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1 INTRODUCTION

High-level synthesis (HLS) with the task-parallel programming model is an important tool to
help programmers scale up the performance of their accelerators on modern FPGAs with ever-
increasing resource capacities. Task-level parallelism is a form of parallelization of computer pro-
grams across multiple processors. In contrast to data parallelism where the workload is partitioned
on data and each processor executes the same program (e.g., OpenMP [29]), different processors,
or modules, in a task-parallel program often behave differently, while data are passed between pro-
cessors. Examples of task-parallel programs include image processing pipelines [17, 54, 67], graph
processing [30, 31, 84, 99], and network switching [63]. Researches show that even for data-parallel
applications such as neural networks [73, 74, 83] and stencil computation [17], task-parallel imple-
mentations show better scalability and higher frequency than their data-parallel counterparts due
to the localized communication pattern [25].

Even though task-parallel programs are suitable for spatial architectures, existing FPGA
computer-aided design (CAD) toolchains often fail in timing closure. One major cause that leads
to the unsatisfactory frequency is that HLS cannot easily predict the physical layout of the design
after placement and routing. Thus, HLS tools typically rely on pre-characterized operation delays
and a crude interconnect delay model to insert clock boundaries (i.e., registers) into an untimed de-
sign to generate a timed RTL implementation [36, 79, 98]. Hence, as the HLS accelerator system de-
signs get larger to fully leverage the resources of a modern FPGA, the behavior-level estimation be-
comes even less accurate and the timing quality of the synthesized RTLs usually further degrades.

This timing issue is worsened as modern FPGA architectures become increasingly heteroge-
neous [90]. Modern FPGAs have thousands of heterogeneous digital signal processing (DSP)
and random-access memory (RAM) blocks and millions of lookup table (LUT) and flip-flop
(FF) instances. To pack more logic onto a single device, the latest FPGAs integrate multiple dies
using silicon interposers, but the interconnects that go across the die boundaries would carry a
non-trivial delay penalty. In addition, specialized IP blocks such as PCle and DDR controllers are
embedded in the programmable logic. These IP blocks usually have fixed locations near-dedicated
I/O banks and will consume a large number of programmable resources nearby. As a result, these
dedicated IPs often detour the signals close by towards more expensive and/or longer routing
paths. This complexity and heterogeneity significantly challenge the effectiveness and efficiency
of modern FPGA CAD workflow.

Moreover, the recent release of High Bandwidth Memory (HBM)-based FPGA boards brings
even more challenges to the timing closure of HLS designs. The key feature of the HBM device
is that a super-wide data interface is exposed in a local region, which often causes severe local
congestion. For example, the AMD/Xilinx U280 FPGA features 32 independent HBM channels
at the bottom of the device, each with a 256-bit width running at 450 MHz. To fully utilize the
potential of the HBM bandwidth, the physical design tools need to squeeze a substantial amount
of logic into the area nearby the HBM blocks.
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The current timing-closure struggle in multi-die FPGAs originates from a disconnection be-
tween the HLS step and the downstream physical design step. The existing FPGA compilation
stack consists of a sequence of independent design and optimization steps to lower the design ab-
straction gradually, but these steps lack cross-stack coordination and optimizations. Given a C++
task-parallel program input of an accelerator system, HLS can adjust the output RTL to change the
pipeline level of the data links between tasks (modules), which are usually latency-insensitive, to
break critical paths; however, the tool does not know which ones will be timing-critical. However,
the physical design tools could determine the critical paths but no longer have the option to add
extra registers because physical design tools honor the cycle-accurate RTL input.

Several prior attempts couple the physical design process with HLS compilation [6, 9, 23, 48,
77, 78, 94, 98]. Zheng et al. [98] propose to iteratively run placement and routing to obtain accu-
rate delay statistics of each wire and operator. Based on the post-route information, HLS re-runs
the scheduling step for a better pipelining; Cong et al. [23] is another representative work that
presents placement-driven scheduling and binding for multi-cycle communications in an island-
style architecture similar to FPGAs. Kim et al. [48] propose to combine architectural synthesis with
placement under distributed-register architecture to minimize the system latency. Stammermann
et al. [77] proposed methods to simultaneously perform floorplanning and functional unit binding
to reduce power on interconnects. Chen et. al. [9] propose implementing HLS as a sub-routine to
adjust the delay/power/variability/area of the circuit modules during the physical planning pro-
cess across different IC layers, which only improves timing by 8%. The previous approaches share
the common aspect of focusing on the fine-grained interaction between HLS and physical design,
where individual operators and the associated wires and registers are all involved during the delay
prediction and iterative HLS-layout co-optimization. While such a fine-grained method can be ef-
fective on relatively small HLS designs and FPGA devices, it is too expensive (if not infeasible) for
today’s large designs targeting multi-die FPGAs, where each implementation iteration from HLS
to bitstream may take days to complete.

Therefore, we propose to re-structure the CAD stack and partially combine physical design
with HLS in a coarse-grained fashion. Specifically, we propose to couple the coarse-grained floor-
planning step with behavior-level pipelining in HLS. Our coarse-grained floorplanning involves
dividing the FPGA device into a grid of regions and assigning each task to one region during HLS
compilation. We further pipeline all the inter-region connections to facilitate timing closure while
we leave the intra-region optimization to the default HLS tool. As our experiment will show, floor-
planning a 4-die FPGA into only 6-8 regions is already enough to properly guide HLS for accurate
elimination of global critical paths, thus our floorplan-guided HLS approach is lightweight and
highly scalable.

Our methodology relieves local congestion and fixes global critical paths at the same time. First,
the early floorplanning step could guide the subsequent placement steps to distribute the user logic
evenly across the entire device instead of attempting to pack the logic into a single die as much
as possible, which aims to alleviate local congestion as much as possible. Second, the floorplan
provides HLS a view of the global physical layout that helps HLS accurately identify and pipeline
the long wires, especially those crossing the die boundaries, so the global critical paths could be
appropriately pipelined. Finally, we present analysis and latency balancing algorithms to guarantee
that the throughput of the resulting design is not negatively impacted. Our contributions are as
follows:

— To the best of our knowledge, we are the first to tackle the challenge of high-frequency HLS
design on multi-die FPGAs by coupling floorplanning and pipelining to effectively insert
registers on the long cross-die interconnects. We further ensure that the additional latency
does not affect the throughput of the design.
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Fig. 1. An overview of our TAPA framework. The input is a task-parallel dataflow program written in C/C++
with the TAPA APIs. We first invoke the TAPA compiler to extract the parallel tasks and synthesize each
task using Vitis HLS to get its RTL representation and obtain an estimated area. Then the AutoBridge [35]
module of TAPA floorplans the program and determines a target region for each task. Based on the floorplan,
we intelligently compute the pipeline stages of the communication logic between tasks and ensure that
throughput will not degrade. TAPA generates the actual RTL of the pipeline logic that composes together
the tasks. A constraint file is also generated to pass the floorplan information to the downstream tools.

— We present a set of optimizations specifically tailored for HBM devices, including automatic
HBM port binding, floorplan solution space exploration, and a customized programming API
to minimize the area overhead of HBM IO modules.

— Our framework, TAPA, interfaces with the commercial FPGA design tool flow. It improves
the average frequency of 43 designs from 147 MHz to 297 MHz with a negligible area
overhead.

This article extends the two prior publications [18, 35] of the authors on this topic. Compared
to the prior papers, this article includes additional contributions as follows:

— We integrate the co-optimization methodology from Reference [35] with the programming
framework in Reference [18] to provide a fully automated, programmer-friendly, and ro-
bust workflow that consistently achieves higher frequency compared to existing commercial
toolchains.

— We extend the framework of Reference [18] with additional APIs for external memory
access, which has significantly lowered BRAM consumption. This optimization enables
the successful implementation of large-scale accelerators onto modern HBM-based FPGAs
(Section 3.4).

— We extend the co-optimization methods of Reference [35] to consider the special challenges
of programming HBM-based FPGAs, including automatic HBM channel binding and multi-
floorplanning generation (Section 6).

— We add four extra benchmarks that use a large number of HBM channels. We demonstrate
how our new optimization enables them to be successfully implemented with high frequency
(Section 7.4).

Figure 1 shows the overall flow of our proposed methodology. The rest of the article is organized
as follows: Section 2 introduces background information on modern FPGA architectures and shows
motivating examples; Section 3 presents our proposed task-parallel programming model; Section 4
details our coarse-grained floorplan scheme inside the HLS flow; Section 5 describes our floorplan-
aware pipelining methods; Section 6 elaborates our techniques tailored for HBM-based FPGAs;
Section 7 presents experimental results; Section 8 provides related work, followed by conclusion
and acknowledgments.

