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Understanding the structure—property relationship is crucial for designing
materials with desired properties. The past few years have witnessed
remarkable progress in machine-learning methods for this connection.
However, substantial challenges remain, including the generalizability of
models and prediction of properties with materials-dependent output
dimensions. Here we present the virtual node graph neural network to
address the challenges. By developing three virtual node approaches,

we achieve I-phonon spectra and full phonon dispersion prediction from
atomic coordinates. We show that, compared with the machine-learning
interatomic potentials, our approach achieves orders-of-magnitude-higher
efficiency with comparable to better accuracy. This allows us to generate
databases for [-phonon containing over 146,000 materials and phonon
band structures of zeolites. Our work provides an avenue for rapid and
high-quality prediction of phonon band structures enabling materials
design with desired phonon properties. The virtual node method also
provides ageneric method for machine-learning design with a high level

of flexibility.

The structure-property relationship defines one of the most fun-
damental questions in materials science"’. The ubiquitous presence
of structure-property relationships profoundly influences almost
all branches of materials sciences, including structural materials®,
energy harvesting, conversion and storage materials*, catalysts’and
polymers®, and quantum materials’. However, building an informative
structure-property relationship can be nontrivial despite its central
importance to materials design. On the one hand, the number of stable

structures grows exponentially with unit-cell size'®, and the structure
design efforts have been largely limited to crystalline solids with rela-
tively smallunitcells. On the other hand, certain material properties are
challenging to acquire due to experimental or computational complexi-
ties. Inthe past few years, data-driven and machine-learning methods
have played an increasingly important role in materials science and
substantially boosted the research on building structure-property
relationships" 2. Complex structures such as porous materials'',
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nanoalloys'®” and grain boundaries' are becoming more feasible to

handle, and properties ranging from mechanical strength to quantum
ordering canbelearned withincreased confidence'*?°. One particularly
powerful approach is through graph neural networks (GNNs)?. By
representing atoms as graph nodes and interatomic bonds as graph
edges, GNNs provide anatural representation of molecules and materi-
als. For crystalline solids, crystallographic symmetry offers a further
boost on the GNN performance, with a few symmetry-augmented
GNNs being proposed® . A few fundamental challenges still exist.
For one, many materials properties are not naturally represented as
aweighted aggregation of each atomin real space, such as reciprocal
and energy space properties. For another, the output property length
is usually fixed, like the heat capacity®, as a single scalar. In contrast,
many materials’ properties have unique degrees of dimensions, such
as the number of electronic and phononic bands?, frequency ranges
with optical responses, and features of magnetic structure such as
propagation vectors.

Inthis Article, we propose the virtual node graph neural network
(VGNN) as agenerically applicable approach to augment GNN. In con-
trast to symmetry-augmented GNN, which focuses on reducing the
input data volume, VGNN focuses on handling the output properties
with variable or even arbitrary dimensions. To demonstrate the appli-
cation of VGNN, we study materials’ phonon spectra and dispersion
relations, since phonon band structures are challenging to compute
or measure with high computational costs and limited experimental
resources. By using the phonon spectra as examples, we present three
versions of VGNN: the vector virtual nodes (VVN), the matrix virtual
nodes (MVN) and the momentum-dependent matrix virtual nodes
(k-MVN). Allthree VGNN models take atomic structures as input with-
out prior knowledge of interatomic forces. The VVN is the simplest
VGNN that takes in crystal structure with m atoms and outputs 3m
branches of I-phonon energies. The MVN is a more involved VGNN
that shows higher accuracy for complex materials with slightly higher
computational costs. Finally, the k-MVN is a VGNN that can predict
full phonon band structure at arbitrary k points in the Brillouin zone.
To achieve so, the crystal graphs contain ‘virtual-dynamical matrices’
(VDMs), which are matrix structures that resemble phonon dynamical
matrices”. Instead of performing direct ab initio calculations on each
material, allmatrix elements are learned from the neural network opti-
mization process using training data composed of all other materials.
We prove that the proposed VGNN approach could reduce the com-
putational cost and run time without sacrificing accuracy, compared
with the more common machine-learning interatomic potential (MLIP)
approach. Our work offers an efficient technique that can compute
zone-center phonon energies and full phonon band structures directly
from atomic structures in complex materials and enables phonon
property optimization within a larger structure design space. The
prediction methods have enabled us to acquire relevantinformation on
materials such as group velocities, heat capacities and density of states
(DoS) asbyproducts. Meanwhile, the virtual node structures also shed
light on future flexible GNN design, that is, to use intermediate crucial
quantities (for example, dynamical matrix) as key learning parameters
without having to put target properties (for example, phonon band
structures) as output.

