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Abstract: We study the spread of multi-competitive viruses over a (possibly) time-varying
network of individuals accounting for the presence of shared infrastructure networks that further
enables transmission of the virus. We establish a sufficient condition for exponentially fast
eradication of a virus for: 1) time-invariant graphs, 2) time-varying graphs with symmetric
interactions between individuals and homogeneous virus spread across the network (same
healing and infection rate for all individuals), and 3) directed and slowly varying graphs with
heterogeneous virus spread (not necessarily same healing and infection rates for all individuals)
across the network. Numerical examples illustrate our theoretical results and indicate that, for
the time-varying case, violation of the aforementioned sufficient conditions could lead to the
persistence of a virus.
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1. INTRODUCTION

The social and economic impacts of epidemics and their
higher-order effects are enormous (Johnson and Mueller,
2002). Prominent cases of epidemics include the Spanish
flu 1918–1920 and the Asian flu in the 1950s (Jackson,
2009). Although modeling, analysis, and control of the
spread of (biological) viruses have been studied for several
decades (Van Mieghem et al., 2008; Bloom et al., 2018;
Hethcote, 2000; Nowzari et al., 2016), the current COVID-
19 crisis has sparked increasing interest recently (Giordano
et al., 2020). Existing research tries to understand what
causes a disease to spread, how the spread can be mitigated
or eradicated, and how to estimate infection levels in a
population.

Most of the works in mathematical epidemiology deal with
the spread of a single virus (Hethcote, 2000). However, it
is not unusual to come across settings where multiple virus
strains are circulating simultaneously in a population.
Such scenarios are far more complicated than single virus
spread since those exhibit far richer dynamics (Santos
et al., 2015; Janson et al., 2020). In this paper, we focus
on the case where multiple viruses are simultaneously
circulating in a population, and these are competitive,
i.e., a host can only be infected with one virus at a time.
Furthermore, we account for the movement of individuals
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across cities even during a pandemic, thus imposing a
time-varying graph structure on the interconnection be-
tween various individuals. We adopt the time-varying net-
worked multi-competitive susceptible-infected-susceptible
(SIS) model to model the aforementioned aspects.

A limiting assumption commonly made in disease spread
modeling is that contagion occurs due to, and only due
to, person-to-person interaction. However, diseases can
also spread through other mediums, such as a water
distribution network (Vermeulen et al., 2015; La Rosa
et al., 2020), and infected surfaces on a public transit net-
work (Hertzberg et al., 2018). To overcome this shortcom-
ing, a networked susceptible-infected-water-susceptible
(SIWS) model was recently proposed (Paré et al., 2022;
Janson et al., 2020; Cui et al., 2022). However, existing
SIWS models do not account for time-varying networks ;
(Paré et al., 2022) and (Janson et al., 2020) deal with time-
invariant networks, whereas (Cui et al., 2022) accounts
for variation but only in the healing and infection rates.
Furthermore, a sufficient condition for exponential erad-
ication of a virus even when the graph is time-invariant
is not available. In light of this observation, we propose a
discrete-time time-varying multi-competitive layered net-
worked SIWS model that also accounts for time-varying
graphs. Our contributions are as follows:

• A sufficient condition for global exponential eradication
of a virus when graphs are fixed (Theorem 1).

• For time-varying graphs, we provide a sufficient condi-
tion for global exponential eradication of a virus when:
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César A Uribe ∗

∗ Department of Electrical and Computer Engineering, Rice
University, Houston, TX, USA. sebin.gracy@rice.edu, cauribe@rice.edu

∗∗ Department of Robotics, Hunan University, Changsha, China.
yuanw@hnu.edu.cn

∗∗∗ Elmore School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA. philpare@purdue.edu

Abstract: We study the spread of multi-competitive viruses over a (possibly) time-varying
network of individuals accounting for the presence of shared infrastructure networks that further
enables transmission of the virus. We establish a sufficient condition for exponentially fast
eradication of a virus for: 1) time-invariant graphs, 2) time-varying graphs with symmetric
interactions between individuals and homogeneous virus spread across the network (same
healing and infection rate for all individuals), and 3) directed and slowly varying graphs with
heterogeneous virus spread (not necessarily same healing and infection rates for all individuals)
across the network. Numerical examples illustrate our theoretical results and indicate that, for
the time-varying case, violation of the aforementioned sufficient conditions could lead to the
persistence of a virus.

Keywords: Epidemic Processes, SIS Epidemics, Time-Varying Graphs, Infrastructure Network

1. INTRODUCTION

The social and economic impacts of epidemics and their
higher-order effects are enormous (Johnson and Mueller,
2002). Prominent cases of epidemics include the Spanish
flu 1918–1920 and the Asian flu in the 1950s (Jackson,
2009). Although modeling, analysis, and control of the
spread of (biological) viruses have been studied for several
decades (Van Mieghem et al., 2008; Bloom et al., 2018;
Hethcote, 2000; Nowzari et al., 2016), the current COVID-
19 crisis has sparked increasing interest recently (Giordano
et al., 2020). Existing research tries to understand what
causes a disease to spread, how the spread can be mitigated
or eradicated, and how to estimate infection levels in a
population.

