2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Competitive Networked Bivirus SIS spread over Hypergraphs

Sebin Gracy, Brian D.O. Anderson, Mengbin Ye and César A. Uribe

Abstract— The paper deals with the spread of two competing
viruses over a network of population nodes, accounting for pair-
wise interactions and higher-order interactions (HOI) within
and between the population nodes. We study the competitive
networked bivirus susceptible-infected-susceptible (SIS) model
on a hypergraph introduced in Cui et al. [1]. We show
that the system has, in a generic sense, a finite number of
equilibria, and the Jacobian associated with each equilibrium
point is nonsingular; the key tool is the Parametric Transver-
sality Theorem of differential topology. Since the system is
also monotone, it turns out that the typical behavior of the
system is convergence to some equilibrium point. Thereafter,
we exhibit a tri-stable domain with three locally exponentially
stable equilibria. For different parameter regimes, we establish
conditions for the existence of a coexistence equilibrium (both
viruses infect separate fractions of each population node).

I. INTRODUCTION

The study of virus spread has been an active area
of research for over two centuries. In particular, diverse
scientific communities, such as physics [2], mathematics [3],
computer science [4], automatic control [5], economics [6] ,
etc., have significantly aided in furthering our understanding
of the complex mechanisms behind the spread of a virus.
Fundamental to this effort has been the development of
compartmental models where each individual is healthy and
susceptible (S), infected with a virus (I), or has recovered
from a viral infection (R). Two compartmental models,
susceptible-infected-recovered (SIR) and  susceptible-
infected-susceptible (SIS) have garnered significant attention
in several scientific disciplines, particularly in mathematical
epidemiology. In contrast to the SIR model, the SIS model
allows for the possibility of reinfection and is the focus
of the present paper. More specifically, we will deal with
networked SIS models, with each node in the network being
representative of a large population, and the interconnection
among the nodes denotes the possible spreading pathways
for the virus. Networked SIS models have been studied in,
among others, [7]-[9].

The existing literature on modeling virus spread typically
relies on the assumption that there is just a single virus
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present. However, one often encounters scenarios where there
are two viruses, say virus 1 and virus 2, circulating in a
meta-population (i.e., a network of population nodes). In
such a context, possibility is for the two viruses to compete;
infection with virus 1 (resp. virus 2) precludes the possibility
of simultaneous infection with virus 2 (resp. virus 1) - this
is the focus of the present paper. We stress that the notion
of competing viruses is not restricted to just epidemics; it
manifests itself in, among others, product adoption in a mar-
ketplace and the spread of opinions in social networks [10].

Networked competitive multi-virus SIS models have been
analyzed in substantial depth in recent times; see [3], [11]-
[18]. A major drawback of networked competitive bivirus
SIS models studied in the aforementioned papers is that they
account only for pairwise interactions between individuals.
In reality, interactions in social groups often involve more
than two individuals - it is not unusual that an individual can
simultaneously interact with more than one other individual.
This motivates the need for higher-order networks such as
hypergraphs !, i.e., graphs where an edge can connect more
than two nodes, which are quite effective in representing
higher-order interactions (HOI) [20]. Inspired by the ap-
proach in [21], an SIS model on a hypergraph has been
proposed and analyzed in [22]. However, the analytic results
therein relied on certain restrictions on the network structure.
Overcoming this drawback, a networked SIS model on a
hypergraph has been devised and studied in considerable
detail in [23]. However, the modeling frameworks in [21]—
[23] are restrictive in the sense that none of these account
for the possibility of more than one virus simultaneously cir-
culating in a given population. Addressing this shortcoming,
a competitive networked bivirus SIS model on a hypergraph
has been developed and analyzed in [1]. The set of equilibria
for the model in [1] can be broadly classified into three
categories: the disease-free equilibrium (DFE) (both viruses
have been eradicated), the boundary equilibria (one virus is
dead, and the other is alive); and coexistence equilibria (two
viruses infect separate fractions of every population node
in the network). Nevertheless, the results in [1] have the
following limitations: a) some of the findings therein have
yet to be rigorously established, and b) the analysis, while
improving our understanding of the existence and stability of
various equilibria, is not exhaustive. The present paper aims
to address the aforementioned gaps. Our contributions are as
follows:

