
Change Point Detection of Events in Molecular Simulations using

dupin

Brandon L. Butlera, Domagoj Fijana, and Sharon C. Glotzer*a,b

aDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI.
bBiointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

*Corresponding author, E-mail address: sglotzer@umich.edu

August 5, 2024

Abstract

Particle tracking is commonly used to study time-dependent behavior in many different types of

physical and chemical systems involving constituents that span many length scales, including atoms,

molecules, nanoparticles, granular particles, and even larger objects. Behaviors of interest studied using

particle tracking information include disorder-order transitions, thermodynamic phase transitions, struc-

tural transitions, protein folding, crystallization, gelation, swarming, avalanches and fracture. A common

challenge in studies of these systems involves change detection. Change point detection discerns when a

temporal signal undergoes a change in distribution. These changes can be local or global, instantaneous or

prolonged, obvious or subtle. Moreover, system-wide changes marking an interesting physical or chemical

phenomenon (e.g. crystallization of a liquid) are often preceded by events (e.g. pre-nucleation clusters)

that are localized and can occur anywhere at anytime in the system. For these reasons, detecting events

in particle trajectories generated by molecular simulation is challenging and typically accomplished via

ad hoc solutions unique to the behavior and system under study. Consequently, methods for event detec-

tion lack generality, and those used in one field are not easily used by scientists in other fields. Here we

present a new Python-based tool, dupin, that allows for universal event detection from particle trajectory

data irrespective of the system details. dupin works by creating a signal representing the simulation and

partitioning the signal based on events (changes within the trajectory). This approach allows for studies

where manual annotating of event boundaries would require a prohibitive amount of time. Furthermore,

dupin can serve as a tool in automated and reproducible workflows. We demonstrate the application of

dupin using two examples and discuss its applicability to a wider class of problems.

1 Introduction

Computer simulations of molecular systems from the atomic to colloidal particle scale are a cornerstone of

modern materials research. Given ongoing improvements in algorithms and processor speed, newer studies

may make routine use of thousands of simulations or more [1, 2]. As a result, much work has been done to

automate, streamline or otherwise simplify the management of large-scale simulation studies from software

that manages data and workflows [3, 4] to packages used in data pipelines [5, 6, 7, 8, 9, 10].

1

We continue this trend by developing a software package that detects events (transitions) within point

cloud data, the kind of data produced in molecular simulations. Event detection in point cloud data from

particle trajectories is difficult because a priori information on the nature of the transition, identifying

features, or precursors of the transition (if any) is often missing. For studies involving multiple transitions

or pathways, as well as large systematic studies, detection is further complicated by the need to automate

the task. This paper addresses this problem using approaches collectively known as change point detection

(CPD) [11].

The techniques of CPD, which are commonly used in signal processing, have yet to infiltrate materials

research [11]. Change points are defined by abrupt changes beyond expected fluctuations in a time-resolved

dataset. In this paper, we will use particle trajectory data as our starting dataset. Molecular dynamics

simulation as well as experiments using dynamic (e.g. liquid phase) transmission electron microscopy [12,

13] or confocal laser scanning microscopy [14, 15] — in conjunction with particle tracking software — can

produce data consisting of time resolved particle positions and orientations.

Many algorithms [11] have been introduced to detect events associated with change points in data for the

purpose of monitoring human activity [16], determining useful telemetry in data centers [17] or predicting

machine degradation [18]. Change point detection approaches can be categorized as supervised [19, 20, 21]

or unsupervised [22, 23, 24, 25, 26] as well as offline or online. Supervised methods require external labelling

of events to train on, while unsupervised do not. Offline methods require the entire dataset as input. In

contrast, online methods analyze the data as a stream while data is generated so that signals are screened

in real time. The approach we take casts event detection as an optimization problem where the objective is

minimized over change point locations [27].

Current approaches for detection of interesting events in molecular simulations involve the use of system

or particle level order parameters. After computing these features, order parameters or environment labels,

events are detected using system-specific or problem-specific detection schemes or by visual inspection.

Automating the detection of meaningful events would significantly improve current workflows, facilitate “big

data” studies in materials research, and provide a consistent approach across studies.

The first step for the approach we take is to generate a set of descriptors (usually order parameters) which

capture structural features of the system that might undergo a change during the simulation. Steinhardt

order parameters[28] (including its derivatives such as Minkowski structure metrics (MSM) [29]) are an

extremely versatile type of order parameters used to describe local structure of matter based on an expansion

of bond orientational order in the basis of spherical harmonics. They are used in all fields of molecular

simulations, spanning simulations with both atomistic and coarse grained potentials to study liquids,[30]

crystals,[28, 31] and other phases. Depending on types of phases studied other order parameters such as

nematic order parameter, local density can also be employed. In the atomistic simulations Smooth Overlap

of Atomic Position (SOAP) [32] is another commonly used order parameter, including recent additions of

time-dependent SOAP variants[33]. These local order parameters can be used to classify particles into

environments using machine learning (ML) [34, 35, 36, 37, 38, 39, 40]. Current practices in molecular

simulations for event detection involve system or particle level order parameters.

In this paper, we present a new, open-source Python package dupin (named after Edgar Allen Poe’s

detective C. Auguste Dupin) for generic, autonomous event detection in particle trajectories with local or

system-wide transitions. We show how dupin can partition a system’s trajectory into regions of transition

and stable (or metastable) states through the use of generic order parameters. In the following section, we

outline dupin’s multi-stage procedure for detecting a set of change points from a system trajectory. We

2

discuss options available to the user at each stage of the process. We then present two example applications

using dupin and show its utility in determining the temporal bounds of system-wide structural transitions

and particle-level events. We conclude with a general discussion of dupin and potential extensions. dupin

is available on GitHub and distributed through conda-forge and the Python Package Index (PyPI).

2 Results

Primary purpose of dupin is detection of events in time correlated point cloud data sets (particle trajectories).

We propose and implement an approach in which we translate a set of point cloud data into a set of relevant

descriptors representative of each frame of the trajectory which we refer to as the signal. These descriptors

should be carefully selected to capture critical aspects of the system’s dynamics, to ensure successful CPD

process. Once such a signal is generated, we can apply change point detection (CPD) algorithms to detect

events in the trajectory. To do this we have developed a multi-step scheme which prepares the raw point

cloud input into a form suitable for event detection. dupin introduces novel methodologies for some steps of

this workflow while also supporting a broad range of established methods and user-defined functions. This

flexibility allows users to tailor the analysis of events to specific requirements. In this section, we will present

the components of our multi-step scheme and options available to the user, discussing both the novel and

traditional approaches implemented in dupin.

2.1 Detection Scheme

dupin’s detection scheme is based on CPD [11, 41]. CPD seeks to assign a set of points, K, where a

signal, S : {s0, s1, . . . , sN}, undergoes a change. We denote a single point in a signal (e.g. si) as a frame.

We define two operators - indexing and slicing - that act on the signal. The indexing operator returns a

single value such that S[i] = si. The slicing operator produces a sub-signal using a semi-closed interval

S[i, j) : {si, si+1, . . . , sj−1}. Using the slicing operation, we can see that the set of points K encompass

|K| + 1 sub-signals between [ki, ki+1), where k0 = 0 and k|K| is the last frame in the signal. The first and

last change points, k0 and k|K| are trivial, so the number of change points is often written as |K|− 2 instead

of |K|. We adopt this convention from this point on in the paper.

As an example of CPD, imagine a 100-frame trajectory of a protein with two conformers, A and B,

and a signal S comprising data representing the conformation of the protein in each frame. If the protein

changes conformation at frames 40 and 60, then the signal S can be sliced into three sub-signals (Figure 1):

S[0, 40), S[40, 60), and S[60, 100). In this case, there are two change points K = {40, 60}. This is because

the random fluctuations (the fluctuations of a (metastable) equilibrium system around the mean) should be

ignored.

We employ a class of CPD algorithms that use the paradigm of optimization and loss/cost functions

to select change points from S [41]. A loss or cost function penalizes some notion of error, which is then

optimized to minimize the cost. We find a set of change points K of size n, such that choice of each single

change point k ∈ K minimizes the cost function C,

K = arg min
k

n+1∑︂
i=1

C(S[ki−1, ki)), (1)

where S[ki−1, ki) is the partition of the signal S between potential change points ki−1 and ki. Notice that the

3

0 20 40 60 80 100
Frame

A

B
Protein Conformer v. Time

Figure 1: An example detection of a protein transitioning between conformers A and B. At frame 40, the
protein goes from conformer A to B and back to A at frame 60. The background colors and dashed black line
indicate these two change points, and the corresponding three sub-signals are S[0, 40), S[40, 60), S[60, 100).
θ represents a fictitious order parameter along which a structural change happens.

number of change points expected, n, in the signal must be known in advance. A more detailed exploration

of this issue is provided in the subsequent discussion. Further elaboration of this class of CPD algorithms is

given in Supplementary Material Section 1.