2 BACKGROUND AND MOTIVATING EXAMPLES
2.1 High-level Synthesis

The rapid increase of complexity in FPGA design has pushed the industry and academia to raise the
design abstractions with better productivity than the register transfer level (RTL). High-level
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synthesis (HLS) plays a central role by enabling the automatic synthesis of high-level, untimed, or
partially timed specifications (e.g., C++ or OpenCL) to low-level cycle-accurate RTL specifications
for efficient implementation in the field programmable gate arrays (FPGAs) or application-
specific integrated circuits (ASICs). The typical flow of modern FPGA HLS tools usually consists
of three core steps: (1) scheduling, (2) binding, and (3) RTL generation.

— The scheduling phase inserts clock boundaries into the original untimed specification. It
takes in the control data flow graph (CDFG) generated by a compiler front-end, which
parses the source code and performs target-independent optimizations, from the high-level
description (e.g., C/C++) and then maps the operations in the CDFG to the states and the
control flow to state transitions specified by a finite-state machine (FSM). In each clock
cycle, the controller would be in a state in the corresponding FSM.

— The binding process maps high-level operations and variables to RTL-level resources, such
as functional units and registers. It maps variables to registers and links wires from registers
to functional units as operands of operations. The result of a functional unit is then wired
to another functional unit or a register to store the computed value.

— The RTL generation phase creates concrete RTL based on the results of the scheduling and
the binding steps. The key in this step is to properly create the control logic to orchestrate
the datapath, controlling each stage to execute at its scheduled cycle.

2.2 Task-parallel Dataflow Programs

Task-level parallelism is a form of parallelization of computer programs across multiple processors.
In contrast to data parallelism where the workload is partitioned on data and each processor exe-
cutes the same program (e.g., OpenMP [29]), different processors in a task-parallel program often
behave differently, while data are passed between processors. For example, the multiple stages in
an image-processing pipeline [17, 54, 67] can each be implemented in a different processor. Task-
parallel programs are often described using dataflow models [5, 41, 46, 51, 66], where tasks are
called processes. Processes communicate only through unidirectional channels. Data exchanged be-
tween channels are called tokens. In this article, we borrow the terms channel and token and focus
on the problem of statically mapping tasks to hardware. That is, instances of tasks are synthesized
to different areas in an FPGA accelerator.

2.3 Multi-die FPGA Architectures

Figure 2 shows three representative multi-die FPGA architectures, each of which is described in
more detail as follows:

— The Xilinx Alveo U250 FPGA is one of the largest FPGAs with four dies. All the I/O banks
are located in the middle column and the four DDR controller IPs are positioned vertically
in a tall-and-slim rectangle in the middle. On the right lies the Vitis platform region [91],
which incorporates the DMA IP, the PCle IP, and so on, and serves to communicate with the
host CPU.

— The Xilinx Alveo U280 FPGA is integrated with the latest HBM [20, 21, 92], which exposes
32 independent memory ports at the bottom of the chip. I/O banks are located in the middle
columns. Meanwhile, there is a gap region void of programmable logic in the middle.

— The Intel Stratix 10 FPGA [42] also sets the DDR controller and I/O banks in the middle of
the programmable logic. The embedded multi-die interconnect bridges and the PCle blocks
are distributed at the two sides of the die, allowing multiple dies to be integrated together
on an FPGA package. Although this article uses the Xilinx FPGAs to demonstrate the idea,
our methodology is also applicable to Intel FPGAs and other architectures.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 63. Pub. date: December 2023.



63:6 L. Guo et al.

PCle block

4

Vitis
Platform IP|
o~ &other1/Os
vie 47
Boundary]
HBM IP
>
Xilinx XCU250 Xilinx XCU280 Intel Stratix 10

Fig. 2. Block diagrams of three representative FPGA architectures: the Xilinx Alveo U250, U280 (based on
the Xilinx UltraScale+ architecture), and the Intel Stratix 10.
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Fig. 3. Implementation results of a CNN accelerator on the Xilinx U250 FPGA. Spreading the tasks across
the device helps reduce local congestion, while the die-crossing wires are additionally pipelined.

Compared to previous generations, the latest multi-die FPGA architectures are divided into dis-
joint regions, where the region-crossing naturally incurs additional signal delay. In addition, the
large pre-located IPs consume significant programmable resources near their fixed locations that
may also cause local routing congestion. These characteristics can hamper the existing HLS flows
from achieving a high frequency.

2.4 Motivating Examples

We show two examples to motivate our floorplan-guided HLS approach. First, Figure 3 shows a
CNN accelerator implemented on the Xilinx U250 FPGA. It interacts with three DDR controllers,
as marked in grey, pink, and yellow blocks in the figure. In the original implementation result, the
whole design is packed close together within die 2 and die 3. To demonstrate our proposed idea, we
first manually floorplan the design to distribute the logic in four dies and to avoid overlapping the
user logic with DDR controllers. Additionally, we pipeline the FIFO channels connecting modules
in different dies as demonstrated in the figure. The manual approach improves the final frequency
by 53%, from 216 MHz to 329 MHz.

Second, Figure 4 shows a stencil computation design on the Xilinx U280 FPGA. It consists of four
identical tasks in linear topology with each color representing a kernel. In the original implemen-
tation, the tool’s choice of die-crossing wires is sub-optimal, and one kernel may be divided among
multiple regions. Instead in our approach, we pre-determine all the die-crossing wires during HLS
compilation and pipeline them, so the die boundaries will not cause problems for the placement
and routing tool. For this example, we achieve 297 MHz while the design is originally unroutable.
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Program
Topology Default Floorplan-Guided

Fig. 4. Implementation results of a stencil computing design on U280. Floorplanning during HLS compilation
significantly benefits the physical design tools.

using namespace tapa;

void Add(istream<int>& a, istream<int>& b, ostream<int>& c, int n) { // to be compiled by Vitis HLS
for (int i = 0; i < n; ++i) ¢ << (a.read() + b.read());

1

2
3
4
502}
6
7| void Load(mmap<int> mmap, ostream<int>& stream, int n) { // to be compiled by Vitis HLS
8 for (int i = 0; i < n; ++i) stream << mmap[il];

9(}

11| void Store(istream<int>& stream, mmap<int> mmap, int n) { // to be compiled by Vitis HLS
12 for (int i = 0; i < n; ++i) stream >> mmap[il;

13] 2

15| void VecAdd(mmaps<int, PE_NUM> mem_1, mmaps<int, PE_NUM> mem_2, int n) { // to be compiled by TAPA
16 streams<int, PE_NUM, FIFO_DEPTH> str_a, str_b, str_c;
17 tapa: : task()

18 .invoke<PE_NUM>(Load, mem_1, str_a, n)

19 .invoke<PE_NUM>(Load, mem_2, str_b, n)

20 .invoke<PE_NUM>(Add, str_a, str_b, str_c, n)
21 .invoke<PE_NUM>(Store, str_c, mem_2, n)
22]}

Listing 1. Accelerator task instantiation in TAPA.

3 PROGRAMMING MODEL AND INTERFACES

In this section, we present the detailed task-programming model of TAPA and the user interfaces.

3.1 Basic Concepts

TAPA dataflow programs explicitly decouple communication and computation. A TAPA program
has two types of building blocks: streams and tasks. A stream will be mapped to a FIFO in hard-
ware; a task consumes data from input streams, performs arbitrary computation, then produces
data into other output streams. All tasks execute in parallel and communicate with each other
through streams.

Listing 1 shows an example TAPA program that instantiates PE_NUM kernels, and each kernel
loads two vectors from external memory, adds them up, and stores the results back into external
memory. The VecAdd function instantiates the three lower-level tasks and defines the communica-
tion streams between them. It takes 3 arguments: 3 mmap interfaces for the 3 vectors and one scalar
for the vector length. 3 communication streams are defined in VecAdd. The 3 lower-level tasks are
instantiated 4 times in total because there are 2 input vectors, each of which needs its own Load.
The VecAdd function is an upper-level task. It is also the top-level task that defines the interface
between the kernel and the host. Once the 4 children task instances are instantiated, they will run
in parallel and their parent will wait until all children finish.
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PE_NUM

Fig. 5. The task graph corresponding to Listing 1. By adjusting PE_NUM, we could easily scale out the design
for a higher degree of data parallelism.