Most of the works in mathematical epidemiology deal with
the spread of a single virus (Hethcote, 2000). However, it
is not unusual to come across settings where multiple virus
strains are circulating simultaneously in a population.
Such scenarios are far more complicated than single virus
spread since those exhibit far richer dynamics (Santos
et al., 2015; Janson et al., 2020). In this paper, we focus
on the case where multiple viruses are simultaneously
circulating in a population, and these are competitive,
i.e., a host can only be infected with one virus at a time.
Furthermore, we account for the movement of individuals

⋆ The work of SG and CAU is supported, in part, by the National
Science Foundation under Grants #2211815, No. #2213568, and that
of PEP is supported, in part, by NSF-CNS grants #2028738 and
NSF-ECCS #2032258.

across cities even during a pandemic, thus imposing a
time-varying graph structure on the interconnection be-
tween various individuals. We adopt the time-varying net-
worked multi-competitive susceptible-infected-susceptible
(SIS) model to model the aforementioned aspects.

A limiting assumption commonly made in disease spread
modeling is that contagion occurs due to, and only due
to, person-to-person interaction. However, diseases can
also spread through other mediums, such as a water
distribution network (Vermeulen et al., 2015; La Rosa
et al., 2020), and infected surfaces on a public transit net-
work (Hertzberg et al., 2018). To overcome this shortcom-
ing, a networked susceptible-infected-water-susceptible
(SIWS) model was recently proposed (Paré et al., 2022;
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(1) interaction among individuals is symmetric, and the
virus is homogeneous (same healing and infection
rates) (Theorem 2); and

(2) interaction among individuals is asymmetric, and
the virus is heterogeneous (Theorem 3).

Notations: Let R (resp. Z≥0) denote the set of real
numbers (resp. non-negative integers). We denote the set
of positive integers by Z+. For any positive integer n, we
use [n] to denote the set {1, 2, . . . , n}. Given a matrix
A ∈ Rn×n, aij denotes the ith row and jth column en-
try; ρ(A) denotes its spectral radius, and λmin(A) (resp.
λmax(A)) denotes the minimum (resp. maximum) eigen-
value of A (real). A diagonal matrix is denoted as diag(·).
The transpose of vector x ∈ Rn is denoted as x⊤ and its
average as x̄ := 1

n

∑n
i=1 xi. Euclidean norms are denoted

by ∥·∥. Given a matrix A, A ≺ 0 (resp. A ≼ 0) indicates
that A is negative definite (resp. negative semidefinite),
whereas A ≻ 0 (resp. A ≽ 0) indicates that A is positive
definite (resp. positive semidefinite).

2. PROBLEM FORMULATION

We leverage the model proposed in (Cui et al., 2022) and
generalize it to establish conditions for exponential erad-
ication of a virus. Consider m competing viruses spread-
ing over a network of n individuals. Suppose the viruses
simultaneously spread over an infrastructure network of q
resource nodes. To avoid the trivial case, we assumem ≥ 2.
The spread of the rth virus, where r ∈ [m], in individual i
can be represented as follows.

ẋr
i (t) =− δri x

r
i (t) +

(
(1−

∑m
ℓ=1 x

ℓ
i(t))×

(∑n
j=1 β

r
ijx

r
j(t) +

∑q
j=1 β

wr
ij wr

j (t)
))

, (1)

where βr
ij = βr

i a
r
ij . The term βr

i (resp. δri ) denotes the
infection (resp. healing rate) of individual i for virus r,
while arij ≥ 0 denotes the strength of interconnection
between nodes i and j for the spread of virus r. The
term βwr

ij is the resource-to-individual infection rate for
individual i from resource j for virus r, while wr

j denotes

the concentration of the rth virus in the jth resource.
Note that xr

i (k) is an approximation of the probability
of infection with respect to virus r of individual i at time
instant k.

Viruses can mutate over time, and people move across
cities even during the course of a pandemic. Therefore,
we allow for the healing (resp.) infection rate and the set
of neighbors that a node has to vary over time. Thus, (1)
can be generalized as:
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j (t)
))

, (2)

where βij(t)
r = βi(t)

raij(t)
r, and the concentration of the

rth virus in the jth resource node is described as:

ẇr
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j wr
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ℓ=1 α
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(3)

where δwr
j denotes the healing rate of resource node j with

respect to virus r; αr
jℓ denotes the resource-to-resource

infection rate for resource node ℓ from resource node j;
and cwr

jℓ denotes the individual-to-resource infection rate
for resource node j from individual ℓ.

The spread of the m viruses over a possibly time-varying
population network and an infrastructure network can be
represented using a time-varying graph. Specifically, we
define a multi-layer graph G(k) with m layers, where the
vertices correspond to individuals and the shared resource
nodes, and layer r is the contact graph for the spread of
virus r at time instant k, with r ∈ [m]. More precisely,
there exists a directed edge from node j to node i in
layer r, if individual j (resp. shared resource ℓ, with
ℓ ∈ [q]) can infect individual i (resp. shared resource ℓ)
with virus r. For ease of exposition, we define the following
sets: Er(k) = {(i, j) | i, j ∈ [n], arji(k) > 0}; Er

w = {(ℓ, j) |
ℓ, j ∈ [q], arℓj > 0}; Er

c = {(j, ℓ) | ℓ ∈ [n], j ∈ [q], cwr
jℓ (k) >

0}; and Er
b = {(i, j) | i ∈ [n], j ∈ [q], βwr

ij (k) > 0}. Finally,
we define Er(k) = Er(k)∪Er

w ∪Er
c (k)∪Er

b (k). Therefore,
layer r of graph G at time k, denoted by Gr(k) is as follows:
Gr(k) = (V, Er(k)), where |V | = n+ q.