i) We show that the networked bivirus SIS system with

lSimplicial networks (see [19] for more details) have also been used for
studying HOIL, see [20].
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HOI has, in a generic sense, a finite number of equi-
libria. Furthermore, for each equilibrium, the associated
Jacobian is a nonsingular matrix; see Theorem 1. In so
doing, since our proof of Theorem 1 does not, unlike
the proof of [1, Theorem 5.5], require the HOI infection
rates to be set to zero, we establish the correctness of
the claim raised in [1, Theorem 5.5]. Building off of
Theorem 1 and leveraging the fact that the system is
monotone as identified in [1, Theorem 5.5], we prove
that the typical behavior of the bivirus SIS system
with HOI is convergence to an equilibrium point; see
Theorem 2.

ii) We identify a parameter regime that not only establishes
the existence of three equilibria (a single-virus endemic
equilibrium corresponding to virus 1 (resp. virus 2)
and the DFE) but also guarantees that all of the said
equilibria are locally exponentially stable at the same
time; see Proposition 1.

iii) We identify a parameter regime, different from the
one covered by Proposition 1, for the existence of
a coexistence equilibrium. We do so under different
configurations of the boundary equilibria, viz. both
being unstable and both being stable; see Proposition 3
and Theorem 3, respectively.

Additionally, for the parameter regime covered by Propo-

sition 1, we establish existence of a coexistence equilibrium;
see Proposition 4.
Notation: We denote the set of real numbers by R and the
set of nonnegative real numbers by R,. For any positive
integer n, we use [n] to denote the set {1,2,...,n}. We use
0 and 1 to denote the vectors whose entries all equal 0 and
1, respectively, and use I to denote the identity matrix. For a
vector x, we denote the diagonal square matrix with x along
the diagonal by diag(z). For any two vectors a,b € R™ we
write @ > b if a; > b; forall i € [n], a > bifa > b
and a # b, and a > b if a; > b; for all i € [n]. Likewise,
for any two matrices A, B € R"*™, we write A > B if
Ai; > Bjj forall i € [n], j € [m|,and A > Bif A> B
and A # B. For a square matrix M, we use o(M) to denote
the spectrum of M, p(M) to denote the spectral radius of
M, and s(M) to denote the spectral abscissa of M, i.e.,
s(M) = max{Re(A\) : A € o(M)}.

A real square matrix A is called Metzler if all its off-
diagonal entries are nonnegative. A matrix A is said to be an
M-matrix if all of its off-diagonal entries are nonpositive, and
there exists a constant ¢ > 0 such that, for some nonnegative
B and ¢ > p(B), A = ¢I — B. All eigenvalues of an M-
matrix have nonnegative real parts. Furthermore, if an M-
matrix has an eigenvalue at the origin, we say it is singular;
if each eigenvalue has strictly positive parts, then we say it
is nonsingular. If A(= [ai;]nxr) 1S @ nonnegative matrix,
then p(A) decreases monotonically with a decrease in a;;
for any 4, j € [n]. The matrix A is reducible if, and only if,
there is a permutation matrix P such that PT AP is block
upper triangular; otherwise, A is said to be irreducible. If a
nonnegative A is irreducible, and Az = y for x > 0, then
y > 0, and y cannot have a zero in every position where x

has a zero.

II. PROBLEM FORMULATION
A. Model

Consider a network of n nodes. A node represents a well-
mixed? population of individuals. We will assume that the
size of the population is fixed. We suppose two viruses,
say virus 1 and virus 2, are spreading over such a net-
work. Throughout this paper, we will assume that the two
aforementioned viruses are competing. Through pairwise or
HOI as described in more detail below, an otherwise healthy
individual in node ¢ gets infected with virus 1 (resp. virus 2)
due to contact with either other individuals in node ¢ who
are infected with virus 1 (resp. virus 2) and/or with other
individuals in node j (where j is a neighbor of ¢) who
are infected with virus 1 (resp. virus 2). When a single
interaction is involved (i.e., between two individuals in node
1 or between an individual in node ¢ and an individual in
node j), we say that the infection is caused due to pairwise
interactions. An individual in node ¢ could also be infected
with virus 1 (resp. virus 2) due to simultaneous interactions
with infected individuals in nodes j and ¢, where either
a) j = 14, and/or £ = 4, or b) j,£ are neighbors of i.
Such interactions are referred to as higher-order interactions
(HOI). The notion of competition implies that no individual
can be simultaneously infected with virus 1 and virus 2.