3.2 Hierarchical Programming Model

TAPA uses a hierarchical programming model. Each task is either a leaf that does not instantiate
any streams or tasks or a collection of tasks and streams with which the tasks communicate. A task
that instantiates a set of tasks and streams is called the parent task for that set. Correspondingly,
the instantiated tasks are the children tasks of their parent, which may be parents of their own
children. Each stream must be connected to exactly two tasks. One of the tasks must act as a
producer and the other must act as a consumer. Meanwhile, each task could connect to an arbitrary
number of streams. The producer streams tokens to the consumer via the stream in the first-in-
first-out (FIFO) order. Each task is implemented as a C++ function, which can communicate with
each other via the communication interface. A parent task instantiates streams and tasks using the
instantiation interface and waits until all its child tasks finish. One of the tasks is designated as the
top-level task, which defines the communication interfaces external to the FPGA accelerator, i.e.,
the system integration interface.

3.3 Convenient Programming Interfaces

3.3.1 Communication Interface. TAPA provides separate communication APIs for the producer
side and the consumer side, which use ostream and istream as the interfaces, respectively. The
producer of a stream can test the fullness of the stream and append tokens to the stream (write) if
the stream is not full. The consumer of a stream can test the emptiness of the stream and remove
tokens from the stream (destructive read) or duplicate the head token without removing it (non-
destructive read, a.k.a. peek) if the stream is not empty. Read, peek, and write operations can be
blocking or non-blocking.

A special token denoting end-of-transaction (EoT) is available to all streams. A process can
“close” a stream by writing an EoT token to it, and a process can “open” a stream by reading an
EoT token from it. A process can also test if a stream is closed, which is a non-destructive read
operation to the stream (eot). An EoT token does not contain any useful data. This is designed
deliberately to make it possible to break from a pipelined loop when an EoT is present, for example,
in Line 3 of Listing 2. Listing 2 shows an example of how the communication interfaces are used.

3.3.2 Instantiation  Interface. A parent task can instantiate streams using
stream<type,capacity> For example, stream<Pkt,2> instantiates a stream with capacity
2, and data tokens transmitted using this stream have type Pkt. Tasks are instantiated using
task: :invoke, with the first argument being the task function and the rest of the arguments
being the arguments to the task instance. This is consistent with std::invoke in the C++
standard library.
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void RingNode(istream<Pkt>& node_in, istream<Pkt>& pe_in,
ostream<Pkt>& node_out, ostream<Pkt>& pe_out) {
while (!pe_in.eot()) {
if (!pe_in.empty()) {
node_out.write(pe_in.read());
if (!node_in.empty() && IsForThisNode(node_in.peek()))
pe_out.write(node_in.read());
} else if (!node_in.empty()) {
9 Pkt pkt = node_in.read() ;
10 (IsForThisNode(pkt) ? pe_out : node_out).write(pkt);
11 3
12 } // Highlighted are destructive read operations and
13] )} // non-destructive read (peek) operations .

[ I N N T

Listing 2. Demonstration of TAPA peek () API and the usage of TAPA transactions.

3.3.3 Detached Tasks. Sometimes making the termination of the program dependent on each
kernel function is overkill. For example, a task function may be purely data-driven and we do not
have to terminate it on program termination. In that case, TAPA allows users to detach a task on
invocation instead of joining it to the parent through the task().invoke<detach>() APL Such
tasks can keep running forever as long as input data are available, and the central controller will
not check if it is finished or not to determine the termination of the program.

3.3.4  System Integration Interface. TAPA uses a unified system integration interface to further
reduce programmers’ burden. To offload a kernel to an FPGA accelerator, programmers only need
to call the top-level task as a C++ function in the host code. Since TAPA can extract metadata
information, e.g., argument type, from the kernel code, TAPA will automatically synthesize proper
OpenCL host API calls and emit an implementation of the top-level task C++ function that can set
up the runtime environment properly. As a user of TAPA, the programmer can use a single function
invocation in the same source code to run software simulation, hardware simulation, and on-board
execution, with the only difference of specifying proper kernel binaries.

3.4 Asynchronous External Memory Access

To provide users with more flexibility in accessing the external memory and to reduce the area
overhead, we develop the async_mmap APIL The async_mmap object represents an AXI channel as
five independent streams, as shown in Figure 6. To read from an HBM channel, the user only needs
to write out the target addresses one-by-one into the read_addr stream. The received data will be
directly streamed to the user logic through another stream interface. Figure 3 shows an example of
a sequential read operation. Likewise, to write data out into external memory, the user only needs
to push the individual addresses and data to the write_addr channel.

Contrary to existing HLS solutions that infer burst transactions at the compile time through
static analysis, we implement a runtime burst detection mechanism. The burst detector module will
inspect the input addresses and merge sequential reads or writes into a longer burst transaction.
Table 1 demonstrates the behavior of the burst detector. The input side is always available to accept
new input addresses as long as the downstream AXI adapter is not congested. Internally, the burst
detector will keep track of the longest stream of sequential addresses it has seen so far. Once a
new input address is not consequential to the previous address, the burst detector will conclude
the last transaction and produce a burst transaction to the output. Meanwhile, it will update the
starting address of the next burst. In the case that the next input address is not available above a
threshold, the burst detector will also conclude and issue out the current burst. The burst detector
ensures that memory access will be as efficient as inferring burst transactions statically.

The async_mmap API gives HLS users a similar level of fine-grained control of the RTL level.
Users can use one dedicated task to issue read requests and another task to receive the read
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Fig. 6. Implementation of the async_mmap API. The AXI adapter and the burst detector are pre-implemented
IPs as part of the TAPA infrastructure. Given a new TAPA program, the RTL generated for the user program
will be combined with the TAPA system logic to form a complete working design.

1| template <typename T>
2| struct async_mmap {
3 using addr_t = int64_t; using resp_t = uint8_t;
4 tapa: :ostream<addr_t> read_addr;
5 tapa: :istream<T> read_data;
6 tapa: :ostream<addr_t> write_addr;
7 tapa: :ostream<T> write_data;
8 tapa::istream<resp_t> write_resp;
913};
Listing 3. The user interface of the async_mmap APL
1| void load(tapa: :async_mmap<Elem>& hbm) {
2 for(int i_rd_req = 0, i_rd_resp = 0; i_rd_resp < n; ) {
3| #pragma HLS pipeline II=1
4 // issue read request
5 if (i_rd_req < n && 'hbm.read_addr.full()) {
6 hbm. read_addr.write(i_rd_req);
7 ++i_rd_req;
8 }
9
10 // receive the read response
11 if (!hbm.read_data.empty()) {
12 Elem elem = hbm.read_data.read();
13 ++i_rd_resp;
14 33
153

Listing 4. Example of reading data with the async_mmap APL

responses, which is hardly feasible in the common approach that abstracts the external memory
as an array.

3.5 Overall Compilation Steps

Figure 1 shows the overall compilation flow. Given an input TAPA program, the tool will compile
the top function into RTL and then invoke an existing HLS tool to compile each individual task. For
the top function, the tool will analyze and extract how the tasks are interconnected and construct
a task graph. The task graph will be used by the floorplan tools to assign each task to one region
of the device and determine the pipeline level of each stream. The details of the floorplan process
will be discussed in the following sections.
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Table 1. The Behavior of the Burst Detector that Combines Sequential
Individual Memory Transactions into Burst Transactions

Cycle 0 1 2 3 4 5 6 7

Input Read Requests 64 65 66 67 128 129 130 256

Ouput AXI Read Addr 64 128
AXI Burst Len 4 3

Base Addr 64 64 064 64 128 128 128 256
Length Counter 1 2 3 4 1 2 3 1

In cycles 0-3, four sequential addresses are consumed, and the detector keeps track
the length of the current burst. In cycle 4, the new input address (128) is not
consecutive to the last input address (64), thus the burst detector put an end to the
last burst tracking process and issues a burst transaction on the output side.

Internal State

| RTL —_— Conventional Placement
Original
Approach 1 s A \
..................... HLS Coarse—gra'ln ...-d Detail Placement f+++sees
Floorplannin
\ J T
Proposed Y
Approach Floorplan-Guided HLS —> Customized RTL

Floorplan constraints
Fig. 7. Core idea of the proposed methodology.
4 COUPLING HLS WITH COARSE-GRAINED FLOORPLANNING

In this section, we present our coarse-grained floorplanning scheme that assigns TAPA tasks to
different regions of the programmable fabric. We call this TAPA module for floorplanning Auto-
Bridge, which is an extension to our prior same-name work [35].

Note that the focus of this work is not on improving floorplanning algorithms; instead, we intend
to properly use coarse-grained floorplan information to guide HLS and placement.

4.1 Coarse-grained Floorplanning Scheme

Instead of finding a dedicated region with a detailed aspect ratio for each module, we choose to
view the FPGA device as a grid that is formed by the die boundaries and the large IP blocks. These
physical barriers split the programmable fabric apart into a series of disjoint slots in the grid where
each slot represents a sub-region of the device isolated by die boundaries and IP blocks. Using our
coarse-grained floorplanning, we will assign each function of the HLS design to one of these slots.