Disease outbreaks are often recorded in epidemiological
reports that are compiled per day (World Health Organiza-
tion, 2021; Snow, 1855) or per week. Thus, the continuous-
time spread process is sampled at discrete time intervals.
Said sampling of the system behavior leads to the need
for a discrete-time SIWS model. The model is obtained by
applying Euler’s method (Atkinson, 2008) to (2) and (3),

xr
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j (k) + h
(
− δwr
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)
, (5)

where h is the sampling parameter (h > 0). In vector form,
equations (4) and (5) can be written as follows:

xr(k + 1) =xr(k) + h
(
((I −

∑m
ℓ=1 X

ℓ)Br −Dr)xr(k))

(I −
∑m

ℓ=1 X
ℓ)Br

ww
r(k)

)
(6)

wr(k+1)=wr(k)+h(−Dr
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r(k)+Ar
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r(k)+Cr
w(k)x

r(k)).
(7)

System (6)-(7) can be more compactly written using

zr(k) :=

[
xr(k)
wr(k)

]
, X(zr(k)) :=

[
diag(xr(k)) 0

0 0

]
,

Bk
f (t) :=

[
Br(k) Br

w(k)
Cr

w(k) Aw − diag(Aw)

]
, and (8)

Dr
f (k) :=

[
Dr(k) 0

0 Dr
w − diag(Aw)

]
.

Hence, (6)-(7) can be rewritten as:

zr(k+1)=zr(k)+h
(
−Dr

f (k)+(I−
∑m

ℓ=1 X(zℓ))Br
f (k)

)
zr(k),

(9)
with r = 1, 2, . . . ,m.

Remark 1. By setting Aw = 0, and aij(k) = aij for all
k ∈ Z≥0, (9) coincides with the model in (Cui et al., 2022).

Remark 2. By setting wr(k) = 0 for r = 1, 2, . . . , q, and
m = 1 (9) collapses to the standard discrete-time time-
varying networked SIS model studied in (Gracy et al.,
2020).

This paper deals with the stability analysis of the healthy
state for the time-varying model in (9) and its time-
invariant version. To this end, we need the following:
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(1) interaction among individuals is symmetric, and the
virus is homogeneous (same healing and infection
rates) (Theorem 2); and

(2) interaction among individuals is asymmetric, and
the virus is heterogeneous (Theorem 3).

Notations: Let R (resp. Z≥0) denote the set of real
numbers (resp. non-negative integers). We denote the set
of positive integers by Z+. For any positive integer n, we
use [n] to denote the set {1, 2, . . . , n}. Given a matrix
A ∈ Rn×n, aij denotes the ith row and jth column en-
try; ρ(A) denotes its spectral radius, and λmin(A) (resp.
λmax(A)) denotes the minimum (resp. maximum) eigen-
value of A (real). A diagonal matrix is denoted as diag(·).
The transpose of vector x ∈ Rn is denoted as x⊤ and its
average as x̄ := 1

n

∑n
i=1 xi. Euclidean norms are denoted

by ∥·∥. Given a matrix A, A ≺ 0 (resp. A ≼ 0) indicates
that A is negative definite (resp. negative semidefinite),
whereas A ≻ 0 (resp. A ≽ 0) indicates that A is positive
definite (resp. positive semidefinite).

2. PROBLEM FORMULATION

We leverage the model proposed in (Cui et al., 2022) and
generalize it to establish conditions for exponential erad-
ication of a virus. Consider m competing viruses spread-
ing over a network of n individuals. Suppose the viruses
simultaneously spread over an infrastructure network of q
resource nodes. To avoid the trivial case, we assumem ≥ 2.
The spread of the rth virus, where r ∈ [m], in individual i
can be represented as follows.
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where βr
ij = βr

i a
r
ij . The term βr

i (resp. δri ) denotes the
infection (resp. healing rate) of individual i for virus r,
while arij ≥ 0 denotes the strength of interconnection
between nodes i and j for the spread of virus r. The
term βwr

ij is the resource-to-individual infection rate for
individual i from resource j for virus r, while wr

j denotes

the concentration of the rth virus in the jth resource.
Note that xr

i (k) is an approximation of the probability
of infection with respect to virus r of individual i at time
instant k.

Viruses can mutate over time, and people move across
cities even during the course of a pandemic. Therefore,
we allow for the healing (resp.) infection rate and the set
of neighbors that a node has to vary over time. Thus, (1)
can be generalized as:
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r = βi(t)
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r, and the concentration of the

rth virus in the jth resource node is described as:
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(3)

where δwr
j denotes the healing rate of resource node j with

respect to virus r; αr
jℓ denotes the resource-to-resource

infection rate for resource node ℓ from resource node j;
and cwr

jℓ denotes the individual-to-resource infection rate
for resource node j from individual ℓ.

The spread of the m viruses over a possibly time-varying
population network and an infrastructure network can be
represented using a time-varying graph. Specifically, we
define a multi-layer graph G(k) with m layers, where the
vertices correspond to individuals and the shared resource
nodes, and layer r is the contact graph for the spread of
virus r at time instant k, with r ∈ [m]. More precisely,
there exists a directed edge from node j to node i in
layer r, if individual j (resp. shared resource ℓ, with
ℓ ∈ [q]) can infect individual i (resp. shared resource ℓ)
with virus r. For ease of exposition, we define the following
sets: Er(k) = {(i, j) | i, j ∈ [n], arji(k) > 0}; Er

w = {(ℓ, j) |
ℓ, j ∈ [q], arℓj > 0}; Er

c = {(j, ℓ) | ℓ ∈ [n], j ∈ [q], cwr
jℓ (k) >

0}; and Er
b = {(i, j) | i ∈ [n], j ∈ [q], βwr

ij (k) > 0}. Finally,
we define Er(k) = Er(k)∪Er

w ∪Er
c (k)∪Er

b (k). Therefore,
layer r of graph G at time k, denoted by Gr(k) is as follows:
Gr(k) = (V, Er(k)), where |V | = n+ q.

