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ABSTRACT: The construction, management, and analysis of large in silico D
molecular libraries is critical in many areas of modern chemistry. Herein, we s
introduce the MOLecular Llibrary toolkit, “molli”, which is a Python 3 :Z
cheminformatics module that provides a streamlined interface for T
manipulating large in silico libraries. Three-dimensional, combinatorial Aﬂ\ \/é\
molecule libraries can be expanded directly from two-dimensional chemical

structure fragments stored in CDXML files with high stereochemical fidelity.

Geometry optimization, property calculation, and conformer generation are executed by interfacing with widely used computational
chemistry programs such as OpenBabel, RDKit, ORCA, NWChem, and xTB/CREST. Conformer-dependent grid-based feature
calculators provide numerical representation and interface to robust three-dimensional visualization tools that provide
comprehensive images to enhance human understanding of libraries with thousands of members. The package includes a
command-line interface in addition to Python classes to streamline frequently used workflows. Parallel performance is benchmarked
on various hardware platforms, and common workflows are demonstrated for different tasks ranging from optimized grid-based
descriptor calculation on catalyst libraries to an NMR chemical shift prediction workflow from CDXML files.

1. INTRODUCTION

Modern synthetic chemistry increasingly incorporates theoreti-
cal and empirical data-oriented approaches for designing
functional small molecules, understanding reaction pathways,
and predicting and optimizing reaction outcomes.' > In recent
years, medium- to high-throughput experimentation techni-
ques have provided access to large data sets suitable for
subsequent statistical analysis and predictive modeling.~"’
Critically, encoding molecules in a machine-readable format is
essential before any computational analysis of the physical
molecular entities can commence.'"'> Although a variety of
different software tools for the enumeration and encoding of in
silico libraries exists,"> we have found a lack of suitably general,
open-source tools to support accurate generation of libraries
containing complex stereochemical information directly from
the two-dimensional depictions familiar to all chemists.
Representations of molecules with calculated features range
from computationally simple to highly complex. In general,
feature extraction from a molecule can be accomplished by
considering, in order of increasing computational complexity:
(1) only the atoms and bonds encoded in the molecular graph,
(2) the three-dimensional (3D) shape, and (3) the full
electronic structure of the molecule.'* Molecular graph-based
feature extraction methods, such as topological fingerprint-
ing,15 are fast to calculate but lack 3D information that is
critical for certain optimization problems. Indeed, the low-
energy conformers of a molecule play an essential role in
determining its chemical properties. Consequentially, 3D
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fingerprinting methods have been developedlé’17 and recent

interest in incorporating 3D information into molecular graph
objects has led to a variety of feature extraction methods
employing graph neural networks.'*™*" More challenges in
representation arise when considering conformational flexi-
bility, solvation, noncovalent interaction, and other molecular
features that can only be derived from the molecular 3D
coordinates.

Our interest in molecular representation stems from our
attempts at modeling quantitative structure-(enantio)-
selectivity relationships (QSSR) in enantioselective chemical
reactions using chiral, small molecule catalysts.”’ Our group
and others have designed a variety of alignment-dependent,
molecular interaction and indicator field (MIF) descriptors
intending to capture the relevant features of a chiral catalyst
that lead to high enantioselectivity.”” >* A particular catalyst
scaffold typically offers numerous options for analogue
synthesis at well-defined positions on the structure, and each
analogue then has potentially many possible conformers.
Therefore, our workflow required the ability to write custom
code to manipulate large collections of 3D molecular structures
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Figure 1. molli CDXML parsing workflow. (A) Out-of-plane rotation of substituent results in a structure with defined stereochemistry after
hydrogen addition. (B) Illustration of +90° rotation in the trisubstituted case. (C) Out-of-plane displacement of endocyclic atoms. (D) Additional
elements recognized by molli. (E) Stereochemical depiction ambiguity. (F) molli preserves stereochemical information in cases of point, axial, and

planar chirogenic elements.

and perform high-throughput computations on combinato-
rially constructed libraries of compounds. In 2019, this
laboratory released the ccheminfolib toolkit,” an early
iteration of a software package designed to handle
combinatorial construction of large in silico libraries. One of
the main motivations for the creation of a new software
package was to establish a modern, convenient and extensible
interface that would allow rapid prototyping of chemical
library-oriented workflows. Since the release of ccheminfolib,
we sought to address the following problems:

1. Generation of molecule and conformer libraries directly
from ChemDraw. CDXML files with stereochemical
fidelity.

2. Parallelization mechanisms capable of processing chem-
ical libraries with external computational software.

3. Rapid input/output of molecular entities from the disk-
based storage

4. Optimized calculations of the grid-based descriptors

As a result, we began the project to create the MOLecular
Llbrary toolkit Python 3 package we have dubbed “molli”.

