigr] 
k
, j = 1, . . . , \widetilde R\Theta 

i , k= 1, . . . ,Ki, q= 1, . . . , \widetilde R\Theta 
i+1,(5.9)

for all i = 1, . . . ,D, for both snapshot tensors \widetilde \Theta \in \{ \widetilde \Phi , \widetilde \Psi \} , respectively. While both
U and Y are orthogonal matrices, the columns of V and Z are orthogonal, but not
necessarily orthonormal. Thus, we need diagonal scaling matrices

W\Phi =diag
\Bigl( 
\| v1\| , . . . ,\| v \widetilde R\Phi 

D+1\| 
\Bigr) 
, W\Psi =diag

\Bigl( 
\| z1\| , . . . ,\| z \widetilde R\Psi 

D+1\| 
\Bigr) 
.

Then, the essential information about the compressed TT representations \widetilde \Theta \in \{ \widetilde \Phi , \widetilde \Psi \} 
that is transmitted to the online phase is assembled into

core( \widetilde \Theta ) =
\Bigl\{ 
S\Theta 
i \in R \widetilde R\Theta 

i \times Ki\times \widetilde R\Theta 
i+1 , i= 1, . . . ,D, W\Theta \in R \widetilde R\Theta 

D+1\times \widetilde R\Theta 
D+1

\Bigr\} 
.(5.10)
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A1860 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

To perform hyper-reduction, DEIM algorithm is applied to the orthonormal col-
umns of Y to compute the indices \bfiteta of the selection matrix P = [e\eta 1 , . . . ,e\eta \widetilde R\Psi 

1

] \in 

RM\times \widetilde R\Psi 
1 . Then, the matrices

UTY \in R \widetilde R\Phi 
1 \times \widetilde R\Psi 

1 and PTY \in R \widetilde R\Psi 
1 \times \widetilde R\Psi 

1(5.11)

are computed and passed onto the online stage along with the TT cores (5.10).
If one or both terms A\bfitalpha and f\bfitalpha in (2.1) do not contain a dependence on the

parameter, they can be projected for later use to save computation at the online
stage: \widetilde A=UTAU, \widetilde f(\cdot ) = PT f(U\cdot ).

Analogously, the projections can be precomputed offline if the dependence on param-
eters is explicit of the form A\bfitalpha =

\sum 
i gi(\bfitalpha )Ai with some given functions gi : \scrA \rightarrow R

and parameter-free matrices Ai and similarly for f\bfitalpha .
Online stage. The second stage of the TROM process is specific for a particular

incoming value of \bfitalpha \in \scrA . In particular, it computes the two local reduced bases via
their coordinates in the universal reduced bases, the columns of U and Y, respectively.
To achieve this, use the cores (5.10) to define the parameter-specific core matrices

C\Theta (\bfitalpha )\in R \widetilde R\Theta 
1 \times \widetilde R\Theta 

D+1 as the product

C\Theta (\bfitalpha ) =
D\prod 
i=1

\bigl( 
S\Theta 
i \times 2 e

i(\bfitalpha )
\bigr) 

(5.12)

for \widetilde \Theta \in \{ \widetilde \Phi , \widetilde \Psi \} . After rescaling with W\Theta , take the SVD of the rescaled core matrices

C\Phi (\bfitalpha )W\Phi =Uc\Sigma 
\Phi 
c V

T
c , C\Psi (\bfitalpha )W\Psi =Yc\Sigma 

\Psi 
c Z

T
c ,(5.13)

which is computationally cheap since C's and W's have reduced dimensions. This al-
lows one to obtain the SVD of the local snapshot matrices from (5.5) without explicitly
assembling them. To see this, note the identities

\widetilde \Phi (\bfitalpha ) =UC\Phi (\bfitalpha )W\Phi 
\bigl( 
W\Phi 

\bigr)  - 1
VT = (UUc)\Sigma 

\Phi 
c

\Bigl( 
V
\bigl( 
W\Phi 

\bigr)  - 1
Vc

\Bigr) T
,(5.14)

and similar for \widetilde \Psi (\bfitalpha ). Since all matrices U, Uc, V(W\Phi ) - 1, Vc have orthonormal
columns, the right-hand sides of (5.14) are the (thin) SVDs of \widetilde \Phi (\bfitalpha ) and \widetilde \Psi (\bfitalpha ), re-
spectively. Therefore, the coordinates of the local reduced u-basis in the universal
space \widetilde U are given by the first n columns of Uc. Similarly, the coordinates of the local
reduced f -basis in the universal space \widetilde Y are the first n columns of Yc. We denote
Un = [Uc]:,1:n \in R \widetilde R\Phi 

1 \times n and Yn = [Yc]:,1:n \in R \widetilde R\Psi 
1 \times n. Thus the local projection and

interpolation spaces are range(UUn) and range(YYn).
After computing the coordinates of local reduced bases, an additional hyper-

reduction step is performed. Below we introduce two variants of this local hyper-
reduction procedure: (i) local DEIM and (ii) local least squares fitting.

(i) Local DEIM is done by applying DEIM algorithm to
\bigl( 
PTY

\bigr) 
Yn to obtain the

indices \xi = [\xi 1, . . . , \xi n] and the corresponding selection matrix Pn = Pn(\xi ) \in 
R \widetilde R\Psi 

1 \times n. Then, the nonlinear term can be found using the matrices (5.11)
precomputed at the offline stage:

fn(\cdot ) =UT
n

\bigl( 
UTY

\bigr) 
Yn

\bigl( 
PT
n

\bigl( 
PTY

\bigr) 
Yn

\bigr)  - 1
PT
n
\widetilde f(Un\cdot ).(5.15)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

4/
24

 to
 1

29
.7

.1
58

.4
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1861

(ii) Local LS fitting. Thanks to reduced dimensions of the universal and local
space, it is computationally inexpensive to solve the fitting problem of finding
x \in Rn such that

\bigl( 
PTY

\bigr) 
Ynx \approx \widetilde f(Un\cdot ) in the least square sense. Then, the

nonlinear term representation takes the form

fn(\cdot ) =UT
n

\bigl( 
UTY

\bigr) 
Yn

\bigl( \bigl( 
PTY

\bigr) 
Yn

\bigr) \dagger \widetilde f(Un\cdot ),(5.16)

where ((PTY)Yn)
\dagger denotes the pseudo-inverse of \widetilde R\Psi 

1 \times n-matrix (PTY)Yn.

Along with either variant of local hyper-reduction, the preprojected matrix \widetilde A is
projected further to obtain

An =UT
n
\widetilde AUn.(5.17)

Finally, the TROM of (2.1) takes the following form: Find \bfitbeta (t) : [0, T ] \rightarrow Rn

solving

\bfitbeta t =An\bfitbeta + fn(\bfitbeta ), t\in (0, T ),(5.18)

with the initial condition \bfitbeta | t=0 =UT
nU

Tu0, so that u(t) is approximated by utrom(t) :
[0, T ]\rightarrow RM , where utrom(t) =UUn\bfitbeta (t).

We summarize both stages described above in Algorithm 5.1. In practice, one
may pick different reduced dimensions n for the local reduced u- and f -spaces. When
we need to distinguish them, we use n\Phi and n\Psi , respectively.

Algorithm 5.1 TROM-DEIM

\bullet Offline stage.
Input: snapshot tensors \Phi \in RM\times K1\times \cdot \cdot \cdot \times KD\times N and \Psi \in RM\times K1\times \cdot \cdot \cdot \times KD\times N

and target accuracy \varepsilon .
Output: Compression ranks, decomposition cores (5.10), matrices (5.11).
Compute:
1. Use the algorithm from [36] with prescribed accuracy \varepsilon to compute

decomposition (4.6) for both \Theta \in \{ \Phi ,\Psi \} ; assemble the cores (5.10)
and the matrices U and Y as in (5.7)--(5.8).