2.1.1 Overview of Method

To develop a generic protocol for event detection in molecular trajectories, we must answer three fundamental

questions (i) how to generate a signal from a trajectory, (ii) what cost function(s) best partition the trajectory

into sub-signals and (iii) how to determine the correct number of change points in a signal to ensure detection

of all events. To address these problems, dupin uses a novel approach in which different steps are grouped

into stages (see Figure 2). We group the steps into three separate stages: data collection, data augmentation,

and detection. The data collection stage includes the generate, map, reduce and aggregate steps. The data

augmentation stage includes the transform step. The detection stage includes the detect step. The generate,

aggregate and detect steps within the data generation and detection stages are always required. The reduce

steps can be required or optional depending on the data generated while the map and transform steps are

always optional. The schematic of a typical pipeline for event detection in dupin is presented in Figure 2.

2.1.2 Data Collection

We begin by constructing feature vectors for every frame up to a total number of frames Nframes. A feature

vector is a set of n features used to describe a data point in an n-dimensional space. Order parameters

(MSM, local density, etc.) are examples of features. For our case, we refer to features that describe aspects

of a given point/time in a trajectory. We combine the feature vectors into a signal S, which is a matrix of

size Nframes ×Nfeatures. Each matrix element sij in S contains the value of one of the features in one of the

frames of the trajectory. We assume that any change in a molecular system can be adequately described by a

4

Figure 2: An illustration of the typical pipeline for event detection in a particle trajectory. We use the
same numbers as the protein conformer example (change points are 40 and 60 and the total frames are
100). Arrows indicate steps and small colored rectangles represent individual per-particle feature values
generated from the trajectory. Green boxes separate steps into three general stages: data collection, data
augmentation, and detection. Data is generated from the frame and mapped to a new distribution and to
itself (note the replication of the original features after mapping). The distributions are then reduced into
one scalar feature each. For the generate, map and reduce steps underneath the arrows, we provide potential
functions/applications of the step. The features are then aggregated across frames, and transformed with
either feature selection or dimensionality reduction. Finally, the change points as well as the number of
change points are detected. The transform step is not required, and the aggregate step could immediately
precede the final step, detect. The figure assumes per-particle features only. For global features, the generate
step immediately precedes the aggregate step — they could also optionally be mapped first.

5

such a signal. Changes in the system are thus indicated by changes in the feature vectors over time/frames.

The generate step requires us to choose the class of features that will be computed for every frame. Once

the feature data is generated, non-scalar or vector features (e.g. per-particle quantities such as Steinhardt

order parameters [28]) must first be reduced. Reduction takes a vector feature and converts it through a

variety of reducers (functions) to a finite number of scalar features representative of the distribution. Scalar

features are never reduced (they are already scalar). The reduce step cannot be used on global properties

(scalar features) such as system potential energy, but is required for per-particle or high dimensional prop-

erties (vector features) like the per-particle potential energy. Examples of scalar features resulting from a

reduce step include the maximum value, minimum value, mean, mode, median, range, n-th greatest, n-th

least, etc. dupin offers several novel reducers that are not commonly used in literature, such as the n-th

greatest and least reducers. Such reducers aren’t useful in settings the descriptors are usually used, such as

description of global structure, but are the appropriate choice for detecting transitions in trajectories. This

is because initial transition events occur at tails (minima or maxima) of the descriptor distributions.

As an example, consider the utility of the n-th greatest and the n-th least reducers in the context of a study

of crystallization. The process of homogeneous nucleation and growth of a crystal from a metastable fluid

phase starts when local fluctuations cause a group of neighboring particles to form an ordered cluster. If this

cluster reaches or exceeds a critical size, it begins to grow, leading to the production of the crystal phase [42].

This process is known as classical nucleation theory. Ideally, CPD would have access to information on the

initial fluctuations conspiring to produce the cluster as well as the cluster’s subsequent growth. In the

following analysis, we assume (i) we have already constructed or defined features that adequately distinguish

the solid and fluid phases, and (ii) the initial fluctuation is small compared to the system size. To detect the

nucleation event, we must use reducers closer to the extrema such as the 1st and 10th greatest or least values

(e.g. for local densities). Selecting near the extrema is necessary as most particles are fluid when a nucleus

forms and selecting reductions that average over the distribution or select near the mean will not register a

nucleation event. On the other hand, as the nucleus grows to 10 then 20 then 50 then 100 particles, more

particles assume the approximate feature vector of the crystal. Thus, the 100th greatest or least reducers

would capture the growth of a cluster up to a size of 100 particles.

While never required, vector features can be mapped to other distributions before aggregating. An

example of a useful mapping is spatial averaging of a feature over its neighbors as is sometimes done with

Steinhardt order parameters [31].

After a set of scalar features describing a single frame of the trajectory is generated, the process repeats

across all trajectory frames and the results are aggregated into a single multi-dimensional, time-dependent

signal. This signal can be sent directly to the detect step or to the transform step. The transformation step

can involve any combination of three tasks: feature selection, dimensionality reduction and signal filtering.

Next, we describe each of these data augmentation tasks as they pertain to dupin.

2.1.3 Data Augmentation

After features have been reduced, the number of features may easily be in the hundreds. In particle tra-

jectories, each feature incurs noise due to thermal fluctuations — the same fluctuations involved in, e.g.,

nucleation and growth events in crystallization. As a result, this thermal noise increases the chance of spu-

rious or undetected events for two related reasons. First, one or more features may fluctuate enough to

be mistaken as an event. If we assume a baseline chance for such a fluctuation to be 1%, then a signal of

200 features has an 86.6% chance of recording such a spurious event. Second, given n features, if the event

6

appears in only one feature, then as n → ∞ the relative reduction in cost to fitting to that one feature de-

creases drastically. Assuming comparable noise in each feature, then for n features each feature contributes

1/n to the cost. For 200 features, the reduction in cost for fitting to a single feature’s change point is at

most 0.5% percent of the original cost.

To prevent the noise in high feature dimensions from leading to poor event detection, data augmentation

through feature selection or dimensionality reduction can improve performance. The amount of improvement

depends on the dimension of the feature set, noise level, and other characteristics of the signal. Furthermore,

data augmentation drastically improves computational performance of the event detection scheme without

diminishing detection performance. The cost of the detection algorithm used in this paper is linear in the

dimensionality of the feature set; that is, doubling the number of features reduces the performance by half.

dupin currently implements two different approaches to feature selection: (a) “mean-shift” filtering and

(b) feature correlation. The main idea of mean-shift filtering is to compare two distributions and determine

if they have a significantly different means from each other. For our purposes the distributions considered are

the distributions of features in the system at the beginning and the end of the signal. A significant change

in the mean of these features suggests that the feature effectively captures an event within the system.

To perform this comparison, we analyze the means and standard deviations of both distributions to assess

whether the means are equivalent. Based on this comparison and a predefined sensitivity parameter, we then

make a yes/no decision about whether to include the descriptor for event detection. For more information

see Supplementary Material Section 3. Note that the mean-shift filtering is different from a mean-shift cost

function detection.

Feature selection via feature correlation is done through spectral clustering [43], where the similarity

matrix is computed based on the correlation matrix of the signal. A pre-determined number of features from

each cluster is taken based on a provided feature importance score or is randomly selected from a cluster.

More information on these methods for feature selection can be found in Supplementary Material Section 3.

Other feature selection methods such as forward selection or backward selection seamlessly interoperate with

dupin and can be used as well. Both methods can be found in scikit-learn [44].

