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ABSTRACT: Dissymmetrical chiral peropyrenes with electron-rich and
electron-deficient aryl substituents in the bay regions were synthesized via
iridium-catalyzed C−H activation and alkyne benzannulation. The electronic
properties were studied using cyclic and differential pulse voltammetry. The
enantiomers were separated and exhibited high glum and gabs values in circularly
polarized luminescence (CPL) and circular dichroism (CD), respectively.
Variable-temperature NMR experiments were conducted on symmetrical and
dissymmetrical chiral peropyrenes to compare the barrier to rotation of the
aryl groups in the bay region.

With the popularity of organic electronic devices on the
rise, more effort has been geared toward the creation of

a wider range of well-defined polycyclic aromatic hydrocarbons
(PAHs) of both planar and contorted geometries with
optoelectronic properties suitable for device applications.1−5

Bottom-up synthetic strategies allow for the synthesis of
complex�and just as importantly soluble�π-conjugated
materials, the properties of which can be tuned through
synthetic design to suit specific applications in organic field-
effect transistors (OFETs), organic photovoltaics (OPVs),
organic light-emitting diodes (OLEDs), and flexible-organic
field-effect transistors (FOFETs).6−8 Pyrene, in particular, has
been shown to perform well in these applications due to its
innate photophysical properties.9 As such, derivatives of pyrene
and materials bearing pyrenyl groups have been widely studied
in this field. Alternatively, one can expand the π-electron
system of pyrene through the addition of fused rings to further
tune the properties of the material. The one-dimensionally π-
extended analogue of pyrene, peropyrene10,11 (Figure 1), also
shows promise as a viable candidate for similar applications in
the growing field of nanomaterials science.12,13

In 2016, it was shown that the reliable and facile preparation
of soluble peropyrene and teropyrene derivatives can be

achieved through alkyne benzannulation chemistry using
Brønsted acids.14,15 This methodology was later used to
prepare the first axially chiral peropyrene, but the method is
limited to alkyne precursors bearing electron-rich aryl
groups.16 In 2017, the Chalifoux group showed that indium-
(III) chloride (InCl3) can be used to expand the scope of
alkyne precursors to include electron-neutral and electron-poor
aryl substituents as well as alkynes bearing only alkyl groups.17

This π-Lewis acid method led to peropyrenes and teropyrenes
in greater yield under milder conditions than the previous
Brønsted acid method. In the preparation of chiral peropyrene
using either the Brønsted or the π-Lewis acid methodology,
electron-deficient alkyne aryl precursors gave no fully cyclized
desired product. This was presumably due to the aromatic
backbone becoming more electron deficient as each alkyne
cyclization occurred, thus making the backbone less reactive
toward subsequent electrophilic aromatic substitutions. To test
this idea, a dissymmetrical teropyrene precursor with electron-
rich ethynylaryl groups on one end and electron-poor
ethynylaryl groups on the other was synthesized. It was
hypothesized that the electron-rich groups cyclize first and
then aid in the later benzannulation of the electron-poor
groups by enhancing the nucleophilicity of the backbone and
allowing for full benzannulation to occur. The reaction worked
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Figure 1. Pyrene expansion to peropyrene through the addition of a
phenalenyl group (green).
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well to produce a dissymmetrical push−pull teropyrene
(Figure 2).17 In the current work, we hypothesized that an
electron-rich pyrene core will aid in an analogous benzannu-
lation process to give dissymmetrical push−pull chiral
peropyrenes.

Our assumption that the electronics of the aromatic core
play a crucial role to ensure the full benzannulation of electron-
poor diyne substituents factored into the design of these
dissymmetrical chiral peropyrenes. Using the dissymmetrical
teropyrene shown in Figure 2 as a model, we envisioned the
preparation of similarly constructed chiral peropyrenes with
analogous aryl substituents. Not only would this lead to new
method development but also a dissymmetrical chiral
peropyrene would have two electronically opposing aryl
substituents overlapping each other, possibly resulting in a
dynamic charge-transfer process, or a “push−pull” system
localized in the bay region.18,19 The crystal structures of our
symmetrical chiral peropyrene showed a twisted backbone
caused by the repulsion between the two aryl groups in the
same bay region. They also showed that the aryl groups were
∼2.9 Å apart and the molecules, themselves, had a face-to-face
interplanar molecular packing distance of 9.0 Å. Given that the
space between the aryl groups is already very small in

symmetrical chiral peropyrenes, installing electronically oppos-
ing aryl substituents in the bay region could make new
dynamic chiral peropyrenes with smaller HOMO−LUMO
gaps and enhanced chiroptical properties.20

