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This article derives theoretical foundations of force field functional theory (FFFT). FFFT studies topics related
to the functional representation of nonreactive forcefields to achieve various desirable properties such as:
(a) formal exactness of the forcefield's energy functional under certain conditions, (b) a formally exact ansatz
separating the bonded potential energy from the nonbonded potential energy within a bonded cluster in
a way that enables bonded parameters to be optimized using linear regression instead of requiring
nonlinear regression, (c) the potential energy's continuous differentiability to various orders with respect
to energetically accessible internal coordinate displacements within a subdomain defined by one
electronic ground state, (d) forcefield design that guarantees the reference ground-state geometry is
exactly reproduced as an equilibrium structure on the forcefield's potential energy landscape, (e)
reasonably accurate and broadly applicable frugal model potentials, (f) computationally efficient
embedded feature selection that identifies and removes unimportant forcefield terms, (g) well-designed
methods to parameterize the forcefield from quantum-mechanically-computed and (optionally)
experimental reference data, and (h) forcefields that approximately reproduce experimentally-measured
properties. This article also introduces: (1) an angle-bending model potential that more accurately
describes physical dynamics and is continuously differentiable to all orders with respect to internal
coordinate displacements even when the bond angle is linear (i.e., § = w (180°)) and (2) a first-principles-
derived stretch potential that accurately describes short-range Pauli repulsion and the long-range bond
dissociation energy. This new angle-bending potential gave good agreement to CCSD quantum-
chemistry calculations for CaH,, CO,, H,O, HNO, Li,O, NO,, NS,, SF,, SiH,, and SO, molecules. This
new bond-stretch potential reproduced the first 12+ and 30+ vibrational energy levels of H, and O,
molecules, respectively, within a few percent of experimental values. Studying the C—F bond stretch in
CeFg as an example, the new ansatz (item (b) above) reduced sensitivity of the optimized force constant's
value to choice of nonbonded interaction parameters by an order of magnitude compared to the old
ansatz. Normal mode analysis of optimized flexibility models for CO,, H,O, HNO, and SO, molecules
yielded vibrational transition frequencies within a few percent of experimental values. These results

Received 11th March 2024
Accepted 23rd September 2024

DOI: 10.1039/d4ra01861c

demonstrate advantages of this new approach.

Usota [{R'AZAH = Uponsed. [{E’A,ZA}] + Uponbonded [{EAZA}]
1)
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1. Introduction

In a nonreactive forcefield, the potential energy is often repre-
sented as the sum of bonded interactions and nonbonded
interactions:*™*
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T Electronic supplementary information (ESI) available: A PDF file containing:
(a) two supplementary tables for the stretched H, molecule, (b) analytic first-
and second-order derivatives of the damped nonbonded potential, (c) analytic
first- through fourth-order derivatives of the Manz stretch potential, and (d)
analytic first- and second-order derivatives of my new angle-bending
potential. A zip archive containing: (i) optimized geometries of all molecules
studied in this work, (ii) quantum-mechanically-computed and model
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potential angle-scan curves for ten triatomic molecules, (iii) a spreadsheet
containing calculations comparing different bonded and nonbonded
interaction models for the C-F stretch in CgFes. (iv) Outputs of the
calculate_Manz_and_Morse_stretch_potential_exponents program, v)
spreadsheets and Matlab codes that optimized flexibility models for various
molecules, and (vi) Matlab codes and outputs for computing the vibrational
frequencies of H,, O,, CO,, water, HNO, and SO, molecules from the
parameterized flexibility models. See DOI: https://doi.org/10.1039/d4ra01861c
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The independent variables, {Rx,Z,}, define the material's
chemical geometry. Z, is the element number (aka ‘atomic
number’) of atom A. The position of atom A’s nucleus is

Ra = (Xa, Ya, Za) (2)

The bonded interactions include flexibility terms such as
bond stretches, angle bends, dihedral torsions, Urey-Bradley
terms, cross terms, out-of-plane distances, etc. between first,
second, third, and/or more distant bonded neighbors."*” The
nonbonded interactions account for interactions between
atoms that are not directly bonded to each other. Nonbonded
interactions include: (a) electrostatic interactions modeled by
charges, dipoles and other multipoles, and/or polarizabilities,
etc., (b) short-range repulsion, (c) long-range dispersion inter-
actions caused by fluctuating multipoles, etc.®** The superscript
‘(scheme) in eqn (1) reminds us that the partition of
Uotat[{Ra, Za}] into bonded and nonbonded interactions
depends on the particular scheme chosen to define such
a partition.

At the material's equilibrium (aka optimized) ground-state
geometry, the net force acting on atom A

—bonded, (scheme) —nonbonded, (scheme)

Fa=-VA UT =F, +F (3)

total

is zero

ﬁA |:{]_éecq }:| _ onnded‘(scheme) [{Ié'zq}]
+ﬁ20nbonded.(schen1e) {{R*Zq}] -0 (4)

where

F Zonded\(scmme) [{EO ZCH -V, Upsorons! Hﬁc, ZC}] (5)

—nonbonded, (scheme) — — . .
i ({Rerzc}] = Vavisim[{Rezec}] ©)

The distance (dg) between atoms A and B is

drp = ¢ (Xa—Xo)’ + (Ya = Ys)' + (Za — Zs)*  (7)

and has the equilibrium value d3} in the material's optimized
ground-state geometry.

A popular strategy (aka the ‘old’ scheme) is to define the
nonbonded potential as a sum of pairwise nonbonded poten-
tials plus optional multibody*® corrections:

Uponbonded [{ﬁAv Za }] - Z

nonbonded nonbonded
UAB + ( Umullibody )
A Bé{excludedy }

(®)

where {excluded,} is the set of atoms that are separated from
atom A by 0 (i.e., atom A itself), 1, 2, or (optionally) 3 bonds; that
is, the set of atom A's zeroth (i.e., atom A itself), first, second,
and (optionally) third bonded neighbors.’®'” As an example,
consider a nonbonded potential between two atoms A and B
having a simple form involving atomic charges and Lennard-
Jones*® parameters:
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atomic charges
12

——— 6
Unpl@tl — 9aqB teld d_k{s ) d_k{s (9)
AR 4tegdap AB dag das

repulsion+dispersion
(e.g..Lennard-Jones)

&4k is the Lennard-Jones well-depth. di% is the distance at which
the well-depth is reached. More sophisticated examples of
Uigrbonded may involve terms containing atomic dipoles or
quadrupoles, atomic polarizabilities, and/or non-Lennard-Jones
van der Waals parameters, etc.'***

Nonbonded energy schemes defined by eqn (8) and (9) or
similar equations encounter a major disadvantage when opti-
mizing the forcefield's bonded parameter values. When using
such a scheme, the nonbonded interactions between atoms may
exhibit a nonzero force on atom A even in the material's opti-
mized ground-state geometry. This is evident, because atom A is
acted upon by electrostatic forces (e.g., Coulomb interactions
between atomic charges) and van der Waals (e.g., Lennard-
Jones) forces exerted by atoms outside {excluded,} such as
atoms in the same bonded cluster that are separated from atom
A by =4 bonds but still inside the nonbonded interaction cutoff
distance, dnoneended By eqn (4), this means the bonded inter-
actions must exhibit a net force of equal magnitude in the
opposing direction so as to make the total bonded plus
nonbonded force acting on each atom zero in the optimized
ground-state geometry. Unfortunately, this means the force-
field's flexibility terms such as the harmonic bond stretching
potential

UgaBrmonicfstretch _ %kAB(dAB _ drAelfB 2 (10)
have ‘resting’ values that are not necessarily equal to the equi-
librium bond length

dih = dAR™ # i (11)
This has been pointed out in the prior literature by several
authors who devised schemes to approximately estimate these
resting values.?”*” Because the resting values of bond lengths,
angles, dihedrals, etc. enter the forcefield in a nonlinear
fashion, this gives rise to a nonlinear optimization problem that
may have several local minima.*®

For the harmonic stretch, it is possible to rewrite eqn (10) as
the linear model

URETOMSCh = b (dap)” + padag + p3 (12)

where the parameters p; = %kAB, P = —kapd’SE and
2 %kAB(df&f)z. This allows the nonlinear optimization problem
to be rewritten as a linear optimization problem. When using
the old scheme, this kind of transformation from a nonlinear
optimization problem into a linear optimization problem is not
always feasible or practical, because it overly restricts the types
of flexibility terms that could be included. For example, the old
scheme could not be transformed into a linear optimization
problem when the potential model includes the MM3 bond

stretch*?® term or when using G5c"¢ # f3ic as the reference
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value in some angle-bending potentials (e.g., when using
055878 in place of #53c in eqn (165)). Consequently, the old
scheme is typically a nonlinear optimization problem and only
reduces to a linear optimization problem for a restricted set of
special cases.

The distinction between linear optimization problems (also
called linear regression) and nonlinear optimization problems
(also called nonlinear regression) is as follows. In linear
regression, all adjustable parameter values to be optimized
enter the model linearly as coefficients multiplied by functions
of the independent variables.> In nonreactive forcefields, the
independent variables are the material's internal coordinates
(e.g., bond lengths, angles, dihedrals, etc.) that describe the
material's geometry. These functions of the independent vari-
ables may contain fixed (i.e., non-adjustable) parameters. For
example, the equilibrium value of the bond angle between
atoms A, B, and C (f33c) in the material's optimized ground-
state geometry as determined by a quantum chemistry calcu-
lation may be treated as a fixed (i.e., non-adjustable) parameter
in the model forcefield, because the value of this parameter can
be directly computed without requiring regression.