2. Apply DEIM to Y to find the selection matrix P.
3. Compute the matrices UTY and PTY.

\bullet Online stage.
Input: decomposition cores (5.10), local reduced space dimensions

n\Phi \leq min\{ \widetilde R\Phi 
1 , \widetilde R\Phi 

D+1\} , n\Psi \leq min\{ \widetilde R\Psi 
1 , \widetilde R\Psi 

D+1\} ,(5.19)

and an incoming parameter vector \bfitalpha \in \scrA .
Output: Coordinates of the local reduced bases in the form of matrices Un

and Yn.
Compute:
1. Use tensors S\Theta 

i , i= 1, . . . ,D, to assemble the core matrices C\Theta (\bfitalpha )\in 
R \widetilde R\Theta 

1 \times \widetilde R\Theta 
D+1 as in (5.12) for both \Theta \in \{ \Phi ,\Psi \} .

2. Compute the SVD (5.13) of both scaled core matrices C\Phi (\bfitalpha )W\Phi and
C\Psi (\bfitalpha )W\Psi to find the matrices of left singular vectors Uc and Yc,
respectively.

3. Set Un = [Uc]:,1:n\Phi 
and Yn = [Yc]:,1:n\Psi 

.
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A1862 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

After the model reduction is done according to Algorithm 5.1, the projected prob-
lem (5.18) is solved with either (5.15), (5.17) or (5.16), (5.17). One lets utrom(t) =
UUn\bfitbeta (t). For another incoming vector of parameters \bfitalpha , the online part of Algo-
rithm 5.1 should be recomputed.

Remark 1 (computational complexity). Let us introduce \widetilde R = max\{ \widetilde R\Phi 
1 ,
\widetilde R\Phi 
D+1,\widetilde R\Psi 

1 ,
\widetilde R\Psi 
D+1\} and n = max\{ n\Phi , n\Psi \} . Then, the bulk of the computational cost of the

online stage of TROM-DEIM is in the SVD computation (5.13) which takes O( \widetilde R3).
This is followed by integration of (5.18) costing O(n2N). This compares favorably to
POD-ROM integration cost of O( \widetilde R2N), provided \widetilde R<N which is always the case for
reasonably long integration times. Then, the speed up of TROM--DEIM relative to
POD--ROM is determined by the ratio of dimensions of local and universal spaces.

We conclude with a brief discussion of variants of Algorithm 5.1 based on the
other two LRTD formats by pointing out the required modifications.

HOSVD-TROM. For step 1 of the offline stage we employ HOSVD-LRTD (4.5)
instead of TT-LRTD (4.6), so the cores (5.10) are replaced with

core( \widetilde \Theta ) =
\Bigl\{ 
C\Theta \in R\widetilde M\Theta \times \widetilde K\Theta 

1 \times \cdot \cdot \cdot \times \widetilde K\Theta 
D\times \widetilde N\Theta 

, S\Theta i \in Rni\times \widetilde K\Theta 
i , i= 1, . . . ,D

\Bigr\} 
, \widetilde \Theta \in \{ \widetilde \Phi , \widetilde \Psi \} ,

(5.20)

where S\Theta i =
\bigl[ 
\bfitsigma 1

i,\Theta , . . . ,\bfitsigma 
\widetilde K\Theta 
i

i,\Theta 

\bigr] T \in Rni\times \widetilde K\Theta 
i , i= 1, . . . ,D. The matrices U and Y are still

assembled as in (5.7)--(5.8), but the vectors ui, i= 1, . . . ,\widetilde M\Phi , and yj , j = 1, . . . ,\widetilde M\Psi 

come from HOSVD-LRTD (4.5) instead. At the online stage of Algorithm 5.1 the

bound (5.19) is replaced by n\Phi \leq min\{ \widetilde M\Phi , \widetilde N\Phi \} , n\Psi \leq min\{ \widetilde M\Psi , \widetilde N\Psi \} , while the core
matrices (5.12) at step 1 are instead computed as

C\Theta (\bfitalpha ) =C\Theta \times 2

\bigl( 
S\Theta 1 e

1(\bfitalpha )
\bigr) 
\times 3

\bigl( 
S\Theta 2 e

2(\bfitalpha )
\bigr) 
\cdot \cdot \cdot \times D+1

\bigl( 
S\Theta DeD(\bfitalpha )

\bigr) 
(5.21)

\in R\widetilde M\Theta \times \widetilde N\Theta 

, \Theta \in \{ \Phi ,\Psi \} .

Unlike the TT case, no rescaling is needed for HOSVD core matrices (5.21), so the
SVD in Step 2 of the online stage becomes simply

C\Phi (\bfitalpha ) =Uc\Sigma 
\Phi 
c V

T
c , C\Psi (\bfitalpha ) =Yc\Sigma 

\Psi 
c Z

T
c .(5.22)

CP-TROM. For CP-TROM, the replacement of LRTD in step 1 of the offline
stage with (4.4) can be computed through two distinct approaches. First, one can
employ a Proper Generalized Decomposition method to compute CP-LRTD incre-
mentally in a greedy manner, gradually increasing the CP-ranks \widetilde R\Phi and \widetilde R\Psi until the
target accuracy \varepsilon is achieved [15]. Alternatively, the target ranks \widetilde R\Phi and \widetilde R\Psi can be
specified initially, and an alternating least squares (ALS) algorithm can be used to
compute CP-LRTD [26]. In this context, we opt for the latter approach due to the
availability of high-performance ALS implementations.

For the matrices

U= [u1, . . . ,u
\widetilde R\Phi 

]\in RM\times \widetilde R\Phi 

, V= [v1, . . . ,v
\widetilde R\Phi 

]\in RN\times \widetilde R\Phi 

,(5.23)

Y = [y1, . . . ,y
\widetilde R\Psi 

]\in RM\times \widetilde R\Psi 

, Z= [z1, . . . ,z
\widetilde R\Psi 

]\in RN\times \widetilde R\Psi 

,(5.24)
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1863

their thin QR factorizations are computed U = QURU , V = QV RV , Y = QY RY ,
Z =QZRZ , in order to obtain the cores

core(\widetilde \Phi ) = \{ RU ,RV \in R \widetilde R\Phi \times \widetilde R\Phi 

,\bfitsigma r
i,\Phi , i= 1, . . . ,D, r= 1, . . . , \widetilde R\Phi \} ,(5.25)

core( \widetilde \Psi ) = \{ RY ,RZ \in R \widetilde R\Psi \times \widetilde R\Psi 

,\bfitsigma r
i,\Psi , i= 1, . . . ,D, r= 1, . . . , \widetilde R\Psi \} .(5.26)

At the online stage instead of (5.19) we simply require that n\Theta \leq \widetilde R\Theta for both
\Theta \in \{ \Phi ,\Psi \} . At step 1, the core matrices (5.21) are replaced with

C\Phi (\bfitalpha ) =RUS
\Phi (\bfitalpha )RT

V \in R \widetilde R\Phi \times \widetilde R\Phi 

, C\Psi (\bfitalpha ) =RY S
\Psi (\bfitalpha )RT

Z \in R \widetilde R\Psi \times \widetilde R\Psi 

,(5.27)

where

S\Phi (\bfitalpha ) = diag(s\Theta 1 , . . . , s
\Theta \widetilde R\Theta ), with s\Theta r =

D\prod 
i=1

\bigl\langle 
\bfitsigma r

i,\Theta ,e
i(\bfitalpha )

\bigr\rangle 
, r= 1, . . . , \widetilde R\Theta ,(5.28)

for both \Theta \in \{ \Phi ,\Psi \} . Similarly to the HOSVD variant, no rescaling of the core
matrices is needed, so the SVD in step 2 of the offline stage is (5.22).

6. Representation and interpolation estimates. In this section we consider
representation capacity of TROM local reduced bases and prove an interpolation
estimate for the two-stage TROM--DEIM. To do so, we need a few assumptions about
the properties of the dynamical system (2.1). In particular, we assume that the unique
solution to (2.1) exists on (0, T1) for all \bfitalpha \in \scrA 1, with some T1 >T and \scrA \subset \scrA 1. Also,
f\bfitalpha is continuous with continuous derivatives in u and \bfitalpha up to order p:

f\bfitalpha = f(t,u,\bfitalpha )\in C([0, T1],Cp(RM \times \scrA 1)),(6.1)

where p is the interpolation order parameter from (5.4). For a vector function we
define its Cp norm as maximum over all components \| f\| Cp =maxi \| fi\| Cp .

