O 00 N o 1 A W N -

I R . T = T
N OO Ll B W N R O

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.03.602003; this version posted July 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Postprandial sleep in short-sleeping Mexican cavefish

Kathryn Gallman', Aakriti Rastogi’, Owen North', Morgan O’Gorman'’, Pierce Hutton", Evan
Lloyd', Wes Warren?, Johanna E. Kowalko®, Erik R. Duboue*, Nicolas Rohner®, and Alex C.

Keene'

1. Department of Biology, Texas A&M University, College Station, TX 77840

2. Department of Genomics, University of Missouri, Columbia, MO 65201

3. Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
4. Florida Atlantic University, Jupiter, FL 33458

5. Stowers Institute for Medical Research, Kansas City, MO 64110

* Denotes equal contribution

Address correspondence to KeeneA@QTAMU.edu



https://doi.org/10.1101/2024.07.03.602003
http://creativecommons.org/licenses/by-nd/4.0/

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.03.602003; this version posted July 5, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Abstract

Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species
suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an
increase in sleep time following a feeding event, has been documented in vertebrate and
invertebrate animals. While interactions between sleep and feeding appear to be highly
conserved, the evolution of postprandial sleep in response to changes in food availability remains
poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have
independently evolved sleep loss and increased food consumption compared to surface-dwelling
fish of the same species, providing the opportunity to investigate the evolution of interactions
between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult
surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and
cave populations of A. mexicanus increase sleep immediately following a meal, providing the first
evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal
size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was
not detected in adult surface or cavefish, that can survive for months without food. Together,
these findings reveal that postprandial sleep is present in multiple short-sleeping populations of
cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss.
These findings raise the possibility that postprandial sleep is critical for energy conservation and

survival in larvae that are highly sensitive to food deprivation.
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Introduction

Sleep and metabolic regulation are highly variable throughout the animal kingdom (Lesku et al.
2006; Joiner 2016; Keene and Duboue 2018; Seebacher 2018). This variability is reflected by the
diversity of food availability and foraging strategy, which potently impact the duration and timing
of sleep. There is an interaction between sleep and feeding, regardless of life history strategy,
that is critical for organismal survival, and therefore, under selection (Capellini et al. 2008; Yurgel
et al. 2014; Slocumb et al. 2015; Aulsebrook et al. 2016; Brown et al. 2019). While both of these

behavioral processes have been studied in detail, much less is known about interactions between

sleep and feeding, particularly in the context of evolution.

In many species, sleep deprivation results in increased food intake, while prolonged periods of
food deprivation lead to a reduction in metabolic rate and suppression of sleep (Keene et al. 2010;
Arble et al. 2015; Stahl et al. 2017; Regalado et al. 2017; Goldstein et al. 2018). Conversely,
animals ranging from the nematode, C. elegans, to humans, increase sleep immediately following

a meal, revealing an acute effect of dietary nutrients on sleep regulation (Stahl et al. 1983; Murphy
et al. 2016; Makino et al. 2021). Defining how evolution has shaped interactions between sleep,

metabolic regulation, and feeding is critical to determine the functions of these traits.

The rapidly increasing number of organisms used to study sleep provides new opportunities to

study interactions between sleep and metabolism(McNamara et al. 2009; Anafi et al. 2019). Fish
have become a model to study the biological basis of sleep regulation (Chiu and Prober 2013;
Levitas-Djerbi and Appelbaum 2017; Keene and Appelbaum 2019). Growing evidence suggests
the genetic and functional basis of sleep is conserved across multiple fish species (Chiu and
Prober 2013; Levitas-Djerbi and Appelbaum 2017; Keene and Appelbaum 2019). Further, the

small size and amenability to genetic manipulation of these fish allows for high-throughput genetic

and pharmacological screens to identify novel regulators of sleep (Rihel et al. 2010; Chiu et al.
2016; Kroll et al. 2021). Furthermore, at larval stages, many fish models are transparent, allowing
for mapping of sleep and feeding circuits across the entire brain (Semmelhack et al. 2014; Leung
et al. 2019; Wee et al. 2019; Forster et al. 2020). Therefore, zebrafish and other fish models are

exceptionally well positioned to examine interactions between sleep and feeding.
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71 The Mexican tetra, A. mexicanus exist as river-dwelling surface fish and at least 30 blind
72 populations of cavefish, which have evolved in nutrient-limited environments, providing the
73  opportunity to examine sleep after fasting and postprandial sleep in an evolutionary context
74  (Jeffery 2009; Gross 2012; McGaugh et al. 2020). Multiple cavefish populations have evolved
75  behavioral and physiological differences relative to surface fish including sleep loss, reduced