We assume that the pairwise infection (resp. HOI) rate
with respect to virus k is the same for all nodes, denoted by
BY (resp. 8%) for all i € [n] and k € [2] 3. An individual
infected with virus & recovers from said infection at a healing
rate §¥ and immediately becomes susceptible to virus 1 or
virus 2. All individuals within a node have the same healing
rate with respect to virus k; individuals in different nodes
possibly have different healing rates. We say that node i is
healthy if all individuals in node ¢ are healthy; otherwise, we
say it is infected. Within the same node, it is possible for
there to simultaneously exist a fraction of individuals that
are infected with virus 1 and for a different fraction that is
infected with virus 2.

As mentioned previously, diseases could spread due to
pairwise interactions and HOI. In case of the former, if
an individual in node j can infect an individual in node
i with virus k, then, with afj(z 0) denoting the strength
of interactions between an individual in node j and an
individual in node ¢ with respect to the spread of virus k,
we have that afj > 0; otherwise afj = 0. For the case of
HOIL, if an individual in node ¢ gets infected with virus &
due to simultaneous interactions with individuals in nodes j
and /¢ (both of whom are infected), then, with bf- , denoting

J
the strength of interaction that nodes j and ¢ together have

2Well-mixed means that the probability of any two individuals in a node
interacting with each other is the same.

3Indeed, it is far more natural to have possibly different infection rates for
each node; it is standard in the literature on classic SIS bivirus networked
systems [11]-[16], [24]. As evident below, we do not impose constraints on
the values of the nonnegative matrices capturing the interactions, and hence
the analysis does not differ materially. We choose this particular notation to
remain consistent with earlier literature on epidemic models with HOI [23].
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on node ¢ with respect to the spread of virus k, we have that
bljg > 0; else, bF 0 = 0. HOIs in SIS models are typically
represented by dlrected hypergraphs [1], [23]. Specifically,
we define a hypergraph G with 2 layers. The vertex set for
each layer k, where k = 1,2, is the set of population nodes.
In layer k, there is a hyperedge (resp. edge) from nodes j
and ¢ to node 1% (resp from node j to node 7) if, and only
if, bf;, > 0 (resp. af; > 0). Let 27’ (t) denote the fraction of
individuals infected W1th virus k in agent ¢ at time instant ¢.
The evolution of this fraction can, therefore, be represented
by the following scalar differential equation [1, Section 5],

where, for ¢ = 1,2,...,n, we have
.1 1.1 1 1 2 1
L :_6zxz+ﬁl(1_$_$)2] laljxj+
1 1 2 1
Ba(l—z; _xi)zji 1bz_7€x x
.2 2.2 1 1 2 2
Ty :_5zxz+ﬂ1( _x‘_x‘)zj 1az]xj+

B3 —wj — ) 37 oy by} M

Define D! = diag(d}), where i € [n], and define D?
analogously. Define X! = diag(x}), where i € [n], and
define X? analogously. Let A! [azlj]nxn, and A% =
[a3; ]an Let B = [bzge]nxn’ for each 7 € [n] and k € [2].
Let 2% = [z} zh xﬁ]—r for k=1,2.
Therefore, in vector form, equation (1) can be written as:

=—Dlzt +8{(I - X! - X% Alzl+
By(I = X' = X*)((«") " Biz!, (@') " Bya',.... (a") " Bra') T
i? =—D*¢® + B7(1 — X' — X?)A%2%+
B3(I— X' = X*)((«*) " Bia?, («?) " B3a?, ..., («?) " B}a?) "
(@)
a:TBl:v
z " Box
Note that (¢ Biz,z " Baz,...,z' Byz)' = :
rTE,,x

We note that system (2) is a special case of [1, system 5.5]
in the following sense: System (2) only accounts for a)
the case where, for k = 1,2, ¥ and 8% is identical for
every node ¢, ¢+ = 1,2,...,n, and b) the case where virus 1
(resp. virus 2) spread only due to contact with the infected
individuals. In contrast, the model in [1] (see [1, system 5.5])
allows for the possibility of 3¥ and 3% being not necessarily
the same for every node. Furthermore, it also allows for
the possibility of the viruses to spread through additional
mediums such as a water distribution network, a public
transit network, etc.