The assumption in (6.1) implies that the solution of (2.1) is smooth with respect
to parameters. More precisely, it holds (cf. [20, Theorem V.4.1]) that

u\in C([0, T ]\times \scrA )M ,
\partial ju

\partial \alpha j1
1 . . . \partial \alpha jD

D

\in C([0, T ]\times \scrA )M , | j| \leq p.(6.2)

Letting

Cu =max
| j| \leq p

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \partial ju

\partial \alpha j1
1 . . . \partial \alpha jD

D

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
C([0,T ]\times \scrA )

,

we apply the chain rule and use (6.2) to estimate

max
| j| \leq p

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \partial jf(t,u(\bfitalpha ),\bfitalpha )\partial \alpha j1
1 . . . \partial \alpha jD

D

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
C([0,T ]\times \scrA )

\leq C sup
t\in (0,T )

\| f(t)\| Cp(1 +Cp
u) =:Cf ,(6.3)

with some Cf independent of FOM dimensions.
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A1864 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

For an arbitrary fixed \bfitalpha = (\alpha 1, . . . , \alpha D)T \in \scrA , not necessarily from the sampling
set, consider the FOM u-snapshots of (2.1) and the corresponding f -snapshots,

uk = u(tk,\bfitalpha ), fk = f\bfitalpha (tk,u
k) for 0\leq t1, . . . , tN <T.

Denote by \widehat ui, i= 1, . . . , n, the basis vectors of the local reduced u-space, i.e., \widehat ui

are the first n left singular vectors of \widetilde \Phi (\bfitalpha ). This local basis used to represent TROM
solution admits the following representation estimate [32]:

1

NM

N\sum 
k=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| uk  - 
n\sum 

j=1

\bigl\langle 
uk, \widehat uj

\bigr\rangle \widehat uj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\ell 2

\leq C1

NM

\Biggl( 
\varepsilon 2 \| \Phi \| F +

N\sum 
i=n+1

\widetilde \sigma 2
i

\Biggr) 
+C2\delta 

2p,(6.4)

where \widetilde \sigma i are the singular values of \widetilde \Phi (\bfitalpha ) and \delta i are the mesh parameter of the sam-
pling,

\delta i = max
1\leq j\leq Ki - 1

\bigm| \bigm| \widehat \alpha i
j  - \widehat \alpha i

j+1

\bigm| \bigm| , i= 1, . . . ,D, and \delta p =
D\sum 
i=1

\delta pi .(6.5)

Constants C1 and C2 in (6.4) depend only on the stability of the interpolation proce-
dure and bounds on partial derivatives of u from (6.2). The scaling 1/(NM ) accounts
for the variation of dimensions N and M , which may correspond to the number of
temporal and spatial degrees of freedom if (2.1) results from a discretization of a par-
abolic PDE. In this case and for uniform grids, the quantity on the left-hand side of
(6.4) is consistent with the L2(0, T,L2(\Omega )) norm.

We now want to derive an interpolation bound for the two-stage TROM--DEIM.
For the POD--DEIM ROM such a bound is given in the original paper [13]. In our
notation the result reads as follows: For some f \in RM let \widehat f = Ypod(PYpod)

 - 1Pf ,

then it holds that \| f  - \widehat f\| \leq \| (PYpod)
 - 1\| \| (I - Ypod(Ypod)

T )f\| . A bound on C\ast (n) =

\| (PYpod)
 - 1\| was also derived in [13]. Applying this result for in-sample \bfitalpha \in \widehat \scrA , one

finds the interpolation estimate

max
k=1,...,N

\bigm\| \bigm\| \bigm\| fk  - \widehat fk\bigm\| \bigm\| \bigm\| 
\ell 2
\leq C\ast (n)\sigma n(\Psi pod), with \widehat fk =Ypod(PYpod)

 - 1Pfk.(6.6)

In the context of ROM for parametric systems, the estimate in (6.6) shows the fol-
lowing limitations: (i) It is not clear how it can be extended for an out-of-sample
\bfitalpha , and (ii) For the case of higher variability w.r.t. parameters, the singular values
of \Psi pod may decrease relatively slowly (see Figure 1) requiring higher dimensions of
reduced f -spaces. The interpolation bound for the two-stage TROM--DEIM given
below addresses both of the above issues.

Theorem 6.1. For any given \bfitalpha \in \scrA , let Y\bfitalpha = YYn, P\bfitalpha = PnP for the local
pointwise interpolation and P\bfitalpha = P for the least-square local interpolation. Also let\widehat fk =Y\bfitalpha (P\bfitalpha Y\bfitalpha )

\dagger P\bfitalpha f
k, and \sigma i are singular values of \widetilde \Psi (\bfitalpha ). It holds that

1

NM

N\sum 
k=1

\bigm\| \bigm\| \bigm\| fk  - \widehat fk\bigm\| \bigm\| \bigm\| 2
\ell 2
\leq C\ast 

NM

\Biggl( 
C1\varepsilon 

2 \| \Psi \| F +
N\sum 

i=n+1

\widetilde \sigma 2
i

\Biggr) 
+C2\delta 

2p,(6.7)

with C\ast = \| (P\bfitalpha Y\bfitalpha )
 - 1\| for the local pointwise interpolation and C\ast = \| (PY) - 1\| for

the least-square local interpolation. Constants C1, C2 are independent of \bfitalpha , sampling
grid, local TROM dimension n, tensor ranks, and FOM dimensions.
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1865

Proof. Note that for the local DEIM the matrix P\bfitalpha Y\bfitalpha = PnPYYn is invert-
ible and hence its inverse coincides with the pseudo-inverse, so we use the notation
(P\bfitalpha Y\bfitalpha )

\dagger throughout the proof to cover both local hyper-reduction variants. Clearly,
for both variants (P\bfitalpha Y\bfitalpha )

\dagger is the left inverse of P\bfitalpha Y\bfitalpha and so we have the identity
(I - Y\bfitalpha (P\bfitalpha Y\bfitalpha )

\dagger P\bfitalpha )Y\bfitalpha = 0. We employ it to estimate

\| fk  - \widehat fk\| \ell 2 = \| (I - Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha )f

k\| \ell 2 = \| (I - Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha )(I - Y\bfitalpha Y

T
\bfitalpha )f

k\| \ell 2
(6.8)

\leq \| I - Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha \| \| (I - Y\bfitalpha Y

T
\bfitalpha )f

k\| \ell 2 .

For the local DEIM, the first factor on the right-hand side of (6.8) can be estimated
by the same argument as in [13]:

\| I - Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha \| = \| Y\bfitalpha (P\bfitalpha Y\bfitalpha )

\dagger P\bfitalpha \| \leq \| Y\bfitalpha \| \| (P\bfitalpha Y\bfitalpha )
\dagger \| \| P\bfitalpha \| = \| (P\bfitalpha Y\bfitalpha )

\dagger \| ,
(6.9)

where the first identity holds since Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha is a projector.

For the local LS fitting the matrix Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha is still a projector. Further-

more, for any x \in R \widetilde N , where \widetilde N is the dimension of the universal reduced space \widetilde Y ,
and y= (P\bfitalpha Y\bfitalpha )

\dagger x, it holds that P\bfitalpha Y\bfitalpha y=P\prime x, where P\prime is the orthogonal projector
on the range of P\bfitalpha Y\bfitalpha .

Let \widehat u=Yny, then we have PY\widehat u=P\bfitalpha Y\widehat u=P\bfitalpha Y\bfitalpha y=P\prime x implying

\| Yn(P\bfitalpha Y\bfitalpha )
\dagger x\| = \| \widehat u\| = \| (PY)\dagger P\prime x\| \leq \| (PY)\dagger \| \| P\prime x\| \leq \| (PY)\dagger \| \| x\| .