76  metabolic rate, and increased feeding (Duboué et al. 2011; Moran et al. 2014; Aspiras et al. 2015;
77  Yoshizawa 2015; Volkoff 2016). Long-term starvation has opposing effects on sleep between the

78 surface and cave populations. Starved surface fish suppress sleep, while starved cavefish
79 increase sleep, suggesting that the evolutionary factors shaping the sleep-feeding interaction
80 differ between populations (Jaggard et al. 2018). However, sleep-feeding interactions are poorly
81 understood, and postprandial sleep has to our knowledge not been identified in any fish model to
82 date. Examining the effects of feeding state on sleep in surface and cave populations of A.
83  mexicanus has the potential to identify whether these behaviors evolved through shared genetic
84 mechanisms and to provide insight into how sleep-feeding interactions are influenced by
85 adaptation to a nutrient-poor cave environment.
86
87 Larval A. mexicanus provide a particularly tractable model for examining the effects of feeding on
88 sleep regulation. Multiple populations of cavefish larvae have converged on sleep loss similar to
89  adults (Duboué et al. 2011; Yoshizawa et al. 2015). However, while adult fish can live for months
90 without food, larval fish live for only a matter of days(Salin et al. 2010; Medley et al. 2022; Pozo-
91 Morales et al. 2024). Therefore, interactions between feeding and other behaviors may be
92  particularly important for the survival of larvae and young juvenile fish. Feeding larval fish Artemia
93 s readily quantifiable and large numbers of larval fish can be tested without the need to grow fish
94  toadulthood (Espinasa et al. 2014, 2017; Lloyd et al. 2018). The experimental amenability of larval
95 fish allows for efficient characterization of sleep-feeding interactions across different behavioral
96 and genetic contexts, providing a model to investigate the evolutionary relationship between these
97  processes.
98
99 Here, we characterize the effects of starvation and acute feeding on sleep in surface fish and
100 multiple A. mexicanus cavefish populations. We identify multiple sleep-feeding interactions in A.
101  mexicanus, including the presence of post-prandial sleep in multiple, parallelly evolved cavefish
102  populations. Feeding promotes sleep, independent of time-of-day, revealing the presence of

103  postprandial sleep in both surface and cavefish. Together, these findings reveal interactions
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104  between feeding and sleep and provide a model system to examine how these interactions
105 evolved.

106

107 Results

108 To investigate the effects of feeding on sleep, we compared sleep in different populations of
109 cavefish immediately following a meal. Briefly, fish were fed a meal, and baseline sleep and
110  activity were measured for 24 hours prior to sleep and feeding measurements. At Zeitgeber Time
111  (ZT) 0 on the second day, fish were fed 70 Artemia over two hours, followed by a four-hour
112 recording of sleep (Fig 1A). In agreement with previous findings, baseline sleep was lower in both
113  Pachon and Tinaja cavefish compared to surface fish (Fig 1B; Duboué et al. 2011a; Jaggard et al.
114  2020; O’Gorman et al. 2021a). When sleep was measured following a two-hour feeding period,
115  surface fish slept significantly more than cavefish from both populations (Fig 1C). Consistent with
116  previous findings, quantification of Artemia consumed during the two-hour feeding window
117  revealed significantly greater consumption in Tinaja fish, but not Pachén cavefish, compared to
118  surface fish (Aspiras et al. 2015; Alié et al. 2018)(Fig 1D). Taken together, these findings reveal
119  difference in sleep and feeding behavior of larval A. mexicanus populations.