For dimensionality reduction, dupin implements a novel machine learning (ML) classifier to reduce the

signal to a single dimension based on local signal similarity; this approach is a variation of the approach found

in Reference [45]. Signal reduction is accomplished by taking a sliding window across the original signal and

using an ensemble (collection) of weak learners to determine the similarity of the window’s left and right

halves. A weak learner is one with limited ability to discriminate between classes (e.g. a decision stump [46]

that classifies based on a single yes/no condition). Thus, weak learners cannot distinguish window halves

based solely on noise due to their limited discrimination ability. This limitation is a desirable property as

we only want the classifier to discriminate on significant differences between window halves. Each learner

in the ensemble is trained and tested on different data within the window via a stratified shuffle split (from

scikit-learn), which reduces the chance that a bad data partition will decrease the test loss. To determine the

local signal similarity, we label each frame in the left window half with the class label zero and each frame in

the right window half with class label one. The classifiers within the ensemble are then trained on a subset

of the data and tested on the remaining data. The testing loss (e.g. the zero-one loss) is used as a metric

of dissimilarity. When there is no event, the classifiers should have nothing but random noise to train on,

resulting in the classifier being wrong on test data ∼50% of the time. However, when an event occurs within

the window, a classifier can train on differences between the window halves and accuracy tends towards 100%

(i.e. 0.0 loss). For each window position, we take the average loss as our one-dimensional signal (here, the

7

zero-one loss). Figure 3 shows a graphical depiction of the dimensionality reduction implemented in dupin.

The ML classifier has several hyperparameters, including the window size, number of classifiers (decision

stumps) and the percentage of the data used for training. The window size must be chosen based on the

number of samples (trajectory size). In general, bigger is better unless it leads to only a few windows or

if it’s much larger relative to the length of the transition. The choice of dumping frequency can also have

important implications for the window size. If the dumping frequency of the feature is smaller compared to

its relaxation time, the window size should be large enough that it contains several uncorrelated samples.

This way we ensure that training is done on at least partially uncorrelated samples (random fluctuations).

The number of classifiers determines smoothness of the error. Higher numbers naturally smooth the error

across a trajectory and are generally preferable. The highest possible number of classifiers should be half

of the non-repeating combinations of training and test set. This limit ensures that for small window sizes

enough classifiers are given while being relatively confident that most window data splits will be unique.

The test size is the percentage of the data used for testing. Larger test sizes provide better representation

of the true representation. A consequence of this is that larger test sizes result in better error estimates and

increased smoothness of the error. In general, test size should be smaller than half but not too small, to

ensure comparison to correlated samples by chance is avoided.

Other schemes and algorithms for dimensionality reduction such as principal component analysis (PCA),

uniform manifold approximation and projection (UMAP) [47], etc. can be used to reduce the number of

features into a few information-dense dimensions as well.

Signal filtering is commonly used for smoothing a signal and is similar to the mapping step in the data

generation stage. Here, the completed signal is transformed along the temporal dimension into a new signal.

Signal filtering is commonly used for smoothing a signal. dupin has a rolling mean signal filter, which smooths

noise by averaging the signal across neighboring frames. Other signal filters are available in packages like

SciPy and can be used easily with dupin.

2.1.4 Detection

The final stage in dupin’s pipeline is event detection. To detect local events, two cost functions are available

for use in dupin. Both are based on piecewise linear fits of time versus signal features, and both have

increased cost when this fit has a higher summed p-norm error |y− f(x)|p. In the examples in Section 3, we

use the summed and square rooted 2–norm.

The first cost function, C1, in dupin computes the p-norm loss of the piecewise, least-squared linear fit of

each feature as a function of time. We refer to this approach as linear cost function approach. This procedure

minimizes the p-norm via a least-squared fit on the slope m and intercept b for the given sub-signal S[i, j).

To prevent units or feature magnitudes from contributing to faulty detection, we map all features to the

unit square independently so that the range for each feature is [0, 1]. After mapping to the unit square, C1

is given by:

C1(S[i, j)) = min
m,b

j∑︂
x=i

|S[x]− (mx+ b)|p, (2)

where ||p is the p-norm, S[x] is the signal value at frame x, and mx+ b is the linear fit of the signal where

m is the slope of the linear fit and b is the y-intercept.

The second cost function, C2, is similar to the first, but the linear fit is determined simply by drawing

a line from the beginning point to the end point of the sub-signal, without any fitting. We refer to this

8

0 50 100 150 200 250 300 350 400

1

0

1

2

Si
gn

al

a

50 100 150 200 250 300 350 400
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Ze
ro

-o
ne

 L
os

s

b

Figure 3: An example highlighting the use of classifiers to reduce a three-dimensional signal to one dimension.
The process was stopped with a window center frame of 200 for instructive purposes. (a) A plot of the three-
dimensional signal. Change points are located at 75, 275 and 350. The box centered at frame 200 represents
the two window halves: [190, 200) and [200, 210). (b) The zero-one loss from the start of the signal to the
current window. Notice the drop towards zero loss near frame 75, which corresponds to a mean-shift in (a)
(blue line).

9

approach as biased cost function approach. As a result, this cost function is more sensitive to sudden shifts

and changes in slope in the signal compared to C1. The C2 cost function is given by:

C2(S[i, j)) =

j∑︂
x=i

|S[x]− (mx+ b)|p (3)

m =
S[j]− S[i]

j − i

b = S[i]−mi,

The only optimizable parameters in Equation 3 are the locations of the change points. In cases where

greater sensitivity is desired, C2 is a viable alternative.

dupin can also detect events by using a simple mean-shift cost function detection approach. In this

approach, a mean-shift cost function is computed instead of fitting linear functions to the signal. Such

approach is especially effective when the ML classifier is used for the data augmentation step. Note that the

mean-shift cost function detection is different from mean-shift filtering. For more details on this approach

including the cost function definition see Supplementary Material Section ??.

Any detection algorithm can be used in dupin. For this work we use the Python package ruptures [41],

which implements various algorithms for solving the optimization problem already posed (see Supplementary

Material Section 1 for more information). dupin provides the implemented cost functions above to the

detection class from ruptures (we use the dynamic programming solver in this work). Using ruptures, we

find the optimal change points for a given number of change points.

After detection, we still have one more problem to solve: finding the optimum number of change points.

To do this, we find an elbow in the total cost function as a function of the number of change points n.

The elbow is defined as the point of maximum curvature, but can be expanded to discrete points. dupin

can use any elbow detection method that works with discrete points. We choose for this work the kneedle

algorithm [48] found in the kneed Python package; kneedle behaves well with the test systems studied and

provides a hyperparameter allowing for sensitivity control in elbow detection. The sensitivity parameter

also means the algorithm can return no elbow, allowing dupin to select zero change points as the correct

CPD. More details on the kneedle algorithm and its usage in dupin can be found in Supplementary Material

Section 2.

2.2 Online Detection

Another novelty enabled by dupin is the ability to perform online detection of events with approaches

outlined above. Online detection is the process of detecting events while the particle trajectories are still

being generated. This approach is useful in cases where responses to events are desired or when the generated

trajectory is too large to be stored in memory. In online detection, the detection step is applied on-the-fly to

the set of frames generated up until the moment of detection. This set of frames can extend to the beginning

of the trajectory or be a sliding window of the last N generated frames. To use dupin online, a predefined set

of features is calculated on-the-fly at the desired frequency leading to a continuous application of generate

to aggregate steps. If using a sliding window rather than the whole trajectory, the order parameters are

placed into a “first-in first-out” (FIFO) queue, so that the sliding window moves with the time evolution

of the data. Sliding window is the preferred approach for online detection, due to improved performance

10

and easier CPD setup for detection. Using the queue approach allows CPD to be run on only part of the

trajectory, which dramatically speeds up detection, making it more viable for online use. Each time a new

frame is added to the signal, CPD can be run on the current data in the queue. The algorithm works best

when the window size is commensurate with the size of a single event. Either way, dupin should be run with

the assumption that we are expecting to detect up to one event. However, in practice we run CPD up to a

change point set size of approximately four as any elbow detection scheme will need some points beyond the

elbow to detect it. To detect multiple events, the queue should be cleared after detecting an event. If this

is not done that event will continue to be detected in consecutive runs, leading to undesirable behavior.

3 Example Applications

We now demonstrate dupin’s event detection scheme step-by-step using dupin for two example systems

to highlight its usefulness and versatility. All trajectory data was produced by molecular dynamics (MD)

simulations run using HOOMD-blue [49, 50, 51]. Feature vector construction (generation) was carried out

using freud [5, 6] in conjunction with dupin. The data was organized and managed using the signac

framework [3, 52, 53]. System visualization was performed using OVITO [10].

3.1 Binary Lennard-Jones system

Our first example is a binary Lennard-Jones (LJ) system containing particles of type A and type B. This

example demonstrates that dupin can be used to detect change points even if only a small portion of

the system undergoes a transition. The MD simulations were performed in canonical (NVT) ensemble at

temperature T = 1.5, density ρ = 0.8. System contained a total of Np = 2916 particles of which 145 (5% of

the system) were particles of type B, and the rest were particles of type A. The simulation starts off with

all particles interacting with the same LJ potential (ϵ = 1, σ = 1 with cutoff rcutoff = 2.5). To prepare the

system for production run we first place the particles on the simple cubic lattice, melt it, and equilibrate the

system. Figure 4 (a) left shows the randomized and equilibrated system at the beginning of the production

run. To generate the trajectory of point cloud data for detection we saved the system snapshot every 1000

time steps. The production part was run in two phases. In the first phase we ran for 1 million time steps.