All linear optimization problems are convex. Technically,
this means the Lagrangian (i.e., the loss function including
Lagrange multiplier terms to enforce constraints (such as
bounds) on the optimized parameters) has only a single
minimum value not that the optimized parameter values are
unique, because some of the material's internal coordinates
(and hence model forcefield's bonded terms) may be redundant
(i.e., multicollinear, not linearly independent). The resulting
degeneracy of optimized parameter values can be suppressed
via techniques that minimize a norm of the optimized param-
eters vector.”>*" Specifically, the least absolute shrinkage and
selection operator (LASSO****) method minimizes the L; norm
(i.e., the sum of absolute values) of the optimized parameters,
while the Moore-Penrose pseudo-inverse**** and ridge
regression®® methods minimize the squared L, norm (ie., the
sum of squares) of the optimized parameters.

In general, nonlinear optimization problems are more diffi-
cult to solve than linear optimization problems.?”** Nonlinear
optimization problems have more complicated landscapes that
may in some cases be nonconvex with multiple local
minima.*”** As a consequence of this nonlinearity, it may be
difficult to determine if the true global optimum of a model
forcefield's bonded parameter values have been computed or if
the optimizer only reached a local but not global optimum of
the model forcefield's bonded parameter values.*® Some
nonlinear optimization problems are provably convex with
a single minimum. However, whether a particular nonlinear
optimization problem is provably convex must be derived on
a case-by-case basis, which requires detailed theoretical anal-
ysis.*® Sometimes it is not easily apparent whether a particular
nonlinear optimization problem is convex or not. Furthermore,
imposing bounds (or other constraints) on the regressed
parameters (e.g., constraining each bond stretch force constant
to be non-negative) is generally more challenging for non-linear
optimization problems than for linear optimization prob-
lems.**** Moreover, multicollinearity arising from internal

© 2024 The Author(s). Published by the Royal Society of Chemistry
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coordinate redundancy is more difficult to treat during
nonlinear regression compared to linear regression. Algorithms
for solving nonlinear optimization problems include deter-
ministic methods (e.g.,, conjugate gradient and steepest
descent) to find a local minimum, deterministic global opti-
mizers to find a global minimum, and stochastic methods (e.g.,
genetic and particle swarm) to find a global minimum.****

In this article, I introduce a new theoretical framework that
transforms the task of optimizing values for bonded parameters
(aka flexibility parameters) in nonreactive forcefields from
a nonlinear optimization problem into a linear optimization
problem. As described in Section 2 below, this is accomplished
by introducing a new ansatz for separating the forcefield's
potential energy into bonded and nonbonded potential energy
terms. My scheme formally decouples the bonded interactions
from the nonbonded interactions in a way that zero-, first-, and
second-order derivatives of an isolated bonded cluster's poten-
tial energy function at its optimized ground-state geometry
depend only on the bonded interactions with no dependence on
nonbonded interactions. This allows the bonded interaction
terms to use equilibrium values directly from the material's
quantum-mechanically-computed  optimized ground-state
geometry instead of separate ‘resting values’ that would require
nonlinear regression. Moreover, this reduces sensitivity of the
optimized force constants values appearing in the bonded
interaction terms to the particular choice of nonbonded inter-
action model. Fortunately, this is done in a formally exact way
under certain conditions that does not restrict the forcefield
from exactly reconstructing the material's true potential energy
function.

In practice, a finite cutoff distance for the nonbonded
interactions is sometimes used to enhance computational effi-
ciency.”»** When using a nonbonded interaction cutoff
distance, my approach yields continuous zero-, first-, and
second-order derivatives of the potential energy even at the
cutoff distance. In contrast, most prior approaches yielded
either discontinuous forces or discontinuous second-order
derivatives at the cutoff distance.****

In most practical applications, approximations are intro-
duced by using model forcefields containing a small finite
number of terms to maximize computational efficiency at the
expense of sacrificing exactness. As shown in Section 3 below,
angle-bending model potentials described in prior literature
have either derivative discontinuities or incorrect dynamics
when the bond angle reaches a value of 7 radians (180°). In this
article, I introduce a new angle-bending model potential that
solves this problem and has continuous derivatives of all orders
within the physically accessible region of bond angle values.
This reduces model uncertainty and more accurately captures
physical dynamics while still requiring relatively few force
constants to be linearly optimized.

This article is part of a group of articles on the foundations of
force field functional theory (FFFT). A companion article
introduced the new SAVESTEPS protocol to optimize forcefield
bonded parameters (aka ‘flexibility parameters’) and applied it
to a materials dataset containing 116 metal-organic frame-
works (MOFs).*” That automated protocol used my new ansatz
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for separating bonded from nonbonded interactions and my
new angle-bending model potential.*®

Note: this article adopts the convention that function argu-
ments are enclosed in square brackets, while parentheses
denote multiplication. For example, y[x + 2] means ‘y as
a function of (x + 2)’ while y(x + 2) means ‘y times (x + 2)’.

2. Formally exact ansatz separating
nonbonded from bonded interactions
in @ nonreactive forcefield

2.1 Foundations

Because an electron's mass is much smaller than an atomic
nuclei's mass, electrons typically move much faster than atomic
nuclei, and this gives rise to the Born-Oppenheimer approxi-
mation in which the electronic motions are approximately
equilibrated (approximation # 1) for each geometric arrange-
ment of the material's atomic nuclei.** Within the Born-
Oppenheimer approximation, a chemical system's total energy
EBom-oppenhelmer a1y he represented as the sum of nuclear
kinetic energy and electronic energy, where the ground-state
electronic energy Elcctronic 1S a functional of the chemical

geometry:

Natoms
Born—O; hei 0 23
EtO?:;T ppesieimet = EC]CCtI’Ol’liC |:{RA7 ZA}] + Z KEA (13)
A=1

where KE, is the nuclear kinetic energy of atom A. Eqn (13)
applies whether or not relativistic corrections are included. Eqn
(13) also assumes the electrons occupy the electronic ground
state for the chemical geometry defined by {Ra,Zs} (approxi-
mation # 2). However, eqn (13) allows the atoms to occupy
excited and/or ground-state vibrational, rotational, trans-
lational states; that is, {KE,} can be either ground-state and/or
excited-state kinetic energies of the atoms.

EQcetronic {Ra» Za}] is the electronic ground-state energy
output from an actual quantum chemistry calculation. The
exact electronic ground-state energy, Exene . [{Ra,Za}], could
conceivably be computed using a full configuration interaction
calculation in the complete basis set limit; however, such
a calculation may be too computationally expensive in practice.

Within the Born-Oppenheimer approximation, the ground-
state electronic energy becomes the potential energy acting on
the atomic nuclei.*® Accordingly, USSt[{R,,Z4}] is the (hypo-

thetical) potential energy functional that would formally
reproduce the exact electronic energy exactly:

v [{Ra 20 }| = ESinn [{Ra 20 }]

Our goal is to choose a forcefield model that has moderate
computational costs and approximately reproduces the exact
potential energy functional:

Ut [{Ra2a}] = vz [{R. 2 ] (15)

Almost all forcefield models are approximations. A formally

(14)

exact forcefield corresponds to the (hypothetical) case in which
the forcefield's potential energy model is US2S[{Ry, Za }].

otal
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The total energy in an atomistic simulation parallels that of
eqn (13):
Natoms

Z KE4

A=1

(16)

total

atomistic_simulation __ y7FF D
E - Utotal {{RA’ZA}] +

A non-reactive forcefield is limited to describing processes in
which no existing chemical bonds are broken and no new
chemical bonds are formed (approximation # 3), except that
some non-reactive potentials (e.g., Morse potential, QMDFF,
etc.) can reproduce the energy of bond disassociation as the
bond length is infinitely stretched.*’**

Although not an approximation of the forcefield itself,
nonreactive forcefields are most commonly (but not always) used
in simulations employing classical Newtonian mechanics.
However, it is also possible to use these same forcefields in
simulations involving relativistic mechanics (e.g., special rela-
tivity) and/or quantum mechanics (e.g., to describe the tunneling
of hydrogen atoms during chemical reactions). For example, such
forcefields can be used in Feynman path integral simulations (i.e.,
path integral molecular dynamics, path integral Monte Carlo).***

Within a specific individual electronic ground state, continuity
of the first derivatives of E9 . onic[{Ra,Za}] with respect to
changes in the atomic positions {R, } follows from the Hellmann-
Feynman theorem, which states the atom-in-material forces can
be computed from the forces the electron cloud exerts on the
atomic nuclei.** Although I cannot yet provide a rigorous proof
that E9_onic[{Ra, Za }] is continuously differentiable to all orders
(ie., ‘infinitely differentiable’) with respect to changes in the
atomic positions {R,} within a specific individual electronic
ground state, this appears to be true if the system Hamiltonian is
sufficiently well-behaved. Discontinuities in first (and/or high-
order) derivatives of EQ...onic 1R, Za }] With respect to changes in
the atomic positions {R,} can arise where the ground state
switches from one electronic ground state to another. Example
ground state crossovers include singlet-to-triplet ground-state
transitions, conducting to semi-conducting transitions, transi-
tions from one magnetic ground state to another, charge-ordering
transitions, transitions that change the crystal symmetry, and so
forth.>% Accordingly, US2S[{Ra,7Za}] is conjectured to be
continuously differentiable to all orders with respect to changes in
the atomic positions {R,} within each subdomain of {R,} space
that shares the same specific individual electronic ground state,
but may exhibit derivative discontinuities at the boundaries
where two or more such subdomains intersect. The value of
Elctronic {RasZa}] and hence also of USES[{R,,Z,}] varies
continuously even at boundaries where the ground state switches
from one electronic state to another, because the energy is equal
for both electronic phases at the ground-state crossover. There-
fore, a formally exact theory for US2S({R,, 7, }] must be general
enough to accommodate such behaviors.

