
On the Performance of Gradient Tracking with Local Updates

Edward Duc Hien Nguyen, Sulaiman A. Alghunaim, Kun Yuan and César A. Uribe

Abstract— We study the decentralized optimization problem
where a network of n agents seeks to minimize the average of
a set of heterogeneous non-convex cost functions distributedly.
State-of-the-art decentralized algorithms like Exact Diffusion
and Gradient Tracking (GT) involve communicating every iter-
ation. However, communication is expensive, resource intensive,
and slow. This work analyzes a locally updated GT method (LU-
GT), where agents perform local recursions before interacting
with their neighbors. While local updates have been shown to
reduce communication overhead in practice, their theoretical
influence has not been fully characterized. We show LU-GT has
the same communication complexity as the Federated Learning
setting but allows decentralized (symmetric) network topologies.
In addition, we prove that the number of local updates does
not degrade the quality of the solution achieved by LU-GT.
Numerical results reveal that local updates may lead to lower
communication costs in specific regimes (e.g., well-connected
graphs).

I. INTRODUCTION

We study the distributed multi-agent optimization problem

minimize
x∈Rm

f(x) ≜
1

n

n∑
i=1

fi(x), (1)

where fi(·) : Rm → R is a smooth, non-convex function held
privately by agent i ∈ {1, . . . , n}. The agents collaborate to
find a consensual solution x∗ of (1) with communication
constrained by some network topology.

Many decentralized methods have been proposed to
solve (1). Among the most prolific include decentral-
ized/distributed gradient descent (DGD) [1], [2], EX-
TRA [3], Exact-Diffusion/D2/NIDS (ED) [4]–[7], and Gra-
dient Tracking (GT) [8]–[11]. DGD is an algorithm wherein
agents perform a local gradient step followed by a commu-
nication round. However, DGD has been shown not optimal
for constant stepsizes when agents’ local objective functions
are heterogeneous, i.e., the minimizer of functions fi(·) dif-
fers from the minimizer of f(·). This shortcoming has been
analyzed in [12], [13] where the heterogeneity causes the rate
of DGD to incur an additional bias term with a magnitude
directly proportional to the level of heterogeneity. Moreover,
this bias term is inversely influenced by the connectivity of
the network (becomes larger for sparse networks) [6], [14].

EDHN and CAU ({en18,cauribe}@rice.edu) are with the Department
of Electrical and Computer Engineering, Rice University, Houston, TX,
USA. SAA (sulaiman.alghunaim@ku.edu.kw) is with the Department
of Electrical Engineering, Kuwait University, Kuwait City, Kuwait. KY
(kun.yuan@alibaba-inc.com) is with Alibaba DAMO Academy, Hangzhou,
Zhejiang, China.

Edward Nguyen is supported by a training fellowship from the Gulf Coast
Consortia, on the NLM Training Program in Biomedical Informatics &
Data Science (T15LM007093). The work of CAU and EDHN was partially
supported by the National Science Foundation under Grants No. 2211815
and No. 2213568.

EXTRA, ED, and GT employ bias-correction techniques
to account for heterogeneity. EXTRA and ED use local
updates with memory. GT methods have each agent perform
the local update with an estimate of the global gradient
called the tracking variable. In these techniques, the bias
term proportional to the heterogeneity found in DGD is
removed [15], [16]. However, they require communication
over the network at every iteration.

Communication is expensive, resource intensive, and slow
in practice [17]. Centralized methods in which agents com-
municate with a central coordinator (i.e., server) have been
developed to solve (1) with an explicit focus on reducing
the communication cost. This has been achieved empirically
by requiring agents to perform local recursions before com-
municating. Among these methods include LocalGD [18]–
[22], Scaffold [23], S-Local-GD [24], FedLin [25], and
Scaffnew [26]. Analysis on LocalGD revealed that local
recursions cause agents to drift towards their local solu-
tion [14], [19], [27]. Scaffold, S-Local-GD, FedLin, and
Scaffnew address this issue by introducing bias-correction
techniques. However, besides [26], analysis of these methods
has failed to show communication complexity improvements.
The work [26] has shown that for µ-strongly-convex, L-
smooth, and deterministic functions, the communication
complexity of Scaffnew can be improved from O(κ) to
O(

√
κ) if one performs

√
κ local recursions with κ ≜ L/µ.