Next, the interaction between particles of type B is changed in such a way that LJ interaction potential

parameters are changed to ϵ = 2.5, σ = 0.5 without changing the cutoff. In second phase we ran for another

million time steps. The production run generated Nf = 2000 frames in total.

We set up dupin’s detection pipeline to compute the Steinhardt order parameter for l = 6 (Q6) with 12

nearest neighbors for each particle in the system as our generate step. This step results in Np×Nf values of

Q6 in total. We represent this step as a distribution of Q6 as a function of time in Figure 4 (b) 1. The map

step is skipped and the reduce step is applied to find the 10th, and 50th greatest and least values of the Q6

distribution. The features produced by the reduce step are kept and aggregated into the final signal which

contains Nf ×4 values in total (Figure 4 (b) 2.). The transform step was skipped because the dimensionality

of the signal is already low. To detect change points in the trajectory we used the C1 linear cost function.

Elbow detection was used to compute the optimal number of change points (Figure 4 (b) 3.).

The detection scheme employed resulted in a single change point detected at frame 1030 (Figure 4 (a)

middle). The detected change point corresponds to a frame occurring 30000 time steps after the interaction

potential between particles of type B was changed. The employed change in the potential between particles

of type B caused particles of type B to aggregate into clusters due to much stronger interaction. At frame

11

0

a

1030 1999

0 500 1000 1500 2000
Frame

0.1

0.2

0.3

0.4

0.5

0.6

Q6

b 1. Generated signal

0

2

4

6

8

10

de
ns

ity
 d

ist
rib

ut
io

n

0 500 1000 1500 2000
Frame

0.2

0.3

0.4

0.5

re
du

ce
d

Q6
 v

al
ue

s

2. Reduction and aggregation

50th_greatest_Q6
10th_greatest_Q6
10th_least_Q6
50th_least_Q6

0 2 4 6
Frame

720

740

760

780

800

820

840

Co
st

3. Detection of change points

0 500 1000 1500 2000
Frame

0.2

0.3

0.4

0.5

re
du

ce
d

or
de

r p
ar

am
et

er
s

4. Change points with signal

50th_greatest_Q6
10th_greatest_Q6
10th_least_Q6
50th_least_Q6
change point

Figure 4: Change point detection applied to system of binary LJ particles. (a) Simulation snapshots with
associated frame number (lower right). The middle image shows the system at the detected change point.
Particles are colored according to their type (A - yellow; B - pink). (b) 1. The result of the signal generation
step is represented as a density distribution of Q6 for each frame of the trajectory. 2. After applying
reduction and aggregation we are left with final signal on which the detection will be performed. 3. The
cost plot used to compute the optimal number of change points using elbow detection (black dashed line)
for linear change point detection. 4. Resulting change point (black dashed line) plotted on the signal.12

1030 (Figure 4 (a) middle) we can clearly see that several smaller clusters of particles of type B have already

formed. We can roughly estimate from Figure 4 (b) 2. that the transition started at frame 1000, when the

potential was changed and ended at around frame 1100. This places the detected change point squarely in

the middle of the transition. The snapshot shown in Figure 4 (a) right, corresponds to the simulated system

at the end of the simulation. We can see that that most of particles of type B have aggregated into two

larger clusters by the end of the transition. This example showcases how dupin’s change point detection

capabilities even if events are undergone by a small part of the system.

3.2 Nucleation and growth of a binary crystal of particles

Our second example is a binary system of point particles interacting via the Mie potential [54] (n = 50,

m = 25) with a size ratio of 0.55. The simulation was run using MD for 36.8 million time steps in the

isothermal isobaric ensemble (temperature T = 0.35, pressure P = 0.052, number of particles Np = 27, 000,

in reduced units) to simulate the solidification of a liquid into a crystal by homogeneous nucleation and

growth. The simulation was initialized in a NaCl lattice with random placement of the two species, which

quickly dissolves upon thermalizing at slightly higher temperature prior to a quench to the target T .

To generate the signal we compute the Voronoi polyhedron volume [55, 56] and MSM [29] for spherical

harmonics l = 2, 4, 6, 8, 10, 12 for each particle. For each feature, we map to two distributions — itself (no

transformation) and the Voronoi tessellation neighbor average [31]. We then reduce each distribution (raw

and averaged) to six features: the 1st, 10th, and 100th greatest and least values. After reducing, the MSM

for each l produces twelve features, six from the raw distribution and six from spatial averaging. Following

aggregation, we transform the signal via feature selection through a mean-shift filter with sensitivity of

10e−4. After the mean-shift filter is applied we are left with the signal containing several features which

change significantly during the length of the trajectory. Some of the features that pass the mean-shift filter

are shown in Figure 5 (b). Next, we showcase two different detection approaches. In the first detection

route, we take the filtered signal and detect the change points using C1 (linear cost function) with rupture’s

dynamic programming algorithm, using kneed for elbow detection with a sensitivity of 1, for |K| ∈ [1, 10].

For the second detection route, we take the filtered signal and we first transform the signal again by applying

the ML classifier dimensionality reduction (window size 80) introduced in Subsection 2.1.3. We used 200

decision stumps (decision trees of depth one) on features selected by the mean-shift filter to classify windows

halves. The test set size used was 0.4, which means that 40% of the data in the window was not used for

fitting. The zero-one loss is then smoothed over the neighboring three errors on each side with the mean

signal filter. The new signal obtained from the ML classifier dimensionality reduction route was then used

to detect events using a L1 mean-shift cost function [57].

The first detection route (Figure 5 (d) left) which detects using C1 linear cost function detection results in

two change points. The linear cost function detection was dominated by a region of sharp change in several

properties ≈160–200 during crystallization. We note that the continuing shift of some Voronoi polyhedra

volumes or MSMs at the end of the simulation is roughly linear, meaning C1 does not penalize grouping

them into a single sub-signal.

On the other hand, the second detection route (Figure 5 (c) and (d) right) in which we first add another

transform step using the ML classifier for dimensionality reduction (Figure 5 (c)) and then detect using

mean-shift cost function (Figure 5 (d) right) results in a much larger transition event window (i.e. the

change points are farther apart). Such a partitioning is expected as the dimensionality reduction scheme

picks up on any deviation across the window. As a consequence, mean-shift cost function route detected

13

change points at frames 90 and 210, in contrast to the linear cost function route. We note that the reason for

the change point locations can be seen in Figure 5 (c) where the smoothed average zero-one loss is plotted.

The system is still undergoing structural changes at frame 210, indicated by the value of average loss which

while higher than 0.0 is lower than the expected value outside a transition of 0.5. This behavior is explained

by the observed trends in some Voronoi polyhedra volumes and MSMs, which are still not in equilibrium

(flat) after frame 210. The final slice of the trajectory (frame 210 till the end) is thus associated with a new

phase of the ongoing transition, which is not finished by the end of the trajectory as indicated by the average

loss value.

These same schemes can be followed to apply dupin to simulations of molecules, nanoparticles, colloids,

polymers, or other ”particle”-based systems that generate particle positions (and possibly orientations) as a

function of time, making dupin highly extensible and generalizable.

3.3 Collapse of polymer in poor solvent

Our third example involves detecting the collapse of an isolated polymer chain in an implicit solvent following

a change from good to poor solvent using dupin. We simulated a polymer comprised of 5000 connected

polymer beads interacting via a Lennard-Jones pairwise interaction, with bonds between beads modeled

by a simple harmonic potential U = −0.5k(r − r0). The MD simulation was performed in the canonical

ensemble (number of particles N = 5, 000, system volume V = 106, and temperature T = 1). Following

equilibration (1.2 million steps) in good solvent, the simulation was run for 2.5 million steps, where the ε of

the Lennard-Jones potential was increased to mimic a change in the Flory χ parameter to a poor solvent.

Over the 2.5 million steps, ε was increased from 0.1 to 1.25 over 50 intervals of 30,000 steps, running at the

final ε for 1 million steps. Increasing the ε parameter causes the polymer beads to start aggregating. Several

stages of aggregation are observed in which the number of lobes decreases in stages until final metastable

configuration of two lobes is obtained.