Results

Virtual node augmentation for GNNs

Figure1gives anoverview of the VGNN method as agenericapproach to
augment GNN. For a crystal with matoms per unit cell (Fig. 1a), atypical
GNNmodel convertsthe crystalintoa crystal graph, where each graph
node represents an atom and each graph edge represents the intera-
tomic bonding as shown in Fig. 1b. The node features associated with
each atomic node (Fig. 1b, gray arrays) are updated by neighborhood
nodes and edges connecting the nodes (Fig. 1b, gray arrows). After
iterative layers of graph convolutions, m final-layer node features are

obtained that represent the atomic features (local features) from each
ofthe matoms. The final graph output (global feature) can be obtained
by aggregating the final-layer node features into one fixed-sized output.

Figurelc,d describes the generalidea of VGNN that endows a GNN
with greater flexibility for prediction. On top of the conventional,
real-node GNN, virtual atoms are added into crystal (Fig. 1c, yellow
nodes), which become the virtual nodes in the corresponding GNN
(Fig. 1d, yellow nodes). Each model places the virtual atoms by differ-
ent rules (see ‘VVN method’, ‘MVN method’ and ‘k-MVN’ sections in
Methods for more details). As Fig. 1d illustrates, just like the bidirec-
tional message passing between real atomic nodes (double-arrow gray
lines), the message passing (double-arrow yellow lines) between virtual
nodes is also bidirectional. On the other hand, to preserve the struc-
ture of the conventional GNN, the messages from real nodes to virtual
(single-arrow gray-to-yellow gradient lines) are unidirectional. Given
the flexibility of the choice of the virtual nodes, a VGNN gains flexibility
to predict materials-dependent outputs with arbitrary lengths, solving
the conventional mismatch between the number of node features m
and that of the target predicted values n illustrated in Fig. 1d. We will
introduce three VGNN methods for phonon prediction withincreased
levels of predictive power and complexity.

VVNs for I-phonon prediction

AsillustratedinFig.1, VGNN makes it possible to adjust output dimen-
sion on the basis of input information with flexibility. We firstintroduce
the VVN method, which is the simplest approach to acquire 3m pho-
non branches when inputting a crystal with m atoms per unit cell (see
‘VVN method’section in Methods for more detail). Figure 2 shows the
VVN approach to predict I-phonon spectra. Since the virtual nodes
do not passinformation to real nodes, there is additional flexibility in
choosing the position of the virtual node. Without loss of generality,
we assign the position of the virtual nodes evenly spaced along the
diagonal line of the unit cell. The crystal graph is constructed with
virtual and real nodes (Fig. 2a). After updating node features in each
convolution layer, the feature vectors pass alinear layer so that virtual
node features V,, i € [1, 3m] are converted to 3m scalars, which repre-
sentthe predicted I-phonon energies. Throughout this work, the GNN
partisimplemented through the Euclidean neural networks* that are
aware of the crystallographic symmetry. Data preparation, neural net-
work architectures and optimizations are described in Supplementary
Information sections 1-3.

The main results using the VVN for I-phonon prediction are
shown in Fig. 2b. The three-row spectral comparison plots are ran-
domly selected samples from the test set within each error tertile
(top-to-bottom rows are top-to-bottom performance tertiles, respec-
tively). The first four columns are taken from the same database as the
training set from high-quality density-functional perturbation theory
(DFPT) calculations?, and the fifth column contains additional test
examples withmuch larger unit cells from a frozen-phonon database®.
Our results show that the prediction loss becomes larger and distrib-
uted broader as the input materials are more complicated (Fig. 2c).
From the correlation plot of predicted and ground-truth phonon fre-
quencies (Fig. 2d), most data points are along the diagonal line, indicat-
ing good prediction between VNN prediction and ground truth from
DFPT calculations with the number of atoms per unit cell m < 24 (blue
dots). For complex materials, the correlation performanceis degraded
(orange dots). More test results are shown in Supplementary Informa-
tionsections 4.1-4.3.