This yields \| Yn(P\bfitalpha Y\bfitalpha )
\dagger \| \leq \| (PY)\dagger \| and so for the local LS fitting we have

\| I - Y\bfitalpha (P\bfitalpha Y\bfitalpha )
\dagger P\bfitalpha \| = \| Y\bfitalpha (P\bfitalpha Y\bfitalpha )

\dagger P\bfitalpha \| \leq \| Y\| \| Yn(P\bfitalpha Y\bfitalpha )
\dagger \| \| P\bfitalpha \| (6.10)

= \| Yn(P\bfitalpha Y\bfitalpha )
\dagger \| \leq \| (PY)\dagger \| .

Consider the SVD of \widetilde \Psi (\bfitalpha )\in RM\times N from (5.5) given by\widetilde \Psi (\bfitalpha ) = \widetilde Y\widetilde \Sigma \widetilde ZT , with \widetilde \Sigma =diag(\widetilde \sigma 1, . . . , \widetilde \sigma N ).(6.11)

Then from the definition of the basis for the local reduced f -space it follows that Y\bfitalpha =
YYn = [y1, . . . ,yn] \in RM\times n are the first n columns of \widetilde Y. Let F(\bfitalpha ) = [f1, . . . , fN ] \in 
RM\times N , then

N\sum 
k=1

\bigm\| \bigm\| \bigm\| fk  - \widehat fk\bigm\| \bigm\| \bigm\| 2
\ell 2
=
\bigm\| \bigm\| (I - Y\bfitalpha Y

T
\bfitalpha )F(\bfitalpha )

\bigm\| \bigm\| 2
F

\leq 
\Bigl( \bigm\| \bigm\| \bigm\| (I - Y\bfitalpha Y

T
\bfitalpha )(F(\bfitalpha ) - \widetilde \Psi (\bfitalpha ))

\bigm\| \bigm\| \bigm\| 
F
+
\bigm\| \bigm\| \bigm\| (I - Y\bfitalpha Y

T
\bfitalpha )\widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| \bigm\| 
F

\Bigr) 2
\leq 
\Bigl( \bigm\| \bigm\| \bigm\| F(\bfitalpha ) - \widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| \bigm\| 
F
+
\bigm\| \bigm\| \bigm\| (I - Y\bfitalpha Y

T
\bfitalpha )\widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| \bigm\| 
F

\Bigr) 2
,(6.12)

where we used triangle inequality and \| I - Y\bfitalpha Y
T
\bfitalpha \| \leq 1 for the spectral norm of the

projector. For the last term in (6.12), we observe

\bigm\| \bigm\| \bigm\| (I - Y\bfitalpha Y
T
\bfitalpha )\widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| \bigm\| 
F
=
\bigm\| \bigm\| \bigm\| \widetilde Y diag(0, . . . ,0,\widetilde \sigma n+1, . . . , \widetilde \sigma N ) \widetilde ZT

\bigm\| \bigm\| \bigm\| 
F
=

\left(  N\sum 
j=n+1

\widetilde \sigma 2
j

\right)  1
2

.

(6.13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

4/
24

 to
 1

29
.7

.1
58

.4
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



A1866 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

To handle the first term of (6.12), consider the interpolation of the full (noncom-
pressed) f -snapshot tensor \Psi I(\bfitalpha ) =\Psi \times 2e

1(\bfitalpha )\times 3e
2(\bfitalpha ) \cdot \cdot \cdot \times D+1e

D(\bfitalpha ), and proceed
using the triangle inequality\bigm\| \bigm\| F(\bfitalpha ) - \widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| 
F
\leq 
\bigm\| \bigm\| F(\bfitalpha ) - \Psi I(\bfitalpha )

\bigm\| \bigm\| 
F
+
\bigm\| \bigm\| \Psi I(\bfitalpha ) - \widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| 
F
.(6.14)

The polynomial interpolation procedure is stable in the sense that\left(  Ki\sum 
j=1

\bigm| \bigm| eij(aei)\bigm| \bigm| 2
\right)  1

2

\leq Ce,(6.15)

where ei \in RKi is the ith column of the Ki \times Ki identity matrix, and with some Ce

independent of a\in [\alpha min
i , \alpha max

i ] and i= 1, . . . ,D (e.g., Ce = 1 for linear interpolation).
We use this and (4.7) to bound the second term of (6.14). Specifically,\bigm\| \bigm\| \bigm\| \Psi I(\bfitalpha ) - \widetilde \Psi (\bfitalpha )

\bigm\| \bigm\| \bigm\| 
F
=
\bigm\| \bigm\| \bigm\| (\Psi  - \widetilde \Psi )\times 2 e

1(\bfitalpha )\times 3 e
2(\bfitalpha ) \cdot \cdot \cdot \times D+1 e

D(\bfitalpha )
\bigm\| \bigm\| \bigm\| 
F

(6.16)

\leq 
\bigm\| \bigm\| \bigm\| \Psi  - \widetilde \Psi \bigm\| \bigm\| \bigm\| 

F
\| e1(\bfitalpha )\| \ell 2\| e2(\bfitalpha )\| \ell 2 . . .\| eD(\bfitalpha )\| \ell 2

\leq (Ce)
D
\bigm\| \bigm\| \bigm\| \Psi  - \widetilde \Psi \bigm\| \bigm\| \bigm\| 

F
\leq (Ce)

D\varepsilon \| \Psi \| F .

It remains to handle the first term in (6.14). The choice of interpolation procedure in
(5.4) implies that for any sufficiently smooth f : [\alpha min

i , \alpha max
i ]\rightarrow R it holds that

sup
a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}

i ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}
i ]

\bigm| \bigm| \bigm| \bigm| \bigm| f(a) - 
Ki\sum 
j=1

eij (aei)f(\widehat \alpha j
i )

\bigm| \bigm| \bigm| \bigm| \bigm| \leq Ca\| f (p)\| C([\alpha \mathrm{m}\mathrm{i}\mathrm{n}
i ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}

i ])\delta 
p
i ,(6.17)

for i= 1, . . . ,D, where the constant Ca does not depend on f .
Using the shortcut notation fk(\alpha 1, . . . , \alpha D) = f(tk,u(\alpha 

,
1 . . . , \alpha D), \alpha 1, . . . , \alpha D) and

interpolation property (6.17), we compute

\bigl( 
\Psi \times 2 e

1(\bfitalpha )
\bigr) 
:,i2,...,iD,k

=

K1\sum 
j=1

e1j (\bfitalpha )f
k(\widehat \alpha j

1, \widehat \alpha i2
2 , . . . , \widehat \alpha iD

D )

= fk(\alpha 1, \widehat \alpha i2
2 . . . , \widehat \alpha iD

D ) +\Delta 1
:,i2,...,iD,k,

where \widehat \bfitalpha \in \widehat \scrA . The \Delta -term obeys a componentwise bound

| \Delta 1
:,i2,...,iD,k| \leq Ca sup

a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}
1 ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}

1 ]

\bigm| \bigm| \bigm| \bigm| \partial pfk\partial \alpha p
1

(a, \widehat \alpha i2
2 , . . . , \widehat \alpha iD

D )

\bigm| \bigm| \bigm| \bigm| \delta p1 ,
where the absolute value of vectors is understood entrywise. Analogously, we compute\bigl( 

\Psi \times 2 e
1(\bfitalpha )\times 3 e

2(\bfitalpha )
\bigr) 
:,i3,...,iD,k

=
\bigl( 
(\Psi \times 2 e

1(\bfitalpha ))\times 2 e
2(\bfitalpha )

\bigr) 
:,i3,...,iD,k

(6.18)

=

K2\sum 
j=1

e2j (\bfitalpha )
\Bigl( 
fk(\alpha 1, \widehat \alpha j

2, \widehat \alpha i3
3 , . . . , \widehat \alpha iD

D ) +\Delta 1
:,j,i3,...,iD,k

\Bigr) 

= fk(\alpha 1, \alpha 2, \widehat \alpha i3
3 , . . . , \widehat \alpha iD

D ) +\Delta 2
:,i3,...,iD,k +

K2\sum 
j=1

e2j (\bfitalpha )\Delta 
1
:,j,i3,...,iD,k,
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1867

with a componentwise bound for the remainder\bigm| \bigm| \bigm| \bigm| \bigm| \Delta 2
:,i3,...,iD,k +

