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Abstract—Massive multiple-input-multiple-output (MIMO) is
a core technology of current and future wireless networks.
However, the very large dimension of a massive antenna array
can lead to radical changes in the electromagnetic fields near
the array, and the classical far-field channel model is no longer
accurate. Instead, the channel should be modeled under the
assumption of near-field spherical wavefronts. Furthermore, the
very large dimension of the arrays can also result in high power
consumption and hardware complexity. A practical solution for
this problem is to use low-resolution analog-to-digital converters
(ADCs). It is therefore of significance to study the near-field
channel estimation problem for MIMO systems implemented
with low-resolution ADCs. We propose an efficient on-grid polar-
domain channel estimation method which relies on the polar-
domain sparsity of the near-field channels. We first reformulate
the sparse low-resolution near-field maximume-likelihood channel
estimation problem by exploiting an approximation of the cu-
mulative distribution function of a normal random variable as
a logistic activation function. We then develop an on-grid polar-
domain channel estimation method based on the gradient descent
approach and the polar-domain sparsity of the near-field channel.
Finally, we apply the deep unfolding technique to optimize the
performance of the proposed method and illustrate its efficiency
via several simulation studies.

I. INTRODUCTION

Communications at millimeter wave (mmWave) and sub-
terahertz (sub-THz) frequencies are envisioned as a one of
the enablers of future (e.g., 6G) wireless networks [1]. The
abundant bandwidths in these high-frequency bands are es-
sential for meeting the very high data rate demands of the
increasing number of users and devices. However, the severe
path loss of mmWave and sub-THz channels requires the
deployment of truly massive antenna arrays, which fortunately
is possible thanks to the very small size of the high-frequency
antennas. In addition, users in mmWave and sub-THz systems
are often required to be located near a base station (BS), which
in conjunction with the very large size of the BS antenna
array leads to radical changes in the electromagnetic field
structure. In particular, the far-field planar wavefront model,
where the channel depends (approximately) only on the angles
of departure/arrival (AoDs/AoAs), is no longer accurate in
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this case. Instead, the channel should be modeled under the
assumption of near-field spherical wavefronts [2], which is a
function not only of the AoDs/AoAs but also of the distances
between the BS, users, and scatterers.

Research on near-field massive multiple-input-multiple-
output (MIMO) systems has recently gained significant in-
terest, e.g., [3]-[13]. The work in [4] showed that near-field
channels may not be sparse in the angular domain even with
relatively few signal paths and developed a polar-domain
transform taking into account both the angular and range
information to give a sparse polar-domain representation. The
work in [5] proposed a sparse distance-parameterized angular-
domain model in which the dictionary size depends only on
the size of the angular grid. Exploiting the extra degrees of
freedom in the distance domain, [6] proposed a location divi-
sion multiple access (LDMA) approach to enhance spectrum
efficiency, since LDMA can serve different users located at the
same angle but at different distances. The work in [7] proposed
to use circular instead of linear arrays to enable more users to
benefit from near-field communications. Channel estimation
for hybrid near-/far-field and mixed line-of-sight (LoS) and
non-line-of-sight (NLoS) channels was studied in [8] and [9],
respectively. Different beam training approaches were also
proposed in [10]-[13]. Deep learning was exploited in [10],
while [11] employed a conventional far-field codebook to
determine the candidate angles of the users before using a
customized polar-domain codebook to find their range. A near-
field hierarchical beam training scheme was developed in [12]
to reduce the overhead without the need for extra hardware,
whereas [13] focused on wideband beam training taking into
account the beam split effect over different frequencies.

All of the aforementioned works assume perfect (infinite-
resolution) quantization at the BS, which requires many high-
power and high-resolution analog-to-digital converters (ADCs)
due to the large dimension of the massive antenna array.
Although a natural approach to address this problem is to
use low-resolution ADCs, there is little work in the liter-
ature on near-field channel estimation with such hardware.
Recently, [14] solved the grant-free joint activity detection and
channel estimation problem over near-field channels assuming
mixed-resolution ADCs, where only some of the receive an-
tennas employ low-resolution ADCs and the rest are equipped
with conventional ADCs. To the best of our knowledge, this



paper is the first attempt to address the near-field channel
estimation problem in massive MIMO systems with low-
resolution ADCs. In this regard, we first formulate the sparse
low-resolution near-field maximum-likelihood channel estima-
tion problem by exploiting an approximation of the cumulative
distribution function (cdf) of a normal random variable as
a logistic activation function. We then develop an on-grid
polar-domain channel estimation method based on the gradient
descent approach and the polar-domain sparsity of the near-
field channel. Finally, we apply the deep unfolding technique
to optimize the performance of the proposed method and
illustrate its efficiency via several simulation studies.