MVNs for I-phonon with enhanced performance

In this section, we introduce another type of virtual nodes approach,
the MVNs. The MVN approach performs better I-phonon prediction
than VVN, especially for complex materials, with a slightly higher com-
putational cost. Moreover, the structure of MVN lays the groundwork
for the full phonon band structures to be discussed in the next section.
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Fig.1| Overview of VGNN. a, The atomic structure of a crystalline material w1th m
atoms per unit cell, where atom iis represented by a dark-blue R;real node. a, b
and ¢ are unit-cell lattice parameters. b, AGNN converts the atomic structures
into acrystal graph. The GNN handles the nodes as the output gates. Therefore,
the output dimensionisrestricted to the same number of nodes. However, each
node output mostly contains local information dictated by the message passing
scheme. Hence, after layers of graph convolutions (omitted for simplicity), the

) S
09\

Real feature

—@-——1
1 (fixed)
Aggregate feature

Virtual feature

|
O .

n (variable)
features

final node features are aggregated into a single fixed-sized output feature.

¢, Aflexible number of nvirtual atoms are added into the crystal structure, where
virtual atomjis represented by ayellow V;virtual node. d, After forming the
crystal graph with both real and virtual nodes, the flexibility of virtual nodes
enables the choices of output not necessarily from real-node aggregation but can
have variable lengths in different spaces.

In MVN, m copies of virtual crystals are generated for material with m
atoms per unit cell, and each copy contains mvirtual nodes that share
the same crystal structure as the real crystal (Fig. 3a). This resultsin a
total of m* virtual nodes V;, i, j € [1, m] with more involved node con-
nectivity (see ‘MVN method’ section in Methods for more detail).

With this graph construction scheme, after the neural network
training, the virtualnodes V;would capture the essence of the connec-
tionbetween R, and R;. Hence, after the message passes in each convo-
lutional layer, each virtual node feature is further converted into a
three-by-three matrix. Each of V;is assembled to forma (i, ) block of a
supermatrix D of shape (3m, 3m). Given the structural similarity
between this matrix and the dynamical matrix expressed inequation (2)
with k = 0,wepredictI-point phononenergies squared by solving for
3meigenvalues of the matrix D. It is still worthwhile mentioning that,
although the matrix shares a similar feature with the dynamical matrix,
the matrix elements are learned from neural network training and are
not necessarily the matrix elements from the real dynamical matrix.
Anintuitive comparison is that the edge of GNN does not necessarily
reflect true chemical bonding, but is more like an atomic neighbor
connection.

The predicted phonons using MVN are summarized in Fig. 3b,
whichsharesthe samestructure with Fig. 2b as error tertile plots from
the high-quality DFPT database (blue) and database for complex mate-
rials (orange). MVN shows comparable performance with VVN for
simple materials (Figs. 2c and 3¢, blue curves) but shows substantial
performanceimprovement for complex materials. The predictionloss
distribution of MVN shows a heavier distribution toward a lower loss
regime compared with VVN (Figs. 2c and 3¢, orange curves), and the
phonon frequencies in the correlation plot align better toward ground

truth (Figs. 2d and 3d, orange dots). More results of the MVN method
are shown in Supplementary Information sections 4.1-4.3.

MVNs for phonon band structure prediction

Thesstructure of MVN inspires us to take one step further and construct
fullmomentum-dependent VDMs by taking into account the unit-cell
translation, termed k-MVN. We construct VDMs following equation (2).
In contrast to the MVN, which focuses on I'-point phonons by taking
k= 0, here, ink-MVN, weinclude the phase factor e*Twhen defining
the VDMs, where T is the relative unit-cell translation of a neighboring
unit-cell origin relative to the chosen reference unit cell ﬂ (Fig. 4a).If
atotal number of t neighboring unit cells areincluded, each with trans-
lation T7, h € [0,t —1] (reference cell included), then a total ¢ copies
of MVN-type virtual nodes matrices will be generated, with a total
number of tm? virtual nodes Vj’ he[0,t-1],i,j € [1,m]ink-MVN. To
obtam the phononbandstructure, eachset of virtual nodes atagiven
Th needs to multiply by the phase factor etk Th ,and all virtual nodes at
each T,, are summed in equation (3) in Methods. Thanks to the graph
connectivity within the cutoffradius (see k-MVN’ section in Methods),
onlyasmallnumber of tisneeded as long as crystal graph connectivity
canbe maintained. In practice, tis material-dependent, and ¢ = 27 (near-
est neighbor unit cells) is sufficient for many materials and does not
need togobeyond ¢ =125 (next-nearest neighbor unit cells) in all cases.
Intuitively, such a supercell approach resembles the ab initio band
structure calculations with frozen phonons. To facilitate the training,
phononsfromselected high-symmetry pointsareincludedin the train-
ing datawithout using full phonon energiesin the entire Brillouin zone.
This substantially facilitates the training process while maintaining
accuracy. More details are discussed in ‘k-MVN’ section in Methods.
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Fig.2|The VVN method to predictI'-point phonons. a, Schematic of VVN model
construction and prediction. For material with m atoms per unit cell, 3m virtual
nodes are augmented along the diagonal vector 0 =a +b +¢ of the unit cell. We
embedded the components of the crystal when building the GNN model. For
instance, atomic numbers of the mthreal atom (A, ) and that of the 3mth virtual
atom (AVsm) are embedded as the attributes of each nodes. The atomic mass of
the mthrealatom (Z,,) is set as the initial feature of that node. The relative
position of the node V, with respect to R, is 7 ViR whichis used to embed the
edge attribute between the two nodes. The model predicts I-phonon spectra by
sorting the scalar output features from virtual nodes. b, Spectral prediction
samples in the test set within each error tertile compared with ground truth
(black), test from the same database as the training set (blue) and a different
database containing complex materials (orange). Phononis displayed with a unit