K2\sum 
j=1

e2j (\bfitalpha )\Delta 
1
:,j,i3,...,iD,k

\bigm| \bigm| \bigm| \bigm| \bigm| \leq Ca sup
a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}

2 ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}
2 ]

\bigm| \bigm| \bigm| \bigm| \partial pfk\partial \alpha p
2

(\alpha 1, a, \widehat \alpha i3
3 , . . . , \widehat \alpha iD

D )

\bigm| \bigm| \bigm| \bigm| \delta p2
+ Ce Ca sup

a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}
1 ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}

1 ]

\bigm| \bigm| \bigm| \bigm| \partial pfk\partial \alpha p
1

(a, \widehat \alpha i2
2 , . . . , \widehat \alpha iD

D )

\bigm| \bigm| \bigm| \bigm| \delta p1 .
Applying the same argument repeatedly, we obtain

(\Psi I(\bfitalpha )):,k =
\bigl( 
\Psi \times 2 e

1(\bfitalpha )\times 3 e
2(\bfitalpha ) \cdot \cdot \cdot \times D+1 e

D(\bfitalpha )
\bigr) 
:,k

(6.19)

= fk(\alpha 1, \alpha 2, . . . , \alpha D) +\Delta :,k = (F(\bfitalpha )):,k +\Delta :,k,

with a componentwise bound for the remainder

| \Delta :,k| \leq Ca

\Biggl( 
sup

a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}
D ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}

D ]

\bigm| \bigm| \bigm| \bigm| \partial pfk\partial \alpha p
D

(\alpha 1, . . . , \alpha D - 1, a)

\bigm| \bigm| \bigm| \bigm| \delta pD + . . .

+ (Ce)
D - 2 sup

a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}
2 ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}

2 ]

\bigm| \bigm| \bigm| \bigm| \partial pfk\partial \alpha p
2

(\alpha 1, a, \widehat \alpha i3
3 , . . . , \widehat \alpha iD

D )

\bigm| \bigm| \bigm| \bigm| \delta p2
+ (Ce)

(D - 1) sup
a\in [\alpha \mathrm{m}\mathrm{i}\mathrm{n}

1 ,\alpha \mathrm{m}\mathrm{a}\mathrm{x}
1 ]

\bigm| \bigm| \bigm| \bigm| \partial pfk\partial \alpha p
1

(a, \widehat \alpha i2
2 , . . . , \widehat \alpha iD

D )

\bigm| \bigm| \bigm| \bigm| \delta p1
\Biggr) 

\leq Camax
\Bigl\{ 
(Ce)

(D - 1),1
\Bigr\} 
Cf \delta 

p.

Using the definition of the Frobenius norm and (6.19), we arrive at

\| F(\bfitalpha ) - \Psi I(\bfitalpha )\| F \leq 
\surd 
NM Camax

\Bigl\{ 
(Ce)

(D - 1),1
\Bigr\} 
Cf \delta 

p,(6.20)

with constants Ca, Ce, Cf from (6.17), (6.15), and (6.3), respectively. Combining
(6.8)--(6.10), (6.12)--(6.14), (6.16), and (6.20) proves the final result.

It is interesting to note that for the local LS fitting variant of the two-stage
hyper-reduction the constants in the interpolation theorem, Theorem 6.1, are all in-
dependent of \bfitalpha . Moreover, the constant C\ast is essentially the same as in the original
estimate (6.6).

7. Numerical experiments. We perform several numerical experiments to as-
sess the performance of the TROM and compare it to the POD--DEIM ROM. Our
testing is performed for dynamical systems arising from discretizations of the
parameter-dependent Burgers and Allen--Cahn equations. All results presented below
are for the local least squares second stage of the hyper-reduction. The local DEIM
as the second stage were found to yield very close results.

7.1. Parameterized one-dimensional Burgers equation. As a first example
consider the one-dimensional Burgers equation: Find u(t, x), solving

ut = \alpha 1uxx  - uux for x\in (0,1), t\in (0, T ), u(t,0) = u(t,1) = 0,(7.1)

where \alpha 1 > 0 is the viscosity parameter. The initial condition is in parametric form:

u\bfitalpha (0, x) = u0(x,\alpha 2) =

\biggl\{ 
1, x\in (0, \alpha 2),
0, x\in [\alpha 2,1)

for \alpha 2 \in (0,1).(7.2)
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A1868 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

Thus, we consider a two-parameter system, with the parameter domain \scrA = [0.01,
0.5]\times [0.2,0.8].

We discretize (7.1)--(7.2) in space using a first order upwind finite difference (FD)
scheme on a uniform grid with mesh size h = 1/M to obtain a dynamical system
of the form (2.1), where A\bfitalpha \in RM\times M depends on \alpha 1 only and the nonlinear term
f\bfitalpha (t,u) = f(u) is the discretization of  - uux that does not contain any dependence
on \bfitalpha .

To generate FOM snapshots we integrate in (2.1) time using a semi-implicit BDF2
method with equidistant time stepping: for each \widehat \bfitalpha k \in \widehat \scrA , given \bfitphi j(\widehat \bfitalpha k) and \bfitphi j - 1(\widehat \bfitalpha k)
in RM , find \bfitphi j+1(\widehat \bfitalpha k) satisfying

3\bfitphi j+1(\widehat \bfitalpha k) - 4\bfitphi j(\widehat \bfitalpha k) +\bfitphi j - 1(\widehat \bfitalpha k)

2\Delta t
(7.3)

=A\widehat \bfitalpha k
\bfitphi j(\widehat \bfitalpha k) - 

\bigl( 
2\bfitphi j(\widehat \bfitalpha k) - \bfitphi j - 1(\widehat \bfitalpha k)

\bigr) 
\odot Gx\bfitphi j+1(\widehat \bfitalpha k),

with first step performed via BDF1. Here j = 1,2, . . . ,N , \Delta t= T/N , T = 1, and k =
1, . . . ,K. We denote by Gx \in RM\times M the matrix discretization of the first derivative,
with boundary conditions (7.1). The operation \odot denotes entrywise product of vectors
in RM .

Once the time-stepping (7.3) is computed, f -snapshots are given by

\bfitpsi j(\widehat \bfitalpha k) = - 
\bigl( 
2\bfitphi j(\widehat \bfitalpha k) - \bfitphi j - 1(\widehat \bfitalpha k)

\bigr) 
\odot Gx\bfitphi j+1(\widehat \bfitalpha k), j = 1,2, . . . ,N, k= 1, . . . ,K.

(7.4)

7.1.1. Tensor compression accuracy and TROM solution quality. In the
first series of experiments we study the performance of TROMs depending on the
LRTD accuracy \varepsilon . We setN = 200,M = 400, and use a rather fine grid of 32 uniformly
distributed \widehat \alpha j

2 values in [0.2,0.8], and 16 values of \widehat \alpha j
1 log-uniformly distributed in

[0.01,0.5] to define the sampling set \widehat \scrA .
For TT-TROMwe start with a low accuracy of \varepsilon = 0.1 (we always set the same tar-

get accuracy for \widetilde \Phi and \widetilde \Psi ) and gradually improve it letting \varepsilon = \{ 0.1,0.03,0.01,0.003,
10 - 3\} . We report in Table 1 the resulting TT compression ranks in the format
[ \widetilde R\Theta 

1 ,
\widetilde R\Theta 
2 ,
\widetilde R\Theta 
3 ] for both \Theta \in \{ \Phi ,\Psi \} , and the compression factor

CF(\Theta ) =\#(\Theta )/\#online( \widetilde \Theta ),(7.5)

for \Theta \in \{ \Phi ,\Psi \} , where \#(\Theta ) is the number of entries of the full snapshot tensor \Theta 
and \#online( \widetilde \Theta ) is the amount of data passed in Algorithm 5.1 from the offline stage
to the online stage. For CP-TROM we used the combined compression factor

CF(\Phi ,\Psi ) =
\#(\Phi ) +\#(\Psi )

