

1 **In situ Cosmogenic ^{10}Be and ^{26}Al in Deglacial Sediment 2 Reveals Interglacial Exposure, Burial, and Limited Erosion 3 Under the Quebec-Labrador Ice Dome**

4 Peyton M. Cavnar^{1,2}, Paul R. Bierman^{1,2}, Jeremy D. Shakun³, Lee B. Corbett¹, Danielle LeBlanc³,
5 Gillian L. Galford^{1,2}, and Marc Caffee⁴

6 ¹Rubenstein School for the Environment and Natural Resources, University of Vermont, Burlington, 05405, United
7 States

8 ²Gund Institute for the Environment, Burlington, 05405, United States

9 ³Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, 02467, United States

10 ⁴PRIME Laboratory, Purdue University, West Lafayette, 47907, United States

11 *Correspondence to:* Peyton M. Cavnar (cavnar.peyton@gmail.com)

12 **Abstract.** To understand the erosivity of the eastern portion of the Laurentide Ice Sheet and the isotopic
13 characteristics of the sediment it transported, we sampled buried sand from deglacial features (eskers and deltas)
14 across eastern Canada (n=10), a landscape repeatedly covered by the Quebec-Labrador Ice Dome. We measured
15 concentrations of ^{10}Be and ^{26}Al in quartz isolated from the sediment and, correcting for sub-surface cosmic-ray
16 exposure after Holocene deglaciation, used these results to determine nuclide concentrations at the time the ice sheet
17 deposited the sediment. To determine what percentage of sediment moving through streams and rivers currently
18 draining the field area was derived from incision of thick glacial deposits as opposed to surface erosion, we used
19 ^{10}Be and ^{26}Al as tracers by collecting and analyzing modern river sand sourced from Holocene-exposed landscapes
20 (n=11).

21 We find that all ten deglacial sediment samples contain measurable concentrations of ^{10}Be and ^{26}Al
22 equivalent on average to several thousand years of surface exposure—after correction, based on sampling depth, for
23 post-deposition Holocene nuclide production. Error-weighted averages (1 standard deviation errors) of measured
24 $^{26}\text{Al}/^{10}\text{Be}$ ratios for both corrected deglacial (6.1 ± 1.2) and modern sediment samples (6.6 ± 0.5) are slightly lower
25 than the production ratio at high latitudes (7.3 ± 0.3) implying burial and preferential decay of ^{26}Al , the shorter-lived
26 nuclide. However, five deglacial samples collected closer to the center of the former Quebec-Labrador Ice Dome
27 have much lower corrected $^{26}\text{Al}/^{10}\text{Be}$ ratios (5.2 ± 0.8) than five samples collected closer to the former ice margins
28 (7.0 ± 0.7). Modern river sand contains on average about 1.75 times the concentration of both nuclides than deglacial
29 sediment corrected for Holocene exposure.

30 The ubiquitous presence of ^{10}Be and ^{26}Al in eastern Quebec deglacial sediment is consistent with many
31 older-than-expected exposure ages, reported here and by others, for bedrock outcrops and boulders once covered by
32 the Quebec-Labrador Ice Dome. Together, these data suggest that glacial erosion and sediment transport in eastern
33 Canada were insufficient to remove material containing cosmogenic nuclides produced during prior interglacial
34 periods both from at least some bedrock outcrops and from all glacially transported sediment we sampled. Near the
35 center of the Quebec-Labrador Ice Dome, ratios of $^{26}\text{Al}/^{10}\text{Be}$ are consistently below those characteristic of surface
36 production at high latitude. This suggests burial of the glacially transported sediment for at least many hundreds of

37 thousands of years and thus the possibility that ice at the center of the Quebec-Labrador Ice Dome survived many
38 interglacials when more distal ice melted away.

39

40 **1. Introduction**

41 Ice sheets are important geomorphic agents of high-latitude landscape change, and their activity reflects
42 changes of climate on a global scale. During the Last Glacial Maximum (LGM), about 20-25 ka, the Laurentide Ice
43 Sheet (LIS) was the largest body of ice in the Northern Hemisphere, covering most of Canada and the northern
44 United States (Dalton et al., 2022). Its disappearance during the latest Pleistocene and early Holocene (characterized
45 by collapse of northern Canadian ice domes) revealed a complicated paraglacial landscape: one in which cycles of
46 advance and retreat left behind deglacial landforms (both bedrock and sedimentary) while overriding, altering, and
47 eroding those created previously (Occhietti et al., 2011). Because of this, in most places it is difficult to ascertain
48 from the landscape much about LIS behavior prior to the LGM although landscape analysis in far northern Canada
49 suggests inheritance of some bedrock landscape features from prior times of glaciation (Rice et al., 2020).

50 Understanding paleo ice sheet behavior is important because it indicates how and when prior ice sheets
51 melted during warming periods and readvanced when the climate cooled. Sub-glacial erosion not only shapes
52 landscapes, but it also generates sediment that is both deposited on land and in adjacent marine basins. Such
53 glacially derived marine sediment records millions of years of ice history and when cored can be used to understand
54 past climates and ice sheet response (e.g., Larsen et al., 1994). More recently, analyses of cosmogenic nuclides in
55 marine sediment have been used to decipher the Pleistocene history of the Greenland Ice Sheet (Bierman et al.,
56 2016) and to suggest that the LIS did not completely melt away during some and perhaps many interglacials of the
57 last million years (LeBlanc et al., 2023).

58 In this paper, we use cosmogenic nuclide concentrations to study glacially derived sediment deposited
59 beneath and adjacent to the now-vanished LIS. We present concentrations of ^{10}Be and ^{26}Al measured in quartz
60 isolated from buried deglacial sediments and modern river sand in Labrador and Quebec, Canada. After correcting
61 isotopic concentrations of deglacial sediment for Holocene nuclide production, we use these data and $^{26}\text{Al}/^{10}\text{Be}$
62 ratios to infer paleo ice sheet persistence, erosion, and sediment transport efficiency, as well as to constrain the
63 source of sediment in modern rivers. These results allow us to infer LIS behavior and erosivity during the late
64 Pleistocene and improve interpretation of cosmogenic analysis of glacially-derived sediment in marine sediment
65 cores such as those of LeBlanc et al. (2023).

66

67 **2. Background**

68 We know little about the LIS's erosion and sediment transport behavior prior to the LGM because, each
69 time the ice sheet advanced, it overran and remobilized datable sedimentary and morphological evidence of previous
70 glaciations such as moraines, eskers, and ice-contact deltas. Because of this, few terrestrial records remain of pre-
71 LGM LIS behavior. In Quebec and Labrador, abundant streamlined bedrock outcrops, scoured lake basins, and
72 multiple sets of striations provide evidence for a once-erosive LIS with warm-based, fast-sliding ice (Kleman et al.,
73 1994; Roy et al., 2009; Dalton et al., 2019). However, models commonly suggest that this region featured some of

74 the most cold-based and slowest moving ice of the entire LIS during the last glaciation (Tarasov and Peltier, 2007;
75 Stokes et al., 2012; Melanson et al., 2013). Because the advancing LIS destroyed evidence of its past deposits and
76 ice margin positions, it is difficult to disentangle the timing of cross-cutting striation formation (Kleman et al.,
77 2010); thus, our knowledge about how erosive or extensive this sector of the LIS was prior to the LGM is limited
78 (Dalton et al., 2019; Batchelor et al., 2019).

79

80 2.1. Using Cosmogenic Nuclides to Study Complex Glacial and Post-Glacial Histories

81 Cosmogenic nuclides provide a means to understand paleo ice sheet behavior. These nuclides are rare
82 isotopes, such as ^{10}Be and ^{26}Al , created when cosmic radiation bombards minerals at and near Earth's surface
83 including weathering-resistant quartz (Gosse & Phillips, 2001). Most nuclide production occurs within several
84 meters of the surface via spallation reactions between neutrons and target elements in rock. A small amount of
85 nuclide production is caused by smaller particles, muons, but because muons have low reactivity with matter, they
86 can penetrate far more deeply below the surface than neutrons (Braucher et al., 2011). At depths below several
87 meters, muons are responsible for most subsurface production of cosmogenic nuclides (Braucher et al., 2003).

88 Because ^{10}Be and ^{26}Al are created in both rock and glacially deposited sediment, we can analyze their
89 concentrations to infer the depth of glacial erosion, the persistence of glacial sediment on the landscape, and set
90 limits on the extent and timing of sediment and rock burial by ice sheets (e.g., Briner et al., 2016; Bierman et al.,
91 2016; Marsella et al., 2000; Corbett et al., 2016b; Stroeven et al., 2002; Staiger et al., 2006; Harbor et al., 2006). The
92 half-lives of ^{10}Be and ^{26}Al differ by a factor of two (~1.36 and ~0.73 My, respectively) and hence they decay at
93 different rates. This dual isotope approach allows for a more detailed understanding of glacial presence over time
94 (burial during which time nuclide production ceases) and the persistence of surficial materials (exposure when
95 nuclide production occurs) (e.g., Nishiizumi et al., 2007; Nishiizumi, 2004; Nishiizumi et al., 1991; Bierman et al.,
96 1999).

97 *In situ* ratios of $^{26}\text{Al}/^{10}\text{Be}$ at production are 7.3 ± 0.3 (1σ) in high-latitude regions (Corbett et al., 2017).
98 When a landscape is covered by a thick layer of ice such as the LIS, or if sediment is stored in deposits deep enough
99 to prevent most cosmic ray penetration, production of *in situ* ^{26}Al and ^{10}Be slows or stops. As isotopes produced
100 during initial exposure decay, the $^{26}\text{Al}/^{10}\text{Be}$ ratio falls (Klein et al., 1986; Bierman et al., 1999; Balco et al., 2005).
101 This change becomes reliably measurable only after several hundred thousand years of burial. Re-exposure to
102 cosmic rays at or near Earth's surface will raise the $^{26}\text{Al}/^{10}\text{Be}$ ratio back toward that at production. However, if
103 sediment is buried meters below the surface during interglacial periods (such as in deglacial deltas, coastal bluffs, or
104 eskers), $^{26}\text{Al}/^{10}\text{Be}$ ratios depressed by LIS ice cover and/or storage in sedimentary deposits can be preserved (Corbett
105 et al., 2016b; Bierman et al., 2016; Balco et al., 2005). Conversely, sediment, if it is sourced close to the surface,
106 will have a higher $^{26}\text{Al}/^{10}\text{Be}$ ratio because of recent exposure to cosmic radiation (Nelson et al., 2014).

107 Concentrations of ^{10}Be and ^{26}Al in glacial sediment reflect the history of that sediment and of the ice sheet
108 that produced it over time. Long interglacial exposures, thin sediment cover, and bedrock that is resistant to erosion
109 will allow high concentrations of nuclides to accumulate – for example, in central North America (Balco et al.,
110 2005). Persistent ice cover, high rates and depths of glacial erosion, and efficient sediment transport by ice will

111 lower nuclide concentrations in glacially derived sediment, such as in southern and western Greenland (Nelson et
112 al., 2014).

113

114 **2.2. Laurentide Ice Sheet History and Deglaciation in Eastern Canada**

115 For most of its recent inception (~118 ka) to final deglaciation (~8 ka), the LIS was characterized by three
116 major ice domes, regions of especially thick, outflowing ice (~4 km in some places): Foxe Baffin Dome, Keewatin
117 Dome, and the Quebec-Labrador Dome (Stokes et al., 2012; Dalton et al., 2022). Modeling suggests the formation
118 of the Foxe Baffin Dome first (~118 ka), with ice growth then progressing southward to create the Keewatin Dome
119 (~116 ka), and later the nucleus of the Quebec-Labrador Ice Dome (~114 ka) (Stokes et al., 2012). These domes
120 coalesced into a single ice body and separated again as the LIS waxed and waned during its overall buildup through
121 the last glacial cycle (Stokes et al., 2012; Dalton et al., 2022).

122 Changes in LIS size are thought to have tracked the global marine oxygen isotope record, though
123 uncertainties in ice volume and extent through time reflect the paucity of geologic constraints. For instance, the
124 majority of Canada may have been ice-covered with the LIS reaching 70% of its LGM extent as early as Marine
125 Oxygen Isotope (MIS) stage 5d (~110 ka) or not until MIS 4 (~60 ka) (Dalton et al., 2022). In contrast, the deglacial
126 retreat of the LIS in eastern Quebec following the LGM is well constrained (Dalton et al., 2022; Ullman et al., 2016;
127 Couette et al., 2023) (Figure 1).