To identify the individual bonded clusters in a simulation,
we first construct the bond connectivity graph using atom
typing radii.’® Two atoms are classified as directly bonded to
each other iff the distance between them is no greater than the

sum of their atom typing radii.’ Two atoms belong to the same

© 2024 The Author(s). Published by the Royal Society of Chemistry
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bonded cluster iff a connected path of bonds exists between
them (for example, if atom A is bonded to B, B is bonded to C,
and C is bonded to D, then it follows atoms A and D belong to
the same bonded cluster).

Without loss of generality, UFE | [{Rx,74}] can be expressed
as the sum of interactions occurring solely within each bonded
cluster (ie., intracluster) and those involving any interactions
between two or more bonded clusters (i.e., intercluster):

. Netusters .
FF _ intracluster
U[otdl |:{RA7 ZA }:| - UolusterJ |:{ RA7 ZA }]

cluster_j=1
Umlcrc]ustcr R’ 7
nonbonded Ay A

For example, if a 3-body interaction involves two atoms from the

(17)

same cluster and a third atom from a different cluster, then it is

classified as an intercluster rather than an intracluster
interaction.

By definition, ‘bonded interactions’ can occur only between
atoms in the same bonded cluster. In contrast, ‘nonbonded
interactions’ may occur between some atoms in the same
bonded cluster and/or between atoms in different clusters.
Accordingly, without loss of generality, the bonded and

nonbonded interactions are expressed as:
(sch ) R Nelusters bond d( | ) R
scheme onded,(scheme
Ubonded {{R/M ZA}] = § : Ucluslerj |:{RA7 ZA}} (18)

cluster_j=1

bonded, (scheme) o intracluster =
Uclusterj {{RA7 Za }} Uclugterﬁ/ |:{RAa Za }:|

nonbonded, (scheme) >
- Ucluslerj |:{RA7 ZA }]

(19)

Nelusters

nonbonded, (scheme) >
Uclus‘erﬁj [{RA? ZA }]

Ulmerclusler
nonbonded

Ubomees[{ Ba 20 }] =

cluster_j=1
(20)

Eqn (19) allows for some flexibility in how we choose to

define Unl(zlr;Ee(;nded ,(scheme) so long as Unl?lgg?rzded (scheme) 4.9
Ubﬁgfgrij(“heme) sum to Ué?ﬁéiéift“ As derived below, choosing

a specific ansatz to define U"l‘ff;t’eor‘j‘?d s(scheme) 50 hot arbitrary,

because some definitions (e.g., the old scheme, eqn (8) and (9))
require nonlinear regression to optimize the forcefield's bonded
parameters while the new scheme defined below is strongly
preferred because it allows the forcefield's bonded parameters
to be optimized using linear regression. Eqn (18)-(20) apply to
both the old scheme and the new scheme; however, the defi-
nitions for the individual terms appearing in these equations
depend on which scheme is chosen.
The exact intracluster force is given by
Elexact

—intracluster,exact 23
FU Reze}| = amg[{Rezef] e

Without loss of generality, the force acting on atom A in the
system according to the forcefield model can be expanded as:

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

—intracluster —»imerc]u%ter

Fo=F, +F, = Ulotd][{ﬁC7ZC}:| (22)
A Re ze}| = Vavgmene fRezel] @3)
A {Reze}] = Vavmmis [{Reze)]  @9)

T _ s e s (s)

where atom_A € cluster_j.

2.2 A new ansatz for separating bonded interactions from
nonbonded interactions
In the new scheme, the intercluster and intracluster nonbonded

interactions are expanded using effective multibody pairwise
potentials:

nonbonded,new 2] _
UclusterJ {{ RC7 ZC }:| -

Aecluster_jBe (cluster_j—{excluded, })

¢1mraclusler
ABx

(26)

¢mtercluster

A (27)

Ui [{ Re.ze ] = 3

A Eé{excludedy }
In eqn (26), the summation over B includes all atoms in clus-
ter_j except those in {excluded,}. In eqn (27), the summation
over E includes all atoms in the entire system (whether in

cluster_j or any other cluster) except those in {excluded,}.
Here, the subscript ABx refers to the nonbonded potential
energy assigned to the atom pair AB. The lowercase x indicates
this includes the 2-body AB interaction plus the portion of
multibody interactions (i.e., n-body interactions for n = 3)
assigned to the AB atom pair. For example, the Axilrod-Teller 3-
body dispersion energy*® could be divided into equal thirds
assigned to the pairs ABx, ACx, and BCx. If atoms A, B, and C
belong to the same bonded cluster, then the 3-body ABC
interaction is partitioned into contributions that go towards
@RjBt;acluster’ ¢Klé;acluster’ and djgjct;acluster. If atoms A, B, and/or C
belong to different bonded clusters, then the 3-body ABC
interaction is partitioned into contributions that go towards

1ntercluster intercluster intercluster
47 @ACX and @ch .

We deﬁne gintracluster (B 1] a5 the two-body nonbonded
interaction energy between atoms A and B belonging to the
same bonded cluster plus the portion of intracluster multibody
nonbonded interaction energy assigned to the AB pair. If atoms
A and D belong to different bonded clusters, then
¢%§acluster[{ﬁc}] —0.

In eqn (27), atom E may belong either to the same or
a different bonded cluster as atom A. We define @iereluster[{g 1)
as the portion of the intercluster nonbonded energy,
yintereluster (B 7:}], that is assigned to the AE pair.
gintercluster (B 1] includes intercluster interaction energies of all
orders n = 2. For atoms A and B belonging to the same bonded
cluster, the two-body (i.e., n = 2) AB interaction counts exclu-
sively towards @iniacluster and not towards Pape "', If atoms A
and D belong to different bonded clusters, then the two-body
(i.e., n = 2) AD interaction counts towards ®ipereiuster

RSC Adv, 2024, 14, 33345-33383 | 33349
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For example, a system containing three water molecules, one
carbon dioxide molecule, plus one MOF has five bonded clus-
ters. In this case, cluster_1 is the first water molecule, cluster_2
is the second water molecule, cluster_3 is the third water
molecule, cluster_4 is the carbon dioxide molecule, and
cluster_5 is the MOF. In this case, {Rc""}, {R."*"}, and
{Eceq’s} are the optimized geometry of an isolated water
molecule; {Eceq’4} is the optimized geometry of an isolated
carbon dioxide molecule; and {}_éceq‘s} is the optimized geom-
etry of the bare MOF (i.e., the MOF containing no adsorbate
molecules). For crystals, either experimentally-measured or
theoretically-computed lattice constants (i.e., unit cell lengths a,
b, ¢ and unit cell angles «, 6, v) can be used to define the unit
cell's shape and volume when computing {R:“*’}; normally, we
use whichever data source is more accurate.

The new scheme is designed so that the zero-, first-, and
second-order derivatives of the intracluster nonbonded poten-
tial energy are zero by construction within the equilibrium
(‘optimized’) ground-state geometry of each isolated bonded
cluster j:

nonbonded,new 2] 5 ¢4
Uclﬁst};r_jd ‘ [{RC = Rc }] =0 (28)
Vavgmenee [{Re= R} =0 (29
v v W >3 5 edJ
\Y atom_1 \Y atom_2 Uszslzif;ied.ne [{RC = RC }j| = 0 (3 0)

where {EZqJ} are the optimized atom-in-material coordinates in
the isolated bonded cluster j. Here, the notation {Rc=R: "’}
means the subset of atoms from the full system which are
contained within cluster_j are positioned where they would be
located within the lowest energy configuration of the isolated
bonded cluster . Ugﬁza‘;jfkd’"ew[{}_éc, 7 }] makes no contribution
to (i.e., does not affect) the energy (eqn (28)), atom-in-material
forces (eqn (29)), and Hessian matrix (i.e., matrix of second
derivatives with respect to atomic displacements, eqn (30)) at
the optimized geometry of isolated cluster_j.

Many classical molecular dynamics and Monte Carlo soft-
ware packages have the option to use truncated and shifted
nonbonded potentials that go to zero whenever the distance
between two atoms A and B is greater than or equal to
a nonbonded interaction cutoff distance, @nonbended azas
general, such a ‘bare’ shifted nonbonded potential has
discontinuous forces at the cutoff distance.” To avoid this
discontinuity, both the forces and potential can be truncated
and shifted at the cutoff distance; however, this still yields
discontinuous second derivatives at the cutoff distance.*

The new scheme is designed so that the zero-, first-, and
second-order derivatives of the potential energy are continuous
even at the nonbonded interaction cutoff distance, and this also
ensures that the atom-in-material forces and their first-order
derivatives are continuous. Specifically, we will design the new
scheme so that the following constraints hold for all systems

lim  ommee [{Re}] =0 (31)

monbonded
dap = 3oy
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— . R
intracluster
lgll\bondcd Vatom_1 Papy [{RC }} =0 (32)
das = don
- — . 5
traclust
AB = Cotoft
lim @intcrc]ustcr R‘ -0 34
drrs s gnonbonded  AEX C ( )
AE 7 Aentoff
- i —
1 intercluster
d, lflfg}!bondcd v atom_ (DAEX ) [{RC }j| =0 (35)
AE 7 deygoft
=4 — . N
i terclust
lim  Vaon Vaon2 @5 [{Ref| =0 (36)

__, gnonbonded
AAE = Ao

In eqn (32)—(36), atom_1 and atom_2 can be either atom A, B, E,
or any other atom. Moreover, atom_1 and atom_2 can be either
the same or different atoms.

To accomplish this, we first define a simple parameter-free
smooth transition function t,p[s, ¢] that satisfies the following
conditions:

(1) tag[s, t] should satisfy the bound

-1 = ‘L'AB[S, [] =1 (37)

(2) tag[s, ¢] should smoothly turn on when s largely differs

from ¢, while remaining mostly turned off when s = ¢t
Specifically,
l_iH}’CAB[& =0 (38)
lim  (tap[s, 7))’ =1 (39)

min[(s/1).(1/s)] =0

(3) 7ag[s, f] should be independent of the choice of
measurement units, because its value is a function of the
dimensionless ratio t/s.