120

121 It is possible that sleep is elevated across A. mexicanus populations from ZT2-ZT6 due to
122 postprandial sleep or light-regulated rest-activity rhythms. To differentiate between these
123 possibilities, we compared sleep following meals prior to ZT2, ZT6, and ZT10. Feeding time was
124  limited to half an hour to provide additional resolution for postprandial sleep (Fig 2A-C). Across
125 feeding time courses, surface fish slept more than cavefish populations (Fig 2D-F), supporting
126  the notion that surface fish sleep more than cavefish independent of feeding treatment. To
127  measure for postprandial sleep, we compared sleep duration during the four hours following
128 feeding to the remaining hours of daytime (excluding the time for the feeding assay) to determine
129 the percent change in sleep post feeding. Sleep was increased following the meal across all three
130 timepoints, for surface fish and both cavefish populations (Fig 2G-I). Strikingly, for all timepoints
131 tested, there was a significant increase in the amount of postprandial sleep, measured by the
132 increase over the baseline sleep (Fig 2G-I). Variation in the degree of postprandial sleep increase
133  across populations were dependent of feeding time. There were no differences in the percent
134  increase in postprandial sleep between populations fed prior to ZT2, but Surface fish had a
135 significantly greater increase in postprandial sleep than Tinaja cavefish fed prior to ZT6, and
136  Pachon fish had a significantly greater increase in postprandial sleep than either surface and

137  Tinaja cavefish fed prior to ZT10. Similarly, both surface and Pachoén cavefish, but not Tinaja
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138 cavefish, experienced a significantly greater increase in postprandial sleep prior to ZT10 than for
139 the timepoints earlier in the day. Therefore, while postprandial sleep occurs across A. mexicanus
140 populations, the degree to which sleep is increased in each population is dependent on the time
141  of day that feeding occurs. Taken together, these findings reveal the presence of postprandial
142  sleep in surface and cave populations of A. mexicanus.

143

144  ltis possible that meal size, or its caloric value, contributes to the duration of postprandial sleep.
145  To determine whether the amount of postprandial sleep is related to meal size, we examined the
146  correlation between the number of Artemia consumed and the duration of sleep in the four hours
147  following the meal. For surface fish fed prior to ZT2, there was a significant positive correlation
148 between meal size and post prandial sleep, however there was no significant correlation for
149  surface fish fed prior to ZT6 and ZT10 (Fig 3A-C). For both Pachén (Fig 3D-F) and Tinaja (Fig
150 3G-H) cavefish, there was no correlation between Artemia consumed and postprandial sleep.
151  Therefore, postprandial sleep is largely driven by the presence of a meal and does not appear to
152  be directly linked to meal size.

153

154  Postprandial sleep may provide a mechanism for conserving energy immediately following
155  successful foraging. Conversely, many animals suppress sleep under food-deprived conditions,
156  presumably to forage for food (Macfadyen et al. 1973; Danguir and Nicolaidis 1979; Keene et al.
157  2010; Goldstein et al. 2018). Larval A. mexicanus survive for only a few days without food, raising
158 the possibility that sleep will be acutely impacted by feeding state. To directly examine the effects
159 of feeding state on sleep, we compared sleep in 20 days post fertilization (dpf) fish that were fed
160 from ZT0-ZT2 to unfed fish that had been starved for the previous 24 hours (Fig 4A-C). Surface
161 fish and both populations of cavefish slept significantly more during the four hours following
162  feeding than unfed controls (Fig 4D-F). To further examine the effects of feeding on sleep, we
163  analyzed the activity patterns of fed and unfed fish using a Markov model that predicts the sleep
164 and wake propensity, both indicators of sleep drive (Wiggin et al. 2020). Across all three
165 populations, fed fish had a significantly greater sleep propensity P(Doze) and a significantly lower
166  waking propensity P(Wake) than unfed fish, suggesting that sleep drive is increased following
167 feeding (Fig 4G-l). Together, these findings reveal that both surface and cavefish suppress sleep
168 when starved, and that starvation-induced sleep suppression is intact in short-sleeping cavefish.
169

170  Adult A. mexicanus live months without food and are thought to be highly adapted to survive

171  periods of starvation(Cobham and Rohner 2024). Previously, we have shown that surface fish
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172 suppress sleep during periods of prolonged starvation, while cavefish increase sleep (Jaggard et

173  al. 2018). To determine whether differences in sleep response extend to acute behavior following
174 meals, we examined postprandial sleep in adult surface and cavefish. Fish were starved for five
175  days prior to recording to synchronize meal patterns and then fed a blood-worm meal at ZT6. In
176  agreement with previous findings(Jaggard et al. 2018), control surface fish that were not fed slept
177  significantly more than Pachén and Tinaja cavefish (Fig 5 A, I). Similarly, in fish fed at ZT6, surface
178 fish slept significantly more than Tinaja and Pachon cavefish (Fig 5B, J). To examine whether
179  postprandial sleep is present in adult A. mexicanus, we compared sleep during the four hours
180 following feeding to unfed counterparts (Fig 5C-E). Within this four-hour duration, there were no
181  significant differences in sleep duration (Fig 5F-H) or sleep propensity (Fig 5K-M) between fed
182 and unfed fish across the three A. mexicanus populations. Therefore, there is no evident
183  postprandial sleep for adults under the conditions tested, supporting the notion that post prandial
184  sleep is less robust at a life stage when fish are more starvation resistant.