128 It is debated how extensive and persistent the LIS was during Pleistocene interglacials (Zhou and
129 McManus, 2023; LeBlanc et al. 2023). Cosmogenic nuclides in ice-rafted debris (IRD) from LIS icebergs
130 discharged during the last glacial period have been used to infer the burial and exposure history of glacial sediment
131 prior to its transport to the ocean (LeBlanc et al., 2023). These IRD $^{26}\text{Al}/^{10}\text{Be}$ ratios averaged 4.7 ± 0.8 (LeBlanc et
132 al., 2023), which is much lower than the high latitude production value of 7.3 ± 0.3 (Corbett et al., 2017). Such
133 depressed ratios require long (>million year) periods of burial (presumably by ice) throughout the Pleistocene
134 as interglacials with little to no ice would have yielded IRD with higher ratios from near-surface exposure (LeBlanc et
135 al., 2023). LeBlanc et al.'s cosmogenic data challenge the commonly held assumption that all Pleistocene
136 interglacials resulted in fully ice-free conditions in eastern Canada for at least thousands of years.

137 A similar debate concerns the magnitude of LIS retreat during interstadials within the last glacial period. A
138 combination of luminescence dating, ^{14}C dating, and cosmogenic nuclides (^{10}Be and ^{26}Al), along with evidence of a
139 marine incursion into Hudson Bay, suggest that the portion of the LIS over Hudson Bay deglaciated during MIS 3
140 (Dalton et al., 2019; Miller and Andrews, 2019). However, the reliability of these ages has been questioned and the
141 timing of carbonate-rich Heinrich events H5 and H4 suggest that an intact Hudson Strait ice stream existed during
142 MIS 3 (Miller & Andrews, 2019). With this debate unsettled, it remains uncertain how much the LIS ice margin
143 retreated during interstadial periods.

144 Other studies have investigated LIS sensitivity to climate shifts on even finer time scales during the last
145 deglaciation. For instance, there is evidence for ties between regional deglaciation and climate fluctuations based on
146 ^{37}Be exposure ages in eastern Quebec and Labrador (Couette et al., 2023). These data are interpreted as
147 indicating five still-stands or re-advances of the eastern LIS margin (~12.9 ka, ~11.5 ka, ~10.4 ka, ~9.3 ka, and

148 ~8.4-8.2 ka) before its final collapse (Couette et al., 2023). These periods correspond with abrupt cooling events
149 recorded in Greenland ice cores, likely triggered by meltwater discharge from the LIS (Couette et al., 2023). These
150 recurring cold episodes may have helped delay final deglaciation of the Quebec-Labrador Ice Dome until ~4 ka after
151 peak Holocene insolation and CO₂ forcing (Ullman et al., 2016), making it a part of the LIS that lasted longer than
152 most after the LGM (Dalton et al., 2020).

153

154 **2.3. Cosmogenic Nuclides as Tracers of Sediment Sourcing**

155 Cosmogenic nuclides have been used to identify sediment sources for both modern and paleo ice sheets.
156 For example, Nelson et al., (2014) sampled rivers in the deglaciated areas of coastal Greenland. They found that
157 ¹⁰Be concentrations in Greenland sediment sourced from the ice sheet ($6,500 \pm 4,100$ atoms g⁻¹) were significantly
158 lower than sediment sourced from deglaciated terrain ($14,900 \pm 8,600$ atoms g⁻¹, Nelson et al., 2014). This
159 difference can be explained by contrasting exposure histories. Outboard of the ice margin ¹⁰Be concentrations in
160 sediment increased when exposed to cosmic radiation since Holocene deglaciation while concentrations remained
161 low under the ice sheet where production of ¹⁰Be is minimal. Sediments sourced from a mix of deglaciated and
162 glaciated areas have ¹⁰Be concentrations that are much closer to those of the glacial than deglacial terrains. These
163 results therefore suggest most sediment moving through river systems in glacial and paraglacial landscapes in
164 Greenland comes from under the glacier as opposed to the adjacent deglaciated areas.

165 In southwest Minnesota and eastern South Dakota, a similar approach was used to determine sediment
166 sourcing in a deglaciated part of the midwestern United States (Balco et al., 2005). They inferred that modern river
167 sediments were sourced primarily from rapid erosion of riverbanks that exposed glacial deposits because of similar
168 ¹⁰Be and ²⁶Al concentrations (~60,000 and 270,000 atoms g⁻¹, respectively) and much lower than production
169 ²⁶Al/¹⁰Be in both (4.70 ± 0.29 ; n=9). If the modern sediment had come from slowly-eroding surfaces exposed to
170 cosmic radiation after deglaciation, it would have had nuclide concentrations higher than deglacial sediment and
171 higher ²⁶Al/¹⁰Be.

172

173 **2.4. Assessing the Erosivity of Ice Sheets**

174 Previously-published ¹⁰Be concentrations in bedrock and boulders within the historical range of the
175 Quebec-Labrador Ice Dome reveal a varied pattern of erosion. Some areas were deeply eroded while others show
176 evidence for inherited ¹⁰Be and less effective subglacial erosion (Ullman et al., 2016; Couette et al., 2023). For
177 example, of the five boulders sampled by Couette et al. (2023) from the early Holocene Paradise Moraine in eastern
178 Labrador, two have significant and obvious inheritance of nuclides from prior exposure with ¹⁰Be ages >20 ka, while
179 the remaining three inaccurately date the moraine as older than a margin further from the center of the ice dome.
180 Ullman et al. (2016) likewise found anomalously high ¹⁰Be concentrations in 10 out of 65 boulders along transects
181 stretching eastward and southward from the center of the Quebec-Labrador Dome to the coast.

182

183 Comparable results have been found near the margin of other ice sheets. In western Norway, glacial erratic
184 boulders on the island of Utsira, near the former margin of the Scandinavian Ice Sheet, have ¹⁰Be ages that are >10%
too old (~20 ka) based on independent radiocarbon constraints on the timing of deglaciation (Briner et al., 2016).

185 The uniform concentration of inherited ^{10}Be among all samples suggests that the elevated nuclide concentrations are
186 the product of muon-induced production at depth rather than surface exposure where the sides and the bottom of
187 boulders would have different concentrations than the top (Briner et al., 2016). Assuming brief ice cover only during
188 maximum glacial phases, long interglacial exposure times at Utsira coupled with ineffective glacial erosion helped
189 create and preserve this inherited muon-produced ^{10}Be .

190 Along Greenland's western ice margin, most subglacial cobbles (72 out of 86) sampled had an extremely
191 low concentration of ^{10}Be (median = 1.0×10^3 atoms g $^{-1}$), indicative of deep subglacial erosion and/or minimal prior
192 surface exposure (Corbett et al., 2021). But, a subset of samples had higher ^{10}Be concentrations ($> 3 \times 10^3$ atoms g $^{-1}$,
193 n = 14), suggesting sourcing from minimally erosive, cold-based regions where bedrock and sediment still contained
194 ^{10}Be accumulated during prior ice-free periods (Corbett et al., 2021). Halsted et al. (2023) and Colgan et al. (2002)
195 found similar inheritance of ^{10}Be in boulders and bedrock sampled near the former LGM margin of the LIS and
196 attributed higher than expected concentrations of ^{10}Be to minimal erosion during the brief time the ice occupied the
197 marginal position.

198

199 3. Study Site

200 The Quebec-Labrador Ice Dome occupied the eastern subarctic Canadian Shield, where bedrock consists of
201 mostly Proterozoic quartzofeldspathic gneisses and granites (Hynes & Rivers, 2010). Soils are thin and punctuated
202 by prominent bedrock outcrops and large glacial erratics (Ullman et al., 2016). Central and southern Quebec-
203 Labrador also includes multiple moraine systems that track the final deglaciation of the ice dome into the early
204 Holocene (Ullman et al. 2016). There are eskers and substantial ice contact deltas where the ice front during
205 deglaciation met a body of standing water (Liverman, 1997; Storrar et al., 2013). The paraglacial landscape is still
206 experiencing isostatic glacial rebound, with greater changes in elevation since deglaciation towards the former dome
207 center (Andrews & Tyler, 1977). Prominent isostatic rebound has occurred near James Bay and southern Hudson
208 Bay, with ~ 300 m of rebound compared to ~ 100 m along coastal eastern Labrador (Andrews & Tyler, 1977).

209 Notable geographic features of this region include the St. Lawrence River, the Churchill River, and the
210 Manicouagan Reservoir, an annular lake north of the Gulf of St. Lawrence formed in a depression caused by a
211 meteor impact (Spray et al., 1998). The St. Lawrence River flows from southwest to northeast and is located
212 southeast of the Quebec-Labrador Ice Dome's center (Süfke et al., 2022). During final LIS deglaciation, the St.
213 Lawrence River served as one of the major meltwater drainage systems (Süfke et al., 2022). The Churchill River
214 flows east from the former center of the Quebec-Labrador Dome, draining into Lake Melville and then the Atlantic
215 Ocean (Canadian Geographic, n.d.).

216 Eastern Canada is dominated by boreal spruce forests, sedges, and muskegs (shallow bogs covered in moss)
217 (Payette et al., 1989). This sub-arctic ecosystem is prone to burning during arid periods in the summer, with a
218 recorded fire history stretching back to the 1950's (Payette et al., 1989). Northern Quebec and Labrador are
219 classified under the Dfc climate zone (cool continental climate/subarctic) according to the Koppen climate
220 classification system (Amani et al., 2019; Beck et al., 2018). During winter, ground-based measurements record a

221 mean of ~158 millimeters (mm) of snow water equivalent (SWE) for eastern Canadian boreal forests (Larue et al.,
222 2017).

223

224 **4. Methods & Materials**

225

226 **4.1. Study Design**

227 Our primary goal is to measure and understand the concentrations of cosmogenic nuclides in sediment
228 moved by the LIS in eastern Canada along a 1000-km transect (Figure 1). To constrain nuclide concentrations in
229 materials deposited by the LIS (Table 1), we sampled deglacial sediment deposits (n=10) including ice-contact
230 deltas and eskers as well as contemporary river sediment (Figure 2). We also collected modern river sediment
231 samples (n=11) from main river trunks (St. Lawrence and Churchill River) as well as smaller tributaries to compare
232 their ^{10}Be and ^{26}Al concentrations and $^{26}\text{Al}/^{10}\text{Be}$ ratios to those of deglacial samples to determine the source of
233 sediment moving through contemporary streams and rivers (Table 1). We collected one sample from a bedrock
234 outcrop. Our data provide context for measurements made in sand-sized sediment of glacial and interglacial age
235 present in marine sediment cores collected offshore (LeBlanc et al. 2023).

236

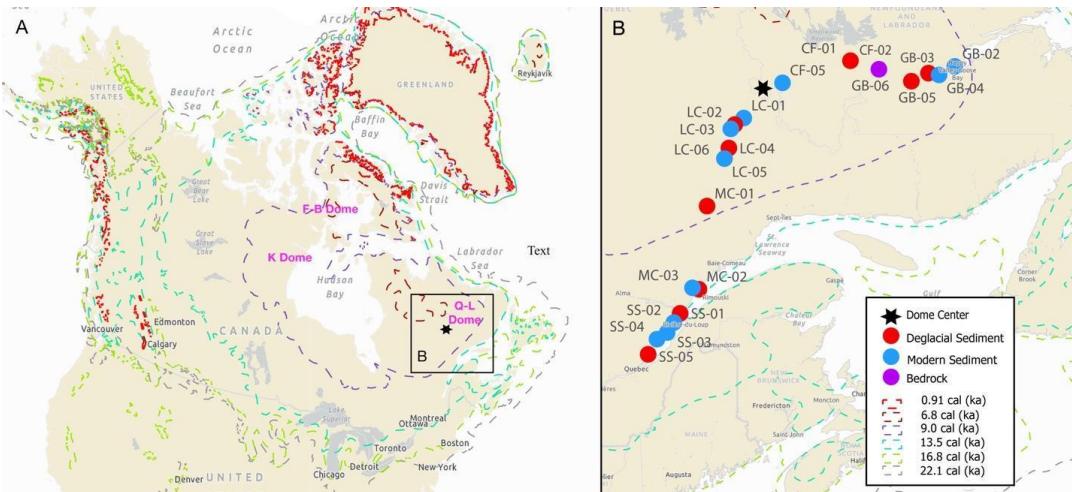
237 **4.2. Field Methods**

238 We collected samples along a transect running westward from Goose Bay, Labrador through the former
239 center of the Quebec-Labrador Ice Dome at Labrador City and then southward to the St. Lawrence River near
240 Quebec City (Figure 1). We collected sediment from deltas and eskers on clean faces in gravel pits or along river
241 bluffs from 2 to 30 meters (m) below the upper surface to reduce the effect nuclide production following
242 deglaciation. We used shovels to dig ~0.3 m into the side of the landform before collecting ~500 g of sand. We
243 collected one exposed bedrock sample (Table 1). Modern river sediment samples were collected along shorelines
244 upstream of any nearby development.