For example, for the Xilinx Alveo U250 FPGA, the array of DDR controllers forms a vertical
split in the middle column; and there are three horizontal die boundaries. Thus, the device can be
viewed as a grid of 8 slots in 2 columns and 4 rows. Similarly, the U280 FPGA can be viewed as a
grid of 6 slots in 2 columns and 3 rows.

In this scheme, each slot contains about 700 BRAM_18Ks, 1500 DSPs, 400K Flip-Flops, and 200K
LUTs. Meanwhile, to reduce the resource contention in each slot, we set a maximum utilization
ratio for each slot to guarantee enough blank space. Experiments show that such slot sizes are
suitable, and HLS has a good handle on the timing quality of the local logic within each slot, as
shown in Section 7.

4.2 Problem Formulation

Given: (1) a graph G(V, E) representing the task-parallel program where V represents the set of
tasks and E represents the set of streaming channels between vertices; (2) the number of rows
R and the number of columns C of the grid representation of the target device; (3) maximum
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Fig. 8. Generating the floorplan for a target 2 X 4 grid. Based on the floorplan, all the cross-slot connections
will be accordingly pipelined (marked in red) for high frequency.

resource utilization ratios for each slot; (4) location constraints such that certain IO modules must
be placed nearby certain IP blocks. In addition, we may have constraints that certain vertices must
be assigned to the same slot. This is for throughput concerns and will be explained in Section 5.
Goal: Assign each v € V to one of the slots such that (1) the resource utilization ratio! of each
slot is below the given limit; (2) the cost function is minimized. We choose the total number of
slot-crossings as the cost instead of the total estimated wire lengths. Specifically, the cost function
is defined as
Z ejj.width X (lv;.row — vj.row| + |v;.col — vj.col|), (1)
eij€E
where e;;.width is the bitwidth of the FIFO channel connecting v; and v; and module v is assigned
to the v.col-th column and the v.row-th row. The physical meaning of the cost function is the sum
of the number of slot boundaries that every wire crosses.

4.3 Solution

Our problem is relatively small in size, as the number of tasks in behavior-level task parallel pro-
grams (typically less than thousands) is much smaller than the number of gates in a logic netlist.
We adopt the main idea of top-down partitioning-based placement algorithms [4, 32, 57] to solve
our problem. Meanwhile, due to the relatively small problem size, we plan to pursue an exact
solution for each partitioning process.

Figure 8 demonstrates the floorplanning of an example design through three iterations of parti-
tioning. The top-down partitioning-based approach starts with the initial state where all modules
are assigned to the same slot, iteratively partitions the current slots in half into two child slots,
and then assigns the modules into the child slots. Each partitioning involves splitting all of the
current slots in half either horizontally or vertically.

We formulate the partitioning process of each iteration using integer linear programming
(ILP). In every partitioning iteration, all current slots need to be divided in half. Since some of the
modules in a slot may be tightly connected to modules outside of the slot, ignoring such connec-
tions can adversely affect the quality of the assignment. Therefore, our ILP formulation considers
the partitioning of all slots together for an exact solution that is possible due to the small problem

!Based on the estimation of resource utilization by HLS. We can increase the accuracy of the area estimation by optionally
running logic synthesis of each task in parallel.
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Table 2. Coordinates of Selected Vertices in Figure 8

[ { v { v { v { vs

Init row = 0; col =0

. vg = 1; vg =0;

iter-1 row=0X2+1=1 row=0X2+0=0
iter-2 vg =1 vg = 0; vg =1 vgq = 0;
ter row=1X2+1|row=1X2+0|row=0X2+1|row=0X2+0
. vgq = 0; vg = 1;

iter-3 col=0%x2+0 col=0x2+1

size. Experiments in Section 7 show that our ILP formulation is solvable within a few seconds or
minutes for designs of hundreds of modules.

Performing an N-way partitioning is another potential method. However, compared to our itera-
tive 2-way partitioning, experiments show that it is much slower than iterative 2-way partitioning.

ILP Formulation of One Partitioning Iteration.

The formulation declares a binary decision variable v, for each v to denote whether v is assigned
to the left or the right child slot during a vertical partitioning (or to the upper or the lower child
slot for a horizontal one). Let R denote the set of all current slots. For each slot r € R to be divided,
we use r, to denote the set of all vertices that r is currently accommodating. To ensure that the
child slots have enough resources for all modules assigned to them, the ILP formulation imposes
the resource constraint for each child slot r.p;;4 and for each type of on-chip resource.

Z Vg X Varea < (Yehild)areas (2)

VETy,

where v,,¢, is the resource requirement of v and (rsyp)qreq represents the available resources in
the child slot divided from r.

To express the cost function that is based on the coordinates of each module, we first
need to express the new coordinates (v.row,v.col) of v based on the previous coordinates
((v.row)prev, (v.col)preo) and the decision variable vg. For a vertical partitioning, the new coordi-
nates of v will be

v.col = (v.col)prev X 2+ vg, (3)
v.row = (V.row)prev- (4)

And for horizontal partitioning, the new coordinates will be
V.row = (0.1oW)prep X 2 + Vg, (5)
v.col = (v.col)preo. (6)
Finally, the objective is to minimize the total slot-crossing shown in Equation (1) for each parti-
tioning iteration.

For the example in Figure 8, Table 2 shows the row and col indices of selected vertices in each
partitioning iteration.

5 FLOORPLAN-AWARE PIPELINING

Based on the generated floorplan, we aim to pipeline every cross-slot connection to facilitate timing
closure. Although HLS has the flexibility to pipeline them to increase the final frequency, the
additional latency could potentially lead to a large increase of the execution cycles, which we
need to avoid. This section presents our methods to pipeline slot-crossing connections without
hurting the overall throughput of the design.
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We will first focus on pipelining the dataflow designs, then extend the method to other types of
HLS design. In Section 5.1, we introduce the approach of pipelining with latency balancing; and Sec-
tion 5.2 presents the detailed algorithm. In Section 5.3, we present how to utilize the internal com-
putation pattern to construct loop-level dataflow graphs that allow more pipelining opportunities.

5.1 Pipelining Followed by Latency Balancing for Dataflow Designs

In our problem, an HLS dataflow design consists of a set of concurrently executed functions com-
municating through FIFO channels, where each function will be compiled into an RTL module
controlled by an FSM [65]. The rich expressiveness of FSM makes it difficult to statically deter-
mine how the additional latency will affect the total execution cycles. Note that our problem is
different from other simplified dataflow models such as the Synchronous Data Flow (SDF) [51]
and the Latency Insensitive Theory (LIT) [7], where the firing rate of each vertex is fixed. Un-
like SDF and LIT, in our problem, each vertex is an FSM and the firing rate is not fixed and can
have complex patterns.

Therefore, we adopt a conservative approach, where we first pipeline all edges that cross slot
boundaries, then balance the latency of parallel paths based on the cut-set pipelining [64]. A cut-set
is a set of edges that can be removed from the graph to create two disconnected sub-graphs; and
if all edges in a cut-set are of the same direction, then we could add an equal amount of latency
to each edge and the throughput of the design will be unaffected. Figure 9(a) illustrates the idea. If
we need to add one unit of latency to e;3 (marked in red) due to the floorplan results, then we need
to find a cut-set that includes e;3 and balance the latency of all other edges in this cut-set (marked
in blue).

Since we can choose different cut-set to balance the same edge, we need to minimize the area
overhead. For example, for e;3, balancing the cut-set 2 in Figure 9(b) costs smaller area overhead
compared to cut-set 1 in Figure 9(a), as the width of e4; is smaller than that of e;4. Meanwhile, it
is possible that multiple edges can be included in the same cut-set. For example, the edges e,7 and
es7 are both included in the cut-set 3, so we only need to balance the other edges in cut-set 3
once.

Cut-set pipelining is equivalent to balancing the total added latency of every pair of reconver-
gent paths [64]. A path is defined as one or multiple concatenated edges of the same direction; two
paths are reconvergent if they have the same source vertex and destination vertex. When there are
multiple edges with additional latency from the floorplanning step, we need to find a globally op-
timal solution that ensures all reconvergent paths have a balanced latency, and the area overhead
is minimized.

5.2 Latency Balancing Algorithm

Problem Formulation.

Given: A graph G(V, E) representing a dataflow design that has already been floorplanned and
pipelined. Each vertex v € V represents a function in the dataflow design and each edge e €
E represents the FIFO channel between functions. Each edge e € E is associated with e.width
representing the bitwidth of the edge. For each edge e, the constant e.lat represents the additional
latency inserted to e in the previous pipelining step. We use the integer variable e.balance to denote
the number of latency added to e in the current latency balancing step.

