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Abstract—In the context of wireless communications, chan-
nel estimation and data detection are two pivotal tasks that
exert considerable influence on system performance, such as
enhancing spectral efficiency and improving quality of service
(QoS). Nevertheless, these tasks become more challenging as
user mobility increases, e.g., in unmanned aerial vehicle (UAV)
networks, leading to channel variations over time. Consequently,
our focus in this study is on an uplink massive multi-input multi-
output (MIMO) system in a UAV network with time-varying
channels. We propose an online processing approach for joint
estimation and detection (JED) in these channels. Specifically, we
introduce a method that utilizes variational Bayes (VB) inference
to approximate the true posterior distributions. Our assessment of
the VB method encompasses its performance in terms of symbol
error rate (SER) and computational complexity. Additionally, we
conduct an analysis of how time correlation and communication
time impact its effectiveness.

Index Terms—Bayesian inference, detection, estimation, mas-
sive MIMO, variational Bayesian, Unmanned aerial vehicles.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become invaluable in
the current and future wireless communication networks due
to their efficient and automatic execution of various crucial
tasks. The incorporation of UAVs into wireless communication
networks has emerged as a prominent area of research, with
two primary approaches [1], [2]. The first approach centers
on utilizing UAVs as base stations (BSs) to enhance network
capacity, expand coverage, and swiftly establish a mobile
network architecture during catastrophic events [1]. The second
approach concentrates on exploring communication services
that wireless networks can offer to UAVs [2].

Within the latter approach, the authors in [3] have delved
into the application of massive multiple-input multiple-output
(MIMO) technology to support cellular communications for
UAVs, aiming to enhance reliability in UAV command and
control (C&C) links. Furthermore, [4] introduced a 3D channel
model tailored for network-connected UAVs and presented a
coverage analysis applicable to different network deployments.

The adoption of massive MIMO results in large channel
matrices, which necessitate the development of effective al-
gorithms for channel estimation and data detection. In uplink
scenarios, channel estimation is conventionally achieved using
known pilot signals. Nevertheless, this method encounters scal-
ability challenges, as it requires having a number of orthogonal
pilot signals equal to or greater than the number of users. This
limitation becomes more pronounced as the number of users

grows. To address this issue, literature has introduced blind
channel estimation algorithms [5], [6], which solely depend on
the received signals. However, these methods are susceptible
to phase ambiguities in the demodulated symbols.

Semi-blind channel estimation is another technique to reduce
dependency on orthogonal pilot signals, which incorporates
a limited number of known pilot signals alongside received
signals to enhance the accuracy of the estimation procedure.
In [7], the focus was on semi-blind channel estimation for
multi-user MIMO systems in which two methods based on
the expectation-maximization framework were introduced for
channel estimation. Then, in [8], the investigation centered
on channel estimation within a multi-cell multi-user massive
MIMO network. It proposed a method that estimates the uplink
data from the target cell and then obtains the least square
channel estimate by treating the detected uplink data as pilot
symbols. The work in [9] studied the joint estimation and
detection (JED) problem in hybrid massive MIMO systems
and proposed two iterative algorithms via a low-rank matrix
completion formulation. Furthermore, the authors of [10] intro-
duced an iterative algorithm based on nonlinear optimization,
tailored to address a relaxed version of the maximum a-
posteriori JED problem in cell-free massive MIMO systems,
providing point estimates for the data symbols.

In the aforementioned algorithms, it is assumed that the
channels remain time-invariant during the communication pe-
riod. This assumption is only valid for static channels (i.e.,
block fading channel model), where users are either static or
have low mobility. However, UAVs are high-speed users, and
in this case, the channels corresponding to UAVs experience
time variations due to Doppler spread. Therefore, channel
information needs to be updated instantaneously throughout
the communication period [11].

Motivated by the above, in this paper, we investigate an
uplink massive MIMO system in UAV networks and propose
an online processing technique based on variational Bayes
(VB) inference, enabling JED for time-varying channels. VB
inference is a robust statistical inference framework derived
from machine learning, which addresses the challenge of
approximating the posterior distribution of latent variables.
The VB inference achieves this by optimizing simpler distri-
butions from a known family to replace the intractable true
posterior distributions. In this study, we employ the mean-
field variational family to serve as an approximation for the



true posterior distributions. Additionally, we assume that the
receiver (i.e., BS) lacks knowledge of the noise variance to
highlight the influence of residual inter-user interference in our
computations.