Local recursions in decentralized methods have been much
less studied. DGD with local recursions has been studied
in [14], but the convergence rates still have bias terms due
to heterogeneity. Additionally, the magnitude of the bias
term is proportional to the number of local recursions taken.
Scaffnew [26] has been studied under the decentralized
case but for the strongly convex and smooth function class.
In [26], for sufficiently connected graphs, an improvement
to a communication complexity of O(

√
κ/(1− λ)) where

λ is the mixing rate of the matrix is shown. Several works
studied GT under time-varying graphs such as [9], [11], [28]–
[30], among these only the works [9], [28], [31] considered
nonconvex setting. Different from [9], [28], [31], we provide
explicit expressions that characterize the convergence rate in
terms of the problem parameters (e.g., network topology).

In this work, we propose and study LU-GT, a locally
updated decentralized algorithm based on the bias-corrected
method GT. Our contributions are as follows:
• We analyze LU-GT under the deterministic, non-convex

regime. As a byproduct, we provide an alternative and
simpler analysis for GT, which extends the techniques
from [15].

• We show LU-GT has a communication complexity match-

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0124-3/23/$31.00 ©2023 IEEE 4309

20
23

 6
2n

d
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

isi
on

 a
nd

 C
on

tr
ol

 (C
DC

) |
 9

79
-8

-3
50

3-
01

24
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CD
C4

97
53

.2
02

3.
10

38
38

73

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 24,2024 at 18:14:40 UTC from IEEE Xplore. Restrictions apply.

ing locally updated variants of federated algorithms.
• We demonstrate that LU-GT retains the bias-correction

properties of GT irrespective of the number of local
recursions and that the number of local recursions does
not affect the quality of the solution.

• Numerical analysis shows that local recursions can reduce
the communication overhead in certain regimes, e.g., well-
connected graphs.

This paper is organized as follows. Section II defines relevant
notation, states the assumptions used in our analysis, intro-
duces LU-GT, and states our main result on the convergence
rate. In Section III, we prove the convergence rate of LU-
GT. Section IV shows evidence that the local recursions of
LU-GT can reduce communication costs in certain regimes.
We have two additional appendix sections available on the
arXiv version in which we provide intuition into how the
direction of our analysis can show that following LU-GT,
agents reach a consensus that is also a first-order stationary
point. We also cover relevant lemmas needed in the analysis
of LU-GT in the appendix.
Notation: Lowercase letters define vectors or scalars, while
uppercase letters define matrices. We let col{a1, ..., an} or
col{ai}ni=1 denote the vector that concatenates the vec-
tors/scalars ai. We let diag{d1, ..., dn} or diag{di}ni=1

denote the matrix with diagonal elements di. Similarly,
blkdiag{D1, D2, ..., Dn} or blkdiag{Di}ni=1 represents the
block diagonal matrix with matrices Di along the diagonal.
The notation 1 represents the one vector of size that should
be inferred while 1n represents the one vector of size n.
The inner product of two vectors a, b is defined as ⟨a, b⟩. ⊗
represents the Kronecker product. Boldface variables such as
(x,W) represent augmented network quantities.

II. ALGORITHM, ASSUMPTIONS, AND MAIN RESULT

The original gradient tracking method has the form [8]:

xk+1
i =

∑
j∈Ni

wij(x
k
j − η̄gkj)

gk+1
i =

∑
j∈Ni

wij

(
gkj +∇fj(x

k+1
j)−∇fj(x

k
j)
)
,

with g0i = ∇f(x0
i). Here, xk

i is agent i’s current parameter
estimate at iteration k, and gki ∈ Rn is an additional param-
eter held by agent i that tracks the average of the gradient.
Here, wij is a scalar weight that scales the information agent
i receives from agent j, and Ni is the set of neighbors of
agent i. We set wij = 0 if j /∈ Ni.