of cm™. ¢, Evaluation of the test accuracy through loss distribution on test
datasets with the same color scheme asinb. The curves represent probability
density of the model prediction loss when arandom material is sampled from test
datasets. Three points on each curve indicate loss values of example materials
from different error tertile in b. Note that the loss axis is in log scale, which makes
it possible to visualize both distributions in the same plot but exaggerates the
width of the blue curve. d, Evaluation of the test accuracy through correlation
plot between ground-truth and predicted phonon frequencies with the graph
y=xasreference. The concentration of distribution at low loss regime of the
distribution plot and the agreement along the diagonal line of the correlation plot
for the test set (blue) indicates agood phonon prediction at least for relatively
simple materials with the number of atoms per unit cell m < 24. The loss becomes
higher with reduced performance for more complex materials (orange).

Figure 4b shows the prediction results of phonon band structures.
Here, 12 materials are selected from the same dataset for training
(blue color) and additional dataset for complex materials (orange
color). Despite the complexity of ageneric phonon band structure, the
k-MVN model could predict the positions and the shapes of the phonon
bands, such as gaps between different optical branches. The dispersion
relations of the acoustic phonons are also well generated around the
I-points ontheleft three columns, even though we do not enforce that
acoustic I-phonons have to be gapless with zero energy known as the
acousticsumrule®. This may enable the prediction of crystal stability
for future works. While there are risks that prediction performance
could be degraded for the phonon bands of higher frequencies, most
ofthe predicted phononsfollow the references, including the complex
materials with more than 40 atoms per unit cell. More test results are
shownin Supplementary Information sections 5.1-5.3.

Model validation and benchmarking

We demonstrate the prediction of phonons directly from the materials’
atomic coordinates, using three different types of virtual node aug-
mentation approach. The comparison between them is summarized
inTable 1. VVN directly acquires the phonon spectra directly fromthe

virtualnodes. The assignment of 3m virtual nodes ensures that the out-
put phononband numberis always 3mforacrystal containing m atoms
per primitive unit cell. The bottleneck step of this scheme is the message
passing, where there can be up to O(m?) connections. InMVN, instead of
computing phononenergies directly, a VDM is constructed first, from
which the phonon energies are solved as an eigenvalue problem. This
stepis crucial togainrobustness for complex materials predictionsince
intermediate quantities like force constants and dynamical matrices are
considered more ‘fundamental’ than final phonon energies to reflect
the interatomic interactions. The k-MVN goes one step further, using
the unit-cell translations to generate the momentum dependence that
could be used to obtain the full phonon band structure. This requires
multiple MVN connections each representing different unit-cell trans-
lations. For k-MVN that considers ¢t unit-cell translations, the memory
requirementis stacked up t times of the MVN case, but the bottleneck
step still is the eigenvalue solving.

To validate the necessity of virtual node, through the compari-
son of -phonon prediction, we show that VGNN can substantially
outperformthe conventional GNN techniques without virtual nodes.
One popular approach for flexible output dimension is to adjust the
outputdimensions by supplementingarbitrary valuessuch aszerostoa
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set and additional tests containing complex materials are predicted in blue and
orange, respectively. ¢, Comparison of prediction loss distribution with three
examples of materials from each error tertile. d, The correlation plots of phonon
frequencies with the graphy = x as reference. Better performance for MVN is
achieved than VVN for complex materials (orange color), which can be seen from
both the loss distribution and the average phonon frequencies.

fixed-length vector, termed as zero padding, which shows limited accu-
racy eveninawell-trained model (Extended Data Fig.1a). VGNN solves
thisissue by rigorously handling the output dimensions for each graph
system (Extended Data Fig.1b). Extended DataFig. 1creveals the differ-
ence in these performances, where the zero-padding model without
virtual nodes (NOVGNN) predicted only the bands of low frequencies
(red), while MVN is able to handle the entire frequencies (green) and
decently matching with the ground-truth values (black). More detail
andresults of the tests are in Supplementary Information section 4.4.