We compare the performance of our proposed VB method
with the conventional linear minimum mean squared error
(LMMSE) and maximum likelihood (ML) detection methods.
Our results demonstrate that VB surpasses LMMSE and ML
in terms of symbol error rate (SER) and computational com-
plexity. Moreover, we analyze how time correlation and com-
munication time impact the performance of the VB method.

Paper organization: Section II includes the system model.
The proposed VB method for JED is explained in Section III.
The numerical analysis is demonstrated in Section IV, and
Section V concludes the paper.

Notations: Throughout this paper, italic, bold-face lower-
case, and bold-face uppercase letters are utilized to denote
scalars, vectors, and matrices, respectively; CN (u, X) repre-
sents a complex Gaussian random vector with mean p and
covariance matrix ¥; C®*? is the space of an a x b dimensional
complex-valued matrix; The symbols ~ and o represent the
concepts of being “distributed according to” and “proportional
to,” respectively; = ~ I'(a, b) signifies that  follows a Gamma
distribution with parameters a and b; diag{a} is a diagonal
matrix based on a; |A|, ||A]l, Tr(.), A", and A” indicate
determinant of A, Euclidean norm of A, the trace function, the
transpose of A, and the conjugate transpose of A, respectively;
I,/ is an identity matrix with size M; z* and R{z} repre-
sent the conjugate of x and the real part of x, respectively;
CN(x:p, ) = rgrexp( — (x — p)HS7 (x — p)) is
the probability density function (PDF) of a length-K random
vector X ~ CN(p,X); Ep,[z] and Varp,,[z] denote the
mean and variance of x with respect to its distribution p(x);
(z), {|z|?), and 7 denote the mean, the second moment, and
the variance of « with respect to a variational distribution g(x);
[X];; represent the element at the ith row and jth column of a
matrix X; Index t|t — 1 denotes the predicted statistics at time
t using the statistics at time ¢ — 1; Index t|¢ represents the a
posteriori estimated statistics at time ¢ using the observation at
time ¢.

II. SYSTEM MODEL

We consider an uplink massive MIMO system with K
single-antenna UAVs and a BS with M receive antennas, as
shown in Fig. 1. In this scenario, the linear uplink MIMO
system in time slot £ can be modeled as:

ye = Hyx; + ng, (D
where y; € CM*1 is the received signal vector, x; =
(€14, %24, 0Kk € CEXL where x;; is the transmitted

signal from UAV,;,1 < i < K, H; = [h; 4, hay,..
(CMXK

oy hK,t] €
represents the uplink channels where h;;, € CM*1,
denotes the channel between UAV, and the BS, and n; ~
CN(0, NoI,;) models the independent and identically dis-
tributed (i.i.d.) additive Gaussian noise at the BS. It is assumed

that channel vector h; ; is Gaussian distributed with p(h; ;) =
CN(h;+;0,R;), where R; e E[hi,thft] is the covariance
matrix. Without loss of generality, in this paper, we consider
that R; = I,,. We also assume that the channels from different
UAVs are independent of each other, i.e., E[hih;{ ] = 0, if
1<i,j<K,i#j.

hy

Fig. 1. An uplink massive MIMO serving K single-antenna UAVs.

The transmitted symbol vector x; are drawn independently
from a discrete constellation S, e.g., 16-quadrature ampli-
tude modulation (16QAM) and quadrature phase-shift keying
(QPSK), such that the prior distribution p(x:) is given by
p(xt) = Hfilp(x”) The symbol z;, can be a known pilot
symbol or an unknown data symbol. If it is a pilot symbol, then
the prior distribution of z; ; is given by p(z; ) = 6(zi 1 —Tiy),
where Z; ; is known at the BS. If it is a data symbol, the prior
distribution of x; ; is discrete with p(x; ;) = > c s Pad (it —
a), where p, corresponds to a known prior probability of the
constellation point a € S.