245

246 **Table 1. Sample Location and Type**

Sample Name	Type ^a	Latitude ^b (°N)	Longitude ^b (°W)	Sample Site Elevation ^b (m)
CF-02	Deglacial Sediment	53.5077	-63.9545	167
LC-02	Deglacial Sediment	52.2011	-67.8722	537
LC-04	Deglacial Sediment	51.7102	-68.0719	440
LC-05	Deglacial Sediment	51.4881	-68.2192	391
MC-01	Deglacial Sediment	50.4748	-68.8101	500


MC-02	Deglacial Sediment	48.6452	-69.0854	10
GB-03	Deglacial Sediment	53.2572	-60.7848	36
GB-05	Deglacial Sediment	53.0922	-61.8920	402
SS-01	Deglacial Sediment	48.1030	-69.7213	10
SS-05	Deglacial Sediment	47.1669	-70.8047	307
CF-01	Modern River Sediment	53.5060	-63.9585	126
CF-05	Modern River Sediment	53.0595	-66.2555	527
LC-01	Modern River Sediment	52.3365	-67.5671	533
LC-03	Modern River Sediment	52.1107	-68.0073	645
LC-06	Modern River Sediment	51.4882	-68.2229	401
GB-02	Modern River Sediment	53.3934	-60.4229	2
GB-04	Modern River Sediment	53.2201	-60.9549	210
MC-03	Modern River Sediment	48.6779	-69.3045	61
SS-02	Modern River Sediment	47.8942	-69.9368	128
SS-03	Modern River Sediment	47.6665	-70.1589	3
SS-04	Modern River Sediment	47.5157	-70.5066	25
GB-06	Bedrock	53.3351	-62.9912	484

247 ^aDeglacial sediment is sand deposited from the LIS as it was retreating. Modern river sediment was collected
248 from rivers and streams.

249 ^b Location and elevation were measured in the field using a Garmin eTrex 20 GPS
250

251

252

253

Figure 1. Map of field area. A. Overview of North America with field area demarcated by black outline. B. Sampling locations are color coded by type and with sample ID. The black star represents the center of the Quebec-Labrador Ice Dome, estimated to be close to modern day Labrador City (Ullman et al., 2016). Dotted lines represent LIS margins provided by Dalton et al. (2020). Different colored lines each correspond to a retreat isochron with calibrated radiocarbon age in ka (see legend).

254

255

256

257

258

259

260 **Figure 2.** Photographs of representative field sites. A. Modern river sediment at MC-03. B. Deglacial sediment at
261 SS-05. C. Bedrock outcrop at GB-06. D. Deglacial sediment at MC-01.

262

263 **4.3 Laboratory Methods**

264 To isolate and purify quartz for cosmogenic nuclide analysis, we used a series of physical and chemical
265 processes (Kohl & Nishiizumi, 1992). We sieved material to between 250 and 850 μm for further processing. For
266 each sample, we performed two 24-hour 6 N hydrochloric acid etches in heated ultrasonic baths to remove grain
267 coatings. We then used dilute (1%) hydrofluoric and nitric acid etches for three 24-hour periods after which we
268 sonicated samples in 0.5% HF and HNO_3 for a minimum of two weeks (Kohl & Nishiizumi, 1992). We evaluated
269 the purity of etched samples using inductively coupled plasma spectrometry optical emission (ICP-OES) after which
270 impure samples were re-etched until they were sufficiently pure.

271

272 We extracted beryllium and aluminum from the purified quartz samples (17.3 –22.2 g, $n = 22$) in the
273 National Science Foundation/ University of Vermont Community Cosmogenic Facility using methods described in
274 Corbett et al. (2016). Samples were prepared in two separate batches, each of which included a fully processed
275 blank. We spiked the samples with $\sim 250 \mu\text{g}$ ^{9}Be using a beryl carrier made in the Community Cosmogenic Facility
276 with a Be concentration of $348 \mu\text{g mL}^{-1}$ (Table 4a). We spiked samples with SPEX ICP Al standard (1000 ppm) as
needed based on their quantity of native Al, ensuring at least 1500 μg of total Al in every sample.

277 We quantified total Al in the samples by ICP-OES immediately following sample digestion. Following
278 standard procedures (Corbett et al., 2016), we removed replicate aliquots from the samples by mass (representing
279 ~2% and ~4% of the sample, respectively), added 25 μL H_2SO_4 to each, evaporated the HF, then diluted the residual
280 H_2SO_4 droplets by mass with a 0.25% H_2SO_4 solution spiked with Y as an internal standard. Purdue Rare Isotope
281 Measurement Laboratory performed accelerator mass spectrometry analysis. For $^{10}\text{Be}/^{9}\text{Be}$, measured ratios were
282 normalized to primary standard 07KNSTD3110 with a ratio of 2850×10^{-15} (Nishiizumi et al., 2007). For $^{26}\text{Al}/^{27}\text{Al}$,
283 analyses were normalized to primary standard KNSTD with a ratio of 1.818×10^{-12} (Nishiizumi et al., 2004).

284

285 4.4. Data Reduction

286 We used the known concentration of ^{9}Be added as carrier, along with the measured isotopic ratio and quartz
287 mass to calculate the concentration of ^{10}Be in each sample. Because of the native ^{27}Al within the samples, the
288 concentration of ^{27}Al measured using ICP-OES after quartz dissolution was used to calculate the concentration of
289 ^{26}Al . We subtracted the mean extraction process blank ratios of $^{10}\text{Be}/^{9}\text{Be}$ ($(7.41 \pm 2.81) \times 10^{-16}$; $n = 2$) and $^{26}\text{Al}/^{27}\text{Al}$
290 ($(5.39 \pm 0.71) \times 10^{-16}$; $n = 2$) from the measured ratios and propagated the uncertainty in quadrature (Table 2). We
291 used a 2-standard deviation (SD) threshold for detectability; that is, if twice the analytical uncertainty exceeded the
292 measured ratio, then we considered the sample to be below detection limits. This provides a 95% confidence that the
293 isotopic ratios and concentrations we report are finite. We use the same value ($\alpha = 0.05$) for all statistical tests
294 we perform. We used both Wilcoxon rank-sum tests (due to the non-normal distribution of nuclide concentrations in
295 modern sediment samples) and Tukey HSD tests to investigate significant differences between sample groups.

296

297 **Table 2. Measured Blank Isotope Ratio**

Name	Batch Number	Al Cathode Number	Be Cathode Number	AMS $^{10}\text{Be}/^{9}\text{Be}$ Ratio	AMS $^{10}\text{Be}/^{9}\text{Be}$ Uncertainty	AMS $^{26}\text{Al}/^{27}\text{Al}$ Ratio	AMS $^{26}\text{Al}/^{27}\text{Al}$ Uncertainty
BLK	745	169457	169433	5.42×10^{-16}	2.71×10^{-16}	4.89×10^{-16}	7.04×10^{-16}
BLK	746	169470	169446	9.39×10^{-16}	5.77×10^{-16}	5.89×10^{-16}	8.49×10^{-16}

298 Both ^{26}Al blanks had 1 rare isotope count accounting for the large uncertainty.

299

300 4.5. Holocene Exposure Correction

301 For deglacial samples, we calculated the concentration of nuclides attributable to Holocene exposure. To do
302 this, we used the online exposure age calculator formerly known as CRONUS (constant production rate model,
303 version 3.0.2, constants 2020-08-26) to determine the surface production rate (atoms $\text{g}^{-1} \text{yr}^{-1}$) of ^{10}Be and ^{26}Al for
304 both muons (P_μ) and spallation (P_s) at each sample site (Balco et al., 2008). The production rate at depth was then
305 estimated using an attenuation length of 165 g cm^{-2} for spallation (A_s) and 1400 g cm^{-2} for muons (A_μ). We assumed
306 a sediment density (ρ) of 1.7 g/cm^3 . This allowed us to calculate the production of ^{10}Be and ^{26}Al (H in atoms g^{-1}) at
307 each sampling depth (D in cm) since deglaciation (A in yr) taking deglaciation age estimates for each sample site
308 from Ullman et al.(2016) and Dalton et al.(2020) and using equation 1.

309

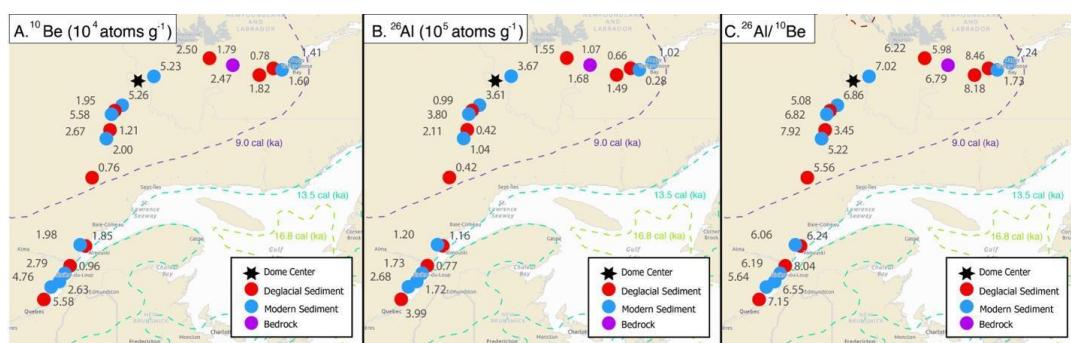
310
$$H = P_s \cdot 1/\exp\left(\frac{D \cdot \rho}{\Lambda_s}\right) \cdot A + P_\mu \cdot 1/\exp\left(\frac{D \cdot \rho}{\Lambda_\mu}\right) \cdot A \quad (1)$$

311

 312 We checked how appropriate our apparent muonogenic attenuation factor was using the CRONUS
 313 implementation of Heisinger et al. (2002) (code P_mu_total.m) for sea level—yielding < 1% difference from our
 314 original calculations. We estimated 1σ uncertainties in the concentration of nuclides produced during the Holocene
 315 due to uncertainties in our sample depths (we use half our quoted uncertainty, which we consider a 95% confidence
 316 interval), and combined these in quadrature with measurement uncertainties (Table 3). To correct for Holocene
 317 exposure in our bedrock sample (GB-06), we multiplied the deglaciation age in this area (7.6 ka, from Ullman et
 318 al.'s CL3 transect) by the CRONUS-derived production rate at this site to estimate the concentration of nuclides
 319 produced following deglaciation. This concentration was subtracted from the sample's ^{10}Be concentration to
 320 calculate the concentration of inherited nuclides.
 321
322 **Table 3. Calculations for Holocene Exposure-Corrected Concentrations**

Sample Name	Deglaciation Age (yr)	Sample Depth (cm)	Depth Uncertainty (cm)	^{10}Be Muon Production Rate (atoms g $^{-1}$ y $^{-1}$)	^{26}Al Muon Production Rate (atoms g $^{-1}$ y $^{-1}$)	^{10}Be Spallation Rate (atoms g $^{-1}$ y $^{-1}$)	^{26}Al Spallation Rate (atoms g $^{-1}$ y $^{-1}$)	Total ^{10}Be production rate at depth (atoms g $^{-1}$ y $^{-1}$)	Total ^{26}Al production rate at depth (atoms g $^{-1}$ y $^{-1}$)
CF-02	7500	800	-200, +200	0.193	1.612	5.49	37.05	0.0745	0.6200
LC-02	7700	250	-50, +50	0.220	1.838	7.80	52.63	0.7559	5.3617
LC-04	7700	200	-50, +50	0.212	1.774	7.11	47.98	1.0719	7.5030
LC-05	7700	250	-50, +50	0.209	1.743	6.78	45.76	0.6702	4.7688
MC-01	8200	180	-30, +20	0.217	1.811	7.49	50.50	1.3468	9.3599
MC-02	12800	2000	-200, +200	0.181	1.513	4.54	30.61	0.0160	0.1334
GB-03	8000	700	-200, +200	0.185	1.540	4.82	32.52	0.0826	0.6822
GB-05	8000	300	-100, +100	0.211	1.759	6.96	46.94	0.4630	3.3559
SS-01	12800	550	-150, +50	0.181	1.511	4.50	30.39	0.1084	0.8800
SS-05	12800	3000	-500, +500	0.201	1.681	5.99	40.44	0.0053	0.0440

323


 324 Deglaciation ages estimated based on proximity to dated moraine systems in Ullman et al., 2016 and Dalton et al., 2020 isochrons
 325 (see methods). Sample depth estimated in the field. Depth uncertainty estimated from photos and field journal and considered
 326 95% confidence interval. Muonogenic and spallation surface production rates estimated from CRONUS online calculator using
 327 sample location data.