Disease outbreaks are often recorded in epidemiological
reports that are compiled per day (World Health Organiza-
tion, 2021; Snow, 1855) or per week. Thus, the continuous-
time spread process is sampled at discrete time intervals.
Said sampling of the system behavior leads to the need
for a discrete-time SIWS model. The model is obtained by
applying Euler’s method (Atkinson, 2008) to (2) and (3),

xr
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where h is the sampling parameter (h > 0). In vector form,
equations (4) and (5) can be written as follows:

xr(k + 1) =xr(k) + h
(
((I −

∑m
ℓ=1 X

ℓ)Br −Dr)xr(k))

(I −
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ww
r(k)

)
(6)

wr(k+1)=wr(k)+h(−Dr
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r(k)+Ar
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r(k)+Cr
w(k)x

r(k)).
(7)

System (6)-(7) can be more compactly written using

zr(k) :=

[
xr(k)
wr(k)

]
, X(zr(k)) :=

[
diag(xr(k)) 0

0 0

]
,

Bk
f (t) :=

[
Br(k) Br

w(k)
Cr

w(k) Aw − diag(Aw)

]
, and (8)

Dr
f (k) :=

[
Dr(k) 0

0 Dr
w − diag(Aw)

]
.

Hence, (6)-(7) can be rewritten as:

zr(k+1)=zr(k)+h
(
−Dr

f (k)+(I−
∑m

ℓ=1 X(zℓ))Br
f (k)

)
zr(k),

(9)
with r = 1, 2, . . . ,m.

Remark 1. By setting Aw = 0, and aij(k) = aij for all
k ∈ Z≥0, (9) coincides with the model in (Cui et al., 2022).

Remark 2. By setting wr(k) = 0 for r = 1, 2, . . . , q, and
m = 1 (9) collapses to the standard discrete-time time-
varying networked SIS model studied in (Gracy et al.,
2020).

This paper deals with the stability analysis of the healthy
state for the time-varying model in (9) and its time-
invariant version. To this end, we need the following:
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Observe that the matrix Mr
f (k) is the state matrix ob-

tained by linearizing the dynamics of virus r around the
eradicated state of virus r (xr(k) = 0).

3. EXPONENTIAL ERADICATION OF A VIRUS:
TIME-INVARIANT CASE

Let us first consider the case where the interconnection
graph is time-invariant, i.e., Gr(k) = Gr for all k ∈ Z≥0.
Then the spread dynamics is as follows:

zr(k+1)=zr(k)+h
(
−Dr

f+(I−
∑m

ℓ=1 X(zℓ))Br
f

)
zr(k). (11)

We assume the following for (11) to be well-defined.

Assumption 1. For all i ∈ [n],
∑m

ℓ=1 x
ℓ
i(0) ∈ [0, 1].

Assumption 2. For all i, j ∈ [n], r ∈ [m], δri > 0, βr
ij ≥ 0,

βwr
ij ≥ 0. For all r ∈ [m], i ∈ [n], and j ∈ [m], δrwj > 0 and

crwij ≥ 0 with at least one i such that crwij > 0.

Assumption 3. For all r ∈ [m], i ∈ [n] and j ∈ [q], wr
j (0)≥0

and wr
j (0)≤wr

max, and
∑n

ℓ=1 c
wr
jℓ /δ

wr
j ∈ [0, wr

max].

Assumption 4. For all i ∈ [n] (resp. j ∈ [q]), r ∈
[m], hδri ∈ [0, 1] (resp. hδrj ∈ [0, 1]). Furthermore,

h
∑m

ℓ=1

(∑n
p=1 β

ℓ
ip +

∑n
p=1 β

wℓ
ip wℓ

max

)
∈ [0, 1].

Define Dr = {zr(k) = [xr(k)⊤, wr(k)⊤]⊤ | xr(k) ∈
[0, 1]n, wr(k) ∈ [0, wr

max]
q}. Virus r is eradicated if zr(k) =

0. The discrete-time multi-competitive layered networked
SIWS model is in the disease-free equilibrium (DFE) if
zr(k) = 0, ∀r ∈ [m].

The following lemma guarantees that the set Dr is posi-
tively invariant for system (11).

Lemma 1. (Cui et al., 2022, Lemma 1) Consider (11), and
let Assumptions 1-4 hold. Then, xr

i (k) ∈ [0, 1] for all
i ∈ [n], and zrj (k) ∈ [0, wr

max] for all j ∈ [q], for all k ∈ Z≥0.

Recall that xr
i (k) is an approximation of the probability

of infection for virus r of individual i, whereas zrj (k) is the
concentration of virus r in resource j; hence, if the states
were to take values outside those in set Dr, then those
states would not correspond to physical reality. Hence,
for our subsequent stability results, we prove the system’s
eradicated state of virus r is stable with the domain of
attraction Dr, which is equivalent to global stability for
this system. In particular, if the system’s eradicated states
are stable with the domain of attraction Dr for all r ∈ [m],
then the DFE is globally exponentially stable. Next, we
provide a sufficient condition for the eradication of virus r.

Theorem 1. Let Assumptions 1-4 hold, and consider sys-
tem (11). If ρ(Mr

f ) < 1, with r ∈ [m], then the eradicated
state of virus r is exponentially stable, with domain of
attraction Dr.

Proof: By Assumption 4, we have that, for each i ∈ [n]
(resp. j ∈ [q]) hδri ∈ [0, 1] (resp. hδrj ∈ [0, 1]), which implies
that the matrix I −Dr

f is nonnegative. Therefore, noting
that h > 0, and since Assumption 2 implies that the matrix
Br

f is nonnegative, we have that Mr
f is nonnegative.