Given that MLIPs are leading approaches for machine-learning-
driven phonon prediction, webenchmark VGNN against MLIP in terms
of bothaccuracy and efficiency. M3GNet* is one of the state-of-the-art
MLIPs predicting interatomic potentials. Though there exist various
other MLIP models, such as MACE*, ALIGNN*’, CHGNet** and so on,
withvarying degree of performance®, we decided to use M3GNet as the
representative MLIP for benchmarking. When comparing a pretrained
VGNN model with MLIP, VGNN demonstrates a systematic reductionin
runtimeby twoto three orders of magnitude, which canbe seen either
asafunctionof number of atoms per unit cell (Fig. 5a) or asafunction of
chemical element types (Fig. 5b). Thisimprovement can be attributed
to VGNN’s unique approach of directly inferring dynamical matrix ele-
ments, bypassing the traditional MLIP method of calculating forces,
second derivatives of interatomic potentials and subsequent Fourier
transform. This capability is especially advantageous for materials
characterized by large unit cells.

Moreover, it is worthwhile mentioning that VGNN reaches high
efficiency without loss of accuracy, comparable to or even slightly

outperforming MLIP and other machine-learning methods. We exam-
ine k-MVN by comparing predictionaccuracy of full phonon band struc-
tures with M3GNet, and prediction of phonon DoS with Mat2Spec®
and E3NN?Y, other leading methods predicting only phonon DoS. We
use the phonon band structure, phonon DoS and heat capacity as key
metrics to compare the models. For phonon band prediction, the
k-MVN model outperforms M3GNet with nearly fivefold reduction of
error. For phonon DoS prediction, the Mat2Spec and E3NNyielded the
smaller prediction error but still comparable to our k-MVN method.
Finally, allmodels demonstrate robust performancein predicting heat
capacity. Remarkably, our k-MVN model gave the smallest error. More
detail and results of the tests are further discussed in Supplementary
Information section 6.5.

Application of VGNN method in generating large-scale
databases

Today, abinitio calculations such as frozen-phonon and DFPT remain
the most accurate methods for phonon calculations. Even so, since
the VGNN-based phonon calculation skips the direct calculation of
the material-by-material dynamical matrix, it shows substantially
faster computation speed while maintaining reasonable accuracy. We
cantake advantage of this speed in many computationally expensive
tasks, suchasfast and cheap band structure verification with inelastic
scattering experiment (Supplementary Information section 6.1) and
high-entropy alloy band structure calculation (Supplementary Infor-
mationsection 6.2). Given the critical role of zeolites inion exchange,
catalysis and gas separations, we use k-MVN to build a zeolite phonon
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Table 1| Comparison of how the virtual nodes contribute to
phonon prediction in terms of physics and computational
costs

VVN MVN k-MVN
Force constants - - Reflected in
VDM
Dynamical matrices - VDM VDM
Phonon data Virtual nodes Eigenvalues Eigenvalues
Run time (per phonon o(m?) o(m?>%) o(m?>®)
wave vector)
Storage Oo(m) o(m?) O(txm?)
Generalizationto larger ~ False True True

systems

Here, m and t indicate the number of atoms per unit cell and the number of the unit-cell
counts, respectively.

band structure database containing 177 zeolite materials, where the
ground truth can be challenging to obtain with ab initio methods.
Such adatabase could support the understanding of phonon-assisted
adsorption, catalysis and reaction kinetic processes (Supplementary
Information section 6.3). We also conduct further prediction of ther-
mal properties derivable from the phonon band structures, including
phonon DoS and heat capacity. With additional ab initio anharmonic
force constants calculations in 180 solid-state materials, we demon-
strate the capability of directly predicting the temperature-dependent
thermal conductivity originating from phonon anharmonicity (Sup-
plementary Information sections 6.4 and 6.7). Finally, by using MVN,
we build a database containing the I-phonon spectrafor over 146,000

materials listed in the Materials Project (Supplementary Information
section 6.6).