In this work, we study a locally updated variant of gradient
tracking listed in Alg. 1 where instead of agents communi-
cating every iteration, they communicate every To iterations.
The proposed method LU-GT is detailed in Algorithm 1
where α and η are step-size parameters, and To is the number
of local recursions before a round of communication. The
intuition behind the algorithm is to have agents perform a
descent step using a staling estimate of the global gradient
for To iterations. Afterwards, agents perform a weighted
average of their parameters with their neighbors and update
their tracking variable.

Algorithm 1 LU-GT for each agent i

1: Input: x0
i = 0 ∈ Rm, y0i = α∇fi(x

0
i), α > 0, η > 0

To ∈ Z≥0, K ∈ Z+

2: Define: τ = {0, To, 2To, 3To...}
3: for k = 0, ...,K − 1 do
4: if k ∈ τ then
5: xk+1

i =
∑

j∈Ni

wij(x
k
j − ηykj)

6: yk+1
i =

∑
j∈Ni

wij(y
k
j + α∇fj(x

k+1
j)− α∇fj(x

k
j))

7: else
8: xk+1

i = xk
i − ηyki

9: yk+1
i = yki + α∇fi(x

k+1
i)− α∇fi(x

k
i)

10: end if
11: end for

Remark 1 For To = 1, Algorithm 1 becomes equivalent to
the original ATC-GT [8] with stepsize η̄ = ηα. This can be
seen by introducing the change of variable gki = (1/α)yki .
Thus, our analysis also covers the original GT method.

For analysis reasons, we will rewrite algorithm 1 using
network notation. To do so,we define W = [wij] ∈ Rn×n as
the mixing matrix for an undirected graph that models the
connections of a group of n agents. We also introduce the
network notations:

W = W ⊗ Id ∈ Rmn×mn

xk = col{xk
1 , . . . , x

k
n}, yk = col{yk1 , . . . , ykn}

f(x)=
n∑

i=1

fi(xi), ∇f(x)=col{∇f1(x1), . . . ,∇fn(xn)}.

To analyze Algorithm 1, we first introduce the following
time-varying matrix:

Wk ≜

{
W when k ∈ τ,

I otherwise.

Thus, we can succinctly rewrite Algorithm 1 as follows

xk+1 = Wk(x
k − ηyk) (4a)

yk+1 = Wk(y
k + α∇f(xk+1)− α∇f(xk)). (4b)

We now list the assumptions used in our analysis.

Assumption 1 (Mixing matrix) The mixing matrix W is
doubly stochastic and symmetric.

The Metropolis-Hastings algorithm [32] can be used to
construct mixing matrices from an undirected graph satisfy-
ing Assumption 1. Moreover, from Assumption 1, the mixing
matrix W has a singular, maximum eigenvalue denoted as
λ1 = 1. All other eigenvalues are defined as {λi}ni=2. We
define the mixing rate as λ := maxi∈{2,...,n}{|λi|}.

Assumption 2 (L-smoothness) Each function fi : Rm →
R is L-smooth for i ∈ V , i.e., ∥∇fi(y)−∇fi(z)∥ ≤ L∥y−z∥,
∀ y, z ∈ Rm for some L > 0. We assume there exists a
f∗ ∈ R such that f(x) ≥ f∗.

4310

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 24,2024 at 18:14:40 UTC from IEEE Xplore. Restrictions apply.

We are now ready to state the main result of this paper on
the convergence analysis of LU-GT.