185

186 Discussion

187  Todate, five populations of A. mexicanus cavefish have been studied under laboratory conditions,
188  all of which have significantly reduced sleep compared to surface fish populations (Yoshizawa et
189 al. 2015). These findings have led to the speculation that reduced sleep is adaptive in the food-
190 poor cave environment because it provides more time to forage(Keene et al. 2015; Keene and
191 Duboue 2018). However, nearly all studies to date have examined sleep in fed animals, using
192  daily averages. Therefore, little is known about how sleep differs between populations under
193  natural conditions and in response to feeding. Here, we describe interactions between sleep and
194  feeding behavior in surface fish and two different populations of cavefish. All three populations
195 sleep more following feeding than under food-deprived conditions, revealing that feeding is
196 required for baseline sleep. Furthermore, all three populations sleep more in the period following
197 ameal as larvae, but not as adults. These findings suggest that despite robust sleep loss across
198 cavefish populations, sleep-feeding interactions have remained intact.

199

200 Numerous neural mechanisms associated with sleep loss in cavefish have been identified
201 including elevated levels of the wake-promoting neuropeptide Hypocretin (HCRT), changes in

202  wake-promoting catecholamine systems (Duboué et al. 2012; Bilandzija et al. 2013; Gallman et
203  al. 2019) providing candidate regulators of postprandial sleep. Similarly, feeding is increased in

204  multiple populations of adult A. mexicanus (Aspiras et al. 2015). In agreement with previous
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205 findings, we find that feeding is elevated in 20 days post fertilization juvenile cavefish from the
206  Tinaja, but not Pachén population (O’Gorman et al. 2021). In adults, differences in feeding are at
207 least partially attributable to polymorphisms in the GPCR Melanocortin 4 receptor (Mc4r) which is
208 associated with obesity in humans and animal models (Aspiras et al. 2015). While there is little
209 evidence that MC4R directly regulates sleep, it is thought to contribute to obesity-induced sleep
210 apnea that in turn regulates sleep (Larkin et al. 2010; Pillai et al. 2014). Our findings that post-
211  prandial sleep is intact in Tinaja cavefish suggests that Mc4r, and other genes involved in feeding,
212 are likely dispensable for sleep feeding interactions. There are also numerous genes that have
213  been identified to regulate sleep or feeding in fish models that are potential regulators of sleep-
214  metabolism interactions. For example, the orexigenic neuropeptides Neuropetide Y (Npy) and
215  Hcrt both induce wakefulness, providing a potential molecular mechanism for feeding-dependent
216  modulation of sleep (Appelbaum et al. 2009; Penney and Volkoff 2014; Singh et al. 2015, 2017;
217  Jaggard et al. 2018). Future functional analysis is required to define whether these candidate
218  genes regulate interactions between sleep and feeding.

219

220 In A. mexicanus, rhythmic transcription is significantly diminished under dark-dark conditions, and
221  cavefish have elevated levels of light-inducible genes(Beale et al. 2013). The circadian clock plays
222 acritical role in the timing of both sleep and feeding, raising the possibility that the circadian clock
223  may be critical for sleep-feeding interactions. Transcriptome-wide analysis in larvae, reveals a
224 loss of rhythmic gene expression across all cave populations tested (Mack et al. 2021) Therefore,
225 because identified postprandial sleep in all of the populations tested across three different
226 timepoints during the day, postprandial sleep may be independent of time-of-day and may not
227  require a functioning circadian clock.

228

229 A. mexicanus larvae, like zebrafish, can subsist on a variety of foods including paramecium,
230 rotifers, and fish feed that differ in micronutrients. In this study, A. mexicanus larvae were fed a
231  standard diet of Artemia. Artemia is comprised of macronutrients that include diverse fatty acids,
232 proteins, and carbohydrates. Analysis suggests that Artemia is ~40-60% protein, raising the
233 possibility that consumption of dietary protein may impact sleep (de Clercq et al. 2005). In
234 Drosophila, dietary protein promotes post-prandial sleep, while a loss of dietary protein disrupts
235  sleep depth (Murphy et al. 2016; Brown et al. 2020; Titos et al., 2023). Therefore, it is possible
236 that changes in protein detection, or its downstream targets, regulate the physiology of sleep

237  circuits that are responsible for the different effects of feeding on sleep between Pachén and
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238 Tinaja cavefish. Understanding the effects of different diets on sleep, and how individual
239  macronutrients regulate sleep across populations could reveal evolved differences in sleep-
240 feeding interactions across different A. mexicanus populations.