(4) tagls, t] should increase monotonically as the ratio ¢/s
increases:

dTAB[S7 l‘} -

d[i/s] (40)

(5) By using various powers of t,g[s, ], the higher-order
derivatives expand as follows

2
P 7 | N S el L (41)
s—1 s s—1 ds
3
U2 R e A L 1V DY (42)
st S st dS
_dleas’ls ] dtasls, ]\’
PE}T = El}?} 3TAB [S, [] 2 (T)
d2 [TAB [S, t]]
+TaglS, 1] —e )]0 (43)

where use has been made of eqn (38).
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Fig. 1 Plot of the smooth transition function tagls, t| for the
nonbonded potential. The square and cube of this function are also
plotted.

(6) To achieve a balance between t,p increasing neither too
quickly nor too slowly, t,g[s, t] should be mostly turned on (i.e.,
(tap)® = 0.8) when t/s = 2.

The following specific choice of smooth transition function

tanls, ] = tanh[* — °] (44)
S t

has a simple form satisfying all of the above conditions. When ¢/

s =2, tag” [5, f] = tanh’[2 — 1] = 0.819.... This strikes

a compromise between t,p increasing neither too quickly nor

too slowly as ¢/s increases. Fig. 1 plots this smooth transition

function.

Using this smooth transition function, we can now arrange
the nonbonded interactions according to four cases to satisfy
eqn (28)—(36) above. Case # 1: the two atoms A and B are inside
the same bonded cluster j and a cutoff distance is used for their
nonbonded interaction. In this case, we express the effective
multibody pairwise potentials as follows:

intercluster __ monbonded
¢AB¥ - |:dc.uloff

dAB] TAB3 |:dABy dnonbondcd:|

cutoff

2 nonbonded 23
TAB [dAB’ dAB ] < UAB\ Jintercluster [{RC }}

nonbonded 5 e
UAB\ intercluster |:{RC }:| ) (45)
intracluster __ monbonded 3 nmonbonded
Pppy - =On {dculott dAB] TAB [dAm Aegtont }
2 nonbonded >3
TAB [dAE” dAB } <UAB\ intracluster [{RC }:|
nonbonded B e
- UABx,intraclus‘er [{RC }:| ) (46)

@y, is the Heaviside step function, and d,z*%- is the equilibrium
distance between atoms A and B in the isolated bonded
cluster j.

Case # 2: the two atoms A and B are inside the same bonded
cluster j and a cutoff distance is not used for their nonbonded
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interaction. In this case, we express the effective multibody
pairwise potentials as follows:

intercluster __ nonbonded 23
¢ABX TAB dAB? dAB (UABx intercluster [{RC }:|
nonbonded €q
UAB‘C intercluster |:{ C }] > (47)
intracluster __ nonbonded 2]
o - TAB dAB dAB (UABA intracluster [{RC}}
nonbonded e
UAB,\ Jintracluster [{ C }} ) (48)

Case # 3: the two atoms A and D are not inside the same
bonded cluster and a cutoff distance is used for their
nonbonded interaction. In this case, we express the effective
multibody pairwise potentials as follows:

mtercluster _ nmonbonded 3 nmonbonded
(DAD\c [dculoff - dAB} TAB |:dAB7 dculoff
nonbonded R
UABx,intercluster [{RC }:| (49)
¢imracluster -0 50
Dx - ( )

Case #f 4: the two atoms A and D are not inside the same
bonded cluster and a cutoff distance is not used for their
nonbonded interaction. In this case, we express the effective
multibody pairwise potentials as follows:

i 1 bonded 23
aigirser — ypgbentes (R} (51)
cbig:]t)re;cluster =0 (52)
Analytic first- and second-order derivatives of the

nonbonded interactions for these four cases are shown in ESI
Section S2.1
If the cutoff distance used for the nonbonded potential is

infinite (ie., gnonbonded _, ), then

bonded 3 dnont;;)ndcd dAB
Iim |:dnon onde dAB:| tanh cuto
dnonbonded , o cutoff dap dguotr(l)bondcd
=1 (53)
Accordingly, Case # 2 can be regarded as the dogmg™% — o

limit of Case # 1, and Case # 4 can be regarded as the

dnonbonded _, - o limit of Case # 3.

According to these new definitions, pintereluster 54

Ugﬁ,‘;{’gjfed*“ew have continuous values and continuous first and
second derivatives everywhere with respect to atom displace-
ments. This should provide improved numeric precision when
performing classical molecular dynamics and Monte Carlo
simulations using a nonbonded interaction cutoff distance.

By convention, the nonbonded interaction energy goes to
zero for two atoms infinitely far apart:

. nonbonded _

dA]BlTw ABux,intercluster — 0 (54)
. nonbonded _

dAl}:IE»loo UAB). intracluster — 0 (55)
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Specific models for Uagh tnteciuster and Uape thirecluster an
include nonbonded interactions due to some or all of the
following: atomic charges, atomic dipoles, atomic quadrupoles,
atom-in-material polarizabilities, short-range repulsion, long-
range dispersion interactions with short-range damping,
etc.5 1214195663 A Tennard-Jones plus atomic charges model,
upgnbonded (B 1] =~ U7+ or more sophisticated (and hope-
fully more accurate) models could be used for the nonbonded
interactions. These are mentioned only as examples, because
the possibilities are delineated only by the capacities of human
ingenuity.

For an isolated bonded cluster j, the force on atom A is

— cluster_j = cluster ; - bonded,new o bonded
_ J o onded,new _ nonbonded,new
Fa = —VaUul = —VaUduseer J Va Ucluster_j
(56)

At the optimized geometry of this isolated bonded cluster, the
force on each atom in the cluster is zero:

FoAclusterJ [{R»C:Eceqj}] -0
Substituting eqn (29) and (56) into (57) gives

F.Zonded.new [{R»C 3ﬁceqj}} _ 7?/\ Ubonded‘new [{R'C :R’E‘L/}] =0

cluster_j
(58)

(57)

Eqn (58) is the key result that enables the new scheme to
directly use the equilibrium geometric parameters from iso-
lated cluster_j's quantum-mechanically-computed optimized
ground-state geometry as the ‘resting values’ in the bonded
interaction terms. This enables the new scheme to use linear
regression instead of requiring nonlinear regression to opti-
mized cluster_j's bonded parameters.

Consider a system that contains only an isolated bonded
cluster_j. In this case, the quantum-mechanically-computed
optimized ground-state geometry {R:""} is always an equilib-
rium structure of the constructed forcefield; that is, the atom-in-
material forces are zero as shown in eqn (57). With proper
forcefield parameterization, the quantum-mechanically-
computed optimized ground-state geometry {Rc "'} should
preferably be at least a local energy minimum and more pref-
erably a global energy minimum in the forcefield's potential
energy surface for this isolated bonded cluster_j. In other
words, an isolated bonded cluster's (e.g;, a molecule’'s or
a MOF's) optimized ground-state geometry can still be predicted
exactly by the forcefield even if the forcefield's potential energy
function is an approximation! Near {R:“*}, eqn (28)-(30) show
U‘C‘I‘Zf;?;’r‘j}kd’“ew only affects the third- and higher-order deriva-
tives that control anharmonicity. This enables the forcefield's
bonded force constant values (at least within the subdomain
containing the cluster's optimized ground-state geometry) to be
optimized to good approximation without requiring specific
models for URgnhended [{Rc}] or Upgnbendsd [(Rc)] to be
chosen ahead of time. This facilitates directly comparing
forcefields using different nonbonded interaction models
without having to reoptimize the bonded parameters. (Since it
is formally exact under the conditions described in Section 2.5
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below, this new scheme can certainly also be used to precisely
describe the anharmonicity; however, in that case a change in
Uponbonded . [{Rc}] requires also adjusting the bonded param-
eters to maintain an accurate description of the anharmonicity.)

The old scheme is more complicated than the new scheme,
because the old scheme does not satisfy eqn (58). Consequently,
the ‘resting values’ in the bonded interaction terms of the old
scheme do not equal the equilibrium geometric parameters
from isolated cluster j's quantum-mechanically-computed
optimized ground-state geometry. For example, a bond stretch
under the old scheme could be constructed using the MM3
bond stretch potential, but this gives an optimization problem
nonlinear in the parameter dis""®. In stark contrast, the new
scheme does not treat di$$8 as an unknown to solve for during
regression, because under the new scheme dresting — g, €4 hag
a known value before regression.