II. SYSTEM MODEL

We consider a massive MIMO system with an /NV-antenna
BS serving K single-antenna users. Assuming a uniform linear
array (ULA) structure, the near-field channel model for user k
is given by

L
N
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where L is the number of channel paths, ¢ is the channel
path gain, and b(wy, s, 7x¢) € C¥ is the steering vector given
by
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Let the coordinates of scatterer ¢ for user k and the n-
th receive antenna be (7 cos ¢, 7k ¢8in 6k ¢) and (0,6,),
respectively, with d,, = Q”%N_ld,;, n=1,..., N, and where
dy is the antenna spacing. The distance between scatterer ¢
for user k£ and the n-th receive antenna is then given by

d,(fg = \/Tée + 02 — 26,7k oWk 0, With wy, ¢ = sin O p.
Let H = [hy, ..., hg] € CV*¥ denote the channel matrix

and X € CX*T» be the pilot sequence, where 7}, is the pilot
length. The unquantized received signal is Z = HX + N €
CN*Tv | where the elements of N = [ny, ..., np ] € CV*T»
are assumed to be independent and identically distributed
(i.i.d.) zero-mean Gaussian noise with distribution CA/ (0, Ny).
Then, the quantized received signal is given by

Y = Q,(R{Z}) + 7Oy (3{Z}) e CV*T> | 3)

where Qy(-) represents the b-bit ADC operation, which is
applied separately to each element of its matrix or vector
argument. We assume that Q;(-) employs uniform scalar quan-
tization, which is characterized by a set of 2% _ 1 thresholds
denoted by {1, ..., T9s_; }. Without loss of generality, we set
—00=Tg <7} <...<Top_q < Top = 00. For a quantization
step A, the quantization thresholds are given by

= (-2"140A, forteB={1,...,.2"-1}. &
The quantized output y is then defined as
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III. PROPOSED ON-GRID POLAR CHANNEL ESTIMATION
First, we rewrite the unquantized received signal as

Z=WHX +N, (6)

where W € CN*%vol is a polar-domain transformation ma-
trix [4] that makes H a sparse polar-domain channel matrix.
Here, Sp,01 denotes the number of sampled near-field steering
vectors in the polar domain and H = [hy, ... hg] € Co%axK
is a K L-sparse matrix, where h;, is the L-sparse channel
vector of user k, i.e., each vector I_lk has L non-zero elements
(with L < Spo1). Since H = WH, we can obtain an estimate
of H through an estimate of the sparse channel matrix H.

Now, we vectorize the unquantized received signal Z in (6)
as

z=vec(Z) = (X" ®W)h+n (7
=Ah+neCV ®)

with A = X7 @ W € CTeNxESpar | = vec(H) € CSpor K
and n = vec(N) € CNTv. The problem of interest is to esti-
mate the sparse channel vector h using W, X, and the quan-
tized received signal vector y = Qp, (R{z}) + jOp (3{z}).
Note that the sparse channel vector h has KL non-zero
elements. To facilitate the later derivations, we represent the
term Ah in (8) in the real domain as
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The likelihood function of h is given by
NT,
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where ®(-) is the cdf of a normal random variable and
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with p = 1/Ny. Here, yf‘;’“p and yi}g’low (or ySL"Ip and yi";vlo‘”)
are the lower and upper thresholds of the quantization bin to
which R{y,,} (or I{y.,}) belongs, respectively.

We are interested in solving the following sparsity-
constrained ML problem:

p(y|h)

subject to ||hzpyllo =L, Vk=1,..., K,

maximize
{h}

(16)
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Fig. 1: Hlustration of the effect of the parameter x with L = 2.

with Z(k) = {(k — 1)Spar + 1, ...,
gradient of p(y|h), given by
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may be undefined (i.e., the denominators in (17) may be zero)
since the function ®(-) rapidly approaches zero or one [15].
To address this issue, we employ the approximation ®(s) =
o(es) =1/(1 4 e=°®), where ¢ = 1.702 (see [16], [17]), and
approximate the likelihood function p(y|h) as

NT,
ply[h) = p(y[h) = D [log (o (sh"P) — o (sh'"))
m=1
+log (0 (s ") — o (s'))] . (18)
The gradient of (18), given by
Vs B(y[R) =7 (AT [1 - o (7 (ATR® - y*7))
" (7 (ARER . yR,low)) } ’ (19)

with v = ¢4/2p, does not suffer from the above divide-by-zero
issue. Hence, we obtain the reformulated problem

maximize p(y|h)
{h} ~ (20)
subject to  |hzpyllo =L, Yk=1,..., K.