\#online(\widetilde \Phi ) +\#online( \widetilde \Psi )
.(7.6)

The first and last TT ranks emphasized in bold are responsible for the universal
reduced space dimension and the maximum possible local reduced space dimension,
respectively. For the same \varepsilon , the first and last Tucker ranks (not shown) of HOSVD-
TROM were found to be the same as the first and last TT ranks, but the HOSVD-
TROM compression factor (not shown) was slightly worse than those of TT-TROM.
The higher TT ranks for \widetilde \Psi than for \widetilde \Phi indicate a higher variability in f -snapshots
compared to that of u-snapshots. We shall see that this high variability results in a
dramatic accuracy gain of TROMs compared to conventional POD--DEIM ROM.
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1869

To assess the effect of tensor compression accuracy on the TROM solutions, we
selected an out-of-sample parameter vector \bfitalpha = (0.013,0.633)T /\in \widehat \scrA and computed the
corresponding TT-TROM solution at t= 0.05,0.5,1. We set n\Theta = \widetilde R\Phi 

D+1 for \Theta \in \Phi ,\Psi ,
which corresponds to using the local reduced spaces of the largest possible dimension;
see the bound in (5.19). The resulting solution is displayed in Figure 2 (left), where
it is compared to the FOM solution. The HOSVD-TROM solutions were virtually
identical to those provided by TT-TROM, so we do not display them separately. We
observe that TT-TROM solutions for \varepsilon = 0.1 exhibit significant inaccuracies, but the
results improve rapidly for smaller values of \varepsilon . For \varepsilon = 10 - 2, the TT-TROM solutions
closely align with the FOM solution. We do not present the TT-TROM solutions for
\varepsilon = 0.003,10 - 3 since they are visually indistinguishable from the FOM solution.

In Figure 2 (right), we present the results of a similar study for CP-TROM,
where the CP-rank is predetermined instead of targeting a specific accuracy \varepsilon . The
experiment covers CP-ranks of 50,100,200,300,500 (further increasing the CP-rank
leads to a very slow convergence of the ALS method [26] for computing CP LRTD).
The corresponding compression accuracy of \widetilde \Phi and \widetilde \Psi is detailed in the lower part of
Table 1.

We note that the best compression accuracy achieved by CP-TROM for \Psi is
only 2.82 \cdot 10 - 2 (for CP-rank=500). In Figure 2 (right), CP-TROM solutions are
displayed for CP-ranks of 50 and 100, with n\Phi = 5 and n\Psi = 10. For CP-rank=200,

TT-TROM CP-TROM

Fig. 2. FOM and TROM solutions of the discretized Burgers equation at times t= 0.05,0.5,1
for out-of-sample parameter values \alpha 1 = 0.013 and \alpha 2 = 0.633.

Table 1
Compression ranks [ \widetilde R\Theta 

1 , \widetilde R\Theta 
2 , \widetilde R\Theta 

3 ], \Theta \in \{ \Phi ,\Psi \} for TT-TROM versus compression accuracy
\varepsilon and the corresponding compression factors (top). Compression accuracy for CP-TROM versus
canonical rank (CP-rank) and the corresponding compression factors (bottom).

\varepsilon 0.1 0.03 0.01 0.003 10 - 3\widetilde \Phi TT-ranks [7,9,4] [12,20,7] [20,42,10] [33,78,14] [44,121,17]\widetilde \Psi TT-ranks [55,55,10] [93,101,16] [139,151,20] [174,210,25] [200,265,30]

CF(\Phi ) 18824 4894 1518 536 270
CF(\Psi ) 620 202 95 54 37

CP-rank 50 100 200 300 500

\| \widetilde \Phi  - \Phi \| /\| \Phi \| 3.22 \cdot 10 - 2 2.13 \cdot 10 - 2 1.26 \cdot 10 - 2 9.13 \cdot 10 - 3 5.96 \cdot 10 - 3

\| \widetilde \Psi  - \Psi \| /\| \Psi \| 1.63 \cdot 10 - 1 9.72 \cdot 10 - 2 5.74 \cdot 10 - 2 4.12 \cdot 10 - 2 2.84 \cdot 10 - 2

CF(\Phi ,\Psi ) 8274 2749 822 391 149
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A1870 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

the dimensions of the local reduced spaces are chosen to be n\Phi = 7 and n\Psi = 16. This
choice of n\Phi and n\Psi aligns with the TT-TROM local reduced space dimensions of
comparable compression accuracy.

7.1.2. Out-of-sample TROM performance. In this series of experiments we
examine the performance of TROMs for out-of-sample parameter values depending on
the dimensions of the local u- and f -spaces, denoted by n\Phi and n\Psi , respectively. We
use the same sampling set \widehat \scrA as in section 7.1.1 and the same out-of-sample parameter
vextor \bfitalpha = (0.013,0.633)T /\in \widehat \scrA . For both \Phi and \Psi tensors, we perform TT LRTD
with \varepsilon = 10 - 5 and CP LRTD with CP-rank=200 resulting in CP approximation
accuracy of \| \Phi  - \widetilde \Phi CP\| F = 1.3 \cdot 10 - 2 and \| \Psi  - \widetilde \Psi CP\| F = 5.6 \cdot 10 - 2.

In Figure 3 we display both FOM and ROM solutions of the discretized Burgers
equation at times t = 0.05,0.5,1 for increasing values of n\Phi and n\Psi . We observe
that already for n\Phi = 5 and n\Psi = 10 both TT- and CP-TROM deliver reasonable
approximations to the FOM solution. Increasing local reduced space dimensions to
n\Phi = 10 and n\Psi = 20, results in TROM solutions that almost match the FOM
solutions. Remarkably, the further increase to n\Phi = 15 and n\Psi = 30 leads to CP-
TROM solutions with some spurious oscillations, while TT-TROM solution provides
a highly accurate approximation to the FOM solution. We attribute this degrade of
CP-TROM to the failure of CP to approximate the snapshot tensors well for CP-
rank=200 resulting in spurious higher order singular vectors in the bases Un and/or
Yn. We display in all plots in Figure 3 solutions obtained with the conventional

n\Phi = 5, n\Psi = 10 n\Phi = 10, n\Psi = 20

n\Phi = 15, n\Psi = 30 POD--DEIM ROM for \{ n\Phi , n\Psi \} 

Fig. 3. FOM and TROM solutions of the Burgers equation at times t= 0.05,0.5,1 for out-of-
sample parameter values \alpha 1 = 0.013 and \alpha 2 = 0.633, and increasing dimensions of the local u- and
f -spaces, n\Phi and n\Psi , respectively. The right-bottom plot shows POD--DEIM ROM solutions for
even higher values of n\Phi and n\Psi .
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1871

POD--DEIM ROM approach for the same dimensions n\Phi and n\Psi . For all the dimen-
sions considered POD--DEIM ROM fails to capture the behavior of the FOM solution.
The right-bottom plot suggests that only for dimensions close to FOM size, it is pos-
sible for POD--DEIM ROM to ensure high quality of the solution, which defeats the
purpose of model reduction.

The dramatic gain in the ROM solution quality offered by the TROM compared
to POD--DEIM ROM, as observed in Figure 3, can be understood by exploring the
relative approximation error of LRTD versus POD in terms of their effective rank.
The effective ranks for TT and HOSVD-LRTD are defined as \widetilde RD+1 from (4.6) and\widetilde N from (4.5), respectively. For the truncated SVD of POD--DEIM ROM the effective
rank is just the number of singular values/vectors kept in \widetilde \Theta (1), \Theta \in \{ \Phi ,\Psi \} .

For LRTD employed in TROM we define the relative approximation errors for
the u- and f - snapshot tensors as

E\Phi = \| \Phi  - \widetilde \Phi \| F /\| \Phi \| F , E\Psi = \| \Psi  - \widetilde \Psi \| F /\| \Psi \| F ,(7.7)

respectively. For the truncated SVD employed by POD--DEIM ROM the relative
errors are

E\Phi = \| \Phi (1)  - \widetilde \Phi (1)\| F /\| \Phi (1)\| F , E\Psi = /\| \Psi (1)  - \widetilde \Psi (1)\| F /\| \Psi (1)\| F ,(7.8)

where \Theta (1) are the 1-mode unfolding matrices of the snapshot tensors \Theta , and \widetilde \Theta (1)

are their truncated SVDs for both \Theta \in \{ \Phi ,\Psi \} . In practice, TT and HOSVD effective
ranks are essentially the same, so we only report the errors (7.7) for TT-LRTD.