2. COMBINATORIAL LIBRARY GENERATION PIPELINE

2.1. CDXML File Parsing. Most computational workflows
start with either 1D representations (SMILES) or 3D
representations (xyz or. mol files). We frequently faced
challenges associated with the 1D representations. Axial and
planar chirality cannot be encoded in SMILES strings and the
stereochemical information is therefore lost upon the library
generation. Although extensions to SMILES and other string-
based representation methods have been developed to address
these issues,”> >® 3D structures are naturally devoid of such
limitations in encoding chirality. We believe that one of the
most desirable ways to generate large libraries of 3D structures
is by correctly interpreting their 2D chemical depictions.

Our contribution to the process of 2D to 3D structure
conversion was in the realization of algorithmically determin-
istic z-coordinate (out-of-plane) displacement, guided by the
2D stereobonds. This process mimics the thought process that
chemists use to interpret the 2D-structures. For all acyclic
stereobonds®’ leading from an atom, the connected fragment
(determined by the breadth-first graph traversal) was rotated
out of plane depending on the number of adjacent atoms out
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of the plane of drawing (Figure 1A). We chose +60° for when
the substituent was attached to an atom with two adjacent
atoms, and +90° for three adjacent atoms (Figure 1B) (see
Figure 1A, B, E). Since no deterministic rotation of endocyclic
bonds could be devised, the atoms in respective bonds are
subjected to simple out-of-plane displacement of the
participating atoms (Figure 1C). The end points of a wedged
bond are shifted out of plane only if the wedge points toward
them, whereas both atoms are displaced in bold/hash style
bonds. The z-coordinate adjustments by rotations or trans-
lations allowed the displacement of the coordinates in the
correct direction toward the desired minimum after a geometry
optimization (Figure 1E). This practically eliminated the cases
of unanticipated configurational inversion upon a force field
minimization (see Supporting Information 3.2). It proved
useful in the context of axial and planar chirality interpretation
into 3D representation wherein no simple designators can
typically be assigned and enforced by ChemDraw or related
packages (Figure 1F). We purposefully avoided the use of any
stereochemical designators (e.g,, R/S), so that all stereogenic
elements can be encoded in the same way, regardless of
designator availability.

The present parser has only two hard rules enforced in the
CDXML file parsing: (1) the label used for dictionary-like
lookup of structures must be bold-faced, not chemically
interpreted, and placed below the structure and (2) the parsing
is deterministic with respect to the drawing, however different
ways of depicting the same configuration may result in
different parsing results; It is the responsibility of the user to
verify that the minimization after parsing yields expected
results. For example, changing the directionality of stereobonds
may produce results that are not identical (see Figure 1E).

In addition to the enhanced coordinate perception, the
parser recognizes most other elements, which are available
from the structures (Figure 1D). Labeling the atoms proves
useful for subsequent direct referencing of atoms in the code
(see Section 3). Specifying attachment points provides a
convenient handle for 3D combinatorial expansion. Abbre-
viated functional groups are allowed, so long as ChemDraw
can expand them into valid structures. Isotopic notations and
multicenter attachments are interpreted by the parser.
Although some of this additional functionality is available in
other codes, the convenience of a Python backend used by
molli not only enhances the transparency of the workflow, but
also ensures easy customizations by the users. Parsing CDXML
files to Molecule objects can be executed directly from the
command line with the molli parse command, or by using the
molliload interface (Figure 1F).

2.2. Combinatorial Library Expansion from CDXML
Files. Combinatorial library expansion can be performed
programmatically in Python or directly from the command line
with the molli combine command. Because CDXML parsing
stores the atom labels and native CDXML attachment point
markup (see Section 2.1), these can be accessed directly to
specify the rules of combinatorial expansion. The user parses
MoleculeLibrary objects containing cores, with labeled attach-
ment points, and substituents with attachment points. The
molli combine command then takes in both core and
substituent library objects and joins the substituents to the
user-specified attachment points on the cores (see the
Supporting Information, Figure S9A). Substituent sets are
selected based on the number of user-specified attachment
points and a selection rule, which can be the same substituents

attached at all core attachment points, permutations of the
substituents, combinations of the substituents, or combinations
with replacement. The result of this command then produces
the enumerated combinatorial library as a MoleculeLibrary
object (Figure S9B). We have previously reported the
generation of a bis(oxazoline) (BOX) combinatorial library
(Figure S9C) comprising a total of 96,120 members, with 267
options for 4,4'-oxazoline substitution, nine options for §5,5'-
oxazoline substitution including stereochemical analogues
relative to the 4,4'-positions, and 40 options for substitution
at the methylene group bridging the two oxazoline rings.*’
With the streamlined workflow described in Figure S9, we
successfully obviated manual creation of the full expanded.
CDXML file shown in Figure S9C.