328

329 5. Results

330 ^{10}Be and ^{26}Al were present above detection limits in 21 of 22 samples we analyzed, the one exception being
331 the ^{26}Al measurement for sample GB-04, a modern stream sample (Tables 4 and 5, Figure 3). There is no significant
332 difference between the measured concentrations of ^{10}Be for modern river sediment (mean and 1 SD = (3.31 ± 1.57)
333 $\times 10^4 \text{ atoms g}^{-1}$) and deglacial sediment ($(2.25 \pm 1.30) \times 10^4 \text{ atoms g}^{-1}$; Wilcoxon rank-sum test, $p = 0.11$). Similarly,
334 there is no significant difference between the concentrations of ^{26}Al for modern ($(2.12 \pm 1.18) \times 10^5 \text{ atoms g}^{-1}$) and
335 deglacial sediment ($(1.47 \pm 0.94) \times 10^5 \text{ atoms g}^{-1}$, $p = 0.13$). The single bedrock sample (GB-06) had the highest
336 concentration of ^{10}Be ($(7.33 \pm 0.39) \times 10^4 \text{ atoms g}^{-1}$) and ^{26}Al ($(5.91 \pm 0.29) \times 10^5 \text{ atoms g}^{-1}$) that we measured.
337

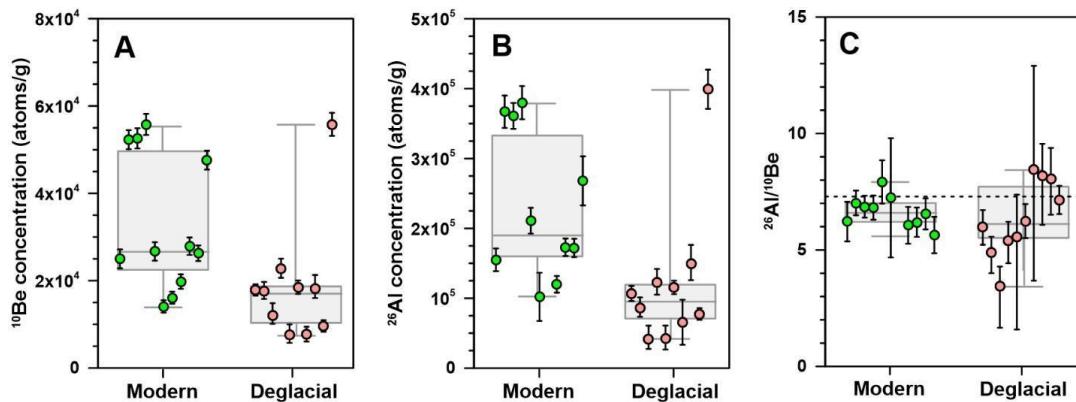
338

339 **Figure 3.** Maps showing isotopic data. A. Concentration of ^{10}Be . B. Concentration of ^{26}Al . C. $^{26}\text{Al}/^{10}\text{Be}$ ratio.
340 Measured concentration plotted for modern sediment and bedrock and Holocene exposure-corrected concentration
341 plotted for deglacial sediment. Sample identification shown in Figure 1B. Data in Tables 4 and 5. Sample type
342 shown in key by color.

343

344 5.1. ^{10}Be and ^{26}Al Concentrations Corrected for Holocene Exposure

345 Using Holocene exposure-corrected data changes the results of statistical tests. With ^{10}Be , there was a
346 significant difference between the concentrations of deglacial (mean and 1SD = $(1.88 \pm 1.40) \times 10^4 \text{ atoms g}^{-1}$) and
347 modern ($(3.31 \pm 1.57) \times 10^4 \text{ atoms g}^{-1}$) samples ($p = 0.02$) (Figure 4A). For ^{26}Al , the concentration of deglacial
348 ($(1.21 \pm 1.04) \times 10^5 \text{ atoms g}^{-1}$) and modern ($(2.12 \pm 1.18) \times 10^5 \text{ atoms g}^{-1}$) samples are also significantly different (p
349 = 0.04) (Figure 4B). The modern samples have more ^{10}Be concentration variability, with an interquartile range
350 (IQR) of $27.6 \times 10^3 \text{ atoms g}^{-1}$ compared to the IQR of $8.2 \times 10^3 \text{ atoms g}^{-1}$ for Holocene exposure-corrected deglacial
351 samples. The bedrock sample (GB-06) contains $2.17 \times 10^4 \text{ atoms g}^{-1}$ of inherited ^{10}Be and $2.40 \times 10^5 \text{ atoms g}^{-1}$ of
352 inherited ^{26}Al .


353

354 5.2. $^{26}\text{Al}/^{10}\text{Be}$ Ratios

355 Using ^{10}Be and ^{26}Al concentrations from deglacial samples corrected for Holocene nuclide production, the
356 error-weighted mean and standard deviation of $^{26}\text{Al}/^{10}\text{Be}$ ratios for deglacial and modern samples are 6.1 ± 1.2 and
357 6.6 ± 0.5 , respectively (Figure 4C). Both a Wilcoxon rank-sum test ($p = 0.63$) and a Tukey HSD test ($p = 0.84$)

358 confirm that there is no significant difference between modern and deglacial sample $^{26}\text{Al}/^{10}\text{Be}$ ratios (Holocene
359 corrected). The mean value for both is lower than the nominal production ratio at high latitudes. The ratios for
360 deglacial samples are more variable (IQR = 2.37) compared to modern samples (IQR = 0.78). There is a significant,
361 positive linear trend for deglacial samples, with ratio values increasing with distance from the center of the Quebec-
362 Labrador Ice Dome ($r^2 = 0.45, p = 0.03$) (Figure 5). The five samples closest to the center of the ice dome (5.2 ± 0.8)
363 have lower error-weighted average $^{26}\text{Al}/^{10}\text{Be}$ ratios than samples farther away (7.0 ± 0.7 , Table 6 and Figure 6C).
364 Modern samples, in contrast, exhibit no spatial trend in $^{26}\text{Al}/^{10}\text{Be}$ ratios. Tukey HSD tests (one including and
365 excluding sample LC-04) show a significant difference between $^{26}\text{Al}/^{10}\text{Be}$ ratios in deglacial samples closest to and
366 further from the center of the ice dome (both tests: $p = 0.00$).

367
368
369 **Figure 4. Comparison of modern and Holocene-exposure-corrected deglacial samples.** (A) ^{10}Be concentrations,
370 (B) ^{26}Al concentrations, and (C) $^{26}\text{Al}/^{10}\text{Be}$ ratios for deglacial (Holocene-corrected) and modern samples. The
371 dashed line in panel C indicates the nominal production ratio (7.3) at high latitudes from Corbett et al. (2017). Points
372 represent individual samples with 1σ propagated errors for modern (green) and deglacial (pink) samples. Box and
373 whisker plots are shown for each dataset with whiskers going to the smallest and highest values. The box extends
374 from the 25th to the 75th percentiles. The line in the middle of each box is the median.

375 **Table 4. Measured Isotopic Data for ^{10}Be**

Sample Name	Type	Quartz Mass (g)	Be Carrier Solution Mass (g)	Uncorrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio ^a	Uncorrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio Uncertainty ^a	Background Corrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio	Background Corrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio Uncertainty	Measured ^{10}Be (atoms g ⁻¹)	^{10}Be Uncertainty (atoms g ⁻¹)	Cathode #
CF-02	Deglacial	20.46	0.7353	2.31×10^{-14}	1.55×10^{15}	2.23×10^{-14}	1.58×10^{15}	1.84×10^4	1.30×10^3	169432
LC-02	Deglacial	21.95	0.7364	3.11×10^{-14}	1.87×10^{15}	3.04×10^{-14}	1.89×10^{15}	2.34×10^4	1.45×10^3	169436
LC-04	Deglacial	19.74	0.7348	2.45×10^{-14}	1.54×10^{15}	2.38×10^{-14}	1.57×10^{15}	2.04×10^4	1.34×10^3	169438
LC-05	Deglacial	19.29	0.7348	3.26×10^{-14}	2.13×10^{15}	3.18×10^{-14}	2.15×10^{15}	2.79×10^4	1.88×10^3	169439
MC-01	Deglacial	19.60	0.7342	2.24×10^{-14}	1.85×10^{15}	2.17×10^{-14}	1.88×10^{15}	1.86×10^4	1.61×10^3	169441
MC-02	Deglacial	18.75	0.7319	2.16×10^{-14}	1.69×10^{15}	2.09×10^{-14}	1.71×10^{15}	1.87×10^4	1.54×10^3	169442
GB-03	Deglacial	9.38	0.7353	5.42×10^{-15}	8.92E-16	4.68×10^{-15}	9.35E-16	8.42×10^3	1.68×10^3	169444
GB-05	Deglacial	20.10	0.7310	2.70×10^{-14}	2.37×10^{15}	2.62×10^{-14}	2.39×10^{15}	2.19×10^4	1.99×10^3	169447
SS-01	Deglacial	19.70	0.7337	1.36×10^{-14}	1.48×10^{15}	1.28×10^{-14}	1.50×10^{15}	1.10×10^4	1.29×10^3	169450
SS-05	Deglacial	20.88	0.7308	7.02×10^{-14}	3.26×10^{15}	6.95×10^{-14}	3.28×10^{15}	5.59×10^4	2.63×10^3	169454
CF-01	Modern	18.52	0.7331	2.82×10^{-14}	2.37×10^{15}	2.75×10^{-14}	2.39×10^{15}	2.50×10^4	2.17×10^3	169431
CF-05	Modern	20.92	0.7348	6.55×10^{-14}	2.69×10^{15}	6.48×10^{-14}	2.71×10^{15}	5.23×10^4	2.18×10^3	169434
LC-01	Modern	20.41	0.7330	6.44×10^{-14}	2.81×10^{15}	6.37×10^{-14}	2.83×10^{15}	5.26×10^4	2.33×10^3	169435
LC-03	Modern	20.50	0.7307	6.88×10^{-14}	2.93×10^{15}	6.81×10^{-14}	2.94×10^{15}	5.58×10^4	2.41×10^3	169437
LC-06	Modern	19.44	0.7345	3.14×10^{-14}	2.42×10^{15}	3.07×10^{-14}	2.44×10^{15}	2.67×10^4	2.12×10^3	169440
GB-02	Modern	19.96	0.7311	1.75×10^{-14}	1.65×10^{15}	1.68×10^{-14}	1.67×10^{15}	1.41×10^4	1.41×10^3	169443
GB-04	Modern	17.34	0.7362	1.72×10^{-14}	1.39×10^{15}	1.65×10^{-14}	1.42×10^{15}	1.61×10^4	1.39×10^3	169445
MC-03	Modern	20.73	0.7304	2.51×10^{-14}	2.03×10^{15}	2.44×10^{-14}	2.05×10^{15}	1.98×10^4	1.66×10^3	169449
SS-02	Modern	20.37	0.7345	3.44×10^{-14}	2.41×10^{15}	3.37×10^{-14}	2.43×10^{15}	2.79×10^4	2.01×10^3	169451
SS-03	Modern	20.81	0.7349	3.31×10^{-14}	2.17×10^{15}	3.24×10^{-14}	2.19×10^{15}	2.63×10^4	1.78×10^3	169452
SS-04	Modern	22.15	0.7349	6.31×10^{-14}	2.82×10^{15}	6.24×10^{-14}	2.83×10^{15}	4.76×10^4	2.16×10^3	169453

GB-06	Bedrock	15.35	0.7365	6.73×10^{-14}	3.53×10^{15}	6.65×10^{-14}	3.54×10^{15}	7.33×10^4	3.90×10^3	169448
-------	---------	-------	--------	------------------------	-----------------------	------------------------	-----------------------	--------------------	--------------------	--------

376

377 ^a Isotopic analysis conducted at PRIME Laboratory; ratios were normalized against standard 07KSTD3110 with an assumed

378 ratio of 2850×10^{-15} (Nishiizumi et al., 2007).