Discussion

Our proposed VGNN approach offers a versatile framework for predict-
ing material properties with variable dimensions, a capability we have
demonstrated through phonon predictions in this study. In general,
by taking advantage of the flexibility endowed by virtual nodes, other
properties thatare challenging to predict for aconventional GNN can
be predicted similarly such as electronic band structures, tight-binding
and k - p effective Hamiltonian with a variable number of bands, optical
properties such as flexible optical absorption peaks asin the Lorentz
oscillator model, and magnetic properties such as the number of propa-
gation vectors. Furthermore, the efficiency of VGNN would enable a
different paradigm of the material design. Our VGNN phonon database
took asystem composed of eight graphics processing units lessthan5 h
toobtain over 146,000 results, including materials of over 400 atoms
per unitcell. The high efficiency of VGNN may further enable materials
search and optimization in abroader systems, including alloys, inter-
faces and even amorphous solids, with superior engineered phonon
properties toward thermal storage, energy conversion and harvesting,
and superconductivity applications.

Our investigation also reveals some limitations of our current
models, specifically for k-MVNinits band structure prediction. We use
materials containing light atoms, which generally give high phonon
frequencies, and materials with some negative eigenvalues of their
dynamical matrices. We also present our additional efforts to solve
the issues by fulfilling material data of high phonon frequencies and
imposing therestraints of symmetry on the modeled dynamical matrix,
respectively, which show improvements in prediction quality in both
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Fig. 5| The comparison computation time run time between VGNN and MLIP.
a, The time spent for each input material (seconds) is plotted in alogarithmic
scale for all the 1,500 materials in a DFPT database. We present the results

of k-MVN (blue) and MLIP (orange). b, The element-wise box plot shows the
computation time per material containing each element. The boxes indicate
from the first quartile (Q1) to the third quartile (Q3). A horizontal red line goes
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through the box at the median. The lower whisker extends from Q1 to the smallest
data point within 1.5 times the interquartile range (IQR) from Q1. The upper
whisker extends from Q3 to the largest data point within 1.5 times IQR from Q3.
The outliers (yellow and blue circles) are the data points that fall outside the
range defined by the whiskers.

cases (more detail on these limitations is described in Supplementary
Information sections 5.4-5.5). Furthermore, since k-MVN s inspired by
the dynamical matrix concept, the model cannot capture long-range
interaction contribution to the band structure (Supplementary Infor-
mation section 5.3). This can potentially be improved by assigning
additional virtual nodes tailored to learn long-range corrections.

We can see that these limitations can be addressed either with a
proper training data procurement or a better design of virtual node
adding scheme emphasizing the flexibility in virtual node method.
Moreover, with a potential for incorporating physical information
into the machine-learning design likein MVN and k-MVN, virtual node
method canbe utilized for physically interpretable machine-learning
models. Together, the VGNN opens the possibility for GNNs to be used
more broadly for predicting more diverse material properties and to
design and optimize material in a high-throughput manner.

Methods

Phonon data preparation

We trained all of our models against an ab initio DFPT computational
database for phonondispersioninharmonic model®®. The dataset con-
tains material structures (the same as the primitive structure obtained
from the Materials Project®), second-order derivatives of energies with
respect toatomic perturbations for regular pointsinside the irreducible
zone, and phonon dispersion along highly symmetric paths of 1,521
crystalline inorganic materials. These materials have 2-40 atoms per
unit cell, with an average of 7.38. For this work, we only used the highly
symmetric pathphonondispersion asour training data. The dispersion
is between wave vectors « in the fractional reciprocalunitandresponse
spectra in cm™. All models randomly split the data into 90% training
(1,365 materials) and 10% testing (156 materials) sets. Furthermore, we
trained our models with a five-fold cross-validation scheme.

We also obtained phonon dispersion of complex (more number of
atoms per unit cell) materials from Atsushi Togo’s phonon database”.
We used seekpath®**° module to get the highly symmetric path of each
material. Then, we fed it alongside POSCAR, FORCE_SET and phonopy.
configfiles from the database to Phonopy’s* Python command to cal-
culate the phonon dispersion along such path. To quality control the
data, we selected materials whose lowest I-phonon band is higher than
-0.07 cm™. Wealso only selected materials with more than 40 atoms per
unitcell. Finally, we randomly selected 156 (the same as the number of
datainthe testing set for ease of comparison) out of 505 filtered mate-
rials. We used them as our complex material dataset. Further profiles
of'the dataset are described in Supplementary Information section 1.

Computation environments

Weimplemented the modelsin Python 3.9.13 and trained them on our
graphics processing unit cluster with CUDA version 10.2. To facilitate
the model implementation and training, we used some important
Python modules: Pymatgen*?and ase* for handling material structure
files (.CIF), PyTorch** for managing the model training framework and
e3nn” for implementing our neural network models in a form that is
equivariant for the Euclidean group.