An analogy helps explain relationships between the old
scheme and the new scheme. Suppose that we have a system
composed of two fruit pies: one cherry pie and one apple pie.
Each of these pies is analogous to the energy of a different
bonded cluster in our system. Hypothetically, we could cut each
pie into several pieces. By itself, this cutting operation does not
introduce any approximations. For example, if we cut the cherry
pie into two pieces, this does not introduce any approximations,
because these two pieces still sum up to the entire pie. We
notice that there are different ways we could choose to cut up
the cherry pie. For example, we could cut the cherry pie into
a left-side piece (called ‘intracluster bonded interactions’) and
into a right-side piece (called ‘intracluster nonbonded interac-
tions’). The distinction between the old scheme and the new
scheme is that they are different protocols for cutting the cherry
pie into pieces. Although this choice affords some flexibility, it
is not completely arbitrary, because some protocols (e.g., the
new scheme) for separating intracluster bonded interactions
from intracluster nonbonded interactions yield a linear
regression problem for the bonded parameters while some
other separation protocols (e.g., the old scheme) yield
a nonlinear regression problem for the bonded parameters.
While we get to choose how to cut up the cherry pie into pieces,
the physical separation between the cherry pie and the apple
pie, which is analogous to the ‘intercluster nonbonded inter-
actions’, is defined by nature rather than being chosen by us.
Suppose that we have a system comprised of several bonded
clusters. In this case, the ‘intercluster nonbonded potential
energy’ is the difference between the Born-Oppenheimer elec-
tronic energy of the total system and that of the isolated
clusters:

Ei?uerclusler |:{ RA7 ZA }:| = Egleclronic |:{ RA> ZA }}

Netusters )
EO‘electromc

isolated_cluster_j [{ RA7 ZA }j|

(59)

cluster_j=1

Each term in eqn (59) is physically defined in a non-subjective
manner.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.3 Expanding the bonded interactions

Ubonded new

lusterJ such

Because of eqn (30) and (58), we can construct
that leading terms in its series expansion in the vicinity of
{Ry=R,""} are second-order in internal coordinate

displacements:
bonded,new 3 bonded,new 5 eqj -
UclusterJ {{RA }:| UclusterJ {{RA }:| -~

ZZ""" (ozh - a/,qu) (ai - oz,ve‘”) + h.o.t. (60)
W

where ‘h.o.t.” are higher order terms. Here, «; is an internal
coordinate, and «;*%~ is its equilibrium value in the quantum-
mechanically-computed ground-state geometry of isolated
cluster_j. n;; is the corresponding expansion coefficient. Eqn
(60) is not a Taylor series expansion, because the set of internal
coordinates is partly redundant.

Alternatively, we can expand U"ﬁ:”;?:r{,“ew as a linear combi-
nation of flexibility terms, such that each flexibility term has
a Taylor series expansion whose leading term is second-order in
internal coordinate displacements:

Usmetr [{ R
- g (R = 0k e [ e = )]
(61)

/" [{a), { (o0 a9)}] =
&g,
I/Z;Zaafaa,.

(a/, — oq,“”) (a[ — a,-cqﬁ") +h.o.t.

(5)

(62)

where ¥,! is the force constant and ‘h.o.t.” are higher order
terms. Eqn (62) is a Taylor series expansion, because the
internal coordinates contributing to a single flexibility term are
independent of each other (i.e., non-redundant).

Owing to their continuous differentiability with respect to
changes in the internal coordinates, the expansions shown in
eqn (61) and (62) are only valid within the subdomain of {EA(’)}
space that share the same electronic ground state type as
{Rs qu} {Ra } is the set of atom-in-material coordinates for
only those atoms contained in cluster_ j. We can construct

[{Ra,Z,}] that is globally

exact

a formally exact expansion of Ugid., ;

valid over all accessible regions of {RAU)} space by concate-
nating expansions for the various subdomains describing
different electronic ground states:

Ujﬁ:ll(:d/new [{R‘A }] Ubonded new [{R‘Aeqj}] _

cluster_j
N_domums
J

(Aw (RS o { (o= ) H) (63

p=1
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1 if{ qAU)}e subdomain(j, p)

= 0)
Aﬂp[{RA H_ 0 if{ﬁA(f)}esubdomain(i7p) Y

Subdomain (j, p) means the pth electronic ground-state
subdomain of cluster_j. Each subdomain (j, p) gets its own
internal coordinate expansion and its own force constant
values. The subdomains are chosen such that each single
geometry, which is defined by {RA }, belongs to exactly one
subdomain. Two different geometries of cluster_j may belong to
the same or different subdomains, but a single geometry of
clusterj cannot simultaneously belong to two or more
subdomains.

Since the optimized (aka ‘equilibrium’) ground-state geom-
etry which resides in the p = 1 subdomain has relative potential
and atom-in-material forces equal to zero, its zeroth-order
(representing the potential contributions) and first-order (rep-
resenting the force contributions) terms vanish in the Taylor
series expansions of each flexibility term as shown in eqn (62).
The p # 1 subdomains have no such constraint, because they
do not contain the optimized (aka ‘equilibrium’) ground-state
geometry. Accordingly, the p # 1 subdomains have the
following Taylor series expansion:

&/ {ai}, { (e — @) }] =
g/(f’*l)[{a _aqu} +Zég7/(pil) —aqu)

92 gy J(p#1)
ah—ahe

+1/zzz

9 (o — o9
Jday,0cy; )(“z Q; )+h.0.t. (65)

By first choosing various types of flexibility terms (e.g., bond
stretches, angle bends, dihedral torsions) as {g./”[{a:}, {(e; —
a;*9)1]}, we clearly have a linear optimization problem whose
goal is to find the set of force constants values {k/} such that
Uintacluster (R, 7 }] resembles Epieeen tger j[{Ra, Za}] as closely
as feasible subject to some optional constraints on the force
constants. For example, we may want to constrain some of the

force constants to have non-negative values.

2.4 Parameter optimization strategy

The exact bonded force is given by

zbonded,old 0,exact nonbonded,old

A exact = —V Ecluster_/ Ucluster_J (66)
prbonded,new 0,exact nonbonded,new

A exact = 7V AEclublerJ + VA ULILISLC[‘J (67)

A key distinction between the old and new scheme is that the
—»bonded new

new scheme obeys eqn (29). Accordingly, F =0 (eqn

(58)) at the e%ulhbrlum geometry of the 1solated cluster_j. This

—bonded,new
means F can be expanded as

A exact
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bonded,new 23 bonded,new 5 e _
Uclusler_j,exact [{RG }j| Uclusler_/ exact [{RG }j| =

Z 3 (955 (81— 8:) (8. — 6) ) +hoot (68)

h=1 i=h
—bonded,new
A exact =
5 5
S>> (0;3W ((ﬂh ~ B )V A+ (B — ) VAﬁ,,)) +hot
h=1 i=h

(69)

where {8} is a full set of non-redundant internal coordinates for
cluster_j. H.o.t. is an abbreviation for higher order terms. {9, ;}
are the associated constants. E; is the total number of non-
redundant internal coordinates in cluster_j.

In contrast, F, FPor e does not necessarily equal zero at the
optimized geometry of isolated cluster_ j. Consequently, it

expands as
—bonded,old = eq_j
F A exact [{RG }]

Froa |{Ra}] =
— B )V B + (8, — B57) V Aﬂh))

"‘/ “‘/

-3 (e

=1 i=h

+h.o.t.

—bonded,old = 1d
FA,cxact [{RG }:| = (021 (
=h

+(6 61 1rCSI]nM)VA5h>) + h.o.t.

(70)

o

(&3]

6 restng) Aﬁ
i

(71)

where g;,"*""¢ is usually not equal to 3,°9.

For a series of small finite displacements (e.g., 0.0001 A) away
from the equilibrium geometry of isolated cluster_j, the intra-
cluster nonbonded force, —V AUriﬁrS’tbe‘EdEd’new, remains negligible
because it is proportional to second-order and higher-order
products of the finite displacements. In contrast, the bonded
force is proportional to first-order and higher-order products of
the finite displacements, as shown in eqn (69). Accordingly, the
leading-order harmonic bonded force constants can be opti-

mized by minimizing the following loss function

bonded,harmonic __ 0,exact
Lclusterj - Z ” VAEC|U51.CTJ
finite
displacement
geometries
=, = 2
S
>3 ( Ziw((ﬁ/ Bi) V aB; + (B, — 6) ¥ Aﬁ,)) I
h=1 i=h

(72)

The vector inside ||.|| has 3N,oms force components for each
geometry. This corresponds to an x, y, and z force component
for each atom in the material's unit cell. Minimizing this L is
a linear least squares optimization problem. Astonishingly, this
means the new scheme provides a formally exact method to
optimize the leading-order bonded force constants without
having to explicitly pick a nonbonded interaction model (i.e.,
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without having to choose a specific model potential for
Unonbonded
AGx, mtracluster)
In practice, one often uses a set of redundant (rather than
nonredundant) internal coordinates {a;}. In this case, the exact
bonded force expands as

bonded,new > bonded,new - eq_j
UC]USleTJ exact |:{ Rg }:| Ucluster_/ exact [{ Re }:|

Nric Nric

=203 (0 (e - a)) thot (03)
i=h
Nric Nric
F Z(?:j:jnew = —Z Z (f?:iw ((ah - ahqu)VAai
i i=h
+(ai - Oliqu)VAah)) +h.o.t. (74)

Ngic is the number of redundant internal coordinates in clus-
ter_j. This defines a linear least squares problem analogous to
eqn (72) except that a regularization method (e.g., LASSO***?)
should be used to handle the multicollinearity problem caused
by redundancy in the internal coordinates. Again, this allows us
to construct and optimize a model for the bonded force
constants to leading order without having to explicitly pick
a nonbonded interaction model.

As shown in eqn (61) and (62), it is possible to use a set of
flexibility terms {g/''} that have a similar expansion to leading
order as eqn (73). This defines a linear least squares problem
with possible multicollinearity that should be addressed by
using a regularization method (e.g., LASSO****). Once again, this
allows us to construct and optimize a model for the bonded
force constants to leading order without having to explicitly pick
a nonbonded interaction model. This amazing result is used to
optimize bonded interaction models for 116 MOFs in the
companion paper.*’

Notably, the new scheme is formally exact to all orders, not
merely to leading order. To compute the formally exact bonded
force constants to all higher orders, the new scheme requires
the loss function to also include the intracluster nonbonded

interactions:
new,full 2 : 0,exact nonbonded,new bonded,new 2
LclusterJ = WE ( Ecluster_/ ( Ucluster_/ ' + AU lusler_/ ))
energy
training
geometries

2
Unonbonded ,new Ubonded ,new ‘ |

0,exact
+Wg E H V AEC]U.S[E[‘J

cluster_j cluster_j
force
training
geometries
+1.p.t. 4+ constraints (75)
AEglusti:r_/’ = Egluster_j[{RC}] - Egluster_j[{RCqu}] (76)
bonded,(sch bonded,(sch
AU RRR"yeeeheme) — U fiféte‘lf,: :“dem:[‘R ol
Uiy e Cehemo{ R4y (77)
A Ub](;t;:leerci](sz.heme) Ubﬁlr;fl;i](%chcme)[{Rc}]
ded,(sch j
~ Ubgndedsehemelr R i) (79)
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where r.p.t. is the regularization penalty term that handles the
multicollinearity problem. Here, Wy and Wy are observation
weights applied to the energies and forces, respectively. A full
series expansion (e.g., eqn (63)) for Umaer"™ must be inserted
into eqn (75). In practical applications, the following leading-
order approximation is typically used
. 2

Lnew.leadmg_order _ WE Z <AE21uslerJ'[{RC}] _ AUbondedmew)

cluster_j cluster_j
energy
training
geometries

2
+Wr Z 1V AES = ¥y Uiondeden) -4 b ¢, 4 constraints

cluster_j
force
training
geometries

(79)

where one uses an approximate (i.e., truncated) series expan-
sion for U‘g{:,‘;;ijr‘jm.