We generate the signal using the polymer end-to-end distance, the local density defined as Voronoi

polytope volume, and the number of clusters of neighboring beads using freud’s clustering algorithm (r =

1.2). Because Voronoi polytope volume is the only non-scalar feature, we reduce only it. We reduce the

volumes to six features: the 10st, 100th, and 1,000th greatest and least values. We do not transform the

data due to low dimensionality. Finally, for offline detection, we detect the change points using C1 with

rupture’s dynamic programming algorithm, using kneed for elbow detection with a sensitivity of 1, for

|K| ∈ [1, 10]. We also perform online detection using the sliding window approach with a window size of

50. All steps up to detection are identical though the signal is fed to the detector as a stream rather than

simultaneously. The detector used for the online detection uses the same cost function, algorithm, and elbow

detection, but only goes to |K| = 6. The cost function gets computed on-the-fly for each frame in the

window, taking into account previous frames in the window. We clear the window whenever an event is

detected.

Figure 6 shows the CPD analysis for this system. The collapse of the polymer due to poor solvent can be

seen in Figure 6 (a). The collapse looks visually continuous, although the images show a collapse mediated by

multiple intermediate, discrete steps, and the shape of the order parameter with time is sigmoidal. Figure 6

(c - left) shows the cost associated with the choice of optimum n (number of change points) for offline

detection. The offline detection scheme only detects the transition to the final snapshot of the simulation

because fitting to the individual sections of the collapse does not sufficiently decrease the cost function.

Figure 6 (c - right) shows dupin’s ability to detect the collapse and its component parts in the case of

14

10

a

165 200 368

0 100 200 300
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Q
12

|V
vo

r

b
Features after Filtering

100 200 300
Frame

0

2

4

O
1

×10 1
c ML Dimensionality

Reduced Signal

0 2 4 6 8 10
Number of Change Points

2

3

4

5

6

Co
st

×103
d Linear

Change Point Detection

0 2 4 6 8 10
Number of Change Points

1

2

3

Co
st

×101
Mean Shift

Change Point Detection

0 100 200 300
Frame

0.0

0.5

1.0

V v
or

|Q
12

100 200 300
Frame

0.0

0.2

0.4

O
1

route 2
transform

route 2
detect

route 1
detect

Figure 5: Change point detection applied to system of binary Mie particles. (a) Simulation snapshots with
associated frame number (lower right). The two middle images show the system at the two change points
detected using linear change point detection. Particles are colored according to their type. (b) Plot of
some features obtained after the transform step (100th greatest and least MSM l = 12 (left) and Voronoi
polyhedra volumes (right)). Solid lines are the (rolling mean) smoothed features and the translucent points
are the actual data points used for calculations. Gray arrows and text indicate two different change point
detection routes applied. (c) The zero-one loss function computed using the ML classifier for dimensionality
reduction applied to features from transform step (b). (d) The two main figures show the cost plots used
to compute the optimal number of change points with elbow detection (black dashed line) for linear change
point detection (left) and mean-shift change point detection (right). The insets show the change point frames
(black dashed line) on the signals used to compute the change points.

15

online detection. For online detection the elbow cost plot would need to be shown for every frame. Instead,

we show the relative improvement of cost inside the current window from adding a second change point in

online detection. The formula used is ξ = (c1 − c2)/c0 where ci is the cost for selecting i change points.

This approach yields independent cost curves for each window (detected event). When this proxy is high,

it indicates that the current window is likely to contain a transition. The “ramp up”, “growth” and “slow

down” behavior of the sigmoid leads to three events detected with online detection at frames 65, 95, and 140.

This granularity results from the max signal length of 50, which increases the relative reduction in cost for

fitting to the three sections of the polymer collapse. Processing the entire trajectory for online detection took

820 milliseconds (±3.12µs) on a single core of a 3.0 GHz Intel Xeon Gold 6154. This speed is sufficiently fast

to use in real time applications such as autonomously triggering simulation protocols during a simulation.

4 Discussion and Conclusions

We’ve demonstrated how the procedure described in Section 2.1 allows for detection of transition points

within a simulation trajectory with a high degree of accuracy. The obvious benefit from this approach is

the automation of structural transition detection within a study. In studies with hundreds and thousands of

simulations the dividends of this approach increase exponentially. We have also demonstrated that dupin is

successful at detecting events underwent by a small number of particles in the system (< 5%). Our method

does, however, require informative descriptors for the transition. This requirement can be met by selecting

a wide variety of descriptors and applying feature selection tools to the signal afterwards.

From the examples presented, we conclude that the ML dimensionality reduction classifier produces a

signal which results in a larger partitioning of the detected events compared to results produced using the

linear cost function approach. However, the ML dimensionality reduction classifier approach falls short in

cases where multiple events are overlapping or in cases where there are abrupt changes at the end of the

signal. For instance, if we were to apply the ML dimensionality reduction classifier approach to a system

with only one frame into a transition, no event would be detected. The linear approach is better suited for

detection in such scenarios and in scenarios where multiple events are expected as showcased in the online

polymer example.

dupin opens the doors for new ML applications to phenomena such as crystallization pathways, defect

formation and active matter, all of which involve structural transitions. By curating the transition data

for ML applications, large scale studies that would have been prohibitively costly in terms of human hours

are now accessible. Furthermore, leveraging dupin for online event detection holds promise to lessen data

storage and processing demands and provide a powerful avenue for real-time control over simulations and

experiments.

The source code can be found at GitHub at https://github.com/glotzerlab/dupin. The documen-

tation hosted by Read the Docs, https://dupin.readthedocs.io, also contains three additional examples

of event detection: one for a simple example of WCA spheres forming FCC, one of hard truncated tetrahe-

dra forming cF432, and one of ionic beryllium and chlorine forming a nematic then crystalline phase. The

analysis code and data will be available on Deep Blue Documents following publication.

16

https://github.com/glotzerlab/dupin
https://dupin.readthedocs.io

0

a

65 95 140 199

0 100 200 300
Frame

0.0

0.5

1.0

V v
ol

b

0 100 200 300
Frame

0.0

0.5

1.0

N
cl

us
te

r

0 1 2 3 4 5 6 7 8
Number of Change Points

1

2

3

Co
st

×102
c Offline

Change Point Detection

100 200 300
Frame

0

1

2

3
×10 1

Online
Change Point Detection

0 100 200 300
Frame

0.0

0.5

1.0

V v
or

|N
cl

us
te

r

Figure 6: Change point detection applied to polymer trajectory. (a) Images corresponding to the beginning of
the simulation, online change points, and end of the simulation. (b) Plots of features for detection: Voronoi
polytope volumes (left) and the number of clusters (right). Solid lines are the (rolling mean) smoothed
features and the translucent points are the data points on which all calculations were done. (c) Detection
of change points using the offline (left) and online approach (right). Offline plot (left) of the cost associated
with the optimum n change points computed on all features. The inset for the offline plot (left) shows the
features from (b) with the computed change points (black dashed line). Online detection (right): Window
cost proxy function (see main text) for online detection and associated change points (black lines).

17

5 Acknowledgements

This research was supported by the National Science Foundation, Division of Materials Research under

a Computational and Data-Enabled Science and Engineering (CDS&E) Award # DMR 2302470 (2023 -

2027) and # DMR 1808342 (2019-2023). This work used the Extreme Science and Engineering Discovery

Environment (XSEDE) [58], which is supported by National Science Foundation grant number ACI-1548562;

XSEDE award DMR 140129. This research was supported in part through computational resources and

services provided by Advanced Research Computing, a division of Information and Technology Services at

the University of Michigan, Ann Arbor.

References

[1] Stephen Thomas et al. “Routine Million-Particle Simulations of Epoxy Curing with Dissipative Particle

Dynamics”. In: J. Theor. Comput. Chem. 17.03 (May 1, 2018), p. 1840005. issn: 0219-6336. doi:

10.1142/S0219633618400059. url: https://www.worldscientific.com/doi/abs/10.1142/

S0219633618400059 (visited on 01/31/2022).

[2] Matthew W. Thompson et al. “Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic

Liquids and Organic Solvents”. In: J. Phys. Chem. B 123.6 (Feb. 14, 2019), pp. 1340–1347. issn:

1520-6106. doi: 10.1021/acs.jpcb.8b11527. url: https://doi.org/10.1021/acs.jpcb.8b11527

(visited on 11/03/2020).

[3] Carl S. Adorf et al. “Simple Data and Workflow Management with the Signac Framework”. In: Com-

putational Materials Science 146 (Apr. 15, 2018), pp. 220–229. issn: 0927-0256. doi: 10.1016/j.

commatsci . 2018 . 01 . 035. url: https : / / www . sciencedirect . com / science / article / pii /

S0927025618300429 (visited on 01/28/2022).