Goal: (1) For each edge e € E, compute e.balance such that for any pair of reconvergent paths
{p1,p2}, the total latency on each path is the same:

Z (e.lat + e.balance) = Z (e.lat + e.balance)

eep; ecp;
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L, cut-set 1 cut-set 2

Fig. 9. Assume that the edges e;3, €37, and ez7 are pipelined according to some floorplan, and each of them
carries 1 unit of inserted latency. Also assume that the bitwidth of ej4 is 2 and all other edges are 1. In the
latency balancing step, the optimal solution is adding 2 units of latency to each of e47, €57, €67 and 1 unit of
latency to eq2. Note that edges ep7 and e37 can exist in the same cut-set.

and (2) minimize the total area overhead, which is defined as:

Z e.balance X e.width.

e€E

Note that this problem is different from the classic min-cut problem [59] for DAG. One naive
solution is to find a min-cut for every pipelined edge and increase the latency of the other edges
in the cut accordingly. However, this simple method is suboptimal. For example, in Figure 9, since
edge ey; and e3; can be in the same cut-set, we only need to add one unit of latency to the other
edges in the cut-set (e.g., e47, €57, and eg7) so all paths are balanced.

Solution.

We formulate the problem in a restricted form of ILP that can be solved in polynomial time. For
each vertex v;, we associate it with an integer variable S; that denotes the maximum latency from
pipelining between v; and the sink vertex of the graph. In other words, given two vertices v, and
vy, (Sx —Sy) represents the maximum latency among all paths between the two vertices. Note that
we only consider the latency on edges due to pipelining.

For each edge e;;, we have

Si > Sj + e,-j.lat.

According to our definition, the additional balancing latency added to edge e;; in this step can
be expressed as

ejj.balance = (S; — S; — e;j.lat),

since we want every path from v; to v; have the same latency.
The optimization goal is to minimize the total area overhead, i.e., the weighted sum of the addi-
tional depth on each edge:

minimize Z e;j.balance X e;j.width.
e;;€E

For example, assume that there are two paths from v; to v; where path p; has 3 units of latency
from pipelining while p, has 1 unit. Thus, from our formulation, we will select the edge(s) on p,
and add 2 additional units of latency to balance the total latency of p; and p, so the area overhead
is minimized.

Our formulation is essentially a system of differential constraints (SDC), in which all con-
straints are in the form of x; — x; < b;;, where b;; is a constant and x;, x; are variables. Because of
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Fig. 10. Pipelining FIFO interfaces using almost-full FIFOs.

Table 3. Resource Comparison of Using Async_mmap and Using the
Default Array-based Abstraction for External Memory Access

Interface MHz LUT FF BRAM URAM DSP
Vitis HLS Default 300 1,189 3,740 15 0 0
async_mmap 300 1,466 162 0 0 0

this restrictive form of constraints, we can solve SDC as a linear programming problem while the
solutions are guaranteed to be integers. As a result, it can be solved in polynomial time [26, 52].

If the SDC formulation does not have a solution, then there must be a dependency cycle in the
dataflow graph [26]. This means that at least one of the edges in the dependency cycle is pipelined
based on the floorplan. In this situation, we will feedback to the floorplanner to constrain those
vertices into the same region and then re-generate a new floorplan.

5.3 Efficient Pipelining Implementation

Figure 10 shows how we add pipelining to a FIFO-based connection. We adopt FIFOs that assert
their full pin before the storage actually runs out, so we could directly register the interface
signals without affecting the functionality.

6 OPTIMIZATION FOR HBM DEVICES

As will be shown in our evaluation section, the techniques from previous sections will already be
effective for a significant timing improvement on DDR-based FPGAs. However, more optimization
techniques are needed to squeeze the best performance out of the state-of-the-art HBM-based
FPGAs. In this section, we present three major techniques tailored for the unique architecture of
HBM-based FPGAs where a large set of independent data channels are clustered closely at the
edge of the device.

6.1 Reduce BRAM Usage with async_mmap

First, we present a system-level optimization to reduce the resource consumption near the HBM
blocks by using the async_mmap API presented in Section 3.4. When interacting with the AXI
interface, existing HLS tools will buffer the entire burst transactions using on-chip memories. For
a 512-bit AXI interface, the AXI buffers generated by Vitis HLS costs 15 BRAM_18K each for the
read channel and the write channel. While this is trivial for conventional DDR-based FPGAs where
only a few external DDRs are available, such BRAM overhead becomes a huge problem for HBM
devices. To use all 32 HBM channels, the AXI buffers alone take away more than 900 BRAM_18Ks,
which accounts for more than 70% of the BRAM resources in the bottom SLR.

However, with the async_mmap interface, we no longer need to set aside a large buffer to ac-
commodate the data in AXI burst transactions, because the flow control mechanism is explicitly
included in the user code (Figure 4). Table 3 shows our resource reduction for just one HBM
channel.
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6.2 Automatic HBM Channel Binding

In the current FPGA HBM architecture, the HBM is divided into 32 channels are physically bun-
dled into eight groups, and each group contains four adjacent channels joined by a built-in 4 X 4
crossbar. The crossbar provides full connectivity within the group. Meanwhile, each AXI interface
at the user side can still access any HBM channels outside its group. The data will sequentially tra-
verse through each of the lateral connections until it reaches the crossbar connecting to the target
channel, thus inter-group accesses will come with longer latency and potentially less bandwidth
due to data link sharing. Therefore, the binding of logical buffers and physical HBM channels will
affect the design in two ways:

— Since intra-group access is more efficient compared to inter-group accesses, an inferior bind-
ing will negatively affect the available bandwidth.

— As the HBM channels are hardened to fixed locations, the binding also affects the placement
and routing of the logic that connect to HBM. Thus, an unoptimized binding may cause local
congestion in the programmable logic nearby the HBM channels.

Existing CAD tools require that users explicitly specify the mapping of all HBM channels, which
requires users to master low-level architecture details. Also, since the binding does not affect the
correctness of the design, users are often unaware of suboptimal choices.

To alleviate the problem, we propose a semi-automated solution. We observe that very often
the design only involves intra-group HBM accesses. In this case, the binding decision does not
affect the HBM bandwidth and latency and only impacts the placement and routing of nearby
logic. Therefore, we implement an API where users could specify the partial binding of channels,
or none at all if desired, and let TAPA automatically determine the binding for the rest.

Specifically, we incorporate the HBM binding process into our floorplanning step. We treat the
number of available HBM channels as another type of resource for the slots. Therefore, slots that
are directly adjacent to HBM blocks will be treated as having the corresponding number of HBM
channels, while other slots will have zero available HBM channel resources. Meanwhile, each task
that directly interacts with the HBM channel is treated as requiring one unit of HBM channel
resources, and other tasks will be regarded as not requiring HBM resources.

6.3 Generating Multiple Floorplan Candidates

By default, TAPA will only generate one floorplan solution where we will prioritize a balanced
distribution of logic and then accordingly pipeline the inter-slot connections. However, due to the
severe local congestion around the bottom die in an HBM device, we need to explore the different
tradeoffs between logic resource usage and routing resource usage, especially die-crossing wires.
One floorplan solution may use fewer logic resources in the bottom die but require more die-
crossing wires as logic are pushed to the upper regions; another solution may have the opposite
effect. We observe that very often it is unpredictable which factor is more important for a given
design until the routing process is done. Note that each different floorplan solution comes with
corresponding pipelining schemes that best suit the floorplan results.

Instead of generating only one floorplan solution, we can generate a set of Pareto-optimal points
and run physical design concurrently to explore the best results. In our formulation of the floor-
plan problem, we have a parameter to control the maximal logic resource utilization of each is-
land. Reducing this parameter will reduce local logic resource usage and increase global routing
resource usage and vice versa. Therefore, we sweep through a range of this parameter to gen-
erate a set of slightly different floorplans and implement them in parallel to achieve the highest
frequency.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 63. Pub. date: December 2023.



63:18 L. Guo et al.

7 EXPERIMENTS
7.1 Implementation Details

TAPA is implemented in C++ and Python. We implement our prototype to interface with the CAD
flow for AMD/Xilinx FPGAs, including Vitis HLS, Vivado, and Vitis (2021.2). We use the Python
MIP package [72] coupled with Gurobi [39] to solve the various ILP problems introduced in pre-
vious sections. We generate tcl constraint files to be used by Vivado to enforce our high-level
floorplanning scheme.

Meanwhile, we turn off the hierarchy rebuild process during RTL synthesis [89] to prevent
the RTL synthesis tool from introducing additional wire connections between RTL modules.
The hierarchy rebuild step first flattens the hierarchy of the RTL design and then tries to re-
build the hierarchy. As a result, hierarchy rebuild may create unpredictable new connections
between modules. As a result, if two modules are floorplanned far apart, then these additional
wires introduced during RTL synthesis will be under-pipelined, as they are unseen during HLS
compilation. Note that disabling this feature may lead to slight differences in the final resource
utilization.