Theorem 1 (Convergence of LU-GT) Let Assumptions 1
and 2 hold, and let, To ∈ Z≥0, η > 0, and α > 0 with
η < O(1/To), and α < O((1− λ)/L) (Exact bounds found
in (6), (7), and (9)). Then, for any K ≥ 1, the output xK , of
Algorithm 1 (LU-GT) with x0 = (1⊗ x0) for any x0 ∈ Rm

has the following property:

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

L2

Kn

K−1∑
k=0

∥Φk∥2 ≤

+
8

ηαK
f̃(x̄0) +

3α2L2Toζ0
nK(1− λ̄)2

, (5)

where x̄k= 1
n

∑n
i=1 x

k
i , ∇f(xk)= 1

n

∑n
i=1 ∇fi(x

k
i), λ̄ =

(1 + λ)/2, f̃(x̄0) = f(x̄0) − f∗, ∥Φk∥2 = ∥xk − x̄k∥2 +
∥yk − ȳk∥2, and ζ0 = ∥∇f(x̄0)− 1⊗∇f(x̄0)∥2.

Note that the left-hand side of (5) has three main com-
ponents. The first two indicate the asymptotic convergence
to a stationary point, while the third term ∥Φk∥2 guaran-
tees asymptotic consensus. If in Theorem 1, we consider
a sufficiently well-connected graph where 1 ≥ 2

√
λ and

set α ∝ (1− λ)/L, and η ∝ 1/To, then we obtain the
convergence rate,

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

L2

Kn

K−1∑
k=0

∥Φk∥2 ≤

O

(
Tof̃(x̄

0)

K
+
Toζ0
nK

)
.

The communication complexity of LU-GT is obtained
by dividing the number of iterations K by To to find the
number of communication rounds, i.e., R = K/To. Theo-
rem 1 implies that LU-GT matches the same communication
complexity (R = O(1/ϵ) for a desired accuracy ϵ > 0)
as [23] for distributed (federated) setups. However, LU-GT
allows arbitrary symmetric undirected network topologies
(Assumptions 1).

III. CONVERGENCE ANALYSIS OF LU-GT

Here we provide the convergence analysis of LU-GT of
which the results are given in Theorem 1. The proof of
Lemma 2 and other technical lemmas and rigorous proofs
needed to prove Theorem 1 are shown in Appendices in-
cluded in the version on arXiv. We first state a crucial
lemma that characterizes the asymptotic convergence of the
consensus error, which is used to prove Theorem 1.

Lemma 2 (Consensus Inequality) Let Assumptions 1
and 2 hold and

η < min
{
1, (1−

√
λ)/(

√
λ(To))

}
, (6)

α ≤ min

{
1

2L
,

√
(1− λ)(1− θ)

16L2λ
,

√
(λ̄− λ̄2)(1− θ)

8L2η2T 2
o

}
,(7)

hold. Define θ = λ(1 + ηTo)
2 < 1. Then, the output of

Algorithm (1) satisfies the following inequality

1

K

K−1∑
k=0

∥Φk∥2 ≤ (1− λ̄)(1
K

∑K−1
k=0 λ̄rk)

1− λ̄− e1To
∥Φ0∥2 (8)

+

(
e2To

K(1− λ̄− e1To)

)
K−1∑
k=0

(
∥∇f(xk)∥2 + ∥∇f(x̄k)∥2

)
,

where ∥Φk∥2 = ∥xk − x̄k∥2 + ∥yk − ȳk∥2, rk ≜ ⌊k/To⌋,
e1 ≜ 8L2η2α2To(1+ηTo)

2

(1−θ) , and e2 ≜ 8nL2η2α4To(1+ηTo)
2

(1−θ) .

Now we are ready to state the proof of Theorem 1.
Proof: [Proof of Theorem 1] Following similar arguments
as in [15, Lemma 3] and imposing α ≤ 1

2L , we have the
following inequality

f(x̄k+1)≤f(x̄k)−ηα

2
∥∇f(x̄k)∥2−ηα

4
∥∇f(xk)∥2

+
ηαL2

2n
∥Φk∥2.