Remark 1: Setting z1(0) = 0 (resp. z2(0) = 0) results in

system (2) coinciding with the model used for studying the
spread of a single virus over hypergraphs in [23].
The model in system (2) has three kinds of equilibria,
viz. healthy state or disease-free equilibrium (DFE), (0,0);
single-virus endemic equilibria corresponding to virus k, of
the form (z*,0), where 0 < z* < 1 for k = 1,2; and
coexisting equilibria, (Z',72), where, as we will show in
Lemma 1, 0 < Z',Z%2 < 1, and, furthermore, z! + 72 < 1.
It is unknown whether the single-virus endemic equilibria
corresponding to virus k are unique, in contrast to the classic
bivirus SIS network model without HOL.

The Jacobian of system (2) evaluated at an arbitrary point,
(!, 22), in the state space is as given in (3).

J J:
st = ®
where
Jig == D'+ 811 — X' — X?)A' — diag(B Alat)+
B3I — X' — X*)O1(a") — B302(x) (€

(&)
6

Ji2 = — diag(8f A'2) — 83 diag((z") " B}aY)iz1 2. m
Jor = — diag(87 A%2?) — B3 diag((@?) " Bf2®)iz1.2,....n

Jaz =—D?+ B7(I — X' — X?)A® — diag(8] A%2?)+
BE(I = XT = X*)03(2?) — B304(2?) )
The terms O; (z'), Oa(z!), O3(2?) and O4(2?) are as given

in (8), (9), (10) and (11), respectively.

We will need the following assumptions to ensure the model
is well-defined in the sense that the states take values that
correspond to physical reality in the epidemiological context.

Assumption 1: The matrix D*, for k = 1,2, is a positive
diagonal matrix. The matrix Ak for k = 1, 2, is nonnegative.
The matrix BF is nonnegative for all i € [n] and k € [2].
Observe that for classic bivirus systems, some works have
also considered the case where D is a nonnegative matrix;
see, for instance, [13].

Assumption 2: The matrix Ak for k = 1,2, is irreducible.
Assumption 2 guarantees that the graph representing the
pairwise interactions is strongly connected.

We define the set D as follows:

D= {(z',2?) 2" >0,k =1,2,_,2F <1}. (12)

It is known that the set D is positively invariant, and that
the DFE is always an equilibrium for system (2); see [I,
Lemma 5.1]. The fact that D is positively invariant guaran-
tees that the state values =¥, k € [2],i € [n], always stay in
the [0, 1] interval. Since the states represent fractions of an
infected population node, if the states were to take values
outside the [0, 1] interval, then those would not correspond

to physical reality.
B. Problem Statements

With respect to system (2), we aim to answer the following
questions in this paper

i) What is the typical behavior the trajectories exhibit as

time goes to infinity?

ii) Can we identify a parameter regime such that multiple
equilibria are simultaneously stable?

iii) Can we identify sufficient conditions for the existence
of a coexistence equilibrium? Furthermore, can we
establish the stability properties of such an equilibrium
based on knowledge of the stability properties of the
boundary equilibria?

C. Preliminary Lemmas and analysis of healthy state

In this subsection, we establish a result on the nature of

equilibria of system (1).

Lemma 1: Consider system (2) under Assumptions 1
and 2. If z = (z',2?) € D is an equilibrium of (2), then,
for each k € [2], either zF = 0, or 0 < z¥ < 1. Moreover,
POHELES §
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O1(z') =[(B{ + (BY))a! (B3 +(B3))a! (By, + (B) ")z'] ®
Os(z') =diag((z") " B} e )iz10,..n 9)
Os(a?) = [(Bf +(BY)T)a> (B3 +(B3)T)a? (B: + (BR)T)z?] (10)
O4(2?) = diag((z®) " B?2?)i=1,2,...n (11)

Proof: See proof of [25, Lemma 1].

It can be seen that (0,0) is an equilibrium of (2), and is
referred to as the disease-free equilibrium (DFE). Sufficient
conditions for convergence to the DFE have been provided
in [1].