241

242  The identification of postprandial sleep in cavefish provides an avenue for future studies
243  examining the genetic basis of this behavior. Mapping genetic loci associated with trait variation
244  has been used to identify candidate regulators of many morphological and behavioral traits,
245  including regulators of sleep, activity, feeding posture, and metabolism (Kowalko et al. 2013;
246  Yoshizawa et al. 2015; Carlson et al. 2018; Riddle et al. 2021). Further, population genetic
247  approaches have identified genome-wide markers of selection across multiple cave populations,
248 and this genetic variation may provide insight into genes impacting sleep-feeding interactions
249  (Herman et al. 2018; Warren et al. 2021; Moran et al. 2022). Genes with signatures of selection
250 that have previously been implicated in sleep or feeding could provide candidate regulators of
251  postprandial sleep. In A. mexicanus, like zebrafish, CRISPR-based gene editing has been used
252 to functionally validate genes identified through genomics approaches and could be applied to
253  the investigation of postprandial sleep (Klaassen et al. 2018; Kroll et al. 2021). Genetic studies
254  will require the use of CRISPR for forward genetic screens, or the identification of A. mexicanus
255  with diminished or highly variable post-prandial sleep that can be used for genetic mapping
256  studies.

257

258 In conclusion, these studies identify postprandial sleep in A. mexicanus and suggest it is under
259 independent genetic regulation from total sleep duration and meal size in surface fish and two
260 parallely evolved populations of cavefish. These studies lay the groundwork for future analysis
261 that apply currently available population genetics, neural anatomical, and genetic screening
262  toolsets in A. mexicanus to examine the integration of feeding and sleep regulation

263

264
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265 Materials and Methods

266  Methods

267  Husbandry

268  Throughout this study, we followed previously described standard animal husbandry and breeding
269  for A. mexicanus (Borowsky 2008a). All fish were housed under standard temperature (23°C for
270  adults, 25°C for embryos and larvae) and lighting conditions (14:10 hr light:dark cycle). Adult fish
271  were bred by increasing water temperature to 27+1°C and feeding a high-calorie diet that includes
272  thawed frozen bloodworms three times per day (Elipot et al. 2014) . Larvae were fed brine shrimp
273 (Artemia nauplii) ad libitum from 6 — 20 days post-fertilization (dpf; Borowsky 2008b). Embryos
274  and larvae were held in small glass bowls until behavioral testing. All procedures in this study
275  were approved under the Florida Atlantic University and Texas A&M University IACUC.

276

277  Sleep behavior

278  These experiments focused on three distinct A. mexicanus morphotypes: the sighted, surface-
279  dwelling Rio Choy, and two blind, cave-dwelling populations, Pachéon and Tinaja. We quantified

280 sleep behavior in these fish using previously described methods (Jaggard et al. 2019a) and

281  baseline sleep data (O’Gorman et al. 2021). Briefly, we used Ethovision XT 17.0 software (Noldus
282  Information Technology, Wageningen, the Netherlands) to track locomotor behavior. Raw
283  locomotor behavior was used to calculate sleep behavior parameters using a custom Perl
284  script(Jaggard et al. 2019b). We operationally define sleep as 60 seconds or more of immobility
285 given that previous studies show both surface and Pachon cavefish exhibit increased arousal
286 thresholds after this period(Jaggard et al. 2019b). We defined immobility as a velocity below 6

287 mml/sec for larval fish and a velocity below 4 cm/sec for adult fish. All recordings were performed
288 at 23 °C under a 14:10 hour light/dark cycle.
289

290 Larval behavior recordings
291
292  All larval used to quantify sleep behavior were 20 dpf. Fish were fed and then acclimated

293  individually in 24-well plates for at least 15 hours prior to behavior recordings. Recordings began
294  at ZTO and lasted for 24 hours, with interruptions for feeding at specific time points. The 24-well
295 plates were placed on light boxes made from white acrylic housing infrared (IR) lights (Figure 1A).
296 Basler ace acA1300-200um Monochrome USB 3.0 Cameras with mounted IR filters were

297  mounted above the well plates and recordings were taken using Pylon Viewer software.