Reorganize and lower bound the left-hand side to find
ηα

4

(
∥∇f(x̄k)∥2+∥∇f(xk)∥2

)
≤f(x̄k)−f(x̄k+1)

+
ηαL2∥Φk∥2

2n
.

Next, subtract and add f∗ and set f̃(x̄k) = f(x̄k)−f∗, then

∥∇f(x̄k)∥2+∥∇f(xk)∥2≤ 4

ηα

(
f(x̄k)−f(x̄k+1)

)
+
2L2

n
∥Φk∥2.

Sum both sides from k = 0, ...,K − 1 and divide by K

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
≤

4

ηαK

K−1∑
k=0

(f̃(x̄k)− f̃(x̄k+1)) +
2L2

nK

K−1∑
k=0

∥Φk∥2.

Multiplying (8) from Lemma 2 by c, a constant to be defined
later, and adding it to the above equation, we then have the
following

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+c

1

K

K−1∑
k=0

∥Φk∥2 ≤

4

ηαK

K−1∑
k=0

(f̃(x̄k)− f̃(x̄k+1)) +
2L2

nK

K−1∑
k=0

∥Φk∥2

+ c
(1− λ̄)(1

K

∑K−1
k=0 λ̄rk)

1− λ̄− e1To
∥Φ0∥2

+ c

(
e2To

K(1− λ̄− e1To)

)
K−1∑
k=0

(
∥∇f(xk)∥2 + ∥∇f(x̄k)∥2

)
Rearranging and setting c = 3L2

n we find(
1− 3L2e2To

n(1− λ̄− e1To)

)
1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2+∥∇f(xk)∥2

)

4311

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 24,2024 at 18:14:40 UTC from IEEE Xplore. Restrictions apply.

+

(
L2

n

)
1

K

K−1∑
k=0

∥Φk∥2 ≤ 4

ηαK

K−1∑
k=0

(f̃(x̄k)− f̃(x̄k+1))

+ c
(1− λ̄)(1

K

∑K−1
k=0 λ̄rk)

1− λ̄− e1To
∥Φ0∥2

Require

1

2
≤
(
1− 3L2e2To

n(1− λ̄− e1To)

)
⇒ α ≤ 4

√
(1− λ̄)2(1− θ)

48L4η2T 2
o

.

(9)
Then, we have

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

L2

Kn

K−1∑
k=0

∥Φk∥2 ≤

+
8

ηαK
f̃(x̄0) +

6L2(1− λ̄)(
∑K−1

k=0 λ̄rk)

nK(1− λ̄− e1To)
∥Φ0∥2.

Assume that the initialization for x1, x2, ..., xn is identical.
Then x0 = 1⊗x0 (for some x0 ∈ Rd). As a result, x0 = x̄0

meaning ∥Q̂Tx0∥2 = 0. Then,

∥Φ0∥2 = ∥Q̂Ty0∥2 =
∥∥∥αQ̂T∇f(x0)

∥∥∥2
= α2∥∇f(x̄0)− 1⊗∇f(x̄0)∥2.

Define ζ0 = ∥∇f(x̄0)−1⊗∇f(x̄0)∥2. We also upper bound∑K−1
k=0 λ̄rk with To/(1− λ̄), a repeating geometric sequence

and impose the following condition on alpha

1− λ̄− e1To

1− λ̄
≥ 1− λ̄ ⇒ α ≤

√
(λ̄− λ̄2)(1− θ)

8L2η2T 2
o

.

Thus, the desired relation follows.