III. MONOTONE DYNAMICAL SYSTEMS AND
COMPETITIVE BIVIRUS NETWORKED SIS MODELS
wITH HOI

Monotone dynamical systems (MDS) are a class of systems
that has found resonance in mathematical epidemiology; one
of the major reasons for this is the fact that MDS, assuming
that they generically have a finite number of equilibria,
converge to a (stable) equilibrium point for almost all initial
conditions. Here, the term “almost all” means: for all but a
set of parameter values that has measure zero. An algebraic
or semi-algebraic set defines this set of exceptional values.
It is known that under Assumptions 1 and 2, system (2)
is monotone; see [1, Theorem 5.5]. That is, suppose that
(x}(0),2%(0)) and (z5(0), %(0)) are two initial conditions
in int(D) satisfying i) z%(0) > x}(0) and ii) 2%(0) <
3323(0). Since system (2) is monotone, it follows that, for
all t € Rxo, i) 24(t) > 2L(¢) and i) 24(t) < 2%(t).
Note that [1, Theorem 5.5] also claims that system (2), in
a generic sense, has a finite number of equilibria. However,
the proof for said assertion is the proof for the case where
ﬂg =0, for £k = 1,2, in [14, Theorem 3.6], which is only a
nongeneric case. Since the proof for finiteness of equilibria
in [1, Theorem 5.5] is not complete, it leaves open the issue
of generic convergence to an equilibrium point. To remedy
this, we provide a different proof for generic finiteness of
equilibria that does not rely on 85 =0 for k = 1,2.

Given that nonlinear systems can have complex equilibria
patterns, including a continuum of equilibria for the classic
bivirus network model, we establish that for generic param-
eter matrices, system (1) has a finite number of equilibria.
We use arguments very much like those in [15]. Essen-
tially because the healthy equilibrium and the single-virus
boundary equilibria can be conveniently studied using single-
virus techniques, it is easily established that there are no
continua of equilibria confined to any boundary, i.e. any
continuum of equilibria necessarily includes a continuum of
coexistence equilibria. Therefore, we focus on showing that
such equilibria cannot exist for generic parameter values. The
tool is the Parametric Transversality Theorem, see [26, see
p. 145]. The main result is as follows:

Theorem 1: Consider the model of (2), under Assump-
tions 1 and 2. With any fixed matrices A* and nonnegative

Bf, and the exclusion of a set of values for the entries of
D', D? of measure zero, the number of coexistence equi-
librium points is finite, and the associated vector field zero
is nondegenerate, i.e. the associated Jacobian is nonsingular.
Similarly, with any fixed D!, D? and BF, and the exclusion
of a set of values for the entries of Al, A? of measure zero,
the same properties of equilibrium points hold.
Proof: See proof of [25, Theorem 1]. O
Theorem 1, coupled with the fact that system (2) is mono-
tone, allows us to leverage Hirsch’s generic convergence
theorem [27] to draw conclusions on the limiting behavior
of system (2) outside of the specific conditions identified in
[1, Theorem 5.2, statement 1]. We have the following result.
Theorem 2: Consider system (2) under Assumptions 1
and 2. For all initial conditions (21(0),22(0)) € D except
possibly for a set of measure zero, the system (2) will
converge to an equilibrium. If the system does not converge
to an equilibrium, it is on a nonattractive limit cycle.

In words, Theorem 2 establishes that the typical behavior of
system (2) is convergence to some equilibrium; this could be
healthy, or (one of the possibly many) single-virus boundary
equilibria, or a coexistence equilibrium. It further says that
limit cycles, if any, are nonattractive. No more complicated
behavior is allowed; chaos can be ruled out, see [28]. Thus,
Theorem 2 answers question i) raised in Section II.

IV. EXISTENCE AND LOCAL STABILITY OF BOUNDARY
EQUILIBRIA

In this section, we identify a parameter regime that permits
three equilibria of the bivirus system (2) to be simultaneously
locally exponentially stable. Subsequently, for a parameter
regime different from the one mentioned above, we identify a
condition for the existence and instability of a boundary equi-
librium. Finally, when there is only one virus, we identify a
condition for the existence and local exponential stability of
an endemic equilibrium.