By assumption, ρ(Mr
f ) < 1. Hence, from (Rantzer, 2011,

Prop. 1) it follows that there exists a positive diagonal
matrix P r such that (Mr

f )
⊤P rMr

f −P r ≼ 0. Consider the

Lyapunov function candidate V (zr) = (zr)⊤P rzr. Since

P r > 0, it follows that V (zr) > 0 for all zr ̸= 0. Since
P r > 0, it is also symmetric. Therefore, by applying the
Rayleigh-Ritz Theorem (RRT) (Horn and Johnson, 2012).
Thus, λmin(P

r)I ≤ P r ≤ λmax(P
r)I, and

λmin(P
r) ∥z∥2 ≤ V (zr) ≤ λmax(P

r) ∥z∥2 . (12)

Observe that since P r > 0, all its eigenvalues are positive;
hence, λmin(P

r) > 0 and λmax(P
r) > 0. Therefore, (12)

implies that the constants bounding the Lyapunov func-
tion candidate are strictly positive.
Define ∆V (zr) := V (zr(k + 1))− V (zr(k)). Hence, for all
zr ̸= 0, we have the following:
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Observe that
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where inequality (14) comes from noting that i) due to
Assumption 2 the matrix Br

f is nonnegative, and ii) due to

Assumption 4, the matrix (I−hDr
f ) is nonnegative. Conse-

quently, the term −2h(zr)⊤(I−Dr
f )P

r
∑m

ℓ=1 X(zℓ)Br
f (z

r)

is nonpositive. Inequality (15) is a consequence of Assump-
tion 4, whereas inequality (16) follows by extending the
argument in (Janson et al., 2020, Lemma 6) to the m-virus
case. Therefore, from (13), it follows that

∆V (zr) ≤ (zr)⊤
(
Mr

f
⊤P rMr

f − P r
)
zr. (17)

Since, as seen above, (M r
f )

⊤P rMr
f−P r is negative definite,

it follows that (Mr
f )

⊤P rMr
f − P r is symmetric; hence,

its spectrum is real, and all its eigenvalues are negative.
Therefore, by RRT, we have

∆V (zr) ≤ −λmin(P
r − (Mr

f )
⊤P rMr

f ) ∥z∥
2
, (18)

where λmin(P
r−(Mr

f )
⊤P rMr

f ) > 0. From (12) and (18),

we have that there exists positive constants, λmin(P
r),

λmax(P
r), and λmin(P

r−(Mr
f )

⊤P rMr
f ), such that for z ̸=0,

λmin(P
r) ∥z∥2 ≤ V (zr) ≤ λmax(P

r) ∥z∥2 , (19)

∆V (zr) ≤ −λmin(P
r − (Mr

f )
⊤P rMr

f ) ∥z∥
2
. (20)

The result then follows as a direct consequence of
(Vidyasagar, 2002, Section 5.9 Theorem. 28). �

The following result is immediate.

Corollary 2. Consider system (9) under Assumptions 1-4.
If ρ(Mr

f ) < 1, for all r ∈ [m], then the DFE is globally
exponentially stable.

3
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Corollary 2 provides guarantees for exponential conver-
gence to the DFE, while (Cui et al., 2022, Theorem 10)
only provides asymptotic guarantees for the same. More-
over, Corollary 2, unlike (Cui et al., 2022, Theorem 10),
does not require the graph to be strongly connected, since
the assumption of irreducibility is not needed for estab-
lishing this result. On the other hand, (Cui et al., 2022,
Theorem 10) relaxes the condition on the spectral radius
of Mr

f in Corollary 2 and yet achieves convergence, albeit
asymptotic, to the healthy state; thus guaranteeing erad-
ication of viruses for a larger range of model parameters.
The term ρ(Mr

f ) can be interpreted as the reproduction
number for virus r. Define Mr := I − hD + hB; the
term ρ(Mr) denotes the reproduction number for virus r
assuming there is no infrastructure network. It is natural
to explore the relation between ρ(Mr

f ) and ρ(Mr). To this
end, we need the following assumption and proposition.

Assumption 5. The matrix Br
f is irreducible for r ∈ [m].

Proposition 1. Consider system (9) under Assumptions 2,
4, and 5. The reproduction number of the multi-virus SIS
network with an infrastructure network is greater than
the reproduction number of the multi-virus SIS network
without the infrastructure network, i.e., ρ(Mr

f ) > ρ(Mr).

Proof: Consider the matrix Mr
f and notice that, due to

Assumption 5, it is irreducible, whereas due to Assump-
tions 2 and 4 it is nonnegative. Furthermore, it can be
expressed as follows:

Mr
f =

[
Mr hBr

w
hCr

w I − hDr
w + hCr

w

]
.

Note that Mr is a principal square submatrix of Mr
f .

Therefore, from (Varga, 2000, Lemma 2.6), it follows that
ρ(Mr

f ) > ρ(Mr). �

Proposition 1 implies that eradicating a virus in the pop-
ulation network does not necessarily imply eradication of
said virus in the layered network; this further underscores
the challenges of combating epidemics that spread through
multiple mediums.

4. EXPONENTIAL ERADICATION OF A VIRUS:
TIME-VARYING CASE

This section studies the case where the population network
is time-varying, i.e, we allow for Gr(k0) ̸= Gr(k1) for
any k0 ̸= k1 ∈ Z≥0. We rely on the model in (9).
Before proceeding with the analysis, we need the following
assumptions to ensure that (9) is well-defined.

