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Abstract— In this paper, a low-cost monopulse receiver is 

presented to achieve high accuracy of angular estimation by 

applying deep neural network. The low-cost receiver is composed 

of a 4 - element patch array, a planar comparator network, and a 

down conversion module. Different from other signal processing 

methods, a deep neural network is developed for proposed low-

cost monopulse receiver, which can map the misaligned target 

angular positions in the measurement to the actual physical 

location under detection. 

Keywords—deep neural network, low-cost monopulse radar, 

angular estimation. 

I. INTRODUCTION 

Monopulse tracking radar is widely applied in airborne radar, 

autonomous driving, medical diagnostics, and low cost IoT, 

where the monopulse antenna array decodes the impinging RF 

signal to precise angular information of targets under detection. 

To be specific, the received RF signals from 2D antenna array 

in monopulse receiver are processed through comparator 

network in electromagnetic waveform domain to find the 

location and velocity of moving object [1]-[6]. However, under 

multipath propagation condition, the direct amplitude or phase 

comparison of sum and difference signal from monopulse array 

is ineffective and causes misalignment error due to amplitude 

and phase distortion. The calibration and correction steps [7]-

[9] may mitigate the angular estimation error, which requires

extra computation effort in low-cost system. Moreover,

utilization of thin metamaterial absorbers [10]-[11] could also

be useful to remove multi-path propagation effect. In recent

years, deep neural network (DNN) learning attracts great

interest which can extract features from covariance matrix to

construct nonlinear mapping [12], and the deep learning-based

classification of radar targets has been extensively studied

in [13]. For example, in [14], a DNN for the estimation of

directional of arrival is proposed where the input is the

covariance matrix to preserve part of the useful information. Up

to now, there is limited study on merging deep neural network 

into monopluse array to boost the estimation accuracy, 

especially for low-cost system with limited computation 

resources. 

In this paper, a deep neural network (DNN) is customized to 

low - cost monopulse receiver system using small size data set 

and achieving fast training process. Due to the capability of 

establishing highly nonlinear relationships from the inputs to 

the outputs, the proposed DNN can accurately predict the 

physical location of tracking object in milliseconds. 

II. DESIGN OF PROPOSED MONOPULSE

The proposed low-cost monopulse receiver system with 

DNN is shown in Fig. 1. It is composed of a four-quarter 2D 

antenna array, a planar comparator network, a down-conversion 

link, and a baseband analyzer module. The output signals from 

the low-cost monopulse array are captured and analyzed by 

Keysight Vector Signal Analyzer (VSA). The system is trained 

by deep learning algorithm with small amount of measurement 

data and deployed to real angular measurement. 

This work is sponsored by NSF under ECCS-2124531, CCF-2124525, EFRI-
2217637 

Fig. 1 Proposed low-cost monopulse receiver schematic diagram with DNN. 
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A. Low-Cost Planar Monopulse Receiver Array Design

Fig. 2 (a) shows the proposed low-cost monopulse
comparator network designed at 2GHz, which consists of four 
planar 180° rat-race couplers and a zero-phase delay crossover. 
The planar rat-race coupler is designed with symmetrical 
structure where the input ports (Σ and Δ) are not crossing with 
output ports, which is totally different from the conventional rat-
race coupler. In addition, a planar crossover [15] is applied to 
interconnect two stages of couplers with zero phase distortion, 
which can further improve the loss and bandwidth of proposed 
comparator network. In addition, a 2 × 2 patch antenna array 
operating at 2GHz is designed as in Fig. 2 (b), where each patch 
element is positioned half-wavelength away from each other to 
avoid the mutual interference. By integrating the comparator 
network and 2D antenna array, the proposed monopulse array is 
realized with low cost, planar, and low amplitude phase 
imbalance. 

B. Estimation of Angular Information

Amplitude or phase comparison is a typical method to

estimate the angular information of detecting target. In this low-

cost monopulse receiver, phase comparison method is applied 

due to planar antenna structure providing the identical boresight 

direction. As shown in Fig. 2 (c), a two-element linear array 

separated by d can determine the angle of arrival from 
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and the difference and sum of signals received by A and B can 

be derived as 
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The angular information of arrival signals can be calculated 

based on the ratio (γ) of difference to sum signals, given by 

 tan( sin )s

d
j
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Similarly, the angles in two dimensions are evaluated from 
equations (1) - (5) by placing 2D antenna array in quadrant. To 
be specific, the extracted signals are denoted as sum (Σ) and 
difference (ΔAz, ΔEl, and ΔDel), which are computed in analog 
form through monopulse comparator network as: 

 ΔAz = (A + D) - (B + C)  (6) 

 ΔEl = (A + B) – (C + D)  (7) 

 ΔDel = (A + C) – (B+ D)  (8) 

 Σ = (A + B + C + D)  (9) 