379 All uncertainties are 1σ .

380

381 **Table 5. Measured Isotopic Data for ^{26}Al**

Sample Name	Type	Quartz Mass (g)	Total ^{27}Al Quantified by ICP-OES (μg^a)	Uncorrected $^{26}\text{Al}/^{27}\text{Al}$ Ratio ^b	Uncorrected $^{26}\text{Al}/^{27}\text{Al}$ Ratio Uncertainty ^b	Background Corrected $^{26}\text{Al}/^{27}\text{Al}$ Ratio	Background Corrected $^{26}\text{Al}/^{27}\text{Al}$ Ratio Uncertainty	Measured ^{26}Al (atoms g^{-1})	^{26}Al Uncertainty (atoms g^{-1})	Measured $^{26}\text{Al}/^{10}\text{Be}$	$^{26}\text{Al}/^{10}\text{Be}$ Uncertainty	Cathode #
CF-02	Deglacial	20.46	3394	3.07×10^{14}	2.91×10^{15}	3.01×10^{14}	2.91×10^{15}	1.12×10^5	1.08×10^4	6.05	0.72	169432
LC-02	Deglacial	21.95	1682	7.50×10^{14}	6.25×10^{15}	7.45×10^{14}	6.25×10^{15}	1.27×10^5	1.07×10^4	5.44	0.57	169436
LC-04	Deglacial	19.74	1882	4.73×10^{14}	4.80×10^{15}	4.67×10^{14}	4.80×10^{15}	9.94×10^4	1.02×10^4	4.89	0.60	169438
LC-05	Deglacial	19.29	3401	4.11×10^{14}	4.24×10^{15}	4.05×10^{14}	4.24×10^{15}	1.60×10^5	1.67×10^4	5.72	0.71	169439
MC-01	Deglacial	19.60	5255	2.04×10^{14}	2.39×10^{15}	1.99×10^{14}	2.39×10^{15}	1.19×10^5	1.43×10^4	6.38	0.95	169441
MC-02	Deglacial	18.75	1757	5.66×10^{14}	4.57×10^{15}	5.61×10^{14}	4.57×10^{15}	1.17×10^5	9.56×10^3	6.27	0.73	169442
GB-03	Deglacial	9.38	7435	4.56×10^{15}	1.83×10^{15}	4.02×10^{15}	1.83×10^{15}	7.11×10^4	3.23×10^4	8.44	4.19	169444
GB-05	Deglacial	20.10	5364	3.01×10^{14}	3.74×10^{15}	2.95×10^{14}	3.74×10^{15}	1.76×10^5	2.23×10^4	8.02	1.25	169447
SS-01	Deglacial	19.70	1512	5.22×10^{14}	4.66×10^{15}	5.16×10^{14}	4.66×10^{15}	8.84×10^4	7.98×10^3	8.05	1.19	169450
SS-05	Deglacial	20.88	3437	1.09×10^{13}	7.64×10^{15}	1.09×10^{13}	7.64×10^{15}	3.99×10^5	2.81×10^4	7.15	0.61	169454
CF-01	Modern	18.52	2977	4.39×10^{14}	4.56×10^{15}	4.33×10^{14}	4.56×10^{15}	1.55×10^5	1.63×10^4	6.22	0.85	169431
CF-05	Modern	20.92	3327	1.04×10^{13}	6.54×10^{15}	1.03×10^{13}	6.54×10^{15}	3.67×10^5	2.32×10^4	7.02	0.53	169434
LC-01	Modern	20.41	2056	1.61×10^{13}	8.24×10^{15}	1.60×10^{13}	8.24×10^{15}	3.61×10^5	1.85×10^4	6.86	0.47	169435
LC-03	Modern	20.50	2013	1.74×10^{13}	1.09×10^{14}	1.73×10^{13}	1.09×10^{14}	3.80×10^5	2.38×10^4	6.82	0.52	169437
LC-06	Modern	19.44	2743	6.76×10^{14}	5.83×10^{15}	6.70×10^{14}	5.83×10^{15}	2.11×10^5	1.84×10^4	7.92	0.93	169440
GB-02	Modern	19.96	20382	5.02×10^{15}	1.52×10^{15}	4.48×10^{15}	1.52×10^{15}	1.02×10^5	3.46×10^4	7.24	2.56	169443
GB-04	Modern	17.34	17148	1.80×10^{15}	1.20×10^{15}	1.26×10^{15}	1.20×10^{15}	Below Detection Limit	Below Detection Limit	----	----	169445
MC-03	Modern	20.73	1806	6.21×10^{14}	6.10×10^{15}	6.16×10^{14}	6.10×10^{15}	1.20×10^5	1.19×10^4	6.06	0.79	169449
SS-02	Modern	20.37	1837	8.63×10^{14}	6.19×10^{15}	8.58×10^{14}	6.19×10^{15}	1.73×10^5	1.25×10^4	6.19	0.63	169451
SS-03	Modern	20.81	3229	5.02×10^{14}	3.79×10^{15}	4.97×10^{14}	3.80×10^{15}	1.72×10^5	1.31×10^4	6.55	0.67	169452
SS-04	Modern	22.15	8285	3.27×10^{14}	4.20×10^{15}	3.22×10^{14}	4.21×10^{15}	2.68×10^5	3.51×10^4	5.64	0.78	169453

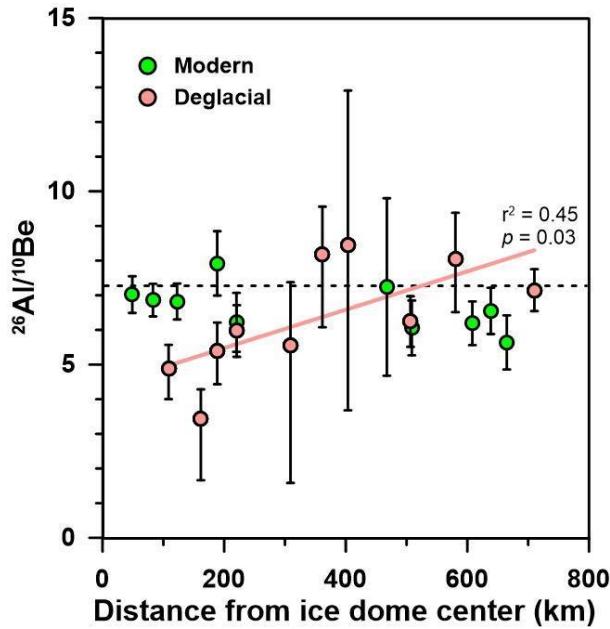
GB-06 Bedrock 15.35 2509 1.62×10^{13} 7.95×10^{15} 1.62×10^{13} 7.95×10^{15} 5.91×10^5 2.90×10^4 8.05 0.58 169448

382

383 ^a ^{27}Al was added only to samples with insufficient total Al through commercial SPEX ICP standard with a concentration of 1000
384 $\mu\text{g mL}^{-1}$. The total here reflects the sum of Al added through carrier and native Al in quartz.

385 ^b Isotopic analysis conducted at PRIME Laboratory; ratios were normalized against standard KNSTD with an assumed ratio of
386 1.818×10^{-12} (Nishiizumi et al., 2004).

387 All uncertainties are 1σ .


388

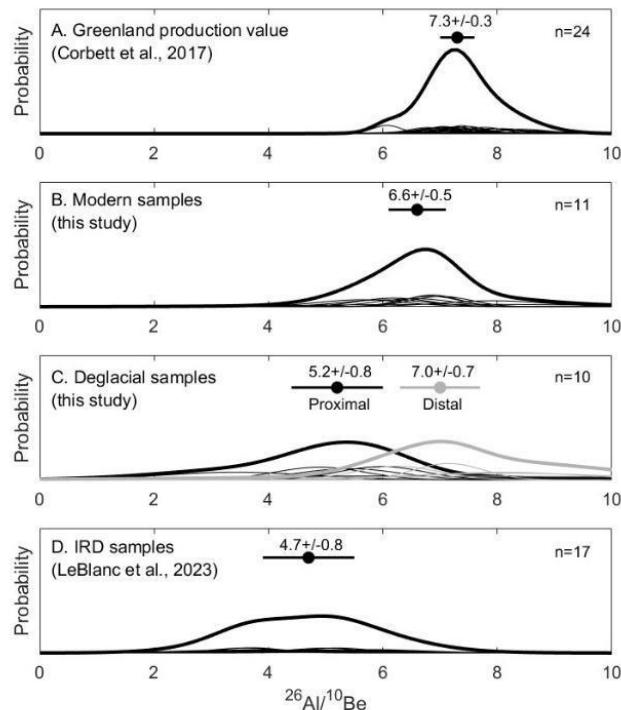
389 **Table 6. Holocene Corrected Concentrations for Deglacial Samples**

Sample Name	Type of Deposit	Distance from Labrador City (km)	Inherited ^{10}Be (atoms g $^{-1}$)	^{10}Be Uncertainty (atoms g $^{-1}$) ^a	Inherited ^{26}Al (atoms g $^{-1}$)	^{26}Al Uncertainty (atoms g $^{-1}$) ^a	$^{26}\text{Al}/^{10}\text{Be}$ at Time of Deposition	$^{26}\text{Al}/^{10}\text{Be}$ Uncertainty ^a
LC-02	esker	109	1.76×10^4	(-2.15, +1.74) $\times 10^3$	8.61×10^4	(-1.51, +1.25) $\times 10^4$	4.90	-0.88, +0.67
LC-04	ice contact fan	162	1.21×10^4	(-2.74, +1.97) $\times 10^3$	4.17×10^4	(-1.91, +1.41) $\times 10^4$	3.45	-1.79, +0.84
LC-05	outwash fan	188	2.27×10^4	(-2.33, +2.06) $\times 10^3$	1.23×10^5	(-1.91, +1.76) $\times 10^4$	5.41	-0.97, +0.81
CF-02	glacial delta	221	1.79×10^4	(-1.31, +1.30) $\times 10^3$	1.07×10^5	(-1.08, +1.08) $\times 10^4$	5.98	-0.75, +0.74
MC-01	esker or outwash fan	309	7.60×10^3	(-2.39, +1.85) $\times 10^3$	4.23×10^4	(-1.86, +1.56) $\times 10^4$	5.56	-3.98, +1.81
GB-05	esker	361	1.82×10^4	(-3.09, +2.18) $\times 10^3$	1.49×10^5	(-2.74, +2.31) $\times 10^4$	8.18	-2.10, +1.38
GB-03	glacial delta	403	7.76×10^3	(-1.69, +1.68) $\times 10^3$	6.56×10^4	(-3.23, +3.23) $\times 10^4$	8.46	-4.78, +4.45
MC-02	glacial delta	506	1.85×10^4	(-1.54, +1.54) $\times 10^3$	1.16×10^5	(-9.56, +9.56) $\times 10^3$	6.24	-0.73, +0.73
SS-01	glacial delta	580	9.59×10^3	(-1.37, +1.29) $\times 10^3$	7.72×10^4	(-8.71, +8.00) $\times 10^3$	8.04	-1.53, +1.34
SS-05	glacial delta	710	5.58×10^4	(-2.63, +2.63) $\times 10^3$	3.99×10^5	(-2.81, +2.81) $\times 10^4$	7.15	-0.61, +0.61

390

391 ^aUncertainty for both nuclides was calculated by propagating error from AMS data reduction with depth estimation error (see
 392 methods). Depth estimate uncertainty and changing production rates with depth create asymmetrical uncertainty in both nuclide
 393 concentrations. All uncertainties are 1 σ .

394


395 **Figure 5.** $^{26}\text{Al}/^{10}\text{Be}$ ratios versus distance from center of the Quebec-Labrador Ice Dome at Labrador City. Deglacial
396 data are corrected for Holocene nuclide production and fit with a trendline. Error bars are 1σ . Dashed line shows
397 production ratio at high latitudes (7.3) (Corbett et al., 2017).

398

399 6. Discussion

400 Measurements of in situ produced ^{10}Be and ^{26}Al in sediment and bedrock sampled in eastern Quebec and in
401 Labrador indicate that LIS erosion and sediment transport during the last glacial period were not sufficient to
402 remove all cosmogenic nuclides accumulated during previous periods of exposure (Figure 4A,B). Corrected for
403 Holocene exposure, the error-weighted mean $^{26}\text{Al}/^{10}\text{Be}$ for both deglacial (6.1 ± 1.2) and modern fluvial sediments
404 (6.6 ± 0.5) are lower than the production ratio of the two nuclides at high latitudes (7.3 ± 0.3) (Corbett et al., 2017)
405 (Figure 6A-C), consistent with burial after initial exposure. A Tukey HSD test confirms a significant difference
406 between our deglacial (Holocene corrected) $^{26}\text{Al}/^{10}\text{Be}$ ratios and the 7.3 ± 0.3 production ratio ($p = 0.01$). However,
407 most of these terrestrial samples have $^{26}\text{Al}/^{10}\text{Be}$ ratios higher than those (4.7 ± 0.8) measured in North Atlantic
408 quartz IRD thought to be sourced from northeastern Canada (LeBlanc et al., 2023) (Figure 6D). Together these data
409 suggest that the IRD measured by LeBlanc et al. was either not sourced from much of eastern Quebec and Labrador
410 that we sampled or was buried beyond the depth of cosmic-ray penetration for hundreds of thousands of years (in
411 Hudson Bay or thick sediment deposits) before being transported as IRD.

412

413

414 **Figure 6. Summed probability plots of $^{26}\text{Al}/^{10}\text{Be}$ ratios for Arctic samples.** A. Samples with simple exposure
415 histories in Greenland (Corbett et al., 2017). B. Modern stream sediment (this study). C. Deglacial samples corrected
416 for Holocene exposure; black 5 samples most proximal to Labrador City (center of the dome); gray 5 samples are
417 most distal (this study). D. IRD samples from North Atlantic (LeBlanc et al., 2023). Analytical error weighted mean
418 and 1 SD uncertainty above each plot.

419

420 **6.1 Nuclide Concentrations in Deglacial Sediments Indicate Limited Erosion by Laurentide Ice**

421 After correcting for Holocene exposure, all deglacial sediment samples in our study ($n = 10$) contain ^{26}Al
422 and ^{10}Be inherited from exposure during prior interglacials. The center of the Quebec-Labrador Ice Dome was
423 covered by ice starting at least ~ 70 ka and as early as ~ 115 ka and did not deglaciate until 7 ka (Ullman et al., 2016;
424 Dalton et al., 2022). Despite being buried for ~ 60 -105 ka by the LIS during the last glacial period, nuclide
425 concentrations in sediment (and at least some bedrock) have not been reset by erosion to zero. The average inherited
426 ^{10}Be concentration (1.88×10^4 atoms g^{-1}) is equivalent to $\sim 3,000$ years of surface production, assuming the average
427 production rate across the sites (6.35 atoms $\text{g}^{-1} \text{yr}^{-1}$). If these nuclides were produced during last interglacial exposure
428 (poorly constrained to between 10 and 60 kyr in the center of our transect) the implied eroded depth would be a few
429 meters over tens of thousands to perhaps one hundred thousand years – a low average rate of erosion.