Assumption 6. For all k ∈ Z≥0, i, j ∈ [n], r ∈ [m],
δri (k) > 0, βr

ij(k) ≥ 0, βwr
ij (k) ≥ 0. For all r ∈ [m], i ∈ [n],

and j ∈ [m], δrwj > 0 and crwij ≥ 0 with at least one i such
that crwij > 0.

Assumption 7. For all k ∈ Z≥0, r ∈ [m], i ∈ [n] and
j ∈ [q], wr

j (0) ≥ 0 and wr
j (0) ≤ wr

max. Furthermore,∑n
ℓ=1 c

wr
jℓ (k)/δ

wr
j (k) ∈ [0, wr

max].

Assumption 8. For all i ∈ [n] (resp. j ∈ [q]), k ∈ Z≥0 and
r ∈ [m], hδri (k) ∈ [0, 1] (resp. hδrj (k) ∈ [0, 1]). Further-

more, h
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ℓ=1

(∑n
p=1 β

ℓ
ip(k) +

∑n
p=1 β

wℓ
ip (k)wℓ

max

)
∈ [0, 1].

Assumptions 6, 7, and 8 imply Assumptions 2, 3, and 4,
respectively. The converse, however, is false. The following
lemma establishes positive invariance of the set Dr for (9).

Lemma 3. (Cui et al., 2022, Lemma 4) Let Assump-
tions 1, 6-8 hold and consider (9). Then xr

i (k) ∈ [0, 1],
∀i ∈ [n], and zrj (k) ∈ [0, wr

max], ∀j ∈ [q], ∀k ∈ Z≥0.

4.1 Homogeneous spread, symmetric undirected graphs

We focus on homogeneous virus spread (i.e., the infection
rate for a virus is the same for every individual) in
the layered network. The following theorem identifies a
sufficient condition for the exponential eradication of a
virus, irrespective of the initial infection levels in the
network of individuals and in the network of shared
resources, for the virus.

Theorem 2. Consider system (9) under Assumptions 1, 6-
8. Suppose that for all k ∈ Z≥0

i) βr
i (k)=βr(k) ∀i ∈ [n] (Homogeneous infection rate);

ii) δri (k)=δr(k) ∀i ∈ [n] (Homogeneous healing rate);
iii) Ar(k)=Ar(k)⊤ (Symmetric social interactions); and
iv) Br

w(k)=Cr
w(k)

⊤ (Sym. infrastructure interactions).

If supk∈Z≥0
ρ(Mr

f (k)) < 1, where r ∈ [m], then the

eradicated state of virus r is exponentially stable with a
domain of attraction Dr.

Proof: See the proof of (Gracy et al., 2023, Theorem 2).

4.2 Directed networks and Heterogeneous spread

We have the following result.

Theorem 3. Let Assumptions 1, 6-8 hold and consider
system (9). Assume ∃ α1 > 0, L ∈ R+, κ ∈ R+, such that

i) supk∈Z≥0
ρ(Mr

f (k)) ≤ α1 < 1;

ii) ∀k ∈ Z≥0 ||Mr
f (k)|| ≤ L; and

iii) supk∈Z≥0
||Mr

f (k + 1)−Mr
f (k)|| ≤ κ.

If κ is sufficiently small, then the eradicated state of virus r
is exponentially stable, with a domain of attraction Dr.

The proof of Theorem 3 closely mirrors that of (Paré et al.,
2020a, Theorem 2); it can be traced back to the linear work
in (Desoer, 1970; Rugh, 1996).

Proof: See the proof of (Gracy et al., 2023, Theorem 3).

5. NUMERICAL ANALYSIS

We consider a 10-node network of individuals (i.e. n = 10)
on the network shown in Fig 1 with the edges having
weights aij equal to one. We consider a 5-node network
of resources (i.e., q = 5), with the network of resources
being fully connected and the weights αij , for all i, j ∈ [5],
is set to one. Each node in the network of individuals is
connected with each of the five resources, that is, βwr

ij = 1
for all i ∈ [10], j ∈ [5]. Moreover, cwr

jl = 1 for every

pair of (j, l), where j corresponds to the jth node in the
resource network, and l corresponds to the lth node in the
population network. We set m = 2, i.e., two competing
viruses.
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Corollary 2 provides guarantees for exponential conver-
gence to the DFE, while (Cui et al., 2022, Theorem 10)
only provides asymptotic guarantees for the same. More-
over, Corollary 2, unlike (Cui et al., 2022, Theorem 10),
does not require the graph to be strongly connected, since
the assumption of irreducibility is not needed for estab-
lishing this result. On the other hand, (Cui et al., 2022,
Theorem 10) relaxes the condition on the spectral radius
of Mr

f in Corollary 2 and yet achieves convergence, albeit
asymptotic, to the healthy state; thus guaranteeing erad-
ication of viruses for a larger range of model parameters.
The term ρ(Mr

f ) can be interpreted as the reproduction
number for virus r. Define Mr := I − hD + hB; the
term ρ(Mr) denotes the reproduction number for virus r
assuming there is no infrastructure network. It is natural
to explore the relation between ρ(Mr

f ) and ρ(Mr). To this
end, we need the following assumption and proposition.

Assumption 5. The matrix Br
f is irreducible for r ∈ [m].

Proposition 1. Consider system (9) under Assumptions 2,
4, and 5. The reproduction number of the multi-virus SIS
network with an infrastructure network is greater than
the reproduction number of the multi-virus SIS network
without the infrastructure network, i.e., ρ(Mr

f ) > ρ(Mr).