IV. NUMERICAL RESULTS

We simulate the performance of Algorithm 1 for the
following least squares problem with a non-convex regular-
ization term:

min
x

1

n

n∑
i=1

∥Aix− bi∥2 + ρ
m∑
j=1

x(j)2

1 + x(j)2
, (10)

where {Ai, bi} is the local data held by agent i and x(j)
is the j − th component of the parameter x. We consider
two cases: 1) close to homogeneous, where local stationary
points are different but sufficiently close; 2) heterogeneous,
where no assumptions are made on the similarity of local
stationary points. We generate Ai ∈ Rp×m where p =
500,m = 20 with values drawn from N (0, 1), a parameter
vector x∗

i ∈ Rm with values drawn from N (0, 1), and
bi ∈ Rp = Aix

i
0 + γ × zi where zi ∈ Rp is drawn from

N (0, 1). This is a heterogeneous case. The difference for
the close to homogeneous is that we draw Ai once such
that Ai = Aj , ∀i, j. For the close to homogeneous case, we
examine exponential and fully-connected graphs, while for
the heterogeneous case, we examine star and ring graphs, all
with 16 nodes. We set ρ = 0.01, γ = 150.

Table I lists the manually optimized ηα for each graph
and To combination. Our simulation results in Figure 1 reveal

TABLE I: Manually optimized ηα used for each graph and
To combination.

To = 1 To = 5 To = 50 To = 100 To = 200

Complete 2× 10−3 2× 10−3 2× 10−3 2× 10−3 2× 10−3

Exponential 2× 10−3 2× 10−3 2× 10−3 2× 10−3 2× 10−3

To = 1 To = 2 To = 5 To = 10 To = 50

Ring 2× 10−5 1× 10−5 0.4× 10−5 .2× 10−5 0.04× 10−5

Star .4× 10−4 .2× 10−4 .08× 10−4 .04× 10−4 .008× 10−4

0 20 40 60 80 100

Communication Rounds

10−10

10−8

10−6

10−4

10−2

100

102

104

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 5
To = 50
To = 100
To = 200

0 50 100 150 200 250 300 350 400

Communication Rounds

10−9

10−6

10−3

100

103

106

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 5
To = 50
To = 100
To = 200

(a) Fully-Connected Graph (b) Exponential

0 500 1000 1500 2000 2500 3000 3500 4000

Communication Rounds

10−10

10−8

10−6

10−4

10−2

100

102

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 2
To = 5
To = 10
To = 50

0 500 1000 1500 2000 2500

Communication Rounds

10−10

10−8

10−6

10−4

10−2

100

102

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 2
To = 5
To = 10
To = 50

(c) Ring (d) Star

Fig. 1: Performance of LU-GT to solve (10) with varying
To, αη, and topologies.

that for (sufficiently well-connected) graphs, LU-GT reduces
communication costs up to a certain To. In addition, for
the exponential graph, the benefits saturate much faster. For
sparse networks, the hyperparameter tuning of ηα matches
the suggested inversely proportional relation with To pre-
dicted by the theory. In this scenario, communication costs
are equivalent to no local updates, matching the analysis.

V. CONCLUSIONS

We propose the algorithm LU-GT that incorporates local
recursions into Gradient Tracking. Our analysis shows that
LU-GT matches the same communication complexity as
the Federated Learning setting but allows arbitrary network
topologies. In addition, regardless of the number of local
recursions, LU-GT incurs no additional bias term in the rate.
We show reduced communication complexity in simulation
for well-connected graphs. However, further refinement of
the analysis is necessary to quantify the precise effect of local
recursions on Gradient Tracking. It is still unclear under what
regimes local updates reduce the communication cost and
what the upper bound is on these local updates. Numerical
results suggest that local updates might not benefit sparsely
connected networks. Such explicit relations between network
topologies and local updates are left for future work. While
we focus on the non-convex setting in this work due to space
constraints, we can extend our work to the convex setting.

4312

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 24,2024 at 18:14:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” J. Optim.
Theory Appl., vol. 147, no. 3, pp. 516–545, 2010.

[2] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for
distributed estimation,” IEEE Trans. Signal Process, vol. 58, no. 3,
p. 1035, 2010.

[3] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[4] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for dis-
tributed optimization and learning—part i: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2019.