2.3. Molecular Object Collections. Modern cheminfor-
matics tools offer a multitude of ways of storing chemical
information for single molecules or small collections. We
identified a need to access molecules or conformer ensembles
from large collections without the necessity to create a full-
fledged database. A binary molecule and conformer serial-
ization strategy was implemented through a disk-based
dictionary-like structure of MessagePack-serialized data that
we refer to as uKV file (see the Supporting Information for
details). This form of storage offers the flexibility of storing
molli objects in large random-access files, with optimized read/
write performance.

To demonstrate the broader applicability of the proposed
molecular storage toward medicinally relevant data sets, we
provide examples imported from the literature. The data from
the MoleculeNet’' subset of the GEOM®> data set was
reimported as a molli.uKV file (see the Supporting
Information, Section 1.2.3). The same operation was
performed on the drugs crude subset (Supporting Informa-
tion, Section 1.2.4), providing the largest collection, containing
292,028 discrete molecules and 31,223,451 conformers.

3. PARALLEL CALCULATION PIPELINE

In a typical workflow, tasks such as geometry optimizations,
conformer generations, and property calculations are done in
parallel. Typically, these calculations are carried out with
external software” by a unified process in which: (1) a set of
input files is prepared, (2) a worker process receives said input
files and shell commands to execute, (3) the commands are
run, and the output is captured, and (4) the necessary files are
subsequently transferred to permanent storage and are
analyzed. Molli implements a parallel job pipeline that allows
computation of molecular properties with external software
such as RDKit*** XTB,*® CREST,”” NWChem*® and
ORCA,” and it can be easily extended to any other package
(see Supporting Information Section 7.1 and 7.2 for more
details). The two workflows shown below demonstrate the
flexibility that a molli library can offer.

3.1. KRAS Inhibitor Rotational Barrier Estimation.
Hindered rotation around single bonds resulting in axial
chirality is an important structural motif in catalysts and
pharmaceuticals.””"" The barrier height may not always be
straightforward to estimate experimentally and doing so
computationally in a high throughput sense with minimal
human involvement may significantly facilitate prescreening of
synthetic candidates before their experimental evaluation. The
workflow started with the CDXML file containing the
necessary molecular fragments which was deliberately con-
structed to mimic the original figure*” as closely as possible
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Figure 2. KRAS inhibitor rotational barrier estimation workflow. (A) The fragment of the CDXML file that was used for parsing and library
assembly. For a full list of structures see the Supporting Information Section 6.3. (B) Representative equilibrium geometries of R-isomers and
transition states. Of note is the remarkable distortion of the 2-pyrimidinone ring away from planarity in the transition states owing to severe strain

(Figures S36—S44), consistent with the previous report.*®

(Figure 2). Parsing the CDXML files with the help of molli
results in the MoleculeCollection file that was subsequently
subjected to the computational pipeline. Coarse structure
minimization with MMFF94," as implemented in Open-
Babel,** yielded the initial guess structures. An XTB* relaxed
surface scan was then used to explore the potential energy
surface with respect to rotation around the C—N bond by
constraining the appropriate dihedral atoms. Parsing and
serialization of atom labels allowed quick identification of
specific atoms for the dihedral angle constraints within the
scripts. When XTB relaxed surface scan maxima and minima
were used as guess structures, we were unable to locate
transition states 23, 27, and 29. The inability to converge to
transition states may be challenging to rectify manually for
large libraries. Molli molecular building capability allows the
construction of better transition state guesses by joining the
distorted core from a successfully located transition state with
an optimized aryl substituent. These structures converged
smoothly to the corresponding transition states. The computed
barriers were generally close to the experimentally observed
ones (Table 1), except for 25 and 27. Despite structural
similarities between 24 and 285, the latter was overpredicted by
25 kJ mol™' compared to experimental measurement. The
barrier for 27, on the other hand, was underpredicted by 16 kJ
mol™". We cannot offer a supportable explanation for these
outliers. We cautiously speculate that the barrier could

Table 1. Summary of Predicted vs Observed Rotational
Barriers at B97-3¢ Level of Theory”

Compound” Exp. (kJ mol™) Pred. (I mol™)
18 108.8 108.3
22 104.6 103.2
23 >125.5 141.0
24 >125.5 150.0
25 121.3 146.1
26 98.3 92.6
27 90.0 73.7
28 73.2 69.9
29 107.9 101.3

“For a full list of structures, see the Supporting Information, Section
6.3. The compound labels throughout the paper were chosen to be
nonstandard on purpose. This decision is to demonstrate that the
source CDXML files can be constructed with the compounds labeled
arbitrarily. We chose to label ours the way they were labeled in the
original publications.

potentially exhibit a significant dependence on explicit
solvation and/or proton transfer effects.