We test out designs on the Xilinx Alveo U250 FPGA? with 4 DRAMs and the Xilinx Alveo U280
FPGA? with HBM. As the DDR controllers are distributed in the middle vertical column while the
HBM controller lies at the bottom row, these two FPGA architectures present different challenges
to the CAD tools. Thus, it is worthwhile to test them separately.

To run our framework, users first specify how they want to divide the device. By default, we
divide the U250 FPGA into a 2-column X 4-row grid and the U280 FPGA into a 2-column X 3-row
grid, matching the block diagram of these two architectures shown in Figure 2. To control the
floorplanning, users can specify the maximum resource utilization ratio of each slot. The resource
utilization is based on the estimation by HLS. Users can also specify how many levels of pipelining
to add based on the number of boundary crossings. By default, for each boundary crossing, we add
two levels of pipelining to the connection. The processed design is integrated with the Xilinx Vitis
infrastructure to communicate with the host.

7.2 Benchmarks

We use two groups of benchmarks to demonstrate the proposed methodologies. We first include six
benchmarks that are originally used in AutoBridge [35] to showcase the frequency improvement
from co-optimization of HLS and physical design. AutoBridge uses six representative benchmark
designs with different topologies and changes the parameter of the benchmarks to generate a
set of designs with varying sizes on both the U250 and the U280 board. The six designs are all
large-scale designs implemented and optimized by HLS experts. Figure 11 shows the topology of
the benchmarks. Note that even for those benchmarks that seem regular (e.g., CNN), the location
constraints from peripheral IPs can highly distort their physical layouts.

— The stencil designs created by the SODA [17] compiler are a set of kernels in linear
topologies.

— The genome sequencing design [37] performing the Minimap2 overlapping algorithm [53]
has processing elements (PE) in broadcast topology. This benchmark is based on shared-
memory communication and all other benchmarks are dataflow designs.

— The CNN accelerators created by the PolySA [24] compiler are in a grid topology.

2The U250 FPGA contains 5,376 BRAM18K, 12,288 DSP48E, 3,456K FF and 1,728K LUT.
3The U280 FPGA contains 4,032 BRAM18K, 9,024 DSP48E, 2,607K FF and 434K LUT.
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Fig. 11. Topologies of the benchmarks. Blue rectangles represent external memory ports, and black circles
represent computation kernels of the design. In the genome sequencing design, the arrows represent BRAM
channels; in other designs, the arrows represent FIFO channels.

— The HBM graph processing design [18] performs the page rank algorithm. It features eight
sets of processing units and one central controller. This design also contains dependency
cycles if viewed at the granularity of computing kernels.

— The HBM bucket sort design adapted from Reference [71], which includes eight parallel
processing lanes and two fully connected layers.

— The Gaussian elimination designs created by AutoSA [83] are in triangle topologies.

In addition, we include three additional benchmarks that use a large number of HBM channels to
demonstrate the newly added HBM-specific optimizations. All of the three additional benchmarks
will still fail to route with the original AutoBridge. However, our latest optimizations enable them
to route successfully with high frequencies.

— The Scalable and Automatic Stencil Acceleration Framework (SASA) [80] accelerators
where one version uses 24 channels, and the other one uses 27 channels. Compared to the
SODA stencil accelerator used in the original AutoBridge paper, the SASA accelerator also
has a much more complicated topology.

— The HBM sparse matrix-matrix multiply (SpMM) accelerator [76] that uses 29 HBM
channels.

— The Sparse matrix-vector multiply (SpMV) accelerators [75] where one version uses 20
HBM channels and another version uses 28 HBM channels.

7.3 Original Evaluation of AutoBridge

By varying the size of the benchmarks, in total, we have tested the implementation of 43 designs
with different configurations. Among them, 16 designs failed in routing or placement with the
baseline CAD flow, compared AutoBridge, which succeeds in routing all of them and achieves an
average of 274 MHz. For the other 27 designs, we improve the final frequency from 234 MHz to
311 MHz, on average. In general, we find that AutoBridge is effective for designs that use up to
about 75% of the available resources. We execute our framework on an Intel Xeon CPU running
at 2.2 GHz. Both the baseline designs and optimized ones are implemented using Vivado with the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 63. Pub. date: December 2023.



63:20 L. Guo et al.

2300 [ e
S 200 : °
% N e N Koy X :
© 100 \ S \ \
0 P o » Py Y ‘s Py Py Py Py

K & & & & &
X7 Q7 Q7 Q7 R RV Q7 R 7 R7 Q7 Q7 RY R7 RV R
U280 --@ - Original - AutoBridge U250

Fig. 12. Results of the SODA stencil computation designs. Zero Fmax represents placement or routing
failures.

highest optimization level, with a target operating frequency setting of 300 MHz. The final design
checkpoint files of all experiments are available in our open-sourced repository.

In some experiments, we may find that the optimized versions have even slightly smaller re-
source consumption. Possible reasons are that we adopt a different FIFO template and disable
the hierarchy rebuild step during RTL synthesis. Also, as the optimization leads to very differ-
ent placement results compared to those of the original version, we expect different optimization
strategies will be adopted by the physical design tools. The correctness of the code is verified by
cycle-accurate simulation and on-board execution.

Next, we present the detailed results of each benchmark.

SODA Stencil Computation.

For the stencil computing design, the kernels are connected in a chain format through FIFO
channels. By adjusting the number of kernels, we can vary the total size of the design. We test any-
where from one kernel up to eight kernels, and Figure 12 shows final frequency of the eight design
configurations on both U250 and U280 FPGAs. In the original flow, many design configurations
fail in routing due to routing resource conflicts. Those that are routed successfully still achieve
relatively low frequencies. In comparison, with the help of AutoBridge, all design configurations
are routed successfully. On average, we improve the timing from 86 MHz to 266 MHz on the U280
FPGA and from 69 MHz to 273 MHz on the U250 FPGA.

Starting from the seven-kernel design, we observe a frequency decrease on the U280 FPGA. This
is because each kernel of the design is very large and uses about half the resources of a slot; thus,
starting from the seven-kernel design on the relatively small U280, two kernels have to be squeezed
into one slot, which will cause more severe local routing congestion. Based on this phenomenon,
we recommend that users avoid designing very large kernels and instead split the functionality
into multiple functions to allow the tool more flexibility in floorplanning the design.

CNN Accelerator.

The CNN accelerator consists of identical PEs in a regular grid topology. We adjust the size of
the grid from a 2 X 13 array up to a 16 X 13 array to test the robustness of AutoBridge. Figure 13
shows the result on both U250 and U280 FPGAs.

Although the regular 2-dimensional grid structure is presumed to be FPGA-friendly, the actual
implementation results from the original tool flow is not satisfying. With the original tool flow,
even small-size designs are bounded at around 220 MHz when targeting U250. Designs of larger
sizes will fail in placement (13 X 12) or routing (13 X 10 and 13 X 14). Although the final frequency
is high when the design is small for the original tool flow targeting U280, the timing quality is
steadily dropping as the designs become larger.
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Table 4. Post-placement Results of the CNN Designs on U250

Size LUT(%) FF(%) BRAM(%) DSP(%) Cycle
orig opt orig opt orig opt orig opt orig opt
13x2 17.82 1790 14.11 14.25 21.69 21.67 857 857 53,591 53,601
13 x4 2352 2359 1898 19.04 2574 25.73 17.03 17.03 68,630 68,640
13X 6 29.26 29.24 23.86 23.80 29.80 29.78 25.50 25.50 86,238 86,248
13 X8 3498 3490 28.72 28.56 33.85 33.84 33.96 33.96 103,882 103,892
13 X 10 40.71 40.48 33.58 33.25 37.91 37.89 4242 4242 121,472 121,491
13X 12 - 46.18 - 38.06 - 41.95 - 50.89 139,098 139,108
13 X 14 52.10 51.92 43.28 42.93 46.02 46.00 59.35 59.35 156,715 156,725
13X 16 57.82 57.61 48.13 47.70 50.07 50.06 67.81 67.81 174,377 174,396

63:21

The design point of 13 x 12 failed placement and 13 X 10 and 13 x 14 failed routing with the
original tool flow.
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Fig. 13. Results of the CNN accelerator designs.

In contrast, AutoBridge improves from 140 MHz to 316 MHz on U250, on average, and from
214 MHz to 328 MHz on U280. Table 4 lists the resource consumption and cycle counts of the
experiments on U250. Statistics on U280 are similar and are omitted here.

Gaussian elimination.