Proof: Consider the matrix Mr
f and notice that, due to

Assumption 5, it is irreducible, whereas due to Assump-
tions 2 and 4 it is nonnegative. Furthermore, it can be
expressed as follows:

Mr
f =

[
Mr hBr

w
hCr

w I − hDr
w + hCr

w

]
.

Note that Mr is a principal square submatrix of Mr
f .

Therefore, from (Varga, 2000, Lemma 2.6), it follows that
ρ(Mr

f ) > ρ(Mr). �

Proposition 1 implies that eradicating a virus in the pop-
ulation network does not necessarily imply eradication of
said virus in the layered network; this further underscores
the challenges of combating epidemics that spread through
multiple mediums.

4. EXPONENTIAL ERADICATION OF A VIRUS:
TIME-VARYING CASE

This section studies the case where the population network
is time-varying, i.e, we allow for Gr(k0) ̸= Gr(k1) for
any k0 ̸= k1 ∈ Z≥0. We rely on the model in (9).
Before proceeding with the analysis, we need the following
assumptions to ensure that (9) is well-defined.
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ij(k) ≥ 0, βwr
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wr
j (k) ∈ [0, wr

max].
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respectively. The converse, however, is false. The following
lemma establishes positive invariance of the set Dr for (9).
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i (k) ∈ [0, 1],
∀i ∈ [n], and zrj (k) ∈ [0, wr

max], ∀j ∈ [q], ∀k ∈ Z≥0.

4.1 Homogeneous spread, symmetric undirected graphs

We focus on homogeneous virus spread (i.e., the infection
rate for a virus is the same for every individual) in
the layered network. The following theorem identifies a
sufficient condition for the exponential eradication of a
virus, irrespective of the initial infection levels in the
network of individuals and in the network of shared
resources, for the virus.

Theorem 2. Consider system (9) under Assumptions 1, 6-
8. Suppose that for all k ∈ Z≥0

i) βr
i (k)=βr(k) ∀i ∈ [n] (Homogeneous infection rate);

ii) δri (k)=δr(k) ∀i ∈ [n] (Homogeneous healing rate);
iii) Ar(k)=Ar(k)⊤ (Symmetric social interactions); and
iv) Br

w(k)=Cr
w(k)

⊤ (Sym. infrastructure interactions).

If supk∈Z≥0
ρ(Mr

f (k)) < 1, where r ∈ [m], then the

eradicated state of virus r is exponentially stable with a
domain of attraction Dr.

Proof: See the proof of (Gracy et al., 2023, Theorem 2).

4.2 Directed networks and Heterogeneous spread

We have the following result.

Theorem 3. Let Assumptions 1, 6-8 hold and consider
system (9). Assume ∃ α1 > 0, L ∈ R+, κ ∈ R+, such that

i) supk∈Z≥0
ρ(Mr

f (k)) ≤ α1 < 1;

ii) ∀k ∈ Z≥0 ||Mr
f (k)|| ≤ L; and

iii) supk∈Z≥0
||Mr

f (k + 1)−Mr
f (k)|| ≤ κ.

If κ is sufficiently small, then the eradicated state of virus r
is exponentially stable, with a domain of attraction Dr.

The proof of Theorem 3 closely mirrors that of (Paré et al.,
2020a, Theorem 2); it can be traced back to the linear work
in (Desoer, 1970; Rugh, 1996).

Proof: See the proof of (Gracy et al., 2023, Theorem 3).

5. NUMERICAL ANALYSIS

We consider a 10-node network of individuals (i.e. n = 10)
on the network shown in Fig 1 with the edges having
weights aij equal to one. We consider a 5-node network
of resources (i.e., q = 5), with the network of resources
being fully connected and the weights αij , for all i, j ∈ [5],
is set to one. Each node in the network of individuals is
connected with each of the five resources, that is, βwr

ij = 1
for all i ∈ [10], j ∈ [5]. Moreover, cwr

jl = 1 for every

pair of (j, l), where j corresponds to the jth node in the
resource network, and l corresponds to the lth node in the
population network. We set m = 2, i.e., two competing
viruses.
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Fig. 1. Graph structure for a network of individuals

Fig. 2. Time-invariant spread dynamics: eradication of
virus 1; persistence of virus 2.

Setting initial states: For virus 1, x1
i (0) ∈ [0, 0.5],

for i ∈ [10]; w1
j (0) ∈ [0, 2], for j ∈ [5]. For virus 2,

x2
i (0) ∈ [0, 0.4], for i ∈ [10]; and w1

i (0) ∈ [0, 2], for j ∈ [5].
Choose the sampling period h = 0.001. For all simulations,
we plot the average infection level for a given virus in the
network of individuals and that of resources.

Simulation for Theorem 1: Choose, for i ∈ [10], β1
i =

0.01, βw1
i = 0.01, δ1i = 3, and, for j ∈ [5], δw1

j = 2. Choose,

for i ∈ [10], β2
i = 0.3, βw2

i = 0.01, δ2i = 2, and, for j ∈ [5],
δw2
j = 1. Observe that Assumptions 1–4 hold and ρ(M1

f ) =

0.9984 < 1, and ρ(M2
f ) = 1.0012 > 1. Figure 2 shows

that consistent with Theorem 1, the average infection
level for virus 1 in the network of individuals and that
of resources converge to zero; see the blue line and green
line, respectively. As an aside, notice that consistent with
(Cui et al., 2022, Theorem 3), the dynamics of virus 2
converge to an endemic equilibrium.