At this stage, we employ the projected gradient descent
approach to solve problem (20) as

2y
(22)
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Algorithm 1 Function f,(-)

Input: h® = [(h®)T, (h%)7]” and
1: Initialization: h™ = 0 and h® =0
2. fork=1,..., K do _ _
3 ¢ = diag (hf,))hY,) + diag (hF,))h3 )
4: Vk - Ck‘
5:. for/=1,...,Ldo
6: 0= fone -hot (Vk)
7: hI(k) = hI(k) + diag (o ){11(,@)
8: hI(k) hI(k) + diag (o )hI(k)
9: v = vy, — diag (0,)Cy

10: end for
11: end for
12: return hR =

[(W™)T, (b)T]T

where i is the iteration index, (¥ is the step size, and f,(-)
is a projector function to ensure the sparsity constraint for h
in (20). Thus, based on the coarse estimate h¥, the function
fi(+) will produce a real vector of 2K L non-zero elements
corresponding to the K L channel paths. A detailed description
of the function f,(-) is given in Algorithm 1. The channel
paths are found separately for different users, as indicated by
the for loop over the user index in line 2. For each user k, we
rely on the magnitude of the elements in the coarse estimate
hz( (line 3) to find the L channel paths of user k. In
particular, we sequentially find the most dominant path by
means of the one-hot vector function foe-not(:) (line 6) and
then remove it from the magnitude vector vy (line 9). The
function fope-not () produces a one-hot vector g whose non-
zero element is 1 at the index of v associated with the largest
value. The vector g, in line 9 is constructed from g by setting
x samples to the left and right of the non-zero element in v
to be 1. This is to address the coherence issue illustrated in
the top plot in Fig. 1, where several consecutive grids have
a non-zero amplitude but the channel path is in only one of
these grids. It can be seen from Fig. 1 that, when x = 0, the
L channel paths are determined by the L largest samples in
the magnitude vector v;. However, this can lead to incorrect
path estimates due to the coherence issue, as can be observed
in the middle plot of Fig. 1. This problem can be efficiently
addressed by setting x = 1, since not only the largest peak but
also its adjacent peak are removed from the magnitude vector
v}, before searching for the second channel path.

Furthermore, we propose to use the deep unfolding tech-
nique [18] to unfold each iteration of the method in (21)
and (22) as a layer of a deep neural network. We treat the
scaling parameter -y inside the logistic activation function and
the step size 7 as the trainable parameters of the proposed
deep neural network. Let h denote the sparse channel estimate,
which is set to be the output of the last layer of the deep neural
network, i.e., h = h(Y), where I is the number of network
layers. The cost function to be minimized is |h — hl2, with
h = (Ix ® W)h. We can obtain a training sample consisting
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Fig. 2: NMSE performance versus parameter « with SNR = 20 dB.

of the pilot matrix X, a channel vector realization h, and a
noise vector n, which can be randomly generated. To address
the gradient backpropagation of the one-hot vector function
fone-not () in the training process, we replace it by a softmax
function fsoftmax(c2V), Where ¢z is a parameter that should be
set to a large value to match the one-hot vector function.

IV. NUMERICAL RESULTS

In this section, we present numerical results to show the
efficiency of the proposed on-grid near-field channel esti-
mation method. In our simulations, we consider N = 200
antennas at the BS serving K = 2 users. We set the pilot
length to T, = 2K, the dictionary size to Spo = 1000,
the number of channel paths to L = 4, and the number
of iterations (network layers) to I = 10. We assume a
carrier frequency f. = 60 GHz, antenna spacing dy = A./2,
angles 0y, € [—n/3,7/3], and ranges 7, € [10,50] m.
The channel estimation performance is measured in terms of
normalized mean squared error (NMSE), defined as NMSE =
E[||h — h|[2]/E[||h||2], where h is an estimate of h.

First, we examine the effect of the parameter « in Fig. 2. We
observe that, when « is too small or too large, it can degrade
the estimation performance. When « is too small, the function
fx(+) cannot efficiently address the coherence issue and this
leads to an incorrect path estimation, as previously illustrated
in Fig. 1. However, if k is too large, the peak removal step
(line 9 of Algorithm 1) in the function f,(-) may remove
another actual channel path close to the dominant path. Hence,
one should choose an appropriate value of « to obtain the best
performance. For example, in this case, we choose k = 5,4, 3
for b = 1,2, 3, respectively.

Next, we show the NMSE performance with 3-bit ADCs
versus the SNR in Fig. 3. We compare the proposed deep
unfolded network with the case where we heuristically set the
step sizes 7). It can be seen that the deep unfolded channel
estimator with trained step sizes and scaling parameters for
the logistic activation function gives better performance than
when we heuristically set the step sizes. In Fig. 4, we show the
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Fig. 3: NMSE performance versus SNR with b = 3 bits.
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Fig. 4: NMSE performance of the deep unfolded network versus SNR for
different ADC resolutions.

performance of the deep unfolded network versus the SNR for
different ADC resolutions. We observe that 2- and 3-bit ADCs
yield very similar performances, both significantly better than
the case of 1-bit ADCs.

V. CONCLUSION

In this paper, we proposed an efficient on-grid near-field
channel estimation method for massive MIMO systems with
low-resolution ADCs by exploiting the polar-domain sparsity
of the near-field channel. A reformulated sparse low-resolution
near-field ML channel estimation problem was formulated by
exploiting the approximation of the cdf of a normal random
variable as a logistic activation function. In addition, the deep
unfolding technique was applied to optimize the proposed
algorithm and the efficiency of the proposed method was
demonstrated via numerical results.
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