Herein, we report the synthesis of the first dissymmetrical,
axially chiral peropyrene using C−H activation on a complex
pyrene system. Two different electron-deficient diyne deriva-
tives were prepared to investigate the difference in the
photophysical properties and barrier to rotation of the aryl
groups in the bay regions relative to a previously reported
symmetrical chiral peropyrene.16 The barriers to enantiome-
rization are expected to be similarly high (∼29 kcal/mol), as
was reported for the symmetrical chiral peropyrene. Both chiral
derivatives were studied by cyclic voltammetry (CV), differ-
ential pulse voltammetry (DPV), and UV−vis and fluorescence
spectroscopy. Due to the high enantiomerization barrier, the
enantiomers were easily separated, and the circular dichroism
(CD) and circularly polarized luminescence (CPL) properties
were examined. A variable-temperature (VT) study was
conducted on both dissymmetrical and symmetrical chiral
peropyrenes to compare the barrier to rotation of the aryl
groups in the bay regions.
The challenge of creating a dissymmetrical variant of this

molecule stems from the inability to reliably couple two
different diyne precursors to a smaller aromatic core. Suzuki
cross-coupling attempts following analogous literature proce-
dures resulted in a single coupling accompanied by
protodehalogenation of the aromatic halide and an inseparable
mixture of side products (Figure 3).16,17

However, inspired by these byproducts, we decided to
intentionally make compound S4 (Supporting Information)
through Suzuki cross-coupling with iodobenzene (Scheme 1).
We then used S4 to make pyrene 1 in good yield through
alkyne benzannulation with InCl3 and silver bis-
(trifluoromethanesulfonyl)imide (AgNTf2). The design of
this pyrene, with a tert-butyl group at the 2 position and a
hydrogen on the 7 position of the pyrene core, allowed us to

Figure 2. Dissymmetrical teropyrene.

Figure 3. Results using previous literature methods for preparation of chiral peropyrenes.
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use iridium-catalyzed C−H activation to borylate the
unfunctionalized end of the pyrene to obtain compound 2 in
moderate yield.21 Compounds 3a and 3b were coupled to 2 via
Suzuki cross-coupling to produce compounds 4a and 4b in
adequate yields. Two-fold alkyne benzannulation was achieved
by using InCl3 and AgNTf2 in o-xylene to produce chiral
peropyrenes 5a and 5b. The electron-rich, symmetrical chiral
peropyrene 5c was prepared following the literature
procedure.16

The NMR spectra of compounds 5a and 5b show broad
peaks for the aryl substituents at room temperature due to a
high degree of restricted rotation arising from their proximity
to one another in the bay region. Variable-temperature (VT)
NMR experiments were conducted to determine rotational
barriers for both aryl substrates. We wondered if the
electrostatic interactions between the electron-deficient and
the electron-rich aryl groups in the bay region would influence
the rotational barrier. We found that both the symmetrical
compound 5c and the dissymmetrical compound 5b chiral
peropyrenes had the same rotational barrier of 14.4 kcal/mol.
The corresponding calculations for the rotational barriers are
in the Supporting Information.
Cyclic voltammetry and differential pulse voltammetry (see

Supporting Information) experiments were conducted and are
summarized in Table 1. Both compounds exhibited two
reversible oxidations and two reductions, one of which was
reversible. The electrochemical HOMO−LUMO gaps of 5a
and 5b were calculated to be 2.37 and 2.35 eV, respectively,

slightly smaller than the previously reported value of 2.42 eV
for 5c.17 These values are slightly lower than the calculated
value of 2.50 eV for 5a and 5c (Table SI-2). The HOMO and
LUMO orbitals for 5a and 5c primarily reside on the core with
small contributions to the HOMO from the electron-rich aryl
substituents (Figure SI-11).
Both dissymmetrical compounds exhibit similar absorption

and emission patterns as well as fluorescence lifetimes (Figure
4, Table 2). This data was consistent with the previously

Scheme 1. Synthesis of Dissymmetrical Chiral Peropyreneb

aPeropyrene 5c was synthesized following a literature procedure.17. bIntermediates S2, S3, and 3b were synthesized following literature procedures
and are provided in the Supporting Information.