A. Modeling Time-Varying Channel

During the data transmission phase, it is assumed that chan-
nel h;;,t = 1,...,T, follows the first-order Gauss-Markov
model as below.

hi = nihi 1+ /1 — 078, )

where h; o = g0, gt ~ CN(0,I,/) denotes the innovation
process, and 0 < 1n; < 1 represents the time correlation
coefficient corresponding to UAV,. In this paper, in order
to gain insight into the online processing in time-varying
channels, it is assumed that 7; to be known. The acquisition
of 1; would be an interesting future research direction. It is
also considered that g; ; is uncorrelated with h; ;_1, such that
E [hi,t—lhft] =N and

p(h by s—15m;) = CN (hyymihi1,1—n7).  (3)

Notice that if n; = 1, the Gauss-Markov channel model
effectively becomes the block fading model. In this work, we
focus on time-varying channels (n; # 1) and propose a VB-
based method suited for the JED problem. A background on
VB is presented below.

B. Background on VB

This section provides a summary of the variational Bayes
(VB) method for approximate inference. Denote the set of
all observed variables by y and set of L latent variables and



parameters by x. For detection purposes, it is essential to find
the posterior p(x|y), which is computationally intractable. To
tackle this issue, the VB method was introduced to obtain a
distribution ¢(x) with its own setting of variational parameters
within a family Q of densities such that ¢(x) approximates
p(x]y). To do so, the VB method defines the following opti-
mization problem using the Kullback-Leibler (KL) divergence

from ¢(x) to p(x|y).

¢*(x) = arg min KL(q(x)|[p(x[y)), )
q(x)€Q

where ¢*(x) is the optimal variational distribution and

KL(g(x)[lp(x[y)) = Eq) [In4(x)] — Eqx) [Inp(x]y)]. (5)

In [12], the authors showed that the optimization problem
in (4) is equivalent to the following maximization problem.

¢*(x) = arg max {Eq } (6)

(€0 Eaco lIna(x
q X

(x) I p(x,y)] —
where the objective function is referred to as the evidence lower
bound (ELBO). Here, (6) is maximized if ¢(x) = p(x]y).
Since obtaining the true posterior distribution is intractable, it
is more practical to consider a restricted family of distribution
g(x). Hence, this work focuses on the mean-field variational
family, which is defined as follows:

(x) = H gi(xi), 7

where the latent variables are mutually independent and each
governed by a distinct factor in the variational density. The
general expression for the optimal solution of the variational
density ¢;(x;) can be obtained as [12]:

q; (x;) o< exp {(Inp(y, x))} (8)
X exp {<1np(y|x) + 1np(x)>} ,

where (-) represents the expectation with respect to all latent
variables except x; using the currently fixed variational density
qg—i(x_;) = HJL:M# g;(x;). By sequentially updating ¢ (z;)
in an iterative manner for all j, the objective function of (6) is
monotonically enhanced. This forms the fundamental principle
of the Coordinate Ascent Variational Inference (CAVI) algo-
rithm, which ensures convergence to at least a local optimum
solution for the optimization problem in (6) [13].

C. Problem Formulation

According to Section II-B, it is essential to compute joint
distribution in order to apply the VB method. Here, the noise
variance Ny is assumed to be unknown a priori. We use v; =
1/Np to denote the precision of the noise at time slot ¢. There-
fore, we compute joint distribution p(y;, Hy, Hy—1, X4, 745 1)
as follows:

p(}’t,XmHt, H; 1,7 "7)

= p(ye|xe, He, v)p(xe)p(He Hy—15m)p(7e),  (9)

where p(H,[H,_1;n) = [[/, p(hi|h;,_1;7;) and g =
[M,m2, - - K]

III. VB FOR JED WITH ONLINE PROCESSING STRATEGY

We consider the detection at a particular time slot ¢t. We
assume that the channel from UAV; distributed as p(h; ¢—1) =
CN( i|t—15 h;;_ 1t— 1, 2 - 1|t— 1),t = 1,...,T, where we
consider p(h; o) = CN (hg;0,I,/) and h; o was acqulred from
the pilot transm1ss10n phase and the previous data transmission
time slots. Our task is to estimate the data symbol x; and
approximate the posterior distribution of the channel h; ;. To
achieve this, we propose a VB-based method, organized into
two phases: prediction and estimation. The details of these
phases are presented below.