430

431 Subglacial process modeling over North America supports a minimally erosive LIS in portions of Quebec
432 and Labrador during the last glacial cycle (Melanson et al., 2013) consistent with our findings. Specifically,
433 Melanson et al.'s modeling of the Quebec-Labrador region exhibits minima for both basal sliding speed and total ice
434 movement integrated over the last glacial cycle – both variables related to the efficacy of glacial erosion. Simulated
435 ice sliding distances (the integrated basal velocity over the last glacial cycle in millions of meters (Mm)) are near
436 zero in the center of our study area, 1 Mm near Goose Bay, and 3 Mm along the St. Lawrence estuary – an order of
437 magnitude less than for the Hudson Strait ice stream and southern LIS lobes (Melanson et al., 2013). Total erosion
438 predicted using empirical abrasion and quarrying laws ranges from near zero under the center of the Quebec-
439 Labrador dome to ≥ 10 m along parts of its Atlantic and St. Lawrence margin. Our data are consistent with a variably
440 erosive LIS, which contained regions of slow ice movement and thus insignificant erosion where nuclides from prior
441 periods of exposure are more likely to have been retained. This pattern may help explain the patchy and thin
442 sediment cover present in Quebec and Labrador today (Pelletier et al., 2016).

443 Our results agree with ^{10}Be measurements made by others in bedrock and boulders sampled to date
444 deglacial landforms in Quebec and Labrador. The bedrock sample we analyzed (GB-06), which contained ^{10}Be
445 inheritance equivalent to ~ 3.2 ka of surface exposure, was collected adjacent to samples CL3-10-01 (1.1 km from
446 GB-06) and CL3-10-07 (0.7 km from GB-06) both along Ullman et al.'s (2016) CL3 transect. Ullman et al.
447 excluded these boulder samples from their deglacial chronology because their estimated ages (14.2 and 12.4 ka)
448 were deemed much too old. In total, 10 of 65 boulder samples from Ullman et al.'s (2016) southern and eastern
449 transects, which overlap our transect, were regarded as outliers because of their unusually high concentration of
450 ^{10}Be . Couette et al. (2023) similarly excluded 5 of 37 samples in eastern Labrador because of high ^{10}Be
451 concentrations. The results suggest inheritance from prior exposure is common in boulders and bedrock in the
452 region.

453 The concentrations of inherited nuclides we measured in LIS deglacial sediment ($\sim 19,000$ ^{10}Be atoms g^{-1})
454 are on average several times higher than those currently in sediment shed by the Greenland Ice Sheet ($\sim 6,500$ ^{10}Be
455 atoms g^{-1} , Nelson et al., 2014) but much lower than those deposited by the LIS in the midwestern United States
456 ($\sim 60,000$ ^{10}Be atoms g^{-1} , Balco et al., 2005). Nuclide concentrations in deglacial sediment must reflect a
457 combination of interglacial exposure duration, glacial erosivity, and nuclide decay during burial. The low
458 concentrations of ^{10}Be in sediment issuing from the Greenland Ice Sheet (as well as low $^{26}\text{Al}/^{10}\text{Be}$ ratios ~ 4.5 ,
459 Bierman et al., 2016) reflect continuous ice cover through most interglacials and erosive warm-based ice in areas
460 from which sediment is sourced. In contrast, the high concentrations of ^{10}Be in deglacial sediment originating from
461 the southern margin of the Keewatin Ice Dome in Minnesota (Balco et al., 2005) suggest that ice there, although it
462 lingered through many interglacials to provide low $^{26}\text{Al}/^{10}\text{Be}$ ratios (also ~ 4.5), was only weakly erosive and thus
463 perhaps at least in part, cold-based.

464

465 6.2 Implications for Cosmogenic Dating

466

467 Our findings of nuclide inheritance from prior periods of exposure, and thus limited glacial erosion, are
468 consistent with studies conducted in other regions of the LIS, as well as glacial and deglacial landscapes in
469 Fennoscandia and Greenland (e.g., Stroeven et al., 2002; Corbett et al., 2016; Briner & Swanson, 1998). Our data, as
470 well as those of others, have implications for the use of in situ produced cosmogenic nuclides for both exposure and
471 burial dating.

472 Measurements in several other parts of the LIS have shown that boulders, cobbles, and sand carried
473 nuclides inherited from prior periods of surface exposure. For example, a cobble sampled from Baffin Island had
474 concentrations of ^{10}Be and ^{26}Al that suggested nuclide inheritance equivalent to ~ 3 ka years of surface exposure
475 (Davis et al., 1999). In the northeastern United States, Halsted et al. (2023) estimated that boulders on LIS terminal
476 moraines contained concentrations of inherited ^{10}Be equivalent to 2-6 ka of surface exposure. In the midwestern
477 United States, the $^{26}\text{Al}/^{10}\text{Be}$ ratio was well below the production value in glacial outwash negating efforts to use
478 older deposits for burial dating (Balco et al., 2005). In the Torngat Mountains of northern Labrador, measurements
479 of ^{26}Al and ^{10}Be on bedrock sites and erratic boulders at mountain summits provide evidence of minimal erosion
480 ($<1.4 \text{ m Ma}^{-1}$) where cold-based ice was predominant before deglaciation (Staiger et al., 2005). In south-central
481 Wisconsin, three out of five bedrock outcrops sampled had concentrations of ^{10}Be and ^{26}Al eight times higher than
482 predicted based on radiocarbon dating (Colgan et al., 2002).

483 Minimal erosion and significant inheritance of cosmogenic nuclides have been observed in areas once
484 occupied by other Northern Hemisphere ice sheets as well. On the historical periphery of the Scandinavian Ice Sheet
485 (southwestern Norway), glacial erratic boulders had the surface equivalent of ~ 2 ka years of inherited muonogenic
486 ^{10}Be (Briner et al., 2016). Towards the center of that ice sheet (northeastern Sweden) there is evidence that bedrock
487 outcrops and boulder fields have been preserved through many glacial cycles since the late Cenozoic (Stroeven et
488 al., 2002). There is also evidence of minimal erosion near the margin of the Cordilleran Ice Sheet, with 8 out of 23
489 bedrock samples on Whitbey Island having $^{36}\text{Cl}/\text{Cl}$ ratios suggesting inheritance of nuclides produced from prior
490 interglacials (Briner & Swanson, 1998). In northwest Greenland, 8 of 28 sampled boulders had high concentrations
491 of ^{10}Be and ^{26}Al along with low $^{26}\text{Al}/^{10}\text{Be}$ ratios indicative of burial, providing evidence of minimal subglacial
492 erosion over multiple interglacial and glacial periods where the ice was predominantly cold-based (Corbett et al.,
493 2016).

494 The inheritance of nuclides from prior periods of exposure has implications for cosmogenic exposure
495 dating of bedrock outcrops, boulders, and sediment deposits, because nuclide concentrations are biased too high. For
496 example, Ullman et al. (2016) noted that their ^{10}Be -based deglacial chronology in our study area leads radiocarbon-
497 based estimates of local deglaciation by centuries (see their Figure 7). While radiocarbon lags are frequently
498 attributed to delayed colonization of the landscape by vegetation following deglaciation (e.g., Peteet et al., 2012),
499 the widespread nuclide inheritance we find in Quebec-Labrador suggests that, at least in this case, it is the ^{10}Be ages
500 that may be too old. Practical solutions include larger sample sizes to facilitate outlier identification, sampling
501 shielded material as we have done to quantify the magnitude of nuclide inheritance, and the application of short-
502 lived nuclides such as in situ ^{14}C which, because of its half-life (5730 years) does not retain nuclides from prior
503 interglaciations (e.g., Hippe, 2017).

504

505 **6.3 The Quebec-Labrador Ice Dome Center Persisted During Some Interglacials**

506 Finding $^{26}\text{Al}/^{10}\text{Be}$ ratios below production in quartz IRD from North Atlantic Heinrich layers, LeBlanc et
507 al. (2023) concluded that ice sheet remnants must have lingered in parts of eastern Canada for the majority of
508 Pleistocene interglacials. While Heinrich layer sediment was predominantly delivered to the ocean by the Hudson
509 Strait ice stream, the quartz IRD LeBlanc et al. (2023) analyzed most likely came from interior areas of the LIS
510 feeding the ice stream because Hudson Strait is underlain primarily by carbonate rocks (Bond et al., 1992).

511 Data we present in this paper suggest that the quartz analyzed by LeBlanc et al. (2023) could have been
512 sourced from parts our field area near Labrador City because only there are $^{26}\text{Al}/^{10}\text{Be}$ ratios of the Holocene-
513 corrected deglacial sediment like those in the IRD (Figure 6C, D). Alternatively, it is possible that IRD was sourced
514 from a wider area (the Keewatin Dome and/or Baffin Island) where samples of sediment (Balco et al., 2005) and
515 taken from outcrops (Marsella et al., 2002) have low $^{26}\text{Al}/^{10}\text{Be}$ ratios. It is also possible that sediment was stored in
516 Hudson Bay for ~1 Ma, where ^{26}Al and ^{10}Be decayed, before being transported to the deep sea.

517 Sediment could have also been recycled multiple times on land and shielded from interglacial exposure in
518 thick deposits (e.g., deltas) before eventually making it to the ocean as IRD. This lag between initial deposition,
519 either in Hudson Bay or in thick sedimentary sequences on land, and final transport by ice into the Atlantic Ocean
520 allows for the sediment to have initially had higher ratios of $^{26}\text{Al}/^{10}\text{Be}$ (like the range of ratios in our deglacial data).
521 The low rates of glacial erosion and ice sliding in this region suggested by our data as well as models (Melanson et
522 al., 2013) could help account for such long residence times of terrestrial sediment in Quebec-Labrador; yet, the
523 absence of lower than production $^{26}\text{Al}/^{10}\text{Be}$ ratios in deglacial sediment closer to the ice sheet margin remains
524 inconsistent with long term burial. Perhaps incorporation of IRD occurred primarily toward the center of the ice
525 sheet and not closer to the margins.

526 Although we cannot say during which interglacials the Quebec-Labrador Ice Dome remained in a reduced
527 state and during which it completely melted like it has today, the inverse relationship between $^{26}\text{Al}/^{10}\text{Be}$ sample
528 ratios and distance from the center of the dome at present-day Labrador City provides strong evidence that ice
529 lingered in that area for at least some interglacial periods shielding rock and sediment below from cosmic rays. In
530 contrast, the higher $^{26}\text{Al}/^{10}\text{Be}$ ratios in deglacial sediment further from the center of the ice dome are consistent with
531 repeated exposure during interglacials. More extensive sampling of eastern Canada, including Quebec-Labrador, and
532 further north near Hudson Bay and Baffin Island, would provide further evidence on how persistent different sectors
533 of the eastern LIS was during Pleistocene interglacials.

534

535 **6.3 Sediment Sourcing in Modern Rivers**

536 We can estimate the percentage of sediment derived from erosion of deglacial materials using a two
537 component, linear mixing model based on the measured concentrations of ^{10}Be in both river and deglacial sediment
538 and assumptions about nuclide production since deglaciation. One component is deglacial deposits which, based on
539 our sampling today, contain an average of $22.5 \times 10^3 \text{ }^{10}\text{Be}$ atoms g^{-1} and enter rivers by bank incision (Figure 4A).
540 The second component is surficial materials which, when eroded, enter the drainage network. Since we did not

541 sample these surficial materials directly, we calculate their ^{10}Be concentration by assuming that at the time of
542 deglaciation (the beginning of exposure) surface sediment contained the average Holocene exposure-corrected
543 concentration of ^{10}Be for deglacial sediment ($18.7 \times 10^3 \text{ }^{10}\text{Be} \text{ atoms g}^{-1}$). We then use the average deglacial age of
544 9.32 ka for our field area and the average ^{10}Be surface production rate ($7.82 \text{ atoms y}^{-1} \text{ g}^{-1}$) to calculate that surface
545 material gained about $7.3 \times 10^4 \text{ }^{10}\text{Be} \text{ atoms g}^{-1}$ since deglaciation. The surface-exposed end member therefore
546 contains $91.6 \times 10^3 \text{ }^{10}\text{Be} \text{ atoms g}^{-1}$.

547 Knowing that modern sediment contains on average $33.1 \times 10^3 \text{ }^{10}\text{Be} \text{ atoms g}^{-1}$, the two-component mixing
548 model suggests that about 85% of sediment in eastern Quebec rivers today is derived from incision of glacial
549 deposits and only about 15% comes from erosion of surficial sediment and bedrock. Our findings for eastern Quebec
550 are like those of Balco et al. (2005) in Minnesota. In that previously glaciated region, they suggest most sediment
551 carried by rivers comes from incision of glacial deposits. Our finding is also consistent with the low sediment yield
552 of forested upland terrains in other glaciated areas of the LIS (e.g., Dethier et al., 2018).