Figure 4 shows that for the same effective rank TT-LRTD provides a significantly
smaller relative error compared to the truncated SVD for both u- and f -snapshot
approximations. Moreover, the accuracy gain is especially pronounced for approxi-
mating f -snapshots.

Results in Figure 3 suggest that TT-TROM solutions are reasonably accurate
even for the local dimensions lower than those given by the last TT rank: n\Theta <\widetilde R\Theta 

D+1, \Theta \in \{ \Phi ,\Psi \} . This behavior is explained by the left plot in Figure 5, which

shows the scaled singular values of the local snapshot matrices \widetilde \Phi (\bfitalpha ) and \widetilde \Psi (\bfitalpha ) for
several random realizations of out-of-sample parameters \bfitalpha /\in \widehat \scrA . Note that \sigma (\widetilde \Phi (\bfitalpha ))
and \sigma ( \widetilde \Psi (\bfitalpha )) appear on the right-hand side of the TROM representation estimate
(6.4) and DEIM interpolation estimate (6.7). While setting n\Theta = \widetilde R\Theta 

D+1 makes the

E\Phi E\Psi 

Fig. 4. Relative errors of TT-LRTD snapshot tensor approximations (7.7) and POD (7.8)
versus their effective ranks.
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A1872 ALEXANDER V. MAMONOV AND MAXIM A. OLSHANSKIY

TT-TROM CP-TROM

Fig. 5. Scaled singular values of local spansot matrices \widetilde \Phi (\bfitalpha ) and \widetilde \Psi (\bfitalpha ) defined in (5.5) for 10

random realizations of out-of-sample parameters \bfitalpha /\in \widehat \scrA for TT-TROM with \varepsilon = 10 - 3 and CP-TROM
with CP-rank=200, showing \sigma n(\widetilde \Theta (\bfitalpha )) for n= 1, . . . ,50, \widetilde \Theta \in \{ \widetilde \Phi , \widetilde \Psi \} .

Table 2
TROM errors in H1-norm for refined parameter space grid. \scrA 100 is a set of 100 pairs of

randomly drawn out-of-sample parameters.

K1 \times K2 2\times 4 4\times 8 8\times 16 16x32 32x64\sum 
\bfitalpha \in \scrA 100

\int 1
0.5

\int 1
0 | (u\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} - u\mathrm{p}\mathrm{o}\mathrm{d})x| 2dxdt\sum 

\bfitalpha \in \scrA 100

\int 1
0.5

\int 1
0 | (u\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e})x| 2dxdt

0.244 0.104 0.035 0.025 0.026

\mathrm{m}\mathrm{a}\mathrm{x}
\bfitalpha \in \scrA 100

\int 1
0.5

\int 1
0 | (u\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} - u\mathrm{p}\mathrm{o}\mathrm{d})x| 2dxdt

\mathrm{m}\mathrm{a}\mathrm{x}
\bfitalpha \in \scrA 100

\int 1
0.5

\int 1
0 | (u\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e})x| 2dxdt

0.442 0.204 0.060 0.030 0.033

corresponding terms in (6.4) and (6.7) vanish for smaller (but not too small) local
reduced space dimensions they are dominated by approximation terms and so do not
affect the representation power of the local reduced spaces.

Finally, we examine the dependence of TROM solution accuracy on the sampling
refinement for the parameter space. Table 2 shows errors in the L2(H1) norm, which
is a natural norm for parabolic problems. The error is averaged and maximal over
100 pairs of out-of-sample parameters randomly drawn. We see that the error decays
with refining the parameter grid as predicted by the representation estimate with
saturation achieved for 16\times 32.

7.2. Parameterized two-dimensional Allen--Cahn equation. The second
example we consider is a two-dimensional Allen--Cahn equation, a phase-field model of
a phase separation process in \Omega with a transition between order and disorder states.
The model characterizes state of matter at x \in \Omega by a smooth indicator function
u(t,x), solving

ut = \alpha 2
1\Delta u - f(u) for x\in (0,1)2, t\in (0, T ),(7.9)

with zero Neumann boundary conditions and the initial condition described below.
The nonlinear term is f(u) = F \prime (u), where F (u) = u2(1  - u)2 + \alpha 2

10 (u
4  - 1

2u) is a
double-well Ginzburg--Landau potential to allow for phase separation. The parameter
\alpha 1 > 0 is the characteristic width of the transition region between the two phases,
and \alpha 2 \in [0,1] defines energy levels of pure phases with \alpha 2 > 0 corresponding to an
asymmetric potential.

To obtain a dynamical system of the form (2.1), we discretize (7.9) using a stan-
dard second-order finite difference scheme on a uniform grid with M = 1502 nodes
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TENSORIAL PARAMETRIC MODEL ORDER REDUCTION A1873

p\mathrm{b} = 0.50 p\mathrm{b} = 0.51 p\mathrm{b} = 0.52

Fig. 6. Initial conditions \bfitphi 0(\widehat \bfitalpha ) for three different values of p\mathrm{b} \in \{ 0.50,0.51,0.52\} .

and mesh size h = 1/
\surd 
M . This yields A\bfitalpha \in RM\times M that depends on \alpha 1 only. The

nonlinear term f\bfitalpha (u) = F \prime (u) depends on \bfitalpha and is being computed with the powers
of u\in RM taken entrywise.

To generate FOM snapshots for (7.9) we apply a semi-implicit second-order time
stepping scheme with uniform time step \Delta t: for each \widehat \bfitalpha k \in \widehat \scrA , given \bfitphi j(\widehat \bfitalpha k) and
\bfitphi j - 1(\widehat \bfitalpha k) in RM , find \bfitphi j+1(\widehat \bfitalpha k) satisfying

3\bfitphi j+1(\widehat \bfitalpha k) - 4\bfitphi j(\widehat \bfitalpha k) +\bfitphi j - 1(\widehat \bfitalpha k)

2\Delta t
+ \beta s

\bigl( 
\bfitphi j+1(\widehat \bfitalpha k) - 2\bfitphi j(\widehat \bfitalpha k) +\bfitphi j - 1(\widehat \bfitalpha k)

\bigr) 
(7.10)

=A\widehat \bfitalpha k
\bfitphi j+1(\widehat \bfitalpha k) - f\widehat \bfitalpha \bigl( 2\bfitphi j(\widehat \bfitalpha k) - \bfitphi j - 1(\widehat \bfitalpha k)

\bigr) 
,

for j = 1,2, . . . ,N , \Delta t= T/N , T = 20, N = 200, and k = 1, . . . ,K. Here \beta s > 0 is the
stabilization parameter [38] to allow the explicit treatment of the nonlinear term.

The first step of (7.10) is performed using BDF1 for the initial condition \bfitphi 0(\widehat \bfitalpha k)
with a varying ratio of the areas occupied by each state, as shown in Figure 6. The
initial snapshots \bfitphi 0 are computed themselves with FOM simulations of the discretized
equation (7.9) on t\in (0,1) with \alpha 1 = 0.01 and \alpha 2 = 0 from the initial random Bernoulli
distribution with probability of u= 1 equal to pb \in \{ 0.50,0.51,0.52\} , respectively, at
each ofM nodes of the spatial discretization grid. Thus, we consider a three-parameter
system, i.e., D= 3, with the parameter domain \scrA = [0.01,0.025]\times [0,1]\times [0.5,0.52].