VGNN

We have developed a scheme for a GNN for it to be able to have vari-
able output dimensions depending on the input size. For ease of
understanding, we will explain the method with our work on phonon
prediction.

Considering a material with m atoms per unit cell, we add n addi-
tional virtual atoms. We can adjust the number n depending on the
model architecture. Using both real and virtual atoms, we convert the
crystal structures into periodic graphs with mreal nodes for the actual
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atoms and n virtual nodes for the added virtual atoms. Then, we con-
nect nodes with edges indicating the message-passing process. To
preserve the structural information of the materials and limit the
computational cost, we apply the following rules for connections. First,
if the distance between the two real nodes is within a specified cutoff
radius ry,,,, the real nodes are connected through bidirected edges. We
also set up an edge between a real node and a virtual node according
to the model description, but this edge is directed from real to virtual
nodes. Lastly, weembed the information of radial distance vector, for
example, 7, fromatom b to a, in the form of radial basis functions and
spherical harmonics on the corresponding edge as edge attributes,
whichrepresent the distance and the direction of 7, respectively.

Since eachnoderepresentsanatomin the unit cell, weembedded
the atomic numbers A information as node attributes .4 by passing
one-hot representation vectors of length 118 through an embedding
layer. As for the model’s input, we embedded the atomic masses Z
information asinput node features 2 by passing the product of atomic
mass and one-hot representation of atomic number throughanembed-
ding layer. We describe the background embedding atomic number
and atomic mass into the model in Supplementary Information
section 2. Furthermore, we discuss the evidence of using atomic mass
as the node features among all other physical descriptors in Supple-
mentary Information section 5.2.

The constructed graph is then passed through the model mes-
sage passing that operates on the features with multiple convolutions
(Supplementary Information section 2) and gated activation layers®.
After the final layer, which consists of only a convolution (no gated
activation), each of the nvirtual node features is collected and passed
through the postprocessing block, which outputs the 3m predicted
phonon branches. The postprocessing block is different and will be
explained in detail in the subsequent section of each model.

Inthis work, we utilized e3nn* as the framework forimplementing
GNNarchitecture. e3nnis designed specifically for three-dimensional
Euclidean data. It utilizes the symmetries of the Euclidean group in
dimension 3, whichincludesrotations, translations and mirroring. By
leveragingirreducible representations (irreps), e3nn enables GNNs to
efficiently process and learn from complex three-dimensional struc-
tures while capturing the underlying symmetries. This enhances the
expressiveness and interpretability of GNN models for analyzing and
modeling three-dimensional Euclidean data.

The modelis optimized by minimizing the prediction error. Note
that we used the mean squared error (MSE) as the loss function. Phonon
energies are the quantities fed into the MSE loss function. We normalize
phonon energy values of the training dataset and the predicted ones by
the maximum phonon frequency of each material before applying MSE.
The full network structure is provided in Supplementary Information
section2. We explore the setup of training and hyperparameter tuning
in Supplementary Information section 3.

VVN method

VVN s a VGNN we designed for learning to predict I-phonon spectra
from material structures. Since for a material with m atoms per unit
cell, there are 3m phonon bands, one sensible choice of adding virtual
atomsisto add 3mvirtual atoms, each of which outputs the prediction
of one of the bands. Hence, when there are m atoms in the unit cell of
crystalline material, we assign the position r, of the virtual nodes
V, i e [1,3m] following equation (1). We can set the atomic species of
the virtual node as anything, and we use Fe after optimization.

ry = =1 (* +b +5> (1
i 3m

Here, @, b and ¢ indicate the unit-cell vectors of the material. In other
words, 3mvirtual atoms are placed along the diagonal line from (0, 0, 0)
to d +b +¢ with equal spacing. By keeping the distances between the
virtual nodes in the real space, it is possible to give position

dependencies to the feature updating process. In that sense,
equation (1) can consistently keep virtual nodes away from each other
and enables us to use the virtual 3m virtual nodes as the output nodes
of the network. To get information from the whole structure, each of
the 3m virtual nodes is connected to all of the real nodes via directed
edges from real to virtual nodes. After each convolution layer, the
virtual node features are passed to a linear layer, converted toascalar
outputand sorted on the basis of their magnitudes. The outputted 3m
scalarsrepresent the predicted I-phonon.