[4] Sebastiaan P. Huber et al. “AiiDA 1.0, a Scalable Computational Infrastructure for Automated Repro-

ducible Workflows and Data Provenance”. In: Sci Data 7.1 (1 Sept. 8, 2020), p. 300. issn: 2052-4463.

doi: 10.1038/s41597-020-00638-4. url: http://www.nature.com/articles/s41597-020-00638-

4 (visited on 04/14/2022).

[5] Vyas Ramasubramani et al. “Freud: A Software Suite for High Throughput Analysis of Particle Sim-

ulation Data”. In: Computer Physics Communications (Mar. 17, 2020), p. 107275. issn: 0010-4655.

doi: 10.1016/j.cpc.2020.107275. url: http://www.sciencedirect.com/science/article/pii/

S0010465520300916 (visited on 05/04/2020).

[6] Bradley D. Dice et al. “Analyzing Particle Systems for Machine Learning and Data Visualization with

Freud”. In: Proceedings of the 18th Python in Science Conference (2019), pp. 27–33. doi: 10.25080/

Majora-7ddc1dd1-004. url: http://conference.scipy.org/proceedings/scipy2019/bradley_

dice.html (visited on 01/28/2022).

[7] Robert T. McGibbon et al. “MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics

Trajectories”. In: Biophysical Journal 109.8 (2015), pp. 1528–1532. doi: 10.1016/j.bpj.2015.08.015.

[8] Naveen Michaud-Agrawal et al. “MDAnalysis: A toolkit for the analysis of molecular dynamics sim-

ulations”. In: Journal of Computational Chemistry 32.10 (Apr. 2011), pp. 2319–2327. doi: 10.1002/

jcc.21787. url: https://doi.org/10.1002%2Fjcc.21787.

18

https://doi.org/10.1142/S0219633618400059
https://www.worldscientific.com/doi/abs/10.1142/S0219633618400059
https://www.worldscientific.com/doi/abs/10.1142/S0219633618400059
https://doi.org/10.1021/acs.jpcb.8b11527
https://doi.org/10.1021/acs.jpcb.8b11527
https://doi.org/10.1016/j.commatsci.2018.01.035
https://doi.org/10.1016/j.commatsci.2018.01.035
https://www.sciencedirect.com/science/article/pii/S0927025618300429
https://www.sciencedirect.com/science/article/pii/S0927025618300429
https://doi.org/10.1038/s41597-020-00638-4
http://www.nature.com/articles/s41597-020-00638-4
http://www.nature.com/articles/s41597-020-00638-4
https://doi.org/10.1016/j.cpc.2020.107275
http://www.sciencedirect.com/science/article/pii/S0010465520300916
http://www.sciencedirect.com/science/article/pii/S0010465520300916
https://doi.org/10.25080/Majora-7ddc1dd1-004
https://doi.org/10.25080/Majora-7ddc1dd1-004
http://conference.scipy.org/proceedings/scipy2019/bradley_dice.html
http://conference.scipy.org/proceedings/scipy2019/bradley_dice.html
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002%2Fjcc.21787

[9] Richard Gowers et al. “MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics

Simulations”. In: Proceedings of the Python in Science Conference. SciPy, 2016. doi: 10.25080/

majora-629e541a-00e. url: https://doi.org/10.25080%2Fmajora-629e541a-00e.

[10] Alexander Stukowski. “Visualization and Analysis of Atomistic Simulation Data with OVITO-the

Open Visualization Tool”. In: Modelling Simul. Mater. Sci. Eng. 18.1 (Dec. 2009), p. 015012. issn:

0965-0393. doi: 10.1088/0965-0393/18/1/015012. url: https://doi.org/10.1088%2F0965-

0393%2F18%2F1%2F015012 (visited on 12/18/2019).

[11] Samaneh Aminikhanghahi and Diane J. Cook. “A Survey of Methods for Time Series Change Point

Detection”. In: Knowl Inf Syst 51.2 (May 1, 2017), pp. 339–367. issn: 0219-3116. doi: 10.1007/

s10115-016-0987-z. url: https://doi.org/10.1007/s10115-016-0987-z (visited on 01/28/2022).

[12] Binbin Luo et al. “Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-

Phase Transmission Electron Microscopy”. In: Acc. Chem. Res. 50.5 (May 16, 2017), pp. 1125–1133.

issn: 0001-4842. doi: 10.1021/acs.accounts.7b00048. url: https://doi.org/10.1021/acs.

accounts.7b00048 (visited on 01/09/2023).

[13] Zihao Ou et al. “Kinetic Pathways of Crystallization at the Nanoscale”. In: Nat. Mater. 19.4 (4 Apr.

2020), pp. 450–455. issn: 1476-4660. doi: 10.1038/s41563-019-0514-1. url: http://www.nature.

com/articles/s41563-019-0514-1 (visited on 01/09/2023).

[14] C. Patrick Royall, Ard A. Louis, and Hajime Tanaka. “Measuring Colloidal Interactions with Confocal

Microscopy”. In: J. Chem. Phys. 127.4 (July 28, 2007), p. 044507. issn: 0021-9606. doi: 10.1063/1.

2755962. url: http://aip.scitation.org/doi/full/10.1063/1.2755962 (visited on 01/09/2023).

[15] Salma M. Abdel-Hafez, Rania M. Hathout, and Omaima A. Sammour. “Tracking the Transdermal Pen-

etration Pathways of Optimized Curcumin-Loaded Chitosan Nanoparticles via Confocal Laser Scanning

Microscopy”. In: International Journal of Biological Macromolecules 108 (Mar. 1, 2018), pp. 753–764.

issn: 0141-8130. doi: 10.1016/j.ijbiomac.2017.10.170. url: https://www.sciencedirect.com/

science/article/pii/S0141813017329100 (visited on 01/09/2023).

[16] Samaneh Aminikhanghahi and Diane J. Cook. “Using change point detection to automate daily activity

segmentation”. In: 2017 IEEE International Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops). 2017, pp. 262–267. doi: 10.1109/PERCOMW.2017.7917569.

[17] Daniel Alves, Katia Obraczka, and Rick Lindberg. “Identifying Relevant Data Center Telemetry Using

Change Point Detection”. In: 2020 IEEE 9th International Conference on Cloud Networking (Cloud-

Net). 2020, pp. 1–4. doi: 10.1109/CloudNet51028.2020.9335800.

[18] Zunya Shi and Abdallah Chehade. “A dual-LSTM framework combining change point detection and

remaining useful life prediction”. In: Reliability Engineering & System Safety 205 (2021), p. 107257.

issn: 0951-8320. doi: https://doi.org/10.1016/j.ress.2020.107257. url: https://www.

sciencedirect.com/science/article/pii/S0951832020307572.

[19] Kyle D. Feuz et al. “Automated Detection of Activity Transitions for Prompting”. In: IEEE Transac-

tions on Human-Machine Systems 45.5 (2015), pp. 575–585. doi: 10.1109/THMS.2014.2362529.

[20] Manhyung Han et al. “Comprehensive Context Recognizer Based on Multimodal Sensors in a Smart-

phone”. In: Sensors 12.9 (Sept. 2012), pp. 12588–12605. issn: 1424-8220. doi: 10.3390/s120912588.

url: http://dx.doi.org/10.3390/s120912588.

19

https://doi.org/10.25080/majora-629e541a-00e
https://doi.org/10.25080/majora-629e541a-00e
https://doi.org/10.25080%2Fmajora-629e541a-00e
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012
https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1021/acs.accounts.7b00048
https://doi.org/10.1021/acs.accounts.7b00048
https://doi.org/10.1021/acs.accounts.7b00048
https://doi.org/10.1038/s41563-019-0514-1
http://www.nature.com/articles/s41563-019-0514-1
http://www.nature.com/articles/s41563-019-0514-1
https://doi.org/10.1063/1.2755962
https://doi.org/10.1063/1.2755962
http://aip.scitation.org/doi/full/10.1063/1.2755962
https://doi.org/10.1016/j.ijbiomac.2017.10.170
https://www.sciencedirect.com/science/article/pii/S0141813017329100
https://www.sciencedirect.com/science/article/pii/S0141813017329100
https://doi.org/10.1109/PERCOMW.2017.7917569
https://doi.org/10.1109/CloudNet51028.2020.9335800
https://doi.org/https://doi.org/10.1016/j.ress.2020.107257
https://www.sciencedirect.com/science/article/pii/S0951832020307572
https://www.sciencedirect.com/science/article/pii/S0951832020307572
https://doi.org/10.1109/THMS.2014.2362529
https://doi.org/10.3390/s120912588
http://dx.doi.org/10.3390/s120912588

[21] Sasank Reddy et al. “Using Mobile Phones to Determine Transportation Modes”. In: ACM Trans.