553

554 **Conclusions**

555 Analysis of cosmogenic ^{10}Be and ^{26}Al in deglacial (n=10) and modern (n=11) sediment samples indicates
556 that the Quebec-Labrador Ice Dome was minimally erosive during the last glacial period, allowing preservation of
557 nuclides created during prior interglacial exposures. Nuclide concentrations in modern sediments are only slightly
558 higher than those in deglacial sediments on average, implying most sediment transported by rivers today is sourced
559 from rapidly eroding banks composed of glacial deposits rather than surrounding slowly-eroding surfaces. Holocene
560 exposure-corrected ratios of $^{26}\text{Al}/^{10}\text{Be}$ in deglacial samples are below the production ratio of those nuclides at high
561 latitudes near the center of the ice dome but not the margins, implying interior ice survived during at least some
562 interglacials but peripheral ice did not. Further sampling of this region and northward near the Foxe-Baffin and
563 Keewatin Domes may provide more evidence of minimal erosion and show if and where ice persisted during
564 Pleistocene interglacials. Such data are important both for understanding the lower than production $^{26}\text{Al}/^{10}\text{Be}$ ratios
565 measured in IRD from eastern LIS discharge and for determining the interglacial history of the LIS.

566

567 **Author contribution**

568 Cavnar drafted and edited the manuscript and performed data reduction and statistical analysis. Cavnar and Shakun
569 collected samples in the field. Bierman and Shakun are responsible for study conception and design. Bierman and
570 Shakun edited the manuscript and advised Cavnar on sample preparation and data analysis. Cavnar performed
571 sample cleaning and extraction under the supervision of Corbett. Corbett, Galford, and LeBlanc edited figures coded
572 by Cavnar and assisted with conceptual design of figures and manuscript organization. Caffee assisted with
573 statistical analysis and oversaw measurement of cosmogenic nuclides via AMS and PRIME Lab.

574

575 **Competing Interests**

576 The authors declare that they have no conflict of interest.

577

578 **Acknowledgements**

579 We thank the 2022 field sampling team including Juliana Souza, Halley Mastro, and Cat Collins. We appreciate help
580 from Pierre-Olivier Couette and Patrick Lajeunesse to identify sample locations. Funding for this research was
581 provided by NSF-EAR-2300560, 2116209, and 1735676 awards to Bierman and Corbett, and 2116208 to Shakun.

582

583

References

584 Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., & Blatter, H. (2013).
585 Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. *Nature*, 500(7461), 190–
586 193. <https://doi.org/10.1038/nature12374>

587 Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S. N.,
588 Montgomery, J., & Hopkinson, C. (2019). Canadian Wetland Inventory using Google Earth Engine: The
589 First Map and Preliminary Results. *Remote Sensing*, 11(7), 842. <https://doi.org/10.3390/rs11070842>

590 Andrews, J. T., & Tyler, K. L. (2011). The observed postglacial recovery of Québec and Nouveau-Québec
591 Since 12,000 BP. *Géographie Physique Et Quaternaire*, 31(3–4), 389–400.
<https://doi.org/10.7202/1000286ar>

592 Applegate, P. J., Urban, N. M., Laabs, B. J. C., Keller, K., and Alley, R. B.: Modeling the statistical
593 distributions of cosmogenic exposure dates from moraines, *Geosci. Model Dev.*, 3, 293–307,
594 <https://doi.org/10.5194/gmd-3-293-2010>, 2010.

595 Balco, G., Stone, J. O. H., & Jennings, C. (2005). Dating Plio-Pleistocene glacial sediments using the
596 cosmic-ray-produced radionuclides ^{10}Be and ^{26}Al . *American Journal of Science*, 305(1), 1–41.
<https://doi.org/10.2475/ajs.305.1.1>

597 Batchelor, C. L., Margold, M., Krapp, K., Murton, D. K., Dalton, A. S., Gibbard, P. L.,
598 Stokes, C. R., Murton, J. B., & Manica, A. (2019). The configuration of Northern Hemisphere ice sheets
599 through the Quaternary. *Nature Communications*, 10. <https://doi.org/10.1038/s41467-019-11601-2>

600 Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present
601 and future Köppen-Geiger climate classification maps at 1-km resolution. *Scientific Data*, 5(1).
<https://doi.org/10.1038/sdata.2018.214>

602 Bierman, P. (1994). Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A
603 review from the geomorphic perspective. *Journal of Geophysical Research*, 99(10),
604 13,885–13,896

605 Bierman, P. R., Marsella, K. A., Patterson, C. J., Davis, P. T., & Caffee, M. W. (1999). Mid-Pleistocene
606 cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and
607 southern Baffin Island: a multiple nuclide approach. *Geomorphology*, 27(1–2), 25–39.
[https://doi.org/10.1016/s0169-555x\(98\)00088-9](https://doi.org/10.1016/s0169-555x(98)00088-9)

608 Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S., & Rood, D. H. (2016). A persistent and
609 dynamic East Greenland Ice Sheet over the past 7.5 million years. *Nature*, 540(7632), 256–260.
<https://doi.org/10.1038/nature20147>

610 Bintanja, R., & Van De Wal, R. S. W. (2008). North American ice-sheet dynamics and the onset of
611 100,000-year glacial cycles. *Nature*, 454(7206), 869–872. <https://doi.org/10.1038/nature07158>

612 Braucher, R., Brown, E. T., Bourlès, D., & Colin, F. (2003). In situ produced ^{10}Be measurements at great
613 depths: implications for production rates by fast muons. *Earth and Planetary Science Letters*,
614 211(3–4), 251–258. [https://doi.org/10.1016/s0012-821x\(03\)00205-x](https://doi.org/10.1016/s0012-821x(03)00205-x)

615 Braucher, R., Merchel, S., Borgomano, J., & Bourlès, D. (2011). Production of cosmogenic radionuclides at
616 great depth: A multi element approach. *Earth and Planetary Science Letters*, 309(1–2), 1–9.
<https://doi.org/10.1016/j.epsl.2011.06.036>

617 Briner, J. P., Goehring, B. M., Mangerud, J., & Svendsen, J. I. (2016). The deep accumulation of ^{10}Be
618 at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in
619 peripheral ice sheet landscapes. *Geophysical Research Letters*, 43(17), 9121–9129. <https://doi.org/10.1002/2016gl070100>

620 Briner, J. P., & Swanson, T. W. (1998). Using inherited cosmogenic ^{36}Cl to constrain glacial erosion rates
621 of the Cordilleran ice sheet. *Geology | GeoScienceWorld*. [https://doi.org/10.1130/0091-7613\(1998\)026](https://doi.org/10.1130/0091-7613(1998)026)

629 Colgan, P. M., Bierman, P. R., Mickelson, D. M., & Caffee, M. (2002). Variation in glacial erosion near the
630 southern margin of the Laurentide Ice Sheet, south-central Wisconsin, USA: Implications for cosmogenic
631 dating of glacial terrains. *GSA Bulletin | GeoScienceWorld*. [https://doi.org/10.1130/0016-7606\(2002\)114](https://doi.org/10.1130/0016-7606(2002)114)

632 Corbett, L. B., Bierman, P. R. and Davis, P. T. (2016) Glacial history and landscape evolution of southern
633 Cumberland Peninsula, Baffin Island, Canada, constrained by cosmogenic ^{10}Be and ^{26}Al . *Geological
634 Society of America Bulletin*. v. 128(7-8), p. 1173-1192. doi.org/10.1130/B31402.1

635 Corbett, L. B., Bierman, P. R., Neumann, T., Graly, J. A., Shakun, J. D., Goehring, B. M., Hidy, A. J., &
636 Caffee, M. W. (2021). Measuring multiple cosmogenic nuclides in glacial cobbles sheds light on
637 Greenland Ice Sheet processes. *Earth and Planetary Science Letters*, 554, 116673.
<https://doi.org/10.1016/j.epsl.2020.116673>

638 Corbett, L. B., Bierman, P. R., & Rood, D. H. (2016a). An approach for optimizing in situ cosmogenic
639 ^{10}Be sample preparation. *Quaternary Geochronology*, 33, 24–34.
<https://doi.org/10.1016/j.quageo.2016.02.001>

640 Corbett, L. B., Bierman, P. R. and Rood, D. H. (2016b) Constraining multi-stage exposure-burial scenarios
641 for boulders preserved beneath cold-based glacial ice in Thule, Northwest Greenland. *Earth and Planetary
642 Science Letters*, 440, 147–157. doi.org/10.1016/j.epsl.2016.02.004

643 Corbett, L. B., Bierman, P. R., Rood, D. H., Caffee, M. W., Lifton, N. A. and Woodruff, T. E. (2017),
644 Cosmogenic $^{26}\text{Al}/^{10}\text{Be}$ surface production ratio in Greenland. *Geophysical Research Letters*, 44(3), 1350-
645 1359. doi.org/10.1002/2016GL071276

646 Couette, P., Ghienne, J., Lajeunesse, P., & Woerd, J. (2023). Climatic control on the
647 retreat of the Laurentide Ice Sheet margin in easternmost Québec–Labrador (Canada) revealed by
648 cosmogenic nuclide exposure dating. *Journal of Quaternary Science*, 38(7), 1044-1061.
<https://doi.org/10.1002/jqs.3525>

649 Dalton, A., Finkelstein, S. A., Forman, S. L., Barnett, P. J., Pico, T., & Mitrovica, J. X. (2019). Was the
650 Laurentide Ice Sheet significantly reduced during Marine Isotope Stage 3? *Geology*, 47(2), 111–114.
<https://doi.org/10.1130/g45335.1>

651 Dalton, A., Margold, M., Stokes, C., Tarasov, L., Dyke, A. S., Adams, R. S., Allard, S.,
652 Atends, H. E., Atkinson, N., Attig, J. W., Barnett, P., Barnett, R., Batterson, M., Bernatchez, P., Borns, H.
653 W., Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., Carlson, A. E., Wright, H. E. (2020). An
654 Updated Radiocarbon-Based Ice Margin Chronology for the Last Deglaciation of the North American Ice
655 Sheet Complex. *Quaternary Science Reviews*, 234(15), 0277-3791.
<https://doi.org/10.1016/j.quascirev.2020.106223>

656 Davis, P. T., Bierman, P. R., Marsella, K. A., Caffee, M. W., & Southon, J. (1999). Cosmogenic
657 analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness
658 of glacial erosion. *Annals of Glaciology*, 28, 181–188.
<https://doi.org/10.3189/172756499781821805>

659 Dethier, D. P., Racela, J., & Wieman, S. T. (2018). A contemporary mass-balance approach to small-catchment
660 denudation rates in glaciated New England. *Abstracts With Programs - Geological Society of America*.
<https://doi.org/10.1130/abs/2018am-319718>

661 Dunai, T. J., & Lifton, N. A. (2014). The nuts and bolts of cosmogenic nuclide production. *Elements*, 10(5),
662 347–350. <https://doi.org/10.2113/gselements.10.5.347>

663 Dyke, A. S. (2004). An outline of North American deglaciation with emphasis on central and northern
664 Canada. In *Developments in quaternary science* (pp. 373–424). [https://doi.org/10.1016/s1571-0866\(04\)80209-4](https://doi.org/10.1016/s1571-0866(04)80209-4)

665 Goehring, B. M., Kelly, M. A., Schaefer, J. M., Finkel, R. C., & Lowell, T. V. (2010). Dating of raised
666 marine and lacustrine deposits in east Greenland using beryllium-10 depth profiles and implications for
667 estimates of subglacial erosion. *JQS. Journal of Quaternary Science/Journal of Quaternary Science*, 25(6),
668 865–874. <https://doi.org/10.1002/jqs.1380>

669 Gosse, J. C., & Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: theory and application.
670 *Quaternary Science Reviews*, 20(14), 1475–1560. [https://doi.org/10.1016/s0277-3791\(00\)00171-2](https://doi.org/10.1016/s0277-3791(00)00171-2)

671 Gregoire, L., Ivanović, R., Maycock, A. C., Valdes, P. J., & Stevenson, S. (2018). Holocene lowering of the
672 Laurentide ice sheet affects North Atlantic gyre circulation and climate. *Climate Dynamics*, 51(9–10),
673 3797–3813. <https://doi.org/10.1007/s00382-018-4111-9>

674 Halsted, C. T., Bierman, P. R., Shakun, J. D., Davis, P. T., Corbett, L. B., Drebber, J. S., & Ridge,
675

683 J. C. (2023). A critical re-analysis of constraints on the timing and rate of Laurentide Ice Sheet recession in
684 the northeastern United States. *JQS. Journal of Quaternary Science/Journal of Quaternary Science*, 39(1),
685 54–69. <https://doi.org/10.1002/jqs.3563>

686 Harbor, J. M., Stroeven, A. P., Fabel, D., Clarhäll, A., Klemåns, J., Li, Y., Elmore, D., & Fink, D. (2006).
687 Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late
688 glacial Fennoscandian ice sheet. *Geomorphology*, 75(1–2), 90–99.
689 <https://doi.org/10.1016/j.geomorph.2004.09.036>

690 Hippe, K. (2017). Constraining processes of landscape change with combined in situ cosmogenic ^{14}C - ^{10}Be analysis.
691 *Quaternary Science Reviews*, 173, 1–19. <https://doi.org/10.1016/j.quascirev.2017.07.020>

692 Hynes, A., & Rivers, T. (2010). Protracted continental collision — evidence from the Grenville Orogen.
693 This article is one of a series of papers published in this Special Issue on the theme Lithoprobe —
694 parameters, processes, and the evolution of a continent. *Canadian Journal of Earth Sciences*, 47(5), 591–
695 620. <https://doi.org/10.1139/e10-003>

696 Klein, J., Giegengack, R., Middleton, R., & Weeks, R. (1986). Revealing histories of exposure using insitu
697 produced AL-26 and BE-10 in Libyan desert glass. *Radiocarbon*, 28(547–555).