Proposition 1: Consider system (2) under Assumptions 1
and 2. Define, for k = 1,2, 1z» € {0,1}" by (15%); = 1 if
BEF +# 0; otherwise (15+); = 0. Suppose that the following
conditions are fulfilled for £ = 1, 2:

a) p(BF(D¥)~LAF) < 1, and

b) min (ZE(AR1p)+ 2515 Bilg) > 2.
i.5.t.BF£0 ok B* )i 26F - BRi B
Then, the following statements are true:

1) The DFE is locally exponentially stable.

i) there exist equilibria Z* > 0 such that z} > 1 for
k = 1,2, for any i such that B¥ # 0.

iii) Any such equilibrium point (z!,0) is locally exponen-
tially stable; and
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iv) Any such equilibrium point (0, Z2) is locally exponen-
tially stable.
Proof: See proof of [25, Proposition 1].

Proposition 1 answers question ii) raised in Section II.
Proposition 1 guarantees the existence and simultaneous
local exponential stability of three equilibria, whereas [I,
Theorem 5.3], assuming that an endemic equilibrium exists,
guarantees its local stability. Furthermore, the possibility of
the DFE being locally stable simultaneously is alluded to; see
[1, Remark 10]. On the other hand, for a parameter regime
different from the one covered in Proposition 1, assuming
that the terms corresponding to HOI are sufficiently small,
[1, Theorem 5.3] secures global stability of the endemic
equilibrium. Notice also that an exact characterization of the
region og attraction of locally stable equilibria, (z!,0) and
(0,z?), is not available. The following remarks are in order.

Remark 2: Proposition 1 sheds light on an interesting
phenomenon that bivirus spread over hypergraph admits (but
bivirus spread over a normal graph does not exhibit): the
possibility of the presence of a parameter regime that permits
three equilibria, namely the DFE and the two boundary
equilibria, to be simultaneously stable. This is an extension
to the single virus case studied in [23], which permitted the
simultaneous stability of the DFE and (since there is only
one in this case) an endemic equilibrium.

Remark 3: Tt is known that, assuming ﬂé’“ =0 for k£ =
1,2, the condition p(B¥(D¥)~1AF) < 1 guarantees that
the DFE is the only equilibrium of system (2); see [24,
Lemma 2]. However, as Proposition 1 shows, that is not
necessarily true when considering bivirus SIS spread over
hypergraphs.

Proposition 1 guarantees existence of boundary equilibria
for the case when p(BY¥(D¥)=1A%) < 1, for k = 1,2. It
is natural to ask if one is assured of existence even if the
spectral radii of relevant quantities are larger than one.
Specifically, if p(BF(D¥)~*A*) > 1 for some k €
[2], and if , for some ¢ € [2] such that ¢ # Kk,
p(BY(DY)~1A%) < 1, then, since the dynamics of virus £
converges to the DFE, system (2) effectively has the
dynamics of a single-virus system in the long run. Therefore,
in addition to the DFE, there exists a boundary equilibrium
of the form (:fk,()); see [23, Theorem 5.2, statement vii)].
The following proposition addresses this issue.

Proposition 2: Consider system (2) under Assumptions 1
and 2. Suppose that, for all k € [2], p(BF(D*)~1A%) > 1.
Then system (2) has at least three equilibria, namely the
DFE, a single virus endemic equilibrium corresponding to
virus 1 (z%,0), and a single virus endemic equilibrium
corresponding to virus 2 (0,z?). Furthermore, if s(—D® +
Bi(I — X*)A?) > 0 for i,k € [2] such that i # k, then the
equilibrium points (z!,0) and (0, z?) are unstable.

Proof: See proof of [25, Proposition 2]. ]

Remark 4: Proposition 2 (resp. Proposition 1) guarantees
the existence (resp. existence and local exponential stability)
of the equilibrium points, (z!,0) and (0,72). It turns out
that it is possible to compute these points iteratively; see

[23, Theorem 5.3].

V. (NON)EXISTENCE OF COEXISTENCE EQUILIBRIA
This section identifies sufficient conditions for the exis-
tence (resp. nonexistence) of coexistence equilibria. Specifi-
cally, for investigating existence, we consider two parameter
regimes, viz. for k = 1,2, i) s(—DF + ﬂfAk) > 0, and
ii) s(—DF 4 BFA¥) < 0. Further, for the parameter regime
i), we consider two stability configurations of the boundary
equilibria, viz. a) both being unstable and b) both being
stable; for parameter regime ii), we consider the case where
both boundary equilibria are stable.