Simulation for Corollary 2: Choose, for i ∈ [10], β1
i =

0.01, βw1
i = 0.01, δ1i = 3, and, for j ∈ [5], δw1

j = 2. Choose,

for i ∈ [10], β2
i = 0.005, βw2

i = 0.01, δ2i = 2, and, for
j ∈ [5], δw2

i = 1. Observe that Assumptions 1–4 hold, and
ρ(M1

f ) = 0.9984 < 1, ρ(M2
f ) = 0.9994 < 1. Figure 3 shows

that, consistent with Corollary 2, the average infection
level for viruses 1 and 2 in the network of individuals and
that of resources converge to zero.

Simulation for Theorem 2: Consider the following sets
of values for the system parameters: 1) for i ∈ [10], β1

i (k) =
0.01, βw1

i (k) = 0.01, δ1i (k) = 3, and, for j ∈ [5], δw1
j (k) = 2.

For i ∈ [10], β2
i (k) = 0.4, βw2

i (k) = 0.01, δ2i (k) = 2,
and, for j ∈ [5], δw2

j (k) = 1. 2) For i ∈ [10], δ1i (k) =

0.01, βw1
i (k) = 0.01, δ1i (k) = 3. for j ∈ [5], δw1

j (k) = 2.

For i ∈ [10], β2
i (k) = 0.01, βw2

i (k) = 0.01, δ2i (k) = 2,
and, for j ∈ [5], δw2

j (k) = 1. For odd time instants,
choose 1) for the parameter values; otherwise, choose

Fig. 3. Time-invariant spread dynamics: both viruses get
eradicated.

Fig. 4. Time-varying spread dynamics with identical heal-
ing and infection rates for all individuals: virus 1 gets
eradicated, but virus 2 remains persistent.

2). Assumptions 1, 6-8 hold and supk∈Z≥0
ρ(M1

f (k)) =

0.9984 < 1, supk∈Z≥0
ρ(M2

f (k)) = 1.0023 > 1. Figure 4

shows that the average infection level for virus 1 in the
network of individuals and that of resources converge to
zero (Theorem 2); see the blue line and the green line,
respectively. It seems that if the condition is violated,
then there exists an endemic equilibrium, to which the
infection levels in the network of individuals and the
shared resources converge; see the red and black lines,
respectively.

Simulation for Theorem 3: The network of individuals
is partitioned into two groups: Group a (Node 1 – Node
5) and Group b (Node 6 – Node 10). For nodes in group
a consider the following choices of parameter values: a1)
for i = 1, 2, . . . 5, β1

i (k) = 0.1, βw1
i (k) = 0.01, δ1i (k) = 3,

and for j ∈ [5], δw1
j (k) = 2. For i = 6, 7, . . . 10, β2

i (k) =

0.4, βw2
i (k) = 0.01, δ2i (k) = 2, and for j ∈ [5] δw2

j (k) = 1.

a2) For i = 1, 2, . . . 5, β1
i (k) = 0.05, βw1

i (k) = 0.01, δ1i (k) =
3, and for kj ∈ [5], δw1

j (k) = 2. For i = 6, 7, . . . 10

β2
i (k) = 0.2, βw2

i (k) = 0.01, δ2i (k) = 2, and, for j ∈ [5],
δw2
j (k) = 1. For odd time instants; choose a1); otherwise,
choose a2). For nodes in the group b, consider the following
choices of values for the parameters: b1) For i = 1, 2, . . . , 5,
β1
i (k) = 0.1, βw1

i (k) = 0.01, δ1i (k) = 3, and, for j ∈ [5],
δw1
j (k) = 2. For i = 1, 2, . . . , 5, β2

i (k) = 0.01, βw2
i (k) =

0.01, δ2i (k) = 2, and, for j ∈ [5], δw2
j (k) = 1; b2) For

i = 6, 7, . . . , 10, β1
i (k) = 0.05, βw1

i (k) = 0.01, δ1i (k) = 3,
and, for j ∈ [5], δw1

j (k) = 2. For i = 6, 7, . . . , 10, β2
i (k) =

0.01, βw2
i (k) = 0.01, δ2i (k) = 2, and, for j ∈ [5], δw2

j (k) = 1.
For odd time instants, choose b1); otherwise, choose b2).
Assumptions 6-8 hold and supk∈Z≥0

ρ(M1
f (k)) = 0.9987 <

1, supk∈Z≥0
ρ(M2

f (k)) = 1.0023 > 1. Further, ||M1
f (k)|| ≤

1.0016 for all k ∈ Z≥0, and supk∈Z≥0
||M1

f (k + 1) −
5
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Fig. 5. Time-varying spread dynamics with different heal-
ing and infection rates for some individuals: virus 1
gets eradicated, but virus 2 remains persistent.

M1
f (k)|| = 0.0005. Figure 5 shows that, consistent with

Theorem 3, virus 1 is eradicated; see the blue and green
lines, respectively.

6. CONCLUSION

The paper studied the spread of multiple competing us-
ing a discrete-time time-varying multi-competitive layered
networked SIWS model. For time-invariant graphs, we
identified a sufficient condition for the exponential erad-
ication of a virus. Thereafter, we established a sufficient
condition for exponential eradication of a virus for spread
over time-varying undirected graphs with all nodes having
identical infection (resp. healing) rates. Finally, for spread
over slowly time-varying (un)directed graphs with the
nodes not necessarily having identical infection (or heal-
ing) rates, we provided a sufficient condition for exponen-
tial eradication of a virus. Future work should study the
endemic behaviors of the proposed model. Moreover, iden-
tifying sufficient (resp. necessary) conditions for estimating
the infection level in the population, given knowledge of
infection levels in (a part of) the infrastructure network,
remains an open problem.
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