3.2. GIAO-DFT NMR Prediction Workflow. Prediction of
NMR spectra, particularly *C NMR spectra is a common task
encountered in structural elucidation and revision.*>*’
Although modern computational tools allow fast GIAO-DFT
NMR prediction, a complete cycle workflow that automates
the task to start with a ChemDraw file and orchestrates the
required computations, is not generally available using open-
source tools. A major advance toward this goal is the CENSO
program, which enables direct processing of CREST con-
former ensembles and plotting of Boltzmann-weighted
spectra.48

The workflow starts with parsing the 3D structures from the.
CDXML file to yield a MoleculeCollection (Figure 3A). Basic
minimization with the MMFF94™ force field as implemented
in OpenBabel followed by conformer generation with the
CREST v4 workflow"™ created the desired conformer
ensembles. These ensembles were subjected to geometry
evaluation with the B97—3c method as implemented in
ORCA. Upon conformer generation, the NMR isotropic
shieldings were calculated with RIJCOSX-PBEO/ pcheg—Z3 +
CPCM(chloroform).”">* Molli features simple syntax that is
used to compute the NMR shieldings (Figure 3B). Molli
implements a parser of output files, which was used to scrape
thermochemical and magnetic properties and stores them
within the molecule objects. Boltzmann weights were
computed, and the resulting weighted average NMR chemical
shifts were subsequently compared to the experimental data
showing close correspondence (Tables S6—S13). The average
errors in the range [1.2, 2.0] ppm with maximum errors in the
range [3.1, 4.0] ppm are consistent with the general
expectations of DFT prediction methods.*

4. GRID-BASED DESCRIPTORS

4.1. Efficiency Optimization. Grid-based, conformer-
averaged (GBCA) indicator field descriptors, such as the
average steric occupancy descriptor (ASO) and the average
electronic indicator field (AEIF), were useful in the
enantioselectivity prediction workflow developed in this
laboratory. A naive implementation of the GBCA descriptors
suffers from significant, unfavorable scaling dependencies with
respect to the grid size. This step was very computationally
expensive to carry out on libraries of tens of thousands of
molecules, requiring high performance computational hard-
ware. To eliminate the slow process of descriptor computation,
we performed an optimization. Molli employs two levels of
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Figure 3. (A) CDXML parsing and conformer generation workflow results for cladosporin. (B) Minimal code example for GIAO-DFT NMR

chemical shielding calculations.

Table 2. Benchmarking Results of GBCA Descriptor Calculation”

Grid point spacing, A 1S 1.0 0.7
Number of grid points 3510 11362 32832
Descriptor vector sparsity (mean =+ stdev) 92.0 + 4.4% 91.6 + 4.6% 91.5 + 4.7%
Pruned grid sparsity (mean + stdev) 86.7 £ 6.5% 86.0 £ 6.7% 85.9 + 6.8%
Naive python ASO, s 175.4 580.8 1686.5
Naive numpy ASO, s 5.0 14.3 67.1
Scipy cdist optimized ASO, s 0.8 2.6 7.3
molli cdist ASO, s 0.5 1.8 49
KDTree and molli cdist optimized ASO, s 0.1 0.5 1.2

“Timings are reported on the BPA catalyst 65_vi (88 atoms, 215 conformers). Benchmarks reported on system 3 (see the Supporting Information,

sections 1.2.1 and 1.1, respectively).