10
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298 The effects of feeding on sleep were tested throughout the light cycle at time points prior to ZTO,
299 ZT2, ZT6, and ZT10. Each 24-well plate was either not fed as a control or fed at a single time
300 point. We conducted two separate feeding experiments. In the first experiment, larvae were fed
301 for 10 mins immediately before a 24-hour recording beginning at ZT0. This 24-hour recording was
302 followed by a 2-hour feeding behavior assay (described below) and then another behavior
303 recording for 4 hours from ZT2-ZT6 (Fig 1). In the second experiment, we recorded behavior for
304 24 hours around a 45-minute window for feeding prior to either ZT2, ZT6, or ZT10.

305

306 Larval feeding behavior assay

307

308 To quantify the relationship between the amount of food consumption and post-prandial sleep

309 duration, we performed feeding assays that allowed us to count the number of Artemia over a
310 given time. The duration of the feeding assay was 2 hours for the first experiment, starting at ZT0
311 following 24 hours of recording. The duration of the feeding assay was 30 minutes for the second
312  experiment, starting prior to ZT2, ZT6, or ZT10. For the 2-hour feeding assay, fish were given
313  exactly 70 Artemia, for the 30 minute feeding assay, Artemia were provided ad libitum. We filled
314 a new 24-well plate with Artemia hatched within 24 hours and recorded for at least one minute
315  prior to transferring the larval fish from the recording well plate to this new feeding well plate. At
316 the end of the recording duration, fish were removed from the feeding assay, placed back into the
317  original 24-well recording plate with clean water and returned to the behavior recording. We used

318  FIJI (Schindelin et al. 2012) to count the number of Artemia both before the fish were added to

319 the wells and at the end of the feeding assay. Subtraction of the former from the latter allowed us
320 to determine the amount of Artemia eaten over the duration of the feeding assay.
321

322  Adult behavior recordings
323
324  Adult fish used for behavior recordings were approximately 1 year old with an equal number of

325 males and females per treatment. Food was withheld for 5 days prior to recording. Fish were
326 placed in individual glass tanks of approximately 30 x 17 cm in a 2 x 2 grid in front of an IR light
327 board and left to acclimate for at least 24 hours. Recordings began at ZTO and lasted 24 hours.
328 In the top two tanks, 4 oz of thawed, frozen blood worms were added at ZT5.5 and any uneaten
329  worms were removed after 30 minutes at ZT6. The fish in the bottom two tanks were not fed as a
330 control.

331

332  Analysis
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333  Statistical analyses were performed in GraphPad Prism (version # 9.5.0) and R (version 4.0.4).
334  When assumptions of normality and equal variances were met, we used parametric t-tests,
335 ANOVA, and Pearson’s r tests, otherwise we used non-parametric Mann-Whitney U, Kruskal-
336 Wallis, and Spearman’s p tests. Following a significant ANOVA or Kruskal-Wallis test, pairwise
337  comparisons were made using Tukey’s HSD or Dunn’s test, respectively.

338

339 To quantify the percent change in sleep duration during the 4 hours following feeding, we
340 determined the proportion of total daylight sleep to total daylight recording time as well as the
341  proportion of sleep to the 4 hour post prandial recording period. We then calculated percent
342  change as the proportion of post prandial sleep minus the proportion of total daylight sleep divided
343 by the proportion of total daylight sleep. Finally, to test whether the amount of Artemia consumed
344  was related to post-prandial sleep duration, we analyzed the goodness of fit from a linear
345  regression.

346
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544  Figure 1. Sleep, feeding, and post-prandial sleep behaviors across three populations of wild-
545  type Astyanax mexicanus. A) 20 dpf fish were briefly fed prior to 24 h behavioral sleep

546  recordings. At ZTO the following day, fish were assayed for feeding behavior until ZT2,

547  immediately after which we recorded sleep behaviors between ZT2 and 6. B) Sleep profiles of
548  wild type surface, Pachdn, and Tinaja fish taken over the experiment. Lines and error bars

549  represent the mean % SD. C) Cross-population comparison of total sleep duration immediately
550 following the feeding experiment. Cavefish slept significantly less than surface fish (ANOVA: F,,
551  34=8.123, p =0.0013; Tukey’s HSD for surface-Pachdn, p = 0.0202, p = 0.0024; Tukey’s HSD for
552  surface-Tinaja, p = 0.0024). D) Cross-population comparison of the number of Artemia eaten
553  during the two-h feeding experiment. Tinaja ate significantly more than surface fish (ANOVA: F;,
554  ;6=3.91, p=0.0242; Tukey’s HSD for surface-Tinaja, p = 0.0178).