Table 1. Photochemical and Electrochemical Properties for
Compounds 5a and 5ba

compound
Ered
(V)

Eox1
(V)

Eox2
(V)

EHOMO
(eV)

ELUMO
(eV)

Eg
(eV)

5a −2.01 0.36 0.85 −4.76 −2.39 2.37
5b −2.05 0.30 0.77 −4.70 −2.35 2.35
5c −1.66 0.76 −5.16 −2.74 2.42

aElectrochemical data were obtained by DPV vs the Fc/Fc+ redox
couple as an internal standard. Voltammograms were recorded at 298
K in dry, degassed methylene chloride (c ≈ 2.5 × 10−4 M) with 0.1 M
(n-Bu)4NPF6 under an argon atmosphere. The HOMO and LUMO
energies were calculated using reported literature methods.17 Data for
5c was obtained from previous literature.17

Figure 4. UV−vis (c ≈ 2 × 10−5 M) (solid line) and normalized
fluorescence (dotted line) spectra of 5a (blue) and 5b (red) measured
in CH2Cl2 at 293 K.

Table 2. Photophysical Properties of Compounds 5a and
5ba

compound λabs (nm) λem (nm) τ (ns) Φ
5a 511 533 3.40 44%
5b 508 529 3.14 48%
5c 512 531 23%

aMaxima of the absorbance and emission spectra and emission
lifetimes for both chiral compounds 5a and 5b were determined. Both
absorption and emission spectra were measured in CH2Cl2 at 293 K.
The data for 5c were obtained from previous literature.16
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reported spectra of 5c.17 The fluorescence quantum yields for
5a and 5b were 44% and 48%, respectively. Interestingly, this is
approximately double that reported for compound 5c (ϕ =
22%). This suggests that small changes in the structure and
electronics of the chiral peropyrene, even on the peripheral aryl
groups, can have a significant effect on the optical properties.
The enantiomers of 5a and 5b were separated by HPLC on

a chiral semipreparative column, and their CD and CPL
properties were studied (Figure 5). Compound 5a shows a

strong Cotton effect toward the higher energy absorbance (gabs
= 5.1 × 10−3; 320 nm). Similarly, compound 5b also exhibits a
strong Cotton effect in the higher energy absorbance (gabs =
4.9 × 10−3; 340 nm). Both compounds showed an average glum
of ∼1.1 × 10−3 from 500 to 625 nm (Figures SI-5 and SI-6).
These values are slightly higher than those reported for
compound 5c, which had reported values for gabs and glum of
∼1.2 × 10−3 and ∼7.7 × 10−4, respectively.16

In summary, the first dissymmetrical, axially chiral
peropyrene was successfully prepared through the iridium-
catalyzed C−H activation of a complex pyrene system. The
C−H activation/alkyne benzannulation methodology is an
efficient way to synthesize more complex PAHs that would
otherwise be extremely difficult to obtain using other methods.
The close proximity of the appended aryl groups in the chiral
peropyrenes led to smaller HOMO and LUMO energy gaps
and improved CD and CPL properties relative to a previously
reported symmetrical chiral peropyrene. Using VT-NMR
experiments, we were able to calculate the barriers of rotation
of both symmetrical and dissymmetrical chiral peropyrenes.
Interestingly, no observable difference could be detected as the
electrostatic effects were not strong enough to significantly
slow down aryl group rotation. Nonetheless, this new
methodology allows us to greatly expand the size and
complexity of PAHs, including desymmetrization of the

backbone, and improve our understanding of how function-
alization affects the optoelectronic properties of the molecules.
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