The PEs in this design form a triangle topology. We adjust the size of the triangle and test on both
U250 and U280. Table 5 shows the results. On average, we improve the frequency from 245 MHz
to 334 MHz on U250 and from 223 MHz to 335 MHz on U280.

HBM Bucket Sort.

The bucket sort design has two complex fully connected layers. Each fully connected layer in-
volves an 8 x 8 crossbar of FIFO channels, with each FIFO channel being 256-bit wide. AutoBridge
pipelines the FIFO channels to alleviate the routing congestion. Table 6 shows the frequency gain,
where we improve from 255 MHz to 320 MHz on U280. As the design requires 16 external memory
ports and U250 only has 4 available, the test for this design is limited to U280 only.

Because the original source code has enforced a BRAM-based implementation for some small
FIFOs, which results in wasted BRAM resources, the results of AutoBridge have slightly lower
BRAM and flip-flop consumption than the original implementation. In comparison, we use a dif-
ferent FIFO template that chooses the implementation style (BRAM-based or shift-register-based)
based on the area of the FIFO. Cycle-accurate simulation has proven the correct functionality of
our optimized implementation.

HBM Page Rank.
This design incorporates eight sets of processing units, each interfacing with two HBM ports.
There are also centralized control units that exchange control information with five HBM ports.
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Fig. 14. Results of the Gaussian elimination designs.
Table 5. Results of Gaussian Elimination Designs on U250
Size LUT(%) FF(%) BRAM(%) DSP(%) Cycle
orig opt orig opt orig opt orig opt orig opt
12 x 12 1858 18.69 13.05 13.14 13.24 13.21 2.79 279 758 781
16 X 16 26.62 26.68 17.36 17.30 13.24 13.21 4.99 499 1,186 1,209
20 X 20 38.55 38.28 23.46 23.38 13.24 13.21 7.84 7.84 1,728 1,738
24 x 24 54.05 53.59 32.16 32.06 13.24 13.21 11.34 11.34 2,361 2,375
Table 6. Results of the Bucket Sort Design on U280
Fmax (MHz) LUT% FF% BRAM% DSP% Cycle
Original 255 28.44 19.11 16.47 0.04 78,629
Optimized 320 29.39  16.66 13.69 0.04 78,632
Table 7. Results of the Graph Processing Design on U280
Fmax (MHz) LUT% FF% BRAM% DSP% Cycle
Original 136 38.56  26.97 26.74 14.43 120,458
Optimized 210 3949  27.53 30.08 14.43 120,495

Table 7 shows the experiment results and we improve the final frequency from 136 MHz to 210 MHz
on U280.

7.4 HBM-Specific Optimizations

In this section, we use four real-world designs from premium academic conferences or journals to
demonstrate the effects of our HBM-specific optimizations. We select those designs, as they use a
large number of HBM channels, which brings about a serious timing closure challenge.

HBM SpMM and SpMV Accelerators.

The SpMM and the SpMV accelerators leverage the async_mmap API, automatic HBM channel
binding, die-crossing wire adjusting, and multi-floorplan generation to achieve the best perfor-
mance. We implement two versions of the SpMV accelerator, SpMV_A24 and SpMV_A16, with
different numbers of parallel processing elements. We report the user clock and HBM clock fre-
quencies and the resource utilization in Table 8. We have improved both the user clock and the
HBM clock frequencies for the three designs. Especially for SpMV_A24, we have improved the
user clock frequency from 193 MHz to 283 MHz and the HBM clock frequency from 430 MHz
to 450 MHz. With the async_mmap, we significantly reduced BRAM utilization—for SpMM and
SpMV_A24, we reduced 10% of the total BRAM utilization.

HBM Stencil Accelerators by SASA.
The SASA design incorporates the async_mmap API, automatic HBM channel binding, die-
crossing wire adjusting, and floorplan candidate generation to push the user clock frequency above
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Table 8. Frequency Improvement and Area Reduction of SpMM and SpMV on U280

Fuser/Fhbm (MHz) LUT% FF% BRAM% URAM% DSP %

Vivado, SpMM 216/424 3735 31.34 71.55 53.33 40.97
AutoBridge, SpMM 245/427 39.40  28.47 60.91 53.33 40.97
Vivado, SpMV_small 233/450 21.70  17.36 42.63 40.00 8.89
AutoBridge, SpMV_small 299/450 22.75  15.06 35.52 40.00 8.89
Vivado, SpMV_large 193/430 27.95 22.46 58.31 40.00 14.92
AutoBridge, SpMV_large 283/450 2976 19.11  48.21 40.00 14.92

Table 9. Frequency Improvement and Area Reduction of SASA on U280

Fuser/Fhbm (MHz) LUT% FF% BRAM% URAM% DSP %

Orig, SASA-1 169/295 322 2198 18.45 0 17.02
Opt, SASA-1 241/450 36.04 18.09 0 0 17.02
Orig, SASA-2 Failed/Failed 359 3094 23.88 0 47.87
Opt, SASA-2 250/450 40.63  27.57 6.7 0 47.87

Table 10. Comparison of Different Optimization Levels

Design Baseline ~ Multi-floorplan Generation Max Min
SASA 169 MHz 230/ 236 / 241 / Failed / Failed / 168 MHz 241 MHz  Failed
SpMM 216 MHz 242/ 232/ 231/ 238/ 194/ 215/ 245 MHz 245 MHz 194 MHz
SpMV-24 194 MHz 253 /257 /276/173/270/259 /251 /244 /261 /280 /284 MHz 284 MHz 173 MHz
SpMV-16 233 MHz 300/ 285 MHz 300 MHz 285 MHz

With the highest optimization level, we list the final frequency of all floorplan points.

225 MHz and the HBM clock frequency to 450 MHz, which enables the accelerator to fully utilize
the HBM bandwidth. For stencil algorithms that have a low number of iterations, SASA will lever-
age efficient spatial parallelism where each kernel read one tile of input data and additional halo
data from neighboring tiles at the start. Then, each kernel performs the computation for all itera-
tions (if any) without synchronization. Each kernel works in a streaming pattern and uses at least
two HBM banks to store the input and output. The original design based on mmap fails to meet
the frequency requirement. With the async_mmap API, we are able to significantly reduce the
BRAM utilization. With all optimizations, the two selected designs achieve 241 MHz and 250 MHz,
respectively.

Results of Multi-floorplan Generation

For HBM designs that are sensitive to logic resource utilization and routing resource utilization
at the same time, we generate a set of Pareto-optimal floorplanning and implement all of them to
explore the potentially best results. Table 10 shows the corresponding achievable frequency. The
number of generated floorplan candidates is related to the granularity of the design. Designs with
larger tasks have less flexibility in floorplanning, thus there are fewer points on the Pareto-optimal
curve. It remains as future work to automatically split large tasks and fuse small tasks to better
facilitate the floorplan process.

As can be seen, even with the same set of optimization techniques, slightly different floorplan-
ning may lead to non-trivial variation in the final achievable frequency. At this stage, we treat
the downstream tools as a black box, so we implement all generated floorplan schemes in paral-
lel to search for the best results. How to better predict the final frequency and skip unpromising
floorplans in an early stage remains as future work.
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Fig. 15. Control experiments with the CNN accelerators.

7.5 Control Experiments

First, we test whether the frequency gain comes from the combination of pipelining and HLS-
floorplanning or simply pipelining alone. To do this, we set a control group where we perform
floorplanning and pipelining as usual, but we do not pass the floorplan constraints to the physical
design tools. The blue curve with triangle markers in Figure 15 shows the results. As can be seen,
the control group has a lower frequency than the original design for small sizes and has limited
improvements over the original designs for large sizes. In all experiments, the group with both
pipelining and floorplan constraints (green curve with crossing markers) has the highest frequency.
This experiment proves that the frequency gain is not simply a result of more pipelining.

Meanwhile, if we only do floorplanning without pipelining, then obviously the frequency will
be much degraded, as visualized by Figure 3.

Second, we test the effectiveness of setting a slot boundary based on the DDR controllers. We
run a set of experiments where we only divide the FPGA into four slots based on the die boundaries,
minus the division in the middle column. The yellow curve with diamond markers in Figure 15
shows the results. As can be seen, it achieves lower frequency compared to our default eight-slot
scheme.

7.6 Scalability

To show that the tool works well on designs with large numbers of small functions, we utilize
the CNN experiments to test the scalability of our algorithms, as the CNN designs have the most
vertices (HLS functions) and edges. Table 11 lists The compile time overhead for the floorplanning
and the latency balancing when using Gurobi as the ILP solver.* For the largest CNN accelerator
that has 493 modules and 925 FIFO connections, the floorplan step only takes around 20 seconds
and the latency balancing step takes 0.03 s. Usually, FPGA designs are not likely to have this many
modules and connections [43, 93], and our method is fast enough.