Sen. Netw. 6.2 (Mar. 2010). issn: 1550-4859. doi: 10.1145/1689239.1689243. url: https://doi.

org/10.1145/1689239.1689243.

[22] Alexander Aue et al. “Break detection in the covariance structure of multivariate time series models”.

In: The Annals of Statistics 37.6B (2009), pp. 4046–4087. doi: 10.1214/09-AOS707. url: https:

//doi.org/10.1214/09-AOS707.

[23] Daniel Barry and J. A. Hartigan. “A Bayesian Analysis for Change Point Problems”. In: Journal of

the American Statistical Association 88.421 (1993), pp. 309–319. issn: 01621459.

[24] Yoshinobu Kawahara and Masashi Sugiyama. “Sequential change-point detection based on direct

density-ratio estimation”. In: Statistical Analysis and Data Mining: The ASA Data Science Journal

5.2 (2012), pp. 114–127.

[25] Yoshinobu Kawahara, Takehisa Yairi, and Kazuo Machida. “Change-Point Detection in Time-Series

Data Based on Subspace Identification”. In: Seventh IEEE International Conference on Data Mining

(ICDM 2007). 2007, pp. 559–564. doi: 10.1109/ICDM.2007.78.

[26] E. Keogh et al. “An online algorithm for segmenting time series”. In: Proceedings 2001 IEEE Interna-

tional Conference on Data Mining. 2001, pp. 289–296. doi: 10.1109/ICDM.2001.989531.

[27] Marcel Bosc et al. “Automatic change detection in multimodal serial MRI: application to multiple

sclerosis lesion evolution”. In: NeuroImage 20.2 (2003), pp. 643–656. issn: 1053-8119. doi: https:

//doi.org/10.1016/S1053-8119(03)00406-3.

[28] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti. “Bond-Orientational Order in Liquids and

Glasses”. In: Phys. Rev. B 28.2 (July 15, 1983), pp. 784–805. doi: 10.1103/PhysRevB.28.784. url:

https://link.aps.org/doi/10.1103/PhysRevB.28.784 (visited on 05/11/2020).

[29] Walter Mickel et al. “Shortcomings of the Bond Orientational Order Parameters for the Analysis of

Disordered Particulate Matter”. In: J. Chem. Phys. 138.4 (Jan. 22, 2013), p. 044501. issn: 0021-9606.

doi: 10.1063/1.4774084. url: http://aip.scitation.org/doi/full/10.1063/1.4774084 (visited

on 11/12/2020).

[30] Jeremy C. Palmer et al. “Metastable liquid-liquid transition in a molecular model of water”. In: Nature

510 (2014), pp. 385–388. doi: 10.1038/nature13405.

[31] Wolfgang Lechner and Christoph Dellago. “Accurate Determination of Crystal Structures Based on

Averaged Local Bond Order Parameters”. In: J. Chem. Phys. 129.11 (Sept. 21, 2008), p. 114707. issn:

0021-9606. doi: 10.1063/1.2977970. url: https://aip.scitation.org/doi/full/10.1063/1.

2977970 (visited on 05/05/2022).

[32] Albert P. Bartók, Risi Kondor, and Gábor Csányi. “On representing chemical environments”. In:

Phys. Rev. B 87 (18 May 2013), p. 184115. doi: 10.1103/PhysRevB.87.184115. url: https:

//link.aps.org/doi/10.1103/PhysRevB.87.184115.

[33] Cristina Caruso et al. “TimeSOAP: Tracking high-dimensional fluctuations in complex molecular sys-

tems via time variations of SOAP spectra”. In: The Journal of Chemical Physics 158.21 (June 2023),

p. 214302. issn: 0021-9606. doi: 10.1063/5.0147025. url: https://doi.org/10.1063/5.0147025.

[34] Bradley Dice. “Complex Crystallization Pathways Analyzed in a Continuous Feature Space”. Thesis.

2021. doi: 10.7302/3103. url: http://deepblue.lib.umich.edu/handle/2027.42/170058 (visited

on 04/06/2022).

20

https://doi.org/10.1145/1689239.1689243
https://doi.org/10.1145/1689239.1689243
https://doi.org/10.1145/1689239.1689243
https://doi.org/10.1214/09-AOS707
https://doi.org/10.1214/09-AOS707
https://doi.org/10.1214/09-AOS707
https://doi.org/10.1109/ICDM.2007.78
https://doi.org/10.1109/ICDM.2001.989531
https://doi.org/https://doi.org/10.1016/S1053-8119(03)00406-3
https://doi.org/https://doi.org/10.1016/S1053-8119(03)00406-3
https://doi.org/10.1103/PhysRevB.28.784
https://link.aps.org/doi/10.1103/PhysRevB.28.784
https://doi.org/10.1063/1.4774084
http://aip.scitation.org/doi/full/10.1063/1.4774084
https://doi.org/10.1038/nature13405
https://doi.org/10.1063/1.2977970
https://aip.scitation.org/doi/full/10.1063/1.2977970
https://aip.scitation.org/doi/full/10.1063/1.2977970
https://doi.org/10.1103/PhysRevB.87.184115
https://link.aps.org/doi/10.1103/PhysRevB.87.184115
https://link.aps.org/doi/10.1103/PhysRevB.87.184115
https://doi.org/10.1063/5.0147025
https://doi.org/10.1063/5.0147025
https://doi.org/10.7302/3103
http://deepblue.lib.umich.edu/handle/2027.42/170058

[35] Emanuele Boattini, Marjolein Dijkstra, and Laura Filion. “Unsupervised Learning for Local Structure

Detection in Colloidal Systems”. In: The Journal of Chemical Physics 151.15 (Oct. 15, 2019), p. 154901.

issn: 0021-9606. doi: 10.1063/1.5118867. url: http://aip.scitation.org/doi/abs/10.1063/1.

5118867 (visited on 11/23/2020).

[36] S. S. Schoenholz et al. “A Structural Approach to Relaxation in Glassy Liquids”. In: Nature Phys 12.5

(May 2016), pp. 469–471. issn: 1745-2481. doi: 10.1038/nphys3644. url: https://www.nature.

com/articles/nphys3644 (visited on 12/18/2019).

[37] Carl S. Adorf et al. “Analysis of Self-Assembly Pathways with Unsupervised Machine Learning Algo-

rithms”. In: J. Phys. Chem. B 124.1 (Jan. 9, 2020), pp. 69–78. issn: 1520-6106. doi: 10.1021/acs.

jpcb.9b09621. url: https://doi.org/10.1021/acs.jpcb.9b09621 (visited on 10/22/2020).

[38] C. Dietz, T. Kretz, and M. H. Thoma. “Machine-Learning Approach for Local Classification of Crys-

talline Structures in Multiphase Systems”. In: Phys. Rev. E 96.1 (July 19, 2017), p. 011301. doi:

10.1103/PhysRevE.96.011301. url: https://link.aps.org/doi/10.1103/PhysRevE.96.011301

(visited on 10/07/2020).

[39] Matthew Spellings and Sharon C. Glotzer. “Machine Learning for Crystal Identification and Discov-

ery”. In: AIChE Journal 64.6 (2018), pp. 2198–2206. issn: 1547-5905. doi: 10.1002/aic.16157. url:

https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16157 (visited on 11/25/2019).

[40] Trent Barnard and Gabriele C. Sosso. “Combining machine learning and molecular simulations to

predict the stability of amorphous drugs”. In: The Journal of Chemical Physics 159.1 (July 2023),

p. 014503. issn: 0021-9606. doi: 10.1063/5.0156222. url: https://doi.org/10.1063/5.0156222.

[41] Charles Truong, Laurent Oudre, and Nicolas Vayatis. “A Review of Change Point Detection Methods.”

In: (Jan. 1, 2018). url: https://openreview.net/forum?id=4_eVexSJ8B (visited on 01/28/2022).

[42] S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi. “A Review of Classical and Nonclassical Nucle-

ation Theories”. In: Crystal Growth & Design 16.11 (Nov. 2, 2016), pp. 6663–6681. issn: 1528-7483.

doi: 10.1021/acs.cgd.6b00794. url: https://doi.org/10.1021/acs.cgd.6b00794 (visited on

10/22/2020).