555

556
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560 Figure 2: Post feeding increase in larval A. mexicanus sleep duration is not dependent on daily
561 feeding time. 20 dpf larvae were fed over a 45-minute window before ZT2 (A, D, G), ZT6 (B, E,
562  H), or ZT10 (C, F, 1). A-C) Sleep profiles of Surface, Pachdn, and Tinaja larvae, in minutes per
563  hour, averaged across the daylight cycle. Lines and error bars represent the mean = SD. D, E, F)
564  Cross-population comparison of total sleep duration in hours over the 14-hour light cycle.

565  Letters represent significant differences. D) Total sleep duration around a ZT2 feeding window
566  was significantly different between populations of A. mexicanus (ANOVA: F3, 113 = 20.81, p <
567  0.0001). E) Total sleep duration around a ZT6 feeding window was significantly different

568 between surface and cave populations of A. mexicanus (ANOVA: F,, 113 = 8.48, p = 0.0004;

569  Tukey’s HSD for Surface-Pachdn, p = 0.001 and Surface-Tinaja, p = 0.0069). F) Total sleep

570  duration around a ZT10 feeding window significantly different between surface and cave

571  populations of A. mexicanus (ANOVA: F,, 31 = 11.64, p < 0.001; Surface-Pachén, p = 0.0003;

572  Tukey’s HSD for surface-Tinaja, p = 0.0002). G-l) Percentage change in sleep duration for the
573  four-hour period following feeding from total day time sleep calculated as (proportion of post
574  prandial sleep - proportion of total sleep)/proportion of total sleep. Asterisks indicate

575  significant differences from zero percent change. Letters indicate cross population comparison.
576  G) Percent change of postprandial sleep after ZT2 feeding window. Surface: t = 5.333, df =45, p
577 <0.0001; Pachén: t=3.192, df = 31, p = 0.0032; Tinaja: t = 5.239, df = 28, p < 0.0001. There was

20


https://doi.org/10.1101/2024.07.03.602003
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.03.602003; this version posted July 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

578 nosignificant difference across populations in the percentage of increase in postprandial sleep
579  (Anova: F3, 102 = 3.36, p = 0.0417). H) Percent change of postprandial sleep after ZT6 feeding
580  window. Surface: t = 13.65, df =47, p < 0.0001; Pachén: t =2.67, df = 23, p =0.0137; Tinaja: t =
581  2.480, df = 26, p = 0.0200. There was no significant different in the percentage of increase in
582  postprandial sleep between surface and Pachdn cavefish, but surface fish had a significantly
583  greaterincrease in sleep than Tinaja cavefish (ANOVA: F;, 96 = 5.758, p = 0.0072; Tukey’s HSD
584  for surface-Tinaja, p = 0.0101). I) Percent change of postprandial sleep after ZT10 feeding

585  window. Surface: t = 8.619, df =52, p < 0.0001; Pachén: t = 10.27, df =43, p < 0.0001; Tinaja: t =
586 3.636, df = 16, p = 0.0022. Pachdn cavefish had a significantly greater percent increase in

587  postprandial sleep than both surface and Tinaja cavefish (ANOVA: F,, 111 =4.727, p = 0.0107;
588  Tukey’s HSD for surface-Pachén, p = 0.0298; Tukey’s HSD for Pachén-Tinaja, p = 0.0275). For
589  surface fish and Pachdn cavefish, the percentage of increase in postprandial sleep was

590 significantly greater after a ZT10 feeding window than at any other timepoint (Surface Anova:
591  F; 144 =13.84, p <0.0001; Pachén Anova: F3, 197 = 19.56, p < 0.0001). There were no other

592  significant differences in the percent increase for postprandial sleep between timepoints or for
593  Tinaja cavefish (Tinaja Anova: F2,70 = 3.978, p = 0.0231).