698 Kleman, J., Borgstrom, I., & Hattestrand, C. (1994). Evidence for a relict glacial landscape in
699 Quebec-Labrador. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 111(1994), 217–228.

700 Klemåns, J., Jansson, K. N., De Angelis, H., Stroeven, A. P., Hättestrand, C., Alm, G., & Glasser, N. F.
701 (2010). North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr. *Quaternary Science
702 Reviews*, 29(17–18), 2036–2051. <https://doi.org/10.1016/j.quascirev.2010.04.021>

703 LeBlanc, D. E., Shakun, J. D., Corbett, L. B., Bierman, P. R., Caffee, M. W., & Hidy, A. J.
704 (2023). Laurentide Ice Sheet Persistence During Pleistocene Interglacials. *Geology*, 51(5), 496–499.
705 <https://doi.org/10.1130/G50820.1>

706 Larsen, H. C., Saunders, A. D., Clift, P. D., Beget, J., Wei, W., and Spezzaferri, S.: Seven million years of glaciation
707 in Greenland, *Science*, 264, 952–955, <https://doi.org/10.1126/science.264.5161.952>, 1994.

708 Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., & Brucker, L. (2017). Validation of GlobSnow-2
709 snow water equivalent over Eastern Canada. *Remote Sensing of Environment*, 194, 264–277.
710 <https://doi.org/10.1016/j.rse.2017.03.027>

711 Margold, M., Stokes, C. R., & Clark, C. D. (2015). Ice streams in the Laurentide Ice Sheet: Identification,
712 characteristics and comparison to modern ice sheets. *Earth-science Reviews*, 143, 117–146.
713 <https://doi.org/10.1016/j.earscirev.2015.01.011>

714 Margold, M., Stokes, C. R., & Clark, C. D. (2018). Reconciling records of ice streaming and ice margin
715 retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet.
716 *Quaternary Science Reviews*, 189, 1–30. <https://doi.org/10.1016/j.quascirev.2018.03.013>

717 Marsella, K. A., Bierman, P. R., Davis, P. T. and Caffee, M. W. (2000) Cosmogenic ^{10}Be and ^{26}Al ages for
718 the last glacial maximum, eastern Baffin Island, Arctic Canada. *Geological Society of America Bulletin*. v.
719 112(8), p. 1296–1312. doi.org/10.1130/0016-7606(2000)112<1296:CBAAAF>2.0.CO;2

720 Marshall, S. J., Tarasov, L., Clarke, G. K. C., & Peltier, W. R. (2000). Glaciological reconstruction of the
721 Laurentide Ice Sheet: physical processes and modelling challenges. *Canadian Journal of Earth Sciences*,
722 37(5), 769–793. <https://doi.org/10.1139/e99-113>

723 Melanson, A., Bell, T., & Tarasov, L. (2013). Numerical modelling of subglacial erosion and sediment
724 transport and its application to the North American ice sheets over the Last Glacial cycle. *Quaternary
725 Science Reviews*, 68, 154–174. <https://doi.org/10.1016/j.quascirev.2013.02.017>

726 Miller, G. H., & Andrews, J. T. (2019). Hudson Bay was not deglaciated during MIS-3. *Quaternary
727 Science Reviews*, 225, 105944. <https://doi.org/10.1016/j.quascirev.2019.105944>

728 Munroe, J. S., Perzan, Z., & Amidon, W. H. (2016). Cave sediments constrain the latest Pleistocene
729 advance of the Laurentide Ice Sheet in the Champlain Valley, Vermont, USA. *JQS. Journal of Quaternary
730 Science/Journal of Quaternary Science*, 31(8), 893–904. <https://doi.org/10.1002/jqs.2913>

731 Nelson, A. H., Bierman, P. R., Shakun, J. D., & Hood, D. H. (2014). Using in situ
732 cosmogenic ^{10}Be to identify the source of sediment leaving Greenland. *Earth Surface Processes and
733 Landforms*, 39, 1087–1100. 10.1002/esp.3565

734 Nishiizumi, K. (2004). Preparation of ^{26}Al AMS standards. *Nuclear Instruments and Methods in Physics
735 Research. Section B, Beam Interactions with Materials and Atoms/Nuclear Instruments & Methods in
736 Physics Research. Section B, Beam Interactions with Materials and Atoms*, 223–224, 388–392.
737 <https://doi.org/10.1016/j.nimb.2004.04.075>

738 Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D., & Middleton, R. (1991). Cosmic ray
739 produced ^{10}Be and ^{26}Al in Antarctic rocks: exposure and erosion history. *Earth and Planetary Science
740 Letters*, 104(2–4), 440–454. [https://doi.org/10.1016/0012-821x\(91\)90221-3](https://doi.org/10.1016/0012-821x(91)90221-3)

741 Nishiizumi, K., Immura, M., Caffee, M. W., Southon, J., Finkel, R. C., & McAninch, J. (2007). Absolute
742 calibration of ^{10}Be AMS standards. *Nuclear Instruments and Methods in Physics Research. Section B,
743 Beam Interactions with Materials and Atoms/Nuclear Instruments & Methods in Physics Research. Section
744 B, Beam Interactions with Materials and Atoms*, 258(2), 403–413.
745 <https://doi.org/10.1016/j.nimb.2007.01.297>

746 Nishiizumi, K., Winterer, E. L., Kohl, C. P., Klein, J., Middleton, R., Lal, D., & Arnold, J. R. (1989).
747 Cosmic ray production rates of ^{10}Be and ^{26}Al in Antarctic rocks: exposure and erosion history in quartz
748 from glacially polished rocks. *Earth and Planetary Science Letters*, 104, *Journal of Geophysical Research*,
749 94(B12), 17907–17915. <https://doi.org/10.1029/jb094ib12p17907>

750 Payette, S., Morneau, C., Sirois, L., & Desponts, M. (1989). Recent fire history of the Northern Quebec
751 Biomes. *Ecology*, 70(3), 656–673. <https://doi.org/10.2307/1940217>

752 Pico, T., Birch, L., Weisenberg, J., & Mitrovica, J. (2018). Refining the Laurentide Ice Sheet at Marine
753 Isotope Stage 3: A data-based approach combining glacial isostatic simulations with a dynamic ice model.
754 *Quaternary Science Reviews*, 195, 171–179. <https://doi.org/10.1016/j.quascirev.2018.07.023>

755 Rasmussen, S. O., Andersen, K. H., Svensson, A., Steffensen, J. P., Vinther, B. M., Clausen, H.,
756 Siggaard-Andersen, M., Johnsen, S. J., Larsen, L. H., Dahl-Jensen, D., Bigler, M., Röthlisberger, R.,
757 Fischer, H., Goto-Azuma, K., Hansson, M., & Ruth, U. (2006). A new Greenland ice core chronology for
758 the last glacial termination. *Journal of Geophysical Research*, 111(D6).
759 <https://doi.org/10.1029/2005jd006079>

760 Rice, J., Ross, M., Paulen, R., Kelley, S., & Briner, J. (2020). A GIS-based multi-proxy analysis of the evolution of
761 subglacial dynamics of the Quebec–Labrador ice dome, northeastern Quebec, Canada. *Earth Surface
762 Processes and Landforms*, 45(13), 3155–3177. <https://doi.org/10.1002/esp.4957>

763 Rice, J. M., Ross, M., Paulen, R. C., Kelley, S. E., Briner, J. P., Neudorf, C. M., & Lian, O. B. (2019). Refining the
764 ice flow chronology and subglacial dynamics across the migrating Labrador Divide of the Laurentide Ice
765 Sheet with age constraints on deglaciation. *JQS. Journal of Quaternary Science/Journal of Quaternary
766 Science*, 34(7), 519–535. <https://doi.org/10.1002/jqs.3138>

767 *Rivers of Canada - Churchill River : Can Geo Education*. (n.d.).
768 https://web.archive.org/web/20200201124628/http://www.cangeoeducation.ca/resources/rivers_of_canada/churchill_river/default.asp

769 Roy, M., Hemming, S. R., & Parent, M. (2009). Sediment sources of northern Québec and Labrador glacial
770 deposits and the northeastern sector of the Laurentide Ice Sheet during ice-rafting events of the last glacial
771 cycle. *Quaternary Science Reviews*, 28(27–28), 3236–3245.
772 <https://doi.org/10.1016/j.quascirev.2009.08.008>

773 Spray, J. G., Kelley, S. P., & Rowley, D. B. (1998). Evidence for a late Triassic multiple impact event on
774 Earth. *Nature*, 392(6672), 171–173. <https://doi.org/10.1038/32397>

775 Staiger, J. K. W., Gosse, J. C., Johnson, J. V., Fastook, J. L., Gray, J., Stöckli, D. F., Stockli, L. D., &
776 Finkel, R. C. (2005). Quaternary relief generation by polythermal glacier ice. *Earth Surface Processes and
777 Landforms*, 30(9), 1145–1159. <https://doi.org/10.1002/esp.1267>

778 Staiger, J. W., Marchant, D. R., Schaefer, J. M., Oberholzer, P., Johnson, J. V., Lewis, A. R., & Swanger, K.
779 M. (2006). Plio-Pleistocene history of Ferrar Glacier, Antarctica: Implications for climate and ice sheet
780 stability. *Earth and Planetary Science Letters*, 243(3–4), 489–503.
781 <https://doi.org/10.1016/j.epsl.2006.01.037>

782 Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hättestrånd, C., Heyman, J.,
783 Hindmarsh, R. C., Hughes, A. L., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J.
784 B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J., . . . Teller, J. T. (2015). On the reconstruction
785 of palaeo-ice sheets: Recent advances and future challenges. *Quaternary Science Reviews*, 125, 15–49.
786 <https://doi.org/10.1016/j.quascirev.2015.07.016>

787 Stokes, C. R., Tarasov, L., & Dyke, A. S. (2012). Dynamics of the North American Ice Sheet Complex
788 during its inception and build-up to the Last Glacial Maximum. *Quaternary Science Reviews*, 50, 86–104.
789 <https://doi.org/10.1016/j.quascirev.2012.07.009>

790 Storrar, R. D., Stokes, C. R., & Evans, D. J. (2013). A map of large Canadian eskers from Landsat satellite imagery.
791 *Journal of Maps*, 9(3), 456–473. <https://doi.org/10.1080/17445647.2013.815591>

793 Stroeven, A. P., Fabel, D., Hättestrand, C., & Harbor, J. M. (2002). A relict landscape in the centre of
794 Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial
795 cycles. *Geomorphology*, 44(1–2), 145–154. [https://doi.org/10.1016/s0169-555x\(01\)00150-7](https://doi.org/10.1016/s0169-555x(01)00150-7)

796 Süfke, F., Gutjahr, M., Keigwin, L. D., Reilly, B. T., Giosan, L., & Lippold, J. (2022). Arctic drainage of
797 Laurentide Ice Sheet meltwater throughout the past 14,700 years. *Communications Earth & Environment*,
798 3(1). <https://doi.org/10.1038/s43247-022-00428-3>

799 Tarasov, L., Dyke, A. S., Neal, R. M., & Peltier, W. R. (2012). A data-calibrated distribution of deglacial
800 chronologies for the North American ice complex from glaciological modeling. *Earth and Planetary
801 Science Letters*, 315–316, 30–40. <https://doi.org/10.1016/j.epsl.2011.09.010>

802 Ullman, D. (2023). The retreat chronology of the Laurentide Ice Sheet during the last 10,000 years and implications
803 for deglacial sea-level rise. *Vignettes: Key Concepts in Geomorphology*. <https://serc.carleton.edu/59463>.

804 Ullman, D., Carlson, A. E., Hostetler, S. W., Clark, P. U., Cuzzzone, J., Milne, G. A., Windsor, K., & Caffe, M.
805 (2016). Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. *Quaternary Science
806 Reviews*, 152(15), 49.59. <https://doi.org/10.1016/j.quascirev.2016.09.014>

807

808

809