The old scheme explicitly requires us to specify a particular
nonbonded interaction model even if we only want to optimize
the bonded force constants to leading order. Although this type
of regularization has not been used with the old scheme in the
prior literature,'”?>?*?*7%4% one could construct the following
type of loss function for the old scheme

2
L, = We Y (MBS, - (AURIESS + AU )
energy
training
geometries

2
-~ bonded,old
v A UclusterJ ”

— —
0 nonbonded,old
+We § ”VAEclusterj — Val, -

cluster_j
force
training
geometries

+r1.p.t. + constraints (80)

Compared to the new scheme, the old scheme requires
additional terms and/or additional parameters to expand the
bonded potential, because under the old scheme the bonded
forces are not necessarily zero at isolated cluster_j's optimized
geometry. The following two requirements of the old scheme
make it much more complicated than the new scheme:

(i) The old scheme requires explicitly choosing and including
Utentonded:old even if we only want to optimize the bonded force
constants to leading order. Under the old scheme, even the
leading-order bonded force constant values depend on the
particular choice of intracluster nonbonded potential model,

nonbonded,old

UclusterJ

(if) The old scheme requires optimizing more bonded
parameters than the new scheme. Specifically, the old scheme
requires optimizing ‘resting values’ in the flexibility terms or
including non-zero force intercept terms in the flexibility
model.

In summary, this new scheme for separating bonded from
nonbonded interactions in a nonreactive forcefield has so many
compelling advantages that it should completely replace the old
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scheme. It is one of those cases where an important simplifi-
cation (i.e., turning a nonlinear optimization problem into
a linear optimization problem for the bonded parameters)
maintains formal exactness and simultaneously improves
numeric precision and computational convenience (by
providing continuous first- and second-order derivatives when
using a nonbonded interaction cutoff distance), transferability
(because the choice of Uggg?ggggﬁlster[{ﬁc }] does not affect forces
or Hessian at the isolated cluster's optimized geometry), and
convergence robustness (because linear optimization problems
do not have multiple local minima in the loss function's value).

Fig. 2 summarizes the key equations for my new forcefield
parameterization process that consists of the following steps:

(1) First, we separate E....onic [{Ra, Za }] into intercluster and
intracluster contributions. To do this, a series of quantum
chemistry calculations are first performed to compute
EQuster j[{Ra; Za}] for each individual bonded cluster_j by itself
(i.e., an isolated bonded cluster) over many geometries {ﬁAU)}
allowing its internal coordinates (e.g., bond lengths, bond
angles, dihedrals, etc.) to vary.

(2) Second, a separate set of quantum chemistry calculations
is then performed for the entire system that contains all of the
bonded clusters together at various geometries. As shown in
eqn (59), the intercluster energy is computed as the difference
between the Born-Oppenheimer electronic energy of the total
system and that of the isolated clusters.

(3) Following the method described in Section 2.2 above,
intracluster nonbonded interactions are defined for each iso-
lated bonded cluster. The remaining intracluster energy is
assigned to the bonded interactions:

bonded 2] __ p0.electronic 2] nonbonded,new
Eclusterj |:{RA7 ZA}} - Eisolatediclusterﬁ/ |:{RA7 ZA}] - Ucluslerj
(81)

(4) Using linear regression with an appropriate Lagrangian

(ngﬁg?:&), the intracluster bonded energy model,
Ug?l‘;f:ri“ew[{l_éA,ZA}], is fit to an internal coordinate series

expansion for each electronic subdomain of cluster j to repro-
duce EPonded (1R, 74} as closely as feasible:

cluster_j
Co . bonded
minimize E Lclusler_j (82)
cluster_j
geometries

If the internal coordinate series expansion is complete, the
minimum of the loss function will be zero, and this corresponds
to an exact match between Ucblﬂrslfeer‘j.new[{ﬁA,ZA}] and
Egouded [{Rx, Za}]. In most practical applications, a truncated
series expansion is used leading to approximation. In addition
to energies, the training dataset and Lagrangian for bonded
interactions may also include atom-in-material forces and/or
constraints (such as bounds on some force constants) and/or
regularization terms.

(5) Using linear or nonlinear regression with an appropriate

Lagrangian (Li{lotf,fgﬁfifé), the intercluster nonbonded energy
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model, yintereluster (3, 7, 1], is fit to an internal coordinate series

expansion to reproduce EY. . ;... [{Ra, Za }] as closely as feasible

by finding the minimum of pintercluster y¢1he internal coordinate

series expansion for vyinterelusterfg, 7,11 is complete, the

minimum of the loss function will be zero, and this corresponds
) .

to an exact match between Uinterclusterifp, 7,11 and

B oretuster | 1R, Za }]. In most practical applications, a truncated
series expansion is used leading to approximation. In addition
to energies, the training dataset and loss function for
nonbonded interactions may also include atom-in-material
forces and/or constraints (such as bounds on some nonbonded
parameters) and/or regularization terms. For example, this

Lagrangian might take the form

(6) Conceptually, the forcefield's total potential energy can be
reconstructed as the sum of three parts, which are the intra-
cluster bonded interactions, the intracluster nonbonded inter-
actions, and the intercluster nonbonded interactions:

Uisa[ 1R 7] =

Netusters bonded. R
onded,new
UL]US[SI‘J |:{RA7 ZA }:|

cluster_j=1

intracluster bonded interactions

Netusters bonded
2 : nonbonded,new D intercluster
+ Uclusler_/ [{RA7 ZA }j| Unonbonded (84)
cluster_j=1 N———
N N - intercluster
intracluster nonbonded interactions nonbonded

interactions

2.5 Conditions under which this theoretical framework is
formally exact

This section describes the conditions under which the theo-
retical framework described in the previous sections is formally

We Yy

intercluster
training
geometry
energies

Li;l(:;golzsdleeé + W Z HvA Uintercluster
nonbonded
intercluster
training
geometry

forces

+r.p.t. + constraints

exact, which means the forcefield's potential energy model
asymptotically approaches the exact potential energy model:

UTF (85)

total [{RA: ZA}] Uil [{EA, Za H
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At first one may wonder whether formal exactness is
a meaningless theoretical result, because in most practical
situations some optional approximations will be chosen to
make the forcefield easier to parameterize and use at the
expense of losing some accuracy. However, closer analysis
shows formal exactness is an extremely important property. If
a theoretical framework is not formally exact, then the exact
solution lies outside that theoretical framework; in this case,
one reaches a wall beyond which the results cannot be further
improved without leaving that particular theoretical framework.
If a theoretical framework is formally exact, then the exact
solution lies inside that theoretical framework; in this case, one
can always improve the accuracy of solutions to get closer to and
even reach the exact solution without having to leave that
particular theoretical framework.

To begin, we must precisely define the problem statement
whose exact solution defines the exact solution we seek. Here,
the problem statement is defined as follows. For a specific
material (aka ‘chemical system’) of precisely defined chemical
composition and with precisely defined bond connectivity
graph in the absence of externally applied fields, compute the
exact Born-Oppenheimer ground-state electronic energy

ot «cl{Ra,Za}] for various sets of chemical geometries
{Ra,Z4)} that match the defined bond connectivity graph, and
use these results to construct the functional
Ugii {Rx. Za}] = Eeieetronic {Ras Za}. B

The proof that such an exact functional US2S! [{R,, Za }] exists
proceeds as follows. In the absence of externally applied fields
(e.g., in the absence of externally applied electric, magnetic, and
gravitational fields), {R,,Z,} together with the chosen level of
relativistic corrections defines the system's Hamiltonian. The
system's Hamiltonian in turn defines its Born-Oppenheimer

exact

ground-state electronic energy, Eoon . [{Ra,Za}]. Since
intercluster n 0 23 2
(Unonbonded |:{RA’ Za }:| - Einterclustcr [{RA7 Za }:| >
- S 2 (83)
{{R/M ZA}] - VAElmerclusler |:{ Ra, ZA}} H

0 exact

ggéﬁt [t{RA 1 Za H electronic [{ﬁA s Zn H the
exact
Eelectronic [{§A7 ZA}] means fgtaaclt [{RA7 ZAH
Bt [{Ra,Za}]) also exists. Hence, the exact
exists.

Let us examine the hypothetical counter-argument that no

USRSt [{Ry,Za}] exists or that it exists but does not equal

existence of
(which  is
U [{Ra, Za}]

© 2024 The Author(s). Published by the Royal Society of Chemistry
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key equations of force field functional theory (FFFT)

nonreactive forcefield is fitted to QM simulations:

QM: ER-omsems _ po [{]—(*Z\}} .