8 RELATED WORK

Layout-aware HLS Optimization. Previous works have studied how to couple the physical de-
sign process with HLS in a fine-grained manner. Zheng et al. [98] propose to iteratively run place-
ment and routing for fine-grained calibration of the delay estimation of wires. The long runtime
of placement and routing prohibits their methods from benefiting large-scale designs, and their
experiments are all based on small examples (1,000 s of registers and 10 s of DSPs in their ex-
periments). Cong et al. [23] presented placement-driven scheduling and binding for multi-cycle
communications in an island-style reconfigurable architecture. Xu et al. [94] proposed to predict a
register-level floorplan to facilitate the binding process. Some commercial HLS tools [6, 78] have

4Meanwhile, we observed that many open-source ILP solvers are much slower.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 63. Pub. date: December 2023.



TAPA: A Scalable Task-parallel Dataflow Programming Framework for Modern FPGAs 63:25

Table 11. Computing Time for the CNN Test Cases Targeting
the U250 FPGA

Size #V #E Div-1 Div-2 Div-3 Re-balance
13X 2 87 141 0.02s 0.02s 0.01s <0.01s
13 x4 145 253 0.05s 0.02s 0.20s <0.01s
13x6 203 365 0.07s 1.02s 0.56s <0.01s
13 x8 261 477 0.07s 1.07s 3.58s 0.01s
13X 10 319 589 3.17s 1.61s 2.63s 0.01s
13 x 12 377 701 342s 143s 984s 0.01s
13X 14 435 813 354s 1.55s 6.18s 0.03 s
13X 16 493 925 495s 2.02s 12.56s 0.03 s

Div-1and Div-2 denote the first and the second vertical decomposition,

and Div-3 denotes the first horizontal decomposition. Re-balance
denotes the delay balancing.

utilized the results of logic synthesis to calibrate HLS delay estimation, but they do not consider
the interconnect delays. Chen et al. [9] propose implementing HLS as a sub-routine to adjust the
delay/power/variability/area of the circuit modules during the physical planning process across
different IC layers. They report a timing improvement of 8% on synthetic designs while we get al-
most 2X frequency improvement. Kim et al. [48] propose to combine architectural synthesis with
placement under distributed-register architecture to minimize the system latency. Stammermann
et al. [77] proposed methods to simultaneously perform floorplanning and functional unit binding
to reduce power on interconnects.

The previous approaches share the common aspect of focusing on the fine-grained interac-
tion between physical design and upstream synthesis, where individual operators and the asso-
ciated wires and registers are all involved during the delay prediction and iterative pipeline co-
optimization. While such a fine-grained method can be effective on relatively small designs and
FPGA devices, it is too expensive (if not infeasible) for today’s large designs targeting multi-die
FPGAs, where each implementation iteration may take days to complete.

In contrast, we focus on a coarse-grained approach that only pipelines the channels that span
long distances and guides the detailed placement.

Other works have studied methods to predict delay estimation at the behavior level.
Guo et al. [36] proposed to calibrate the estimated delay for operators with large broadcast fac-
tors by pre-characterizing benchmarks with different broadcast factors. Tan et al. [79] showed
that the delay prediction of logic operations (e.g., AND, OR, NOT) by HLS tools is too conservative.
Therefore, they consider the technology mapping for logic operations. These works mainly target
local operators and have limited effects on global interconnects. Zhao et al. [97] used machine
learning to predict how manual pragmas affect routing congestion.

In addition, Cong et al. [25] presented tools to allow users to insert additional buffers to the
designated datapath. Chen et al. [10] proposed to add additional registers to the pipelined datapath
during HLS synthesis based on the profiling results on the CHStone benchmark. Reference [96]
proposes to generate floorplanning constraints only for systolic array designs, and their method
does not consider the interaction with peripheral IPs such as DDR controllers. In comparison, our
work is fully automated for general designs, and our register insertion is accurate due to HLS-
floorplan co-design.

Optimization for Multi-die FPGAs. To adapt to multi-die FPGAs, previous works have stud-
ied how to partition the entire design or memories among different dies [15, 40, 47, 58, 62, 70,
82]. These methods are all based on RTL inputs, thus the partition method must observe the
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cycle-accurate specification. References [40, 62] try to modify the cost function of placement to
reduce die-crossing. This will lead to designs confined in fewer dies with a higher level of local
congestion. Zha et al. [95] propose methods to virtualize the FPGA and let different applications
execute at different partitions. Xiao et al. [87, 88] propose methods to split the placement and
routing of different parts of the design through dynamic reconfiguration.

Floorplanning Algorithms. Floorplanning has been extensively studied [2, 3, 14, 61]. Conven-
tionally, floorplanning consists of (1) feasible topology generation and (2) determining the aspect
ratios for goals such as minimal total wire length. In the existing FPGA CAD flows, the floor-
planning step works on RTL input. In contrast, we propose to perform coarse-grained floorplan-
ning during the HLS step to help gain layout information for the HLS tool. Similar to References
[49, 50, 60], our algorithm adopts the idea of the partitioning-based approach. As our problem size
is relatively small, we use ILP for each partitioning,.

Throughput Analysis of Dataflow Designs. Various dataflow models have been proposed in
other literature, such as the Kahn Process Network (KPN) [34], SDF [51], among many others.
The more simplified the model is, the more accurately we can analyze its throughput. In the SDF
model, it is restricted that the number of data produced or consumed by a process for each firing
is fixed and known. Therefore, it is possible to analytically compute the influence of additional
latency on throughput [33]. The LIT [1, 8, 22, 55, 56] also enforces similar restrictions as SDF.
Reference [81] proposes methods to insert delays when composing IP blocks of different latency.
Reference [45] studies the buffer placement problem in dataflow circuits [11-13, 44]. Other works
have studied how to map dataflow programs to domain-specific coarse-grained reconfigurable
architectures [27, 28, 85, 86].

In our scenario, each function will be compiled into an FSM that can be arbitrarily complex, thus
it is difficult to quantitatively analyze the effect of the added latency on the total execution cycles.
We adopt a conservative approach to balance the added latency on all reconvergent paths.

9 FUTURE WORK

While TAPA has already improved significantly on the expressiveness and timing closure, there
is a myriad of opportunities to further advance the tool. We list several challenges that we aim to
address in the future.

— Reduce the compile time by integrating RapidStream [38]. RapidStream builds on top of
the idea of HLS-floorplanning co-optimization, and it further splits the design for parallel
placement and routing. When tested on the Xilinx U250 FPGA with a set of realistic HLS
designs, RapidStream achieves a 5-7x reduction in compile time and up to 1.3X increase in
frequency when compared to a commercial-off-the-shelf toolchain. We are in the progress
of integrating RapidStream with TAPA.

— Support larger tasks that do not fit in a programmable slot. Currently, we intend to report a
warning to the users and instruct them to partition it into smaller ones, as we vision that the
task of refactoring a task into smaller ones is significantly simpler than tuning the frequency.
However, future extensions may be interested in automating this process.

— Support more flexible inter-task communication patterns. Currently, TAPA tasks can only
communicate with each other through streams. We are extending the infrastructure to sup-
port buffer-based channels between tasks for richer expressiveness.

— Task-level compiler optimization. As of now, TAPA delegates the compilation of each task
to existing HLS tools and does not perform inter-task optimizations. This limitation requires
that users come up with a good partitioning of the application into tasks of suitable sizes.
We aim to add additional task-level optimization such as task splitting, task fusion, task
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hierarchy rebuild, and so on, to further co-optimize the task hierarchy and the floorplanning
process.

— Support designs with a hybrid of RTL and HLS tasks. The floorplan-guided pipeline method-
ology could apply to RTL tasks as long as they adhere to pre-defined latency-insensitive in-
terfaces. Although we have explored applying the technique to RTL projects [68, 69], more
efforts are needed to provide an automated solution.

10  CONCLUSIONS

In this article, we present the TAPA framework, an efficient task-parallel programming tool for
modern FPGAs. TAPA includes a set of convenient APIs to increase design efficiency. In addition,
we tackle the challenge of high-frequency HLS design on multi-die FPGAs by coupling floorplan-
ning and pipelining to effectively insert registers on the long cross-die interconnects. We present a
set of optimizations specifically tailored for HBM devices, including automatic HBM port binding,
floorplan solution space exploration, and a customized programming API to minimize the area
overhead of HBM IO modules. Our framework, TAPA, interfaces with the commercial FPGA de-
sign tool flow. It improves the average frequency of 43 designs from 147 MHz to 297 MHz with a
negligible area overhead. TAPA has been used in multiple projects to improve the design efficiency
and final frequency [16, 19, 75, 76, 83].
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