Prediction Phase: In this phase, we use the (variational)
posterior distribution of the unknown random variables at time
slot ¢t — 1 as their prior distribution at time slot ¢. Here, we
make the following assumptions:

Assumption 1: The variational distribution of the channel
h; ;1 is Gaussian CN (hy ¢_1js—1, 2, 4-1j1-1):

Assumption 2: The variational distribution of the noise
precision ~y; is Gamma distributed as I'(ag, bo).

It is noted that the distribution of h; ; depends on 7,;. Based
on the Gauss-Markov model in (2), thﬂe predictive distribution
p(h;¢;n;) for a given n; is CN (hy 5 hy 01, 3i,—1) where

h 1 = nifli,tfl\tfla (10)

Yitt-1 = n?zi,tflﬁfl +(1—n). (11)

The predictive distribution p(hy ¢5m;) =
CN(hj;hygp1,%;,0—1) is now used as the prior

distribution for h;;n; at time slot t.

Estimation Phase: In the estimation phase, our goal is to
attain the Bayes-optimal estimation of H; and x;, which can be
found via the posterior distribution p(xt, Hy, vy n). Since
it is intractable to derive p(x¢, Hy, 1|y:; 7). the mean-field
variational distribution g(x:, H, ;) is utilized such that

p(Xt,Ht,%Wt; ) ~ q(x¢, Hy,vt)

[qu

Based on (8), the joint distribution p(yy,x¢, He, ;1) is
needed to find the optimal solution of the variational densities
in (12). To do so, p(y¢,x:, Hy,v4;m) can be factorized as:

] q(v).  (12)

p(ye, %, He,ve5m)
K

= p(yelxe, He, 7e) lH p(wi,e)p(hy e i)

=1

p(ye)- (13)

As mentioned earlier in Section II-B, the CAVI algorithm
converges to the local optimum solutions ¢*(x;¢), ¢*(hi.),
and ¢*(v;) by iteratively optimizing one latent variable while
the others are fixed. The following parts demonstrate how each
latent variable can be updated.

1) Updating h; ,: By taking the expectation of the condi-
tional (13) with respect to all latent variables except for h; .,
the variational distribution of h;; is given in (16). Thus, the



variational distribution ¢(h;) is Gaussian with the following
covariance matrix and mean:

Y= [<%><\x”| Mar + 37, 1} , (14)
K
(i) = S o (31 = o) ) ) o)
J#i
+ mzuﬁt_lﬁi,t_m_ll : (15)

The following presents a lemma on the variational posterior
mean of multiple random variables that will be applied later
to update z;; and ;.

Lemma 1. Let A and x of size m x n and n x 1 be
two independent random matrices (vectors) with respect to a
variational density ga x(A,x) = qa(A)gx(x). It is assumed
that A is column-wise independent and let (a;) and X, be
the variational mean and covariance matrix of the ith column
of A. Let (x) and X be the variational mean and covariance
matrix of X. Let y be an arbitrary m x 1 vector and define
(lly — Ax[|?) as the expectation of ||y — Ax||*> with respect
10 qa x(A,x), we have:

(ly — Ax|[*) = |ly = (A)(x)[* + (x) "D(x)
+Tr{ZxD} + Tr{Zx(A")(A)}, (17)
where D = diag(Tr{Za, }, ..., Tr{Za, }).

Proof: Expanding (||ly — Ax||?) and taking into account
independence between A and x, we have:

(ly — Ax||?) = [lylI* = 2R{y"(Ax)} + (x"" A" Ax)
= ly = (A)(x)[I* = Te{(AT)(A)(x)(x") }
+Tr{(ATA) (xx")}. (18)
) = (x)(x) + 2«

H AN H%H%ﬁi:j
[(ATA); = { aa;), otherwise

(
(
{éaz (@) + Tr{¥a,}, if i = j

all)(a;), otherwise.
Thus, we have (A7 A) = (A)7(A) + D and as a result:
Tr{(A"A)(xx")} = Tr{{A")(A)(x)(x")} + (x)"D(x)

+Tr{ZxD} + Tr{Zx(A7)(A) }.