Sk

(motions of atoms)

FF;  eomisic simiion —Uff.ﬂ.[{ﬁ\.z,\”*- z KE,

forcefield potential eneray
& lear kinctic energy
(motions of atoms)

identify bonded clusters and match FF to QM for cach isolated bonded cluster:

U (R,,2, )]

cluster j

0,clectronic

B i[{RaZ4]

match FF to QM intercluster energy for system wnmmmu multiple bonded clusters:

Bt {RaZi} ] = Elonic [ {RusZ4 }] - Z B [{Rao2)]

Uneme (R, 2,) = ,m.m[{k,\.%}]

apply sum rules to construct (]1; forcefield’s potential energy for the entire system:

Ugm[{ }] Z UJ;‘;;',;‘ [{R Z }]+U s [{R Z }]

Ll:]’:‘;”‘ﬁ‘,‘f‘“’[{l‘{_*,l‘}] Jf,';';f;,“,"“ [(Ro2,) ]+ Uppmito[(R .2, ]

o (R v ()= 3 ([ Dl fa-er)]

where Aj, equals 1 within the p electronic ground-state subdomain of cluster j and
zero outside it; {a,} are internal coordinates; kj? is a force constant, and {a;"‘"} are the

equilibrium values of the internal coordinates in the optimized isolated cluster j.

v Rezd)- 2 3

Aceluster j Be(cluster

inimclustcr
mABx
uded, })
incrluser
D

A Eefexcuded, |

i
the same bonded cluster and a cutoff distance is used for their nonbonded interaction.
Case #2: The two atoms A and E are inside the same bonded cluster and a cutoff distance
is not used for their nonbonded interaction. Case # 3: The two atoms A and E are not
inside the same bonded cluster and a cutoff distance is used for their nonbonded
interaction. Case # 4: The two atoms A and E are not inside the same bonded cluster and
a cutoff distance is not used for their nonbonded interaction.

Putting everything above together should give: Um‘[{l{ ZA}] mmm[{ﬁwl,\}]

VEL[{Roz)]= S v Rz )]s S vmteee (R, )]s Vs

cluster_j-1 clusterj=1

is defined according to four cases. Case # I: The two atoms A and E are inside

interactions.
interactions

atom-in-material force: F, =-V, Ul [{ﬁA,Z*}]
{I‘: = 0} defines an equilibrium structure for which all forces are zero.

limiting conditions that hold for all systems:
UR&”:O i V., o] :

[ {Re]]-0
U (R = R -0

atom 2 cluster

im0y [(R)]=0 | im 6,‘,‘,,7@““[{1‘{(”:0 hmmV,m,

o

g [Re=RUY =0 9,9

ironondedacn [{ﬁ( =RE v” = Uninbondedaey [{Rc =R ﬂ )

" cluster j
Thus, the nonbonded interactions do not affect the atom-in-material forces or Hessian
in an isolated bonded cluster at its optimized geometry.
for an isolated bonded cluster j:

Sbonded.new [ [ 13 seai] | — bonded.new [ f 13 Seqil |
B[R =R} =-9,U [{Re=R&}]=0

cluster_j

This allows the bonded force constants to be optimized using linear regression!

Fig. 2 A graphic summarizing relationships between key equations in
force field functional theory.

Egoaet  [{Ra,Za}], because the Born-Oppenheimer approxi-
mation is itself an approximation. This notion of non-exactness
arises from choosing to define the problem statement as
Ui being intended to match some experimental observable,
and since the Born-Oppenheimer approximation is an
approximation it does not exactly reproduce experimental
observables. While it may be possible to redefine Ugy in that
way, I have chosen not to do so. The concept of using a force-
field's potential energy UEE. [{Ra,Za}] intrinsically rests on the
separation of electronic from nuclear motions. If these are
strongly coupled so that the Born-Oppenheimer approximation
is unreasonable, then in that case the forcefield's potential
energy would need to include the electronic positions {F;} as
well, thal[{Fi,ﬁA,ZA}], and both the electrons and atomic
nuclei would need to be included as explicit particles when
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using that forcefield in subsequent simulations. The fact that

USA[{Ry, Z5}] omits the electronic positions {7;} as explicit
coordinates means it only applies within the Born-Oppen-
heimer approximation that allows the electronic relaxation to
be performed for fixed nuclear positions. Hence, US2S [{Ry, Z }]
must be defined as equal to ESwe . [{Ry,7,}]. If we want
something that goes beyond the Born-Oppenheimer approxi-
mation, that requires a different type of construct,
Umtal[{f},l_émZA}], and a completely different type of forcefield
that includes both the electrons and atomic nuclei as explicit
particles in the forcefield. Here, I have chosen to define force
field functional theory within the scope of the Born-Oppen-
heimer approximation. Within that defined scope, formal
exactness is defined as constructing a forcefield model that
exactly reproduces the Born-Oppenheimer potential energy
surface as shown in eqn (14) and (85).

Table 1 lists the conditions that must be satisfied for this
theoretical framework to reach the exact solution. Each of these
conditions is now discussed.

To be exact, the bonded clusters and overall system being
studied must be exactly the same ones as the forcefield was
trained for. Within this theoretical framework, bonded inter-
actions are parameterized for each isolated bonded cluster, and
each bonded interaction is intracluster. On the other hand,

Table 1 List of conditions that must be met for this theoretical
framework to be formally exact

(1) The bonded clusters and overall system being studied must be
exactly the same ones as the forcefield was trained for

(2) No nuclear reactions, no nuclear decay processes, and no nuclear
excitation processes take place

(3) Since the nuclear spin and local rotational orientation of an atomic
nucleus is neglected in this type of nonreactive forcefield, this type of
nonreactive forcefield is formally exact only when each atomic nucleus
in the real physical system is spinless and spherically symmetric

(4) There are no externally applied fields, or the forcefield has been
specifically parameterized for the precise configuration of externally
applied fields that is present

(5) Within the Born-Oppenheimer approximation, an exact electronic
structure theory is used to compute E0.S" . [{Ry,Z,}]. This requires

electronic
using an exact exchange—correlation theory together with appropriate
relativistic corrections

(6) No new chemical bonds are formed and no chemical bonds are
completely severed; however, the bond length of a bond may approach
infinity

(7) For nonbonded interactions having theoretically infinite distance
range, the dooree™@°d — o limit must be used. For nonbonded
interactions having theoretically limited distance range, the exact range
qnonbended _ gexact-range ny st be used

(8) Because the forcefield is parameterized for the electronic ground
state only, it does not describe processes involving excited electronic
states or excited spin states

(9) The forcefield must be used only within the particular electronic
ground-state subdomains for which it was parameterized. Since each
electronic ground-state subdomain defines a region of atom-in-material
positions, {R,}, this type of nonreactive forcefield must be used only
within the general regions of {R,} space for which it was trained

(10) US2SH[{ Ry, Za}] has been constructed to exactly match

ESS2 . [{Ra,Za}] over the relevant electronic ground-state

subdomains
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there are both intracluster nonbonded interactions and inter-
cluster nonbonded interactions. For example, if the forcefield
was trained on a system containing three water molecules, then
formal exactness is lost and approximations manifest if we try to
apply that same forcefield to a new system containing four water
molecules. In this case, system # 1 containing 3 water molecules
properly has exactly the same bonded interactions and intra-
cluster nonbonded interactions as system # 2 containing 4
water molecules; however, these two systems have different
intercluster nonbonded interactions. In other words, the
bonded interactions and intracluster nonbonded interactions
are strictly transferable between different systems comprised of
the same kinds of bonded clusters, but the intercluster
nonbonded interactions are not strictly transferable across such
systems.

In practice, it is often more convenient to accept some level
of approximation that results from applying a versatile inter-
cluster nonbonded interaction model to different but similar
systems. Consider as an example a series of systems in which
a particular MOF is loaded with different combinations of
molecules such as N,, O,, CO,, methane, etc. In this case,
a forcefield could be developed as follows. First, the bonded
interactions and intracluster nonbonded interactions are
calculated for each isolated bonded cluster. These are exactly
transferable to the combined system containing several bonded
clusters. Then, a versatile (but approximate) intercluster
nonbonded interaction model is parameterized and applied to
each system in the series. This is generally more convenient
than the formally exact approach that requires separately
parameterizing a new intercluster nonbonded interaction
model for each specific combination of molecules in the MOF.

This type of nonreactive forcefield treats the atomic nuclei as
immutable. Consequently, this type of nonreactive forcefield
describes processes in which no nuclear reactions, no nuclear
decay processes, and no nuclear excitation processes take place.
Since the nuclear spin and local rotational orientation of an
atomic nucleus is neglected in this type of nonreactive force-
field, this type of nonreactive forcefield is formally exact only
when each atomic nucleus in the real physical system is spinless
and spherically symmetric. In other words, this type of nonre-
active forcefield does not describe nuclear magnetic resonance
(NMR), the Mossbauer effect, and other phenomena related to
nuclear spins or nuclear energy transitions. In line with the
Born-Oppenheimer approximation that separates the elec-
tronic and nuclear motions, this immutability of atomic nuclei
is considered to be part of the problem statement whose
formally exact solution is sought.