Once the u-snapshots are calculated via (7.10), f -snapshots are simply

\bfitpsi j(\widehat \bfitalpha k) = - f\widehat \bfitalpha \bigl( 2\bfitphi j(\widehat \bfitalpha k) - \bfitphi j - 1(\widehat \bfitalpha k)
\bigr) 
, j = 1,2, . . . ,N, k= 1, . . . ,K.(7.11)

We use a grid of eight log-uniformly distributed \widehat \alpha j
1 values in [0.01,0.025], three values

of \widehat \alpha j
2 \in \{ 0,0.15,0.3\} and three values of \widehat \alpha j

3 \in \{ 0.50,0.51,0.52\} to define the sampling
set \widehat \scrA .

In the first experiment we study in-sample representation capacity of TT-TROM
and compare it to that of POD--DEIM ROM. In Figure 7 we display the FOM, TT-
TROM, and POD--DEIM ROM solutions of discretized Allen--Cahn equation at the
terminal time t= T = 20 for two in-sample parameter vectors. The TT-TROM solu-
tion was computed for tensor compression accuracy \varepsilon = 10 - 5. Decreasing compression
accuracy to \varepsilon = 10 - 3 did not lead to a visual difference in TT-TROM solutions. The
corresponding tensor ranks and compression factors for different values of \varepsilon are sum-
marized in Table 3. We observe that while TT-TROM with the modest local reduced
space dimensions n\Phi = n\Psi = 20 predicts the pattern evolution very well, the conven-
tional POD--DEIM ROM is inaccurate.

Next, we repeat the experiment for out-of-sample parameter values. We display in
Figure 8 the FOM, TT-TROM, and POD--DEIM ROM solutions of discretized Allen--
Cahn equation at the terminal time t = T = 20 for two out-of-sample parameter
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FOM TT-TROM POD-DEIM ROM

Fig. 7. FOM, TT-TROM, and POD-DEIM ROM solutions of the Allen--Cahn equation at t=
T = 20 for two in-sample parameter vectors: \bfitalpha = (0.01,0,0.5)T (top row) and \bfitalpha = (0.013,0.15,0.52)T

(bottom row).

Table 3
Compression ranks [ \widetilde R\Theta 

1 , \widetilde R\Theta 
2 , \widetilde R\Theta 

3 , \widetilde R\Theta 
4 ], \Theta \in \{ \Phi ,\Psi \} for TT-TROM versus compression accuracy

\varepsilon and the corresponding compression factors.

\varepsilon 0.1 0.01 10 - 3 10 - 4 10 - 5\widetilde \Phi TT-ranks [13,6,3,2] [79,35,13,6] [221,90,35,15] [442,155,63,26] [741,229,94,38]\widetilde \Psi TT-ranks [120,46,16,8] [340,129,47,20] [646,216,87,35] [1013,307,127,50] [1405,399,165,65]

CF(\Phi ) 4.629 \cdot 105 1.364 \cdot 105 1902 555 226

CF(\Psi ) 6921 870 274 123 69

vectors. We observe again an excellent prediction offered by TT-TROM, although
the relative L2(0, T,L2(\Omega )) error increased from about 10 - 5 for the in-sample case to
about 10 - 2 for the out-of-sample case. Similarly, POD--DEIM ROM once again fails
to accurately predict the solutions.

Finally, we examine the effect of varying tensor compression accuracy \varepsilon on TROM
solution accuracy and compression ranks. In Figure 9 we display the TT-TROM solu-
tions of discretized Allen--Cahn equation at t= T = 20 for an out-of-sample parameter
vector \bfitalpha = (0.012,0.1,0.51)T for the three different values of \varepsilon = 10 - 1,10 - 2,10 - 3 with
local reduced space dimensions equal to the effective ranks, i.e., n\Theta = \widetilde R\Theta 

4 for both
\Theta \in \{ \Phi ,\Psi \} . In Table 3 we observe a large ratio of the first to last TT-ranks which
is even higher than that for the example in section 7.1. This explains a vast accu-
racy gain offered by the TT-TROM compared to the conventional POD--DEIM ROM.
Indeed, POD--DEIM ROM performs poorly for this example with solutions being in-
accurate even for larger local spaces dimensions, as demonstrated in Figure 10.

The computational times for the TT-TROM online stage in this Allen--Cahn equa-
tion example were mainly determined by the tensor compression ranks, as indicated in
Table 3. For tensor compression accuracies \varepsilon \in 10 - 2,10 - 3,10 - 4, the average elapsed
computational times on a laptop, calculated over multiple runs of the TT-TROM,
were approximately 0.012 sec., 0.021 sec., and 0.040 sec., respectively. These times
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FOM TT-TROM POD-DEIM ROM

Fig. 8. FOM, TT-TROM, and POD-DEIM ROM solutions of the Allen--Cahn equation at
t = T = 20 for two out-of-sample parameter vectors: \bfitalpha = (0.012,0.1,0.51)T (top row) and \bfitalpha =
(0.02,0.2,0.51)T (bottom row).

\varepsilon = 10 - 1 \varepsilon = 10 - 2 \varepsilon = 10 - 3

Fig. 9. TT-TROM solutions of the Allen--Cahn equation for variying tensor compression ac-
curacy \varepsilon .

encompass steps 1 to 3 of the online stage in Algorithm 5.1, as well as the time re-
quired for integrating the projected system. This can be compared to an average time
of six seconds required by the FOM for a single value of \bfitalpha .

8. Conclusions. We introduced a Galerkin-type model order reduction frame-
work for nonlinear parametric dynamical systems that utilizes LRTD in place of POD
for both projection and hyper-reduction steps. The LRTD is applied to find ``uni-
versal"" reduced spaces representing all observed snapshots and it is also used for
finding ``local"" parameter-specific reduced subspaces of these larger universal spaces.
If HOSVD or TT algorithms are employed to compute LRTD of snapshot tensors,
then the universal spaces coincide with the POD spaces for the matrices of all ob-
served snapshots. In this case, the proposed TROM can be also thought of as a tensor
modification of the conventional POD--DEIM model reduction approach that benefits
from the intrinsic tensor structure of a parametric system in several ways: (i) it pro-
vides means to find local spaces; (ii) it allows interpolation in the parameter domain
directly in the reduced order spaces and thus enables efficient handling of parameters
outside of the training set; (iii) it admits a rigorous analysis of the representation
power of the reduced spaces for general parameter values.
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n\Phi = 10, n\Psi = 14 n\Phi = 20, n\Psi = 35 n\Phi = 30, n\Psi = 52

n\Phi = 10, n\Psi = 15 n\Phi = 20, n\Psi = 35 n\Phi = 30, n\Psi = 50

Fig. 10. POD-DEIM ROM solutions of the Allen--Cahn equation at t= T = 20 for two param-
eter vectors: \bfitalpha = (0.01,0,0.50)T (top row) and \bfitalpha = (0.013,0.15,0.52)T (bottom row) for increasing
dimensions n\Phi and n\Psi of local reduced spaces (from left to right). Some combinations of parameter
values and local reduced space dimensions lead to the blow-up of the numerical solution, e.g., for
\bfitalpha = (0.013,0.15,0.52)T and n\Phi = 10, n\Psi = 15.

We assessed the performance of three LRTD variants for model order reduction,
based on CP, HOSVD, and TT tensor formats. While TT was found to have a slight
edge over HOSVD in terms of compression rates for the examples considered, the CP
variant is, in general, more time consuming to compute and delivers worse approxi-
mation quality. Another variation considered is the approach to hyper-reduction in a
two-stage setting. Out of the two variants we prefer the one with DEIM at the offline
stage and local least squares at the online stage, since it performs similarly to the
approach with DEIM on both stages, but also admits interpolation estimate for the
local basis with a bound that is independent of parameters.

We note that for large scale FOMs and higher-dimensional parameter spaces,
sampling full snapshot tensors may become prohibitively expensive due to the expo-
nential increase of the number of snapshots as a function of the paratemeter space
dimension. A promising approach to decrease the associated offline costs is the use
of low-rank tensor interpolation or completion for finding LRTD from a sparse sam-
pling of parameter domain. This should decouple the required number of parameter
samples from the dimension of parameter space, assuming a certain degree of regular-
ity in the dependence of dynamical system solutions on the parameters. Preliminary
results suggesting feasibility and efficiency of such an approach will be reported in a
forthcoming paper.
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