Note that (xx . In addition,

The proof thus follows by removing the duplicated terms in
(18). ]

Corollary 1. If x is deterministic, the expectation of (|ly —
Ax||?) with respect to a variational density qa(A) is given
by:

(ly — Ax|?) = lly — (A)x[> + 3 2 Tr{Sa,}. (19)
i=1

Proof: This is a direct result of Lemma 1 by noting that

Y. =0and x"Dx =30 |2;*Tr{Za, }. ]

2) Updating x;: This update only is applied, if x;; is an
unknown data symbol. Taking the expectation of the condi-
tional (13) with respect to all latent variables except for x; 4,
the variational distribution ¢;(x; ;) can be found as follows:

0i(wi0) o< exp{ (Inp(yilxe, He, 1) + Inplaie)) |
Hox|[*))
tmzt Zh 4 Ljt

J#i

—’YtHYt -

s atas)expf =0 [y -

x p(xiy) exp{<

i

o<p<:cz-,t>exp{<%> [<||hi,t||2> vidl?
K
- m{<hff,t> (yt - ;<hj,t><xj¢>)w;t}} }

oc p(xit) exp{ - <’Yt><”hi,t||2>|xi,t - Zi,t|2}7 (20)
where
(h}) =
g2 ey =Y () ), @D
(el 7 2
as a linear estimate of x; ;. Note that (|[h;[|?) = [|(h;.)[|* +

Tr{¥,,} by following Corollary 1. Since prior p(x;:) is
discrete, the variational distribution ql(zﬂ) is also discrete and
can be found easily by normalizing so that:

panp{ (e <||hzt|| >‘a_zzt| }

,Va € S.
Zbes Y2 exp{ <||h >|a - Zz,t|2}

(22)

qi(a) =

Hence, the variational mean of x; 4, (x; ), and its variance,
;» are given by:

= 3" agifa)

a€S

T
Ti,

— i t>|2~

; 1t_2|a| QZ

a€S

(23)

xzt

3) Updating ,: Taking the expectation of the conditional
(13) with respect to all latent variables except for ~;, the
variational distribution ¢(7;) is given by:

q(7e) o eXp{( I p(ye|xe, Hy, ye) + 1np(%)>}
o exp{Mln’yt - %<||Yt - Htxt||2>
+ (a0 = 1)In 7 = boye }- (24)

The variational distribution ¢(7;) is thus Gamma with mean

ag+ M
0 ) (25)
() = by + <||}’t Htxt||2>
wh;re (llye Hix|?) =y — H)xo)|?
Sim [Tl P+ (lzie?)Tr{Zis}] by  following

Lemma 1.

It is worth noting that the Gaussian variational distribution
of h; ; and the Gamma variational distribution of y; justify the
two assumptions in the estimation phase.



) oc expq ( Inp(y[x:, He, ) + 1np(hi,t§77i)>}

{¢
o exp{ HtXtH ) — ((hiy

o exp <%

’YfHLYf

K
yi —hywi e — E hj )
i

ocexp{ = b (o) o PV + 30 g

K
+2 3?{<%>hft <Yt - Z<hj,t><$j,t>> <w;kt> + nihftzgtlt_lhi,tltl}}-

J#i

- nihi,t—l\t—ﬁHE;tlﬁ,l(hi,t

2
> - <(hi7t - nihi,tfl\tfl)

- niﬁi,t—1|t—1>>}
21 t1|t 1(h mhz t|t1)>}

(16)

Algorithm 1: Variational Bayesian for online JED

1 Input: Y, ﬁi,o‘o, 33, 0/0, prior distribution p(a),Va € S,
prior distribution of p(~t);
2 Output: X, Hy, v4;

3fort=1,2,...,7 do

4 Compute the prior distribution of h; ; using (10) and
(11);

s Initialize (x;) = 0, (h; ) = hy o1, Zie = S g,
(ve) = 0;

6 repeat

7 fori=1,2,...,K do

8 Compute X; ¢ as in (14) and (h; ;) as in (15);

9 end

10 for:=1,2,..., K do

11 Compute and normalize the distribution ¢;(z;,+)

as in (20) ;
12 Compute (z;,) and 7;°; with respect to q;(xi ;)
as in (23);

13 end

14 Compute (7¢) as in (25);

15 until convergence;

16 Set flwt = (hi¢) and X, 4y = B

17 MAP estimate: &;,; = arg max,cs ¢:(a).

18 end

Algorithm 1 explains the details of the CAVI algorithm
to iteratively optimizing q(h; ), g;(z; ), and ¢(~;) in order
to estimate H;, x;, and 7:. Here, Y = [y1,y2,...,¥7T]
and X = [x1,X2,...,X7]. At convergence, Algorithm 1
updates the approximate posterior statistics at time slot ¢ as
ljlm‘t = <l:1“> and X;,; = X;;, which will be used as the
prior distribution in the next time slot.