MVN method

MVN s a VGNN we designed with the influence of the dynamic matrix
representation of a periodic harmonic system for learning to predict
I-phonon spectra from material structures. Given the momentum
vector k, the dynamical matrix element D~,-j(IZ), whichisathree-by-three
matrix representing 3D harmonicinteraction between atomR;and R,
can be written as the Fourier transform of the force constant matrix
tD;j".ﬁ following equation (2). Here, Z, is R;atom’s atomic mass, and T, is
the ath unit-cell position. Note that, for each k vector, the system has
3mdegrees of freedomand frequencies where mis the number of atoms
per unit cell. We can get the phonon dispersion relations w) by
solving eigenvalues (k) of DK), which is amatrix with shape 3m, 3m)
thatis composed of m? blocks of Dij»(l?) fori,jell, m],

%

D,‘,’(’Z) =3 b

ei;«('T,l—?'/;). )
ap | /ZRiZIi’]»

In the MVN method, we generate a matrix that could work like a
dynamical matrix as is written in equation (2). Here, we focus on the
prediction of -phonon, thatis k =0.So, the contributions of the same
atom pair, forexample, R, and R;from every unit-cell separation Toum fﬁ
aresummed without the E-dependent exponential phase factor. Hence,
the model needs to predict amatrix with shape (3m, 3m) representing
such summation. To do that, while preserving the relation of each matrix
element, we generate m virtual crystals C, j € [1, m] each of which has
myvirtual nodes V;;, i € [1, m] of the same atomic species and at the same
positionsastherealatomsR,, i € [1, m]. Here, avirtualnode V;represents
theinteractiontermfromareal node R;to another realnode R;by adding
adirected edge fromR;to V;whenever thereis an edge connectingR;to
R,. After each convolution layer, the virtual node features are passed to
alinear layer and converted to complex-valued output vectors with
length 9. For each output feature, we reshape the output features into
three-by-three matrices and arrange them such that Vs matrix is the
(i,j) block of Dsupermatrix with shape (3m,3m). The method to convert
theirrepsasavectorswithlength 9into three-by-three Cartesian matri-
ces for constructing D supermatrix is described in Supplementary
Information section 2. Finally, we solve D for its 3m eigenvalues, which
work as the square of I-phonon prediction.

k-MVN

k-MVN is a generalization of MVN model with nonzero k. Unlike the
MVN case, the k-MVN model needs to predict matrices representing
interactions between atoms from a unit cell, for example, 75, to the
different unit cell, for example, 7. Since the phase factor depends only
on the difference in unit-cell positions, we can redefine 7 tobe such a
difference and simplify equation (2) into

N o Lo
Dyjk) =, —2—ekT =" DleikT, 3)

ij
7 A/ ZRZR, T

. Withthissimplification, for each T,wegenerate myvirtual crystal
CJTE[Im]the same way asin MVN. However, in this case, Vl.; represents the
interaction term from a real node R; to another real node R; that is in
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the unit cell with unit-cell position 7 7 withrespect toR/s.Inotherwords,
weaddadirected edge fromR;to VT wheneverthere isan edge connect-
ing R;to R;and that edge represents r-r =7 +T - rj Here, 7 is the
atomic positionrelative toits unitcell. Smce GNNonly considers edges
withinteratomic distanceless than r,,,,,, the model can generate, with
this scheme, a nonzero matrix for only a finite number of T that
satisfy

min |r1+T r/|<rmax 4)
i,je[lm

Hence, before the virtual crystal generations, the model alsoiter-
ates through atom pairs to find all viable 7.

Similar to the MVN model, we convert virtual node features into
three-by-three matrices and merge them into a matrix with shape
(3m, 3m) representing D foreachT. Finally, we weight sum these
matrices with their phase factor toget D and solve forits 3m eigenvalues
asaphonon spectrum at wave vector k.

Data availability

Source data are provided with this paper. The I'phonon database
generated with the MVN method, the zeolite phonon band structure
database generated with the k-MVN method, and the anharmonic pho-
non calculation data are available at Open Science Framework (OSF)
at https://doi.org/10.17605/0SF.I0/KSUTB (ref. 46). We also put the
training dataset and source data files generated from models’ train-
ing and testing, which we used for all analyses, at the same location.

Code availability

The source code is available at Zenodo (https://doi.org/10.5281/
zenodo.8028365)*. The GitHub repository presents the instructions
for reproducing the results of our simulations and machine learning
(https://github.com/RyotaroOKabe/phonon_prediction).
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Extended Data Fig.1| Therole of virtual nodes for phonon prediction with flexibility in dimensions. a. NOVGNN: GNN without virtual nodes. It needs zero-filling
to adjust the output dimension to 3m. b. Phonon prediction with MVN method. c. Comparative plot of I-phonon prediction with NOVGNN (red) and MVN (green).
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