[5] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Transactions on Signal Processing, vol. 67, no. 17, pp. 4494–
4506, Sept. 2019.

[6] K. Yuan, S. A. Alghunaim, B. Ying, and A. H. Sayed, “On the
influence of bias-correction on distributed stochastic optimization,”
IEEE Transactions on Signal Processing, vol. 68, pp. 4352–4367,
2020.

[7] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” in International Conference on
Machine Learning, Stockholm, Sweden, 2018, pp. 4848–4856.

[8] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in Proc. 54th IEEE Conference on Decision and Control
(CDC), Osaka, Japan, 2015, pp. 2055–2060.

[9] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 120–136, 2016.

[10] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, Sept. 2018.

[11] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[12] J. Chen and A. H. Sayed, “Distributed pareto optimization via diffusion
strategies,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2, pp. 205–
220, April 2013.

[13] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[14] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A
unified theory of decentralized SGD with changing topology and local
updates,” in International Conference on Machine Learning, 2020, pp.
5381–5393.

[15] S. A. Alghunaim and K. Yuan, “A unified and refined convergence
analysis for non-convex decentralized learning,” IEEE Transactions
on Signal Processing, vol. 70, pp. 3264–3279, June 2022.

[16] A. Koloskova, T. Lin, and S. U. Stich, “An improved analysis of
gradient tracking for decentralized machine learning,” Advances in
Neural Information Processing Systems, vol. 34, pp. 11 422–11 435,
2021.

[17] B. Ying, K. Yuan, H. Hu, Y. Chen, and W. Yin, “Bluefog: Make
decentralized algorithms practical for optimization and deep learning,”
2021.

[18] S. U. Stich, “Local SGD converges fast and communicates little,” in
International Conference on Learning Representations, 2019.

[19] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local
GD on heterogeneous data,” CoRR, vol. abs/1909.04715, 2019.

[20] A. Khaled, K. Mishchenko, and P. Richtarik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proceedings of the
Twenty Third International Conference on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, vol. 108.
PMLR, 26–28 Aug 2020, pp. 4519–4529.

[21] J. Zhang, C. De Sa, I. Mitliagkas, and C. Ré, “Parallel SGD: When
does averaging help?” arXiv preprint arXiv:1606.07365, 06 2016.

[22] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-
batches, use local SGD,” in International Conference on Learning
Representations, 2020.

[23] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in Proceedings of the 37th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp.
5132–5143.

[24] E. Gorbunov, F. Hanzely, and P. Richtarik, “Local SGD: Unified theory
and new efficient methods,” in Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Banerjee and K. Fukumizu, Eds.,
vol. 130. PMLR, 13–15 Apr 2021, pp. 3556–3564.

[25] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani, “Linear conver-
gence in federated learning: Tackling client heterogeneity and sparse
gradients,” in Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021.

[26] K. Mishchenko, G. Malinovsky, S. Stich, and P. Richtárik, “Proxskip:
Yes! local gradient steps provably lead to communication acceleration!
finally!” in International Conference on Machine Learning, 2022.

[27] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2020, pp. 4519–4529.

[28] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimiza-
tion over time-varying digraphs,” Mathematical Programming, vol.
176, no. 1-2, pp. 497–544, 2019.

[29] Y. Sun, G. Scutari, and A. Daneshmand, “Distributed optimization
based on gradient tracking revisited: Enhancing convergence rate via
surrogation,” SIAM Journal on Optimization, vol. 32, no. 2, pp. 354–
385, 2022.

[30] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization
over time-varying directed graphs with row and column-stochastic
matrices,” IEEE Transactions on Automatic Control, vol. 65, no. 11,
pp. 4769–4780, 2020.

[31] S. Lu and C. W. Wu, “Decentralized stochastic non-convex opti-
mization over weakly connected time-varying digraphs,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 5770–5774.

[32] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

4313

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 24,2024 at 18:14:40 UTC from IEEE Xplore. Restrictions apply.