IV. NUMERICAL ANALYSIS

This section analyzes the performance of the proposed VB
method, which is suitable for JED in a MIMO UAV network.

Simulation setup: It is assumed that K = 4 and M =
32. We define I, = 50 to denote the maximum number of
iterations of the CAVI algorithm. For simplicity, we consider
n; =1n,1 <1 < K, where 7 is a constant.

This section uses LMMSE and ML, two well-known bench-
marks for data detection. Note that we use LMMSE channel
estimation in the LMMSE and ML data detection methods.

Here, the performance of VB is first compared with LMMSE
and ML in terms of the SER and computational complexity.
Next, the impact of 7 is studied. Finally, it is investigated how
the SER of VB, LMMSE, and ML behaves as communication
time 7" increases.

100

R ——LMMSE (QPSK)
1011 . wy-- ML (QPSK)

-+ VB (QPSK)
——LMMSE (16QAM)
e ML (16QAM)
N -+ VB (16QAM)

107°

0 5 10 15 20
SNR (dB)

Fig. 2. An SER comparison between LMMSE, ML, and VB using QPSK and
16QAM when n = 0.995, T' = 128, and SNR € [0, 20] dB.

VB vs. benchmarks: In this part, the performance of the
proposed VB method is compared with LMMSE and ML in
terms of the SER and computational complexity. First, QPSK
and 16QAM are considered, and then the SER of LMMSE,
ML, and VB when nn = 0.995, T' = 128, and the signal-to-noise
ratio (SNR) varies between 0 and 20 dB is computed. Fig. 2
depicts that VB outperforms LMMSE and ML in terms of SER
due to considering the time correlation between channels and
the impact of variable precision for the noise. It also indicates
that the performance of all methods degrades as the signal
constellation size increases.

Second, the computational complexity of the LMMSE, ML,
and VB methods is examined. Here, the complexity of LMMSE
and ML is given by O (MK?+ |S|K) and O (MK|S|¥),
respectively, where |S| denotes the size of S. On the other
hand, the complexity of finding a local optimum solution
based on the CAVI algorithm in the VB method is equal to
O (MK +|S|K) [14]. Therefore, the VB method not only
provides a lower SER than the LMMSE and ML methods but
also has a lower computational complexity.



—v LMMSE (7 = 0.995) —— LMMSE (1, = 0.985)
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—o--ML (1 = 0.98)
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Fig. 3. SER against SNR using the LMMSE, ML, and VB methods when
K =4,M = 32, and T' = 128 under QPSK modulation.

Impact of time correlation coefficient 7: Here, the SER
of LMMSE, ML, and VB is calculated, as shown in Fig. 3,
while 1 € {0.995,0.99,0.985,0.98}, T'= 128, SNR € [0, 20]
dB, and QPSK is used. As anticipated, Fig. 3 illustrates that
the SER performance of the VB method deteriorates as 7
decreases

100

—— LMMSE(QPSK)
—= ML(QPSK)
- o VB(QPSK)

10

1072

O T 0 0 M0 10 180 20 20 200
Ty

Fig. 4. SER versus SNR using the LMMSE, ML, and VB methods under

QPSK assuming n = 0.995, T' € {64, 128,192,256}, and SNR = 8 dB.

Impact of communication time 7': Finally, the SER of
LMMSE, ML, and VB under QPSK modulation is studied
when n = 0.995, T € {64,128,192,256}, and SNR = 8
dB. Based on Fig. 4, the performance of LMMSE and ML
degrades as T increases, while VB’s performance remains
relatively stable with increasing 7'. This occurs because the
channel estimation error of the LMMSE and ML approaches
propagates during the estimation time. However, VB updates
the variational posterior distributions of the time-varying chan-
nels and data symbols during the communication time.