594
595
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Figure 3: Postprandial sleep in larval Astyanax is not dependent on the amount of food
consumed, regardless of the time of day that feeding occurs. Correlation of amount of Artemia
nauplii consumed with sleep duration in the four hours following feeding with a simple linear
regression for surface (A-C), Pachodn (D-F), and Tinaja (G-l). A, D, G) Larvae were fed prior to
ZT2. B, E, H) Larvae were fed prior to ZT6. C, F, 1) Larvae were fed prior to ZT10.
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608  Figure 4. Feeding results in robust increases in sleep duration in larval surface, Pachén, and
609 Tinaja populations of A. mexicanus. A-C) Four-hour sleep profiles comparing the sleep of fed
610 (orange) and unfed (black) individuals in each population. Lines and error bars represent the
611 mean = SEM. D-F) Fed fish sleep significantly more during the four hours following feeding than
612 unfed fish, regardless of the population. D) Surface: Mann-Whitney U = 524, nseq = 77, Nunfed =
613 55, p <0.0001. E) Pachén: Mann-Whitney U = 310.5, nfeqd = 52, Nunfed = 47, p < 0.0001. F) Tinaja:
614 Mann-Whitney U = 546.5, nfeq = 45, Nunfed = 49, p < 0.0001. G- 1) Fed fish are less likely to wake
615  while asleep, and more likely to fall asleep while awake, than unfed fish. G) Surface: P(Wake)
616 Mann-Whitney U = 1317, nfed = 77, Nunfed = 76, p < 0.0001; P(Doze) Mann-Whitney U = 1347, Neqd
617 =77, Nunfed = 75, p < 0.0001. H) Pachon: P(Wake) Mann-Whitney U = 663, nfeq = 66, Nunfed = 52, p
618 < 0.0001; P(Doze) Mann-Whitney U = 802, nfed = 69, Nunfed = 52, p < 0.0001. 1) Tinaja: P(Wake)
619 Mann-Whitney U = 369, nfed = 40, Nunfed = 38, p < 0.0001; P(Doze) Mann-Whitney U = 229, n Nyeq
620 =40, Nynfed = 34, p < 0.0001. Thin lines represent quartiles.
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624  Figure 5: Adult Astyanax do not display post prandial sleep behavior. A, B) Sleep profiles of
625  adult Surface, Pachdn, and Tinaja, in minutes per hour. Lines and error bars represent the mean
626 = SD. A, I) Fish were not fed over the course of the day. B, J) Fish were provided food from ZT5.5
627 (indicated by the arrow and dotted black line in B) to ZT6. |, J) Cross-population comparison of
628  total sleep duration in hours over the 24-hour day. Letters represent significant differences. 1)
629  Total sleep duration in 24 hours was significantly different between unfed surface and cave
630 populations of A. mexicanus ((ANOVA: F,,2s = 15.5, p < 0.0001; Tukey’s HSD for Surface-Pachén,
631 p < 0.0001 and Surface-Tinaja, p = 0.0015). J) Total sleep duration in was significantly different
632  between fed surface and cave populations of A. mexicanus ((ANOVA: F, 25 = 15.04, p < 0.0001;
633  Tukey’s HSD for Surface-Pachdn, p < 0.0001 and Surface-Tinaja, p = 0.0008). C-E) Four-hour sleep
634  profiles comparing the sleep of fed (orange) and unfed (black) individuals in each population.
635 Lines and error bars represent the mean + SEM. F-H) There are no significant differences in sleep
636  during the four hours following feeding, regardless of the population. F) Surface: Mann-Whitney
637 U =88, nNfed = 12, Nunfed = 15, p = 0.9317. G) Pachon: Mann-Whitney U = 31.5, nNfeq = 8, Nunfed = 8, P
638 > 0.9999. H) Tinaja: Mann-Whitney U = 22.5, nfeq = 8, Nunfed = 8, p > 0.2. K-M) There are no
639  significant differences in activity state transitions between fed and unfed fish. K) Surface:
640 P(Wake) t = 0.271, df = 22, p = 0.7888; P(Doze) t = 2.041, df = 22, p = 0.054. L) Pachon: Mann-
641  Whitney U = 24, nfed = 8, nunfed = 8; P(Wake) p = 0.4667; P(Doze) p = 0.4667. M) Tinaja: Mann-
642  Whitney U = 23, nfed = 8, nunfed = 8; P(Wake) p = 0.5714; P(Doze) p = 0.1319). Horizontal lines
643  represent quartiles.
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