Proposition 3: Consider system (2) under Assumptions 1
and 2. Let (z',0) and (0, %?) denote a single-virus endemic
equilibrium corresponding to virus 1 and virus 2, respec-
tively. Suppose that the following conditions are satisfied:
i) s(=D'+ B1AY) > 0;

i) s(—D? + B2A?) > 0;

iii) s(—D'+ B (I — X?)A') > 0; and

iv) s(=D*+ B3I — X1)A?) > 0.

Then there exists at least one equilibrium of the form (&1, #2)
such that 0 < 21, 2?2 < 1 and ' + 322 < 1.

Proof: See proof of [25, Proposition 3].

Proposition 3 is implied by [1, Theorem 5.4], which, as-
suming 6§ =0 for k£ = 1, 2, is the same as [12, Theorem 5].
The proof technique in [1, Theorem 5.4] is quite involved
since it primarily relies on fixed point mapping, Perron
Frobenius theory, etc. Our proof is significantly shorter.
Note that [29, Theorem 2] is a key ingredient of our proof
strategy. In light of Theorem 1, one could perhaps leverage
[29, Theorem 2] to obtain a lower bound on the number
of coexistence equilibria for the stability configuration of
boundary equilibria given in Proposition 3, as has been
done for classic bivirus networked SIS models; see [15,
Corollary 3.9, statement 2]. Subsequently, one could possibly
exploit the properties of MDS to conclude that there must
exist a locally exponentially stable coexistence equilibrium.

Observe that in Propostion 3 the demonstration of the
existence of a coexistence equilibrium point (21, 2?) relies
on the assumption that both boundary equilibria are unstable.
We now present a different condition that also guarantees the
existence of a coexistence equilibrium point (2!, 22) even
when both boundary equilibria are stable.

Theorem 3: Consider system (2) under Assumptions 1
and 2. Let (z',0) and (0,z?) denote a single-virus endemic
equilibrium corresponding to virus 1 and virus 2, respec-
tively. Suppose that the following conditions are satisfied:

i) s(—D'+ B1AY) > 0;

ii) s(—D? + B{A?) > 0;
Suppose that both (z!,0) and (0,z2) are locally exponen-
tially stable. Then there exists at least one equilibrium of the
form (#!,22) such that 0 < 2!,2% < 1 and 2! + 22 < 1,
such that (2!, 22) is either neutrally stable or unstable.
Proof: See proof of [25, Theorem 3]. ]

Proposition 3 and Theorem 3 partially answer question iii)
raised in Section II-B. Observe that neither of these results

4413

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 24,2024 at 18:13:56 UTC from IEEE Xplore. Restrictions apply.



covers the case where one boundary equilibrium is locally
exponentially stable, and the other is unstable.
We next consider a different parameter regime, namely
s(—D* + B¥ A*) < 0. We have the following result.
Proposition 4: Consider system (2) under Assumptions 1
and 2. Define, for k = 1,2, 1gx € {0,1}" by (1gx); = 1 if
BF # 0; otherwise (13+); = 0. Suppose that the following
conditions are fulfilled for £ = 1,2 :
a) p(BY(D*)1A%) <1 and
b)  min (5 (A¥1pe)i + 5
Then there exists at least one equilibrium of the form (&1, £2)
such that 0 < #1,4% < 1 and &' + 2% < 1 that is either
neutrally stable or unstable.
Proof: See proof of [25, Proposition 4]. ]
Note that Proposition 4 guarantees the existence of at
least one coexistence equilibrium. Given that system (2) is
monotone, and since, from Theorem 1, it is known that for
each of the equilibrium points the associated Jacobian is
nonsingular, the conditions in Proposition 4 guarantee the
existence of an odd number of coexistence equilibria, each
of which must be unstable. The proof for the same follows
from a Brouwer degree argument; see [30]. In fact, for the
special case where B§ = 0 for £k = 1,2, for the same
stability configuration as in Theorem 3 and Proposition 4,
a lower bound on the number of coexistence equilibria has
been recently provided; see [15, Corollary 3.9, statement 3].