PCA(ASO) Component 1
-0.54 -0.08 0.39

-1.00 0.85

PCAC(AEIF) Component 1
-0.28 0.15 0.57

-0.70 1.00

Figure 4. Normalized PCA1 loadings of ASO (left) and AEIF (right) descriptors of the BPA data set overlaid with the conformer ensemble

visualization. A 1.0 A spacing grid was chosen for the visualization.

optimization of the computing process. The optimization of
the GBCA descriptors began by outsourcing numerically
intensive arrayed calculations to a more efficient C
implementation of the numpy package (Table 2). A 25—40-
fold acceleration was observed; however, the processing time
was still high for libraries of >1 M conformers. Thus, an
auxiliary C++ sublibrary (called molli_xt) was created through
the use of pybind11.”® Two functions were implemented that
reproduced the behavior of SciPy’s’® cdist function that
computes the distance matrix (and an analogous function was
made that would compute a higher dimensional analog of the
distance tensor). This process provided a considerable speed
enhancement owing to elimination of slower Python code
overhead. In 64-bit floats, molli achieved 1.96 =+ 0.05
acceleration by elimination of the extra for-loop in the distance
matrix computation. A further 1.34 + 0.04 fold increase in
performance was gained by computing the distance matrix in
32-bit floats, giving a total acceleration of 2.62 + 0.08. Relative
errors in squared Euclidean distance did not exceed 2 X 1077,
and the resulting ASO mean absolute errors were less than 2 X

1077 for 99% of the data (see the Supporting Information for
details). For a selected small number of samples, this error was
larger because of cases wherein grid points were located close
to the van der Waals boundary. To further reduce the size of
the problem, the grid was pruned to eliminate the points that
lie far away from any atoms for which the values could be
assigned as zeros (see Table 2 grid sparsity). To enable this
process, we employed the SciPy implementation of the k-d
tree’>*° data structure. Pruning the grid for ASO computations
reduced the grid size by 80 to 90%, therefore providing an
average of S-fold acceleration. Overall, combining these
optimizations achieved a 1,700X acceleration of the process
compared to a naive python implementation, and a 50X
acceleration as compared to naive numpy approach.

With the optimized GBCA calculation protocol in hand, the
benchmark calculations were performed on the binol
phosphoric acid (BPA) data set™ consisting of 806 entries
and a total of 99,680 conformers, as well as on a subset of BOX
data set (Supporting Information, Section 1.2.2)*° consisting
of 72,542 entries and 4,662,551 conformers. The calculations
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on the BPA data set could be performed on a laptop computer
(system 3) within 2 min. Computing the BOX data set under
identical conditions took ca. 1.5 h, which could be sped up
considerably by employing more parallel processes on a
workstation. Employing 64 processes in parallel, ASO
computation for the BOX data set was complete in under S
min. This result represents a marked enhancement in speed
and enables the calculation of descriptors with chemical
resolution (0.75 A spacing or below).

4.2. Molecule, Ensemble and Descriptor Visual-
ization. By virtue of being a pure Python library, molli can
be easily interfaced with a few different visualization libraries.
Molli uses two different engines for visualization purposes, the
first is 3DMoljs,”’ which is used for simpler molecular
renderings inside Jupyter notebooks. This implementation
allows a very simple, in-place visualization that helps the end
user understand the contents of their molecular or conformer
libraries much better without the need to transfer the data to a
third-party program for rendering.

The second is the pyvista package which is a convenient set
of wrapping functions over the VTK (Visualization Tool-
Kit).”**” This engine can be employed for molecular rendering
and it performs particularly well for visualizing high-dimen-
sional, grid-based descriptors in context of conformer
ensembles (Figure 4). Highly dimensional grid-based descrip-
tors are particularly hard to interpret by a chemist without
relying on the visual representation. Figure 4 illustrates the
directions of the maximal variance in the ASO and average
electronic indicator field (AEIF) descriptors, corresponding to
the locations of largest steric and charge distribution diversity
in the BPA catalyst library (see also Figures S14—528).

5. CONCLUSIONS

Molli comprises a powerful chemoinformatics toolkit that
specializes in the creation of large combinatorial libraries of
small molecules and parallel computations. A pure Python
interface enables a seamless transition between a plain
chemical drawing to a large in silico molecular data set with
preservation of stereochemical integrity. Combinatorial library
creation can be performed with ease through both the
command line interface as well as by writing custom scripts.
Optimized GBCA descriptor calculations can now easily
reproduce the existing ASO and AEIF calculations as well as
visualize their corresponding results. Lastly, one can employ
the parallelized computational pipeline to compute the
properties of isolated molecules and their conformer
ensembles with external software; examples of workflows for
XTB, CREST, ORCA, and NWChem are provided.

B ASSOCIATED CONTENT

Data Availability Statement

Source code for the project can be found at https://github.
com/SEDenmarkLab/molli. The project is available for quick
installation Python package index and conda channels. Up-to-
date documentation detailing the installation procedure and
package usage examples can be found on the documentation
portal, https://molli.readthedocs.io. Data sets and the code for
workflows discussed in the present paper can be downloaded
from the Zenodo repository (https: //zenodo.org/records/
10719791, doi 10.5281/zenodo.10719790).
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