V. CONCLUSION

In this paper, we explored an uplink massive MIMO system
in a UAV network characterized by time-varying channels. Our
approach involved an online processing strategy based on VB
inference for JED. This approach aims to approximate true
posterior distributions via variational distributions. Moreover,
we assumed the noise variance is a variable to emphasize
the impact of inter-user interference. Finally, our investigation

delved into the performance of our VB method and compared
the results with those of LMMSE and ML. The results indi-
cated that our proposed VB method surpasses the LMMSE and
ML methods in terms of SER and computational complexity.
One potential area for further study could involve expanding
these findings to situations where time correlation is unknown.
Additionally, exploring the JED problem within a network
setting, incorporating reconfigurable intelligent surfaces (RISs)
alongside massive MIMO, could represent another promising
avenue for future investigation, as RIS technology has garnered
significant interest recently as a potential cornerstone in the
next generation of wireless networks [15].

VI. ACKNOWLEDGMENT

This work was supported by the U.S. Department of Defense
(DoD) under Grant W911NF-23-1-0226 and by the National
Science Foundation (NSF) under Grant CCF-2225576.

REFERENCES

[1] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization
of UAV-mounted mobile base stations,” IEEE Communications Letters,
vol. 21, no. 3, pp. 604-607, 2016.

[2] M. M. Azari, F. Rosas, and S. Pollin, “Reshaping cellular networks
for the sky: Major factors and feasibility,” in 2018 IEEE International
Conference on Communications (ICC). 1EEE, 2018, pp. 1-7.

[3] G. Geraci, A. Garcia-Rodriguez, L. G. Giordano, D. Lopez-Perez, and
E. Bjornson, “Supporting UAV cellular communications through massive
MIMO,” in 2018 IEEE international conference on communications
workshops (ICC workshops). 1EEE, 2018, pp. 1-6.

[4] J. Lyu and R. Zhang, “Network-connected UAV: 3-D system modeling
and coverage performance analysis,” IEEE Internet of Things Journal,
vol. 6, no. 4, pp. 7048-7060, 2019.

[5] K. Ghavami and M. Naraghi-Pour, “Blind channel estimation and symbol
detection for multi-cell massive MIMO systems by expectation propa-
gation,” IEEE Transactions on Wireless Communications, vol. 17, no. 2,
pp. 943-954, 2017.

[6] L. Chen and X. Yuan, “Blind multiuser detection in massive MIMO
channels with clustered sparsity,” IEEE Wireless Communications Letters,
vol. &, no. 4, pp. 1052-1055, 2019.

[71 E. Nayebi and B. D. Rao, “Semi-blind channel estimation for multiuser
massive MIMO systems,” IEEE Transactions on Signal Processing,
vol. 66, no. 2, pp. 540-553, 2017.

[8] D. Hu, L. He, and X. Wang, “Semi-blind pilot decontamination for mas-
sive MIMO systems,” IEEE Transactions on Wireless Communications,
vol. 15, no. 1, pp. 525-536, 2015.

[9] S. Liang, X. Wang, and L. Ping, “Semi-blind detection in hybrid massive

MIMO systems via low-rank matrix completion,” IEEE Transactions on

Wireless Communications, vol. 18, no. 11, pp. 5242-5254, 2019.

H. Song, T. Goldstein, X. You, C. Zhang, O. Tirkkonen, and C. Studer,

“Joint channel estimation and data detection in cell-free massive MU-

MIMO systems,” IEEE Transactions on Wireless Communications,

vol. 21, no. 6, pp. 40684084, 2021.

M. Naraghi-Pour, M. Rashid, and C. Vargas-Rosales, “Semi-blind chan-

nel estimation and data detection for multi-cell massive MIMO systems

on time-varying channels,” IEEE Access, vol. 9, pp. 161709-161 722,

2021.

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4, no. 4.

M. J. Wainwright, M. 1. Jordan et al., “Graphical models, exponential

families, and variational inference,” Foundations and Trends® in Ma-

chine Learning, vol. 1, no. 1-2, pp. 1-305, 2008.

D. H. Nguyen, I. Atzeni, A. Tolli, and A. L. Swindlehurst, “A varia-

tional bayesian perspective on massive MIMO detection,” arXiv preprint

arXiv:2205.11649, 2022.

S. Nassirpour, A. Vahid, D.-T. Do, and D. Bharadia, “Beamforming

design in reconfigurable intelligent surface-assisted IoT networks based

on discrete phase shifters and imperfect CS1,” IEEE Internet of Things

Journal, 2023.

[10]

[11]

(12]

[13]

[14]

[15]