15 Bilpe) > 2.

VI. NUMERICAL EXAMPLES
We present a series of simulations highlighting interesting
phenomena that can emerge when HOIs are incorporated.
We use the following bivirus system with HOIs. The network
has n = 5 nodes, and we set D' = D? = I. The pairwise
interactions are captured by two-cycle graphs with self-loops,
with infection matrices:

1 0 0 0 1
1 1.0 0 0

Al=1]o 1 1 0 o0 A% = (AaHT. (13)
00 1 1 0
0 0 0 1 1

The HOI are captured by the following set of hyperedges
with unit weight:

virus 1:(1,2,3),(2,3,1),(3,2,1),(1,4,5), (4,5,1), (5,4,1)
virus 2: (1,2,4),(2,4,1),(4,2,1),(1,3,5), (3,5,1), (5,3, 1).

In other words, this corresponds to the following bfj , entries
being equal to 1, with all other entries of B equal to 0: blos,
b3s1s biars bluss Dists b5ars and biyy, b3y, biay, g5, b3ses
b2,,. In our simulations, we randomly sample z¥(0) from a
uniform distribution (0, 1), and then normalize the vectors
21(0) and 22(0) to ensure that (z'(0),22(0)) € int(D). The
BF are varied to yield different stability properties for the
system in (2).

Example 1: We set 5 = 34 = 0.2 and % = 32 = 5. This
ensures the inequalities of both conditions for Proposition 1
are satisfied. As can be observed from Fig. la, for initial
conditions close to the DFE, the trajectories converge to
the locally exponentially stable DFE, (z! = 0,22 = 0).

In Figs. 1b and lc, the initial conditions are further in
the interior of D, and depending on the particular initial
condition, we observe convergence to a boundary equilibrium
where one of the two viruses is extinct, (z!,0) or (0, z2) for
some positive Z1 > 0.5x 1 and Z2 > 0.5 x 1. That is, both
boundary equilibria are simultaneously locally exponentially
stable. Interestingly, without HOIs, it is impossible for a
bivirus system to have the DFE, (z!,0), and (0,z?%) all
locally exponentially stable [31, Section E].

Example 2: We set 31 = B3 = 2 and 82 = 3 and
(% = 2.4. As illustrated in Figs. 2a and 2b, there are two
locally exponentially stable two boundary equilibria (Z!,0)
or (0,7%), and we converge to either depending on the
initial conditions. However, the DFE is unstable, and no
trajectories in D converge there except if one starts at the
DFE. This simulation highlights are interesting observation:
for a standard bivirus system with no HOIs, examples of
systems with two locally stable boundary equilibria have not
been identified until recently and are not straightforward to
construct [15], [32].

VII. CONCLUSION

This paper analyzed a networked competitive bivirus SIS
model that also accounts for the possibility of HOI among the
nodes. By taking recourse to the Parametric Transversality
Theorem of differential topology, we showed that the bivirus
system with HOI has, for generic parameter values, a finite
number of equilibria. Furthermore, the Jacobian matrices
associated with each of the equilibria are nonsingular. This
finding, coupled with the knowledge that the system is
monotone, enabled us to establish that the typical behavior
that our system exhibits is convergence to some equilibrium.
Subsequently, we identified a parameter regime that ensures
the existence of multiple boundary equilibria and simultane-
ous stability of the same along with that of the DFE. For the
special case where only one virus is circulating in the meta-
population, we guarantee the existence and local stability
of an endemic equilibrium; our result does not impose any
restrictions on the model parameters besides those covered
by Assumptions 1 and 2. Thereafter, for different parameter
regimes, we identified conditions that guarantee the existence
of a coexistence equilibrium.

There are multiple research lines that merit further inves-
tigation. One such problem would be identifying conditions
that guarantee not just existence but also uniqueness of
a coexistence equilibrium. Yet another problem would be
investigating nongeneric scenarios that could give rise to a
continuum of coexistence equilibria. Other matters we are
developing include relaxing of key assumptions, and con-
sidering time-scale adjustments. Finally, while the analysis
in the present paper relies on time-invariant hypergraphs, it
may be interesting to see how, for instance, the conditions for
convergence to DFE would alter (if at all) when one allows
for the hypergraphs to be possibly time-varying. Moving
away from equlibrium analysis, a problem of interest would
be to study the transient dynamics of the model presented
here.
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