Then, monopulse ratio at two dimensions can be derived as: 

tan sin( )Az
Az

dπ
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λ
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 (10) 
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C. Merging Deep Neural Network

The goal of DNN is to find the accurate location through the

monopulse receiver and compare with carry-on real-time 

monitoring of accurate data with minimum delay. The input for 

  (a)  (b) 

(c) 

Fig. 2 Proposed monopulse array (a) planar comparator network (b) 2 × 2 patch 

antenna array, (c) DoA estimation through proposed monopulse radar. 
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Fig. 3 Implemented Deep Learning Network architecture. The input of the 
network is consisting of elevation and azimuth angles, horizontal and vertical 

position of the target. The output of the network is the corrected elevation and 

azimuth angles of the target. 
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the neural network is elevation (θEl) and azimuth (θAz) angles 

estimated by the proposed low-cost monopulse receiver. Here, 

the effect of the distance between the radar and the object is also 

considered to the input data of the network. Therefore, the input 

layer of DNN is a 4 × 1 matrix, and it generates corrected 

elevation and azimuth angles. As in Fig. 3, the DNN consists of 

three consecutives fully connected hidden layers, each 

containing 20, 50, and 10 hidden neurons, respectively. During 

the training process, the weights, and biases in hidden layers of 

DNN are optimized to minimize the loss function of:  

2

_ _

1,2,...,

2

_ _

1
[( )

( ) ]

DNN El DNN El truth

i N

Az DNN Az truth
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N

θ θ

θ θ
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+ −
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where θEl_DNN and θEl_truth are the elevation angles of DNN 

and true location, respectively. Similarly, θAz_DNN and 

θAz_truth are the azimuth angles of DNN and true location, 

respectively. N is the number of samples. Without loss of 

generality, we chose the distance between the object and the 

monopulase receiver array to be 620 mm. The dataset for 

training the DNN contains 100 samples of randomly chosen 

locations of the target. In this work, for the sake of simplicity, 

only one distance between object and radar is measured and 

analyzed. However, the proposed DNN has the capability to 

correct the radar with different distances by considering the cost 

associated with collecting more data samples for training. The 

true and predicted location of the object in a 2D plane is 

recorded as four parameters: elevation and azimuth angles, and 

vertical and horizontal distances from the center of the 2D 

plane. 90% of the data set is allocated for training, while the 

remaining 10% is reserved for validation. The horizontal and 

vertical calibration in this system is carried out with one DNN 

and combined. Therefore, the two-coordination data are added 

to the input and output of the DNN, which reduces the system’s 

complexity as it calibrates the information with one DNN 

(instead of using two DNNs to predict both vertical and 

horizontal misalignments). Furthermore, misalignment in each 

coordination might be relative to the target's actual location in 

the other coordination. Accordingly, using one DNN for both 

coordination can provide more accurate results. 

III. SIMUATION AND EXPERIMNET VALIDATION

To estimate the angular information of object, the monopulse 

receiver is designed by integrating the proposed monopulse 

array with Keysight U3851A microwave kits which converts 

the RF signal to low frequency signal for sampling. The testbed 

setup is shown in Fig. 4, where it includes a 2 GHz standard 

patch antenna fed by signal source which behaves as the 

transmitter. The proposed monopulse receiver is positioned at a 

far-field distance (> 0.5m) to capture the RF signals (ΔAz, ΔEl, 

and Σ), and the received RF signal are down converted into 

baseband signals at 100MHz. The Keysight vector signal 

analyzer (VSA) is applied to analyze the angles in two 

dimensions. Specifically, the transmit antenna is moved along 

horizontal and vertical, and the angular information is measured 

and estimated using equations (10) and (11). The training 

process takes 5 minutes for a laptop using Intel® Core™ i7-

12700H Processor with 20,000 of iterations. We chose Adam 

optimizer to update the weights and biases of the DNN. After 

DNN is fully trained, the validation error is 1.2 × 10-6, 

equivalent to a position error of 0.68 mm in a 2D plane with a 

620 mm distance from the transmitter. The accuracy could be 

enhanced using either a bigger training data set or antenna array 

with larger number sub-elements that can capture more 

information of the target. Fig. 5 shows several predicted 

samples where the angular estimation after DNN (green dot) is 

close to physical location (orange dot) of target. Once the DNN 

is trained, it can provide accurate locations in a few 

milliseconds which enables real time tracking for the radar 

system. In future works, a system that can detect the target even 

when obstructed by various obstacles, such as the human body, 

could also be developed. 

IV. CONCLUSION

In this paper, we introduce low-cost monolulse radar with 

high angular estimation accuracy leveraging a deep neural 

network. A prototype testbed merged with DNN is designed to 

demonstrate the effectiveness of proposed system. Different 

from any other tracking radar, integrating DNN into low-cost 

monopulse array can realize fast training and real-time 

monitoring of angular information using small amount of data 

samples. 
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