[43] Andrew Y. Ng, Micheal I. Jorden, and Yair Weiss. “On Spectral Clustering: Analysis and an Al-

gorithm”. In: Advances in Neural Information Processing Systems. Neural Information Processing

Systems. 2002, pp. 849–856.

[44] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: Journal of Machine Learn-

ing Research 12.85 (2011), pp. 2825–2830. issn: 1533-7928. url: http://jmlr.org/papers/v12/

pedregosa11a.html (visited on 05/09/2020).

[45] Shohei Hido et al. “Unsupervised Change Analysis Using Supervised Learning”. In: Advances in Knowl-

edge Discovery and Data Mining. Ed. by Takashi Washio et al. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 2008, pp. 148–159. isbn: 978-3-540-68125-0. doi: 10.1007/978-3-540-

68125-0_15.

[46] Wayne Iba and Pat Langley. “Induction of One-Level Decision Trees”. In: Machine Learning Proceed-

ings 1992. Ed. by Derek Sleeman and Peter Edwards. San Francisco (CA): Morgan Kaufmann, 1992,

pp. 233–240. isbn: 978-1-55860-247-2. doi: https://doi.org/10.1016/B978-1-55860-247-2.

50035-8. url: https://www.sciencedirect.com/science/article/pii/B9781558602472500358.

21

https://doi.org/10.1063/1.5118867
http://aip.scitation.org/doi/abs/10.1063/1.5118867
http://aip.scitation.org/doi/abs/10.1063/1.5118867
https://doi.org/10.1038/nphys3644
https://www.nature.com/articles/nphys3644
https://www.nature.com/articles/nphys3644
https://doi.org/10.1021/acs.jpcb.9b09621
https://doi.org/10.1021/acs.jpcb.9b09621
https://doi.org/10.1021/acs.jpcb.9b09621
https://doi.org/10.1103/PhysRevE.96.011301
https://link.aps.org/doi/10.1103/PhysRevE.96.011301
https://doi.org/10.1002/aic.16157
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16157
https://doi.org/10.1063/5.0156222
https://doi.org/10.1063/5.0156222
https://openreview.net/forum?id=4_eVexSJ8B
https://doi.org/10.1021/acs.cgd.6b00794
https://doi.org/10.1021/acs.cgd.6b00794
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/978-3-540-68125-0_15
https://doi.org/10.1007/978-3-540-68125-0_15
https://doi.org/https://doi.org/10.1016/B978-1-55860-247-2.50035-8
https://doi.org/https://doi.org/10.1016/B978-1-55860-247-2.50035-8
https://www.sciencedirect.com/science/article/pii/B9781558602472500358

[47] Leland McInnes, John Healy, and James Melville. “UMAP: Uniform Manifold Approximation and

Projection for Dimension Reduction”. Sept. 17, 2020. arXiv: 1802.03426 [cs, stat]. url: http:

//arxiv.org/abs/1802.03426.

[48] Ville Satopaa et al. “Finding a ”Kneedle” in a Haystack: Detecting Knee Points in System Behavior”.

In: 2011 31st International Conference on Distributed Computing Systems Workshops. 2011 31st In-

ternational Conference on Distributed Computing Systems Workshops. June 2011, pp. 166–171. doi:

10.1109/ICDCSW.2011.20.

[49] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer. “HOOMD-blue: A Python Package for High-

Performance Molecular Dynamics and Hard Particle Monte Carlo Simulations”. In: Computational

Materials Science 173 (Feb. 15, 2020), p. 109363. issn: 0927-0256. doi: 10.1016/j.commatsci.2019.

109363. url: http://www.sciencedirect.com/science/article/pii/S0927025619306627 (visited

on 05/09/2020).

[50] Joshua A. Anderson, M. Eric Irrgang, and Sharon C. Glotzer. “Scalable Metropolis Monte Carlo for

Simulation of Hard Shapes”. In: Computer Physics Communications 204 (July 1, 2016), pp. 21–30.

issn: 0010-4655. doi: 10.1016/j.cpc.2016.02.024. url: https://www.sciencedirect.com/

science/article/pii/S001046551630039X (visited on 01/31/2022).

[51] Brandon L. Butler et al. “HOOMD-blue version 3.0 A Modern, Extensible, Flexible, Object-Oriented

API for Molecular Simulations”. In: Proceedings of the 19th Python in Science Conference. Ed. by

Meghann Agarwal et al. 2020, pp. 24–31. doi: 10.25080/Majora-342d178e-004.

[52] Vyas Ramasubramani et al. “Signac: A Python Framework for Data and Workflow Management”.

In: Proceedings of the 17th Python in Science Conference (2018), pp. 152–159. doi: 10 . 25080 /

Majora-4af1f417-016. url: https://conference.scipy.org/proceedings/scipy2018/vyas_

ramasubramani.html (visited on 01/28/2022).

[53] Bradley D. Dice et al. “Signac: Data Management and Workflows for Computational Researchers”.

In: Proceedings of the 20th Python in Science Conference (2021), pp. 23–32. doi: 10.25080/majora-

1b6fd038-003. url: https://conference.scipy.org/proceedings/scipy2021/bradley_dice.

html (visited on 01/28/2022).

[54] Gustav Mie. “Zur Kinetischen Theorie Der Einatomigen Körper”. In: Annalen der Physik 316.8 (1903),

pp. 657–697. issn: 1521-3889. doi: 10.1002/andp.19033160802. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/andp.19033160802 (visited on 01/09/2023).

[55] Georges Voronoi. “Nouvelles applications des paramètres continus à la théorie des formes quadratiques.

Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites.” In: Journal für

die reine und angewandte Mathematik (Crelles Journal) 1908.133 (Jan. 1, 1908), pp. 97–102. issn:

1435-5345. doi: 10.1515/crll.1908.133.97. url: https://www.degruyter.com/document/doi/

10.1515/crll.1908.133.97/html (visited on 01/18/2023).

[56] Georges Voronoi. “Nouvelles applications des paramètres continus à la théorie des formes quadra-

tiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs.” In: Journal für die reine und

angewandte Mathematik (Crelles Journal) 1908.134 (July 1, 1908), pp. 198–287. issn: 1435-5345. doi:

10.1515/crll.1908.134.198. url: https://www.degruyter.com/document/doi/10.1515/crll.

1908.134.198/html (visited on 01/18/2023).

22

https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.commatsci.2019.109363
http://www.sciencedirect.com/science/article/pii/S0927025619306627
https://doi.org/10.1016/j.cpc.2016.02.024
https://www.sciencedirect.com/science/article/pii/S001046551630039X
https://www.sciencedirect.com/science/article/pii/S001046551630039X
https://doi.org/10.25080/Majora-342d178e-004
https://doi.org/10.25080/Majora-4af1f417-016
https://doi.org/10.25080/Majora-4af1f417-016
https://conference.scipy.org/proceedings/scipy2018/vyas_ramasubramani.html
https://conference.scipy.org/proceedings/scipy2018/vyas_ramasubramani.html
https://doi.org/10.25080/majora-1b6fd038-003
https://doi.org/10.25080/majora-1b6fd038-003
https://conference.scipy.org/proceedings/scipy2021/bradley_dice.html
https://conference.scipy.org/proceedings/scipy2021/bradley_dice.html
https://doi.org/10.1002/andp.19033160802
http://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19033160802
http://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19033160802
https://doi.org/10.1515/crll.1908.133.97
https://www.degruyter.com/document/doi/10.1515/crll.1908.133.97/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.133.97/html
https://doi.org/10.1515/crll.1908.134.198
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html

[57] Venkata Jandhyala et al. “Inference for Single and Multiple Change-Points in Time Series”. In: Journal

of Time Series Analysis 34.4 (2013), pp. 423–446. issn: 1467-9892. doi: 10.1111/jtsa.12035. url:

http://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12035 (visited on 01/09/2023).

[58] John Towns et al. “XSEDE: Accelerating Scientific Discovery”. In: Computing in Science & Engineering

16.5 (2014), pp. 62–74. doi: 10.1109/MCSE.2014.80.

23

https://doi.org/10.1111/jtsa.12035
http://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12035
https://doi.org/10.1109/MCSE.2014.80

	Introduction
	Results
	Detection Scheme
	Overview of Method
	Data Collection
	Data Augmentation
	Detection

	Online Detection

	Example Applications
	Binary Lennard-Jones system
	Nucleation and growth of a binary crystal of particles
	Collapse of polymer in poor solvent

	Discussion and Conclusions
	Acknowledgements