A formally exact parameterization of the forcefield corre-
sponds to one specific Hamiltonian. Consequently, there is
a one-to-one correspondence between the system's Hamiltonian
and the forcefield. Any modification that alters the system's
Hamiltonian requires parameterizing a new forcefield to retain
formal exactness. Since adding external fields (e.g., external
electric, magnetic, or gravitational fields) changes the system's
Hamiltonian, to retain formal exactness a new forcefield would
have to be parameterized for each combination of externally
applied fields. Because reparametrizing the forcefield for each

33358 | RSC Adv, 2024, 14, 33345-33383

View Article Online

Paper

specific combination of externally applied fields would be
extremely tedious, it is generally more convenient to accept
some level of approximation that allows the same forcefield to
be applied irrespective of the specific combination of externally
applied fields. In general, polarizable forcefields can more
accurately approximate responses to externally applied electric
fields than nonpolarizable forcefields.'**¢6-%*

Formal exactness requires that the Born-Oppenheimer
electronic ground-state energy, E..onic 1R, Za }], be computed
using an exact quantum chemistry method. This requires both
that the exchange-correlation theory used is exact and that
appropriate relativistic corrections®”® are included in the
quantum chemistry calculations. Examples of formally exact
quantum chemistry methods include full configuration inter-
action expansion and density functional theory (DFT) calcula-
tions in the complete basis set limit.”*”” Since the exact DFT
exchange-correlation functional is still unknown, in practice
B etronic[1Ra, Za}] is normally computed using a density func-
tional approximation (DFA) or any other desired quantum
chemistry method (e.g., coupled-cluster, configuration interac-
tion, etc.).”’”*® For best results, the quantum chemistry method
chosen should include long-range dispersion interactions.***
For convenience, a finite-sized basis set is normally used
instead of the complete basis set limit.?*** If the finite-sized
basis set is appropriately chosen, then this introduces an
acceptable level of approximation. For heavy chemical
elements, additional approximations such as freezing some of
the core electrons or replacing some of the core electrons with
a relativistic effective core potential (RECP) are sometimes
used.”*** Even though the exact DFT exchange-correlation
functional is still unknown, all of these approximations are
formally optional, because we could conceivably (but not
necessarily practically) choose to perform a full configuration
interaction calculation in the complete basis set limit to obtain
the exact quantum chemistry result; however, that would be
extremely (and sometimes prohibitively) computationally
expensive.

Each nonreactive forcefield operates only within the scope of
a particular fixed bond connectivity graph; however, bonds
(treated as harmonic or anharmonic springs) are allowed to
stretch beyond the sum of their atom typing radii. Some non-
reactive forcefields (e.g., Morse potential,* QMDFF*’) even allow
bonds to stretch to infinite length. Accordingly, nonreactive
forcefields do not describe complex chemical reactions. I clas-
sify this as a restriction on the scope of nonreactive forcefields,
rather than treating it as an approximation. For a collection of
atoms, a complete Born-Oppenheimer potential energy surface
may contain separate regions (aka ‘valleys’) for reactants and
products that are connected by reaction paths. Traversing these
reaction paths involves forming and/or breaking chemical
bonds. For example, a complete Born-Oppenheimer potential
energy surface for four hydrogen, one carbon, and four oxygen
atoms would contain separate regions and connecting reaction
paths corresponding to: (a) one methane (CH,) and two oxygen
(O,) molecules, (b) one carbon dioxide (CO,) and two water
(H,0) molecules, (c) one formaldehyde (CH,O) plus one water

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(H,0) plus one oxygen (O,) molecule, and (d) many other
regions and connecting reaction paths.

When using a nonbonded interaction cutoff distance,
interactions having a theoretically infinite distance range (such
as the Coulomb interaction between charged particles) will be
undercounted between particles farther apart than
dnonbended por nonbonded interactions that have theoretically
infinite distance range, formal exactness requires that we use
the ghonbonded _, o limit for those interactions. We also allow
the possibility that some (but not all) of the nonbonded inter-
actions may have a theoretically limited distance range. For
those particular nonbonded interactions, we should set
dnonhended _ gexact range (This possibility is included to accom-
modate multibody interaction models in fluids that have
afinite-range of the multibody interactions. In such case, d"°""°™
ded utofr = doactrange could be tuned so that the multibody
interaction model reproduces the correct interaction energy.).
This means the value of dhon2ended can be different for different
nonbonded interactions.

Because this type of nonreactive forcefield is parameterized
for the electronic ground state only, it does not describe
processes involving excited electronic states or excited spin
states. I classify this as a restriction on the forcefield's scope,
rather than treating it as an approximation. Manifestly, this type
of nonreactive forcefield cannot describe optical transitions,
fluorescence, phosphorescence, photoelectronic processes,
electron excitation, electron transport, spin excitation, and spin
transport phenomena.

To achieve formal exactness, this type of nonreactive force-
field must be used only within the particular electronic ground-
state subdomains for which it was parameterized. It is possible
to simultaneously parameterize this type of nonreactive force-
field for one, two, or more different electronic ground-state
subdomains. Since each electronic ground-state subdomain
defines a region of atom-in-material positions, {R, }, this type of
nonreactive forcefield must be used only within the general
regions of {R,} space for which it was trained.

Finally, to achieve formal exactness, US[{R, Z, }] must be
constructed to exactly match EGoxss . [{Ra,Z,}] over the relevant
electronic ground-state subdomains. To accomplish this, the
process illustrated in Fig. 2 and described in the previous
sections should be followed employing complete series expan-
sions in terms of the internal coordinates for both the intra-
cluster bonded interactions and the intercluster nonbonded
interactions within each electronic ground-state subdomain. In
this context, a ‘complete series expansion’ means a series
expansion that employs all the independent degrees of freedom
and also has enough functional representation (i.e., a complete
set of basis functions) to achieve an exact match between

USSRy, Za}] and EGS2C . [{Ra,Zs}] within each electronic
ground-state subdomain.

Both the electronic ground-state subdomains of the full system
(which may contain multiple bonded clusters) and the electronic
ground-state subdomains of each associated isolated bonded

cluster must be included to construct an exact forcefield. Deriva-

0,exact

tive discontinuities in E .. ..

[{Ra,Zs}] and hence also in
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US2St[{Ra, Za}] may occur at a boundary between two or more
of the full

electronic  ground-state
USSRy, Za}] = Eqod . [{Ra,Za}] is continuous but not neces-

electronic
sarily continuously differentiable at such boundaries. Derivative

subdomains system.

0,electronic
isolated_cluster_j

[{Ra,Zx}] may occur at a boundary between two

discontinuities in E [{Ra,74}] and hence also in

intracluster
exact Ucluster J

or more electronic ground-state subdomains of isolated cluster_j.
exact Ulntracluster[ {IéAy ZA}] —F

cluster_j

0.electroni =
iSSI:tCe;ciré;lclster J HRAv Za H

uous but not necessarily continuously differentiable at such

boundaries. To be exact, nggieri“ew[{ﬁA}] must be expanded

is contin-

locally within each electronic ground-state subdomain of the iso-
lated cluster j (see eqn (63)). Because Ejoos  [{Ra,Za}] depends
on both E%&t (R, 7,}] and EXclectonic (R, 7x}] as shown

electronic isolated_cluster_j
in eqn (59), this means Ey:o2  [{R,,Za}] may exhibit derivative
discontinuities wherever either the full system or any of the
associated isolated bonded clusters undergoes a change in elec-

tronic ground state. This means exact_Uionbonded =[5 .1] has the

ABx.intercluster

following piecewise expansion

nonbonded R —
exact_ UABY intercluster [{RC }] -
Nopicces
>3 nonbonded,piece_w
§ : (FW |:{RC }} UABx‘imercluster [{RC }] ) 86
w=1
where

(87)

nl - {y e

0 if{ Rec } & piece_w

All locations inside piece_w share the same electronic
ground-state type of the full system. All locations inside piece_w
also share the same electronic ground-state type of isolated
cluster j. Locations inside two different pieces have either
different electronic ground-state types for the full system or for
any associated isolated bonded cluster. U";’;’?S;f:ﬁlg:fe YI{Rc}]is
continuous and continuously differentiable (up to some order)
with respect to atom displacements (i.e., changes in {R¢}).

We normally only know values of E%_;onic [{Ra; Za }] that have
been numerically computed for several chosen chemical
geometries. Consequently, we have to use regression techniques
to build a model for U [{Ra,Zs}]. In practice, approximate
expressions are normally used to build the forcefield's
{Rx,Z4}] functional, and this introduces a (hopefully

otal [{RA7 ZAH and Ee[ectromc [{R/"H ZA}] .

Utotdl {{RA’ ZA }} = Eglcctronic [{RA’ ZA }:|

total[
small) difference between U,

(88)

Although careful accounting of electronic ground-state sub-
domains is required to construct the exact forcefield, normally
it is much easier to pursue an approximate treatment in which
we focus on training the forcefield over particular region(s) of
{Rn} space. UFF [{Rax,Zs}] only provides reasonable approxi-
mation to EY,...onic[{Ra, Za }] within the general region(s) of {Rx}
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space for which it was trained (i.e., fitted, parameterized). As an
approximation, Ufignbonded  1fR 1] is often oversimplified to

have only a single piece (i.e., Npjeces = 1) and Usizseiinew[{ﬁA}] is
often oversimplified to have only one subdomain (i.e., N9
mains — 1). These approximations make forcefield training

easier.

2.6 Worked examples

2.6.1 The stretched H, molecule. Full configuration inter-
action (FCI) calculations were performed for the H, molecule.
Because the H, molecule contains only two electrons, FCI
calculation for this molecule corresponds to configuration
interaction with single and double excitations (i.e., CISD). CISD
calculations were performed in Gaussian (ref. 95) software
using the aug-cc-pVQZ®** basis set. These calculations solved
the time-independent multi-electronic Schrodinger equation

ﬁcllpglcctronic = Eglcctronicul(c)lcctronic (89)
using the following multi-electronic Hamiltonian operator
(expressed in atomic units):

V.
Nelectrons Nelectrons Natoms

H=1/) 3 W2+ Y >

—=
=1 A=l |”i - RA‘

kinetic energy of electrons electron-nuclei

potential energy

Natoms Natoms

Nelectr Nelectr
electrons electrons 1 ZA ZB
+ =t ——
=1 j>i }r,- - ’f’ A=1 B>4 |RA - RB’
electron-electron
potential energy

(90)

nucleus-nucleus
potential energy

Eqn (89) and (90) are discussed in common quantum
chemistry textbooks.” ™ In eqn (89), ¥cctronic is the ground-
state multi-electronic wavefunction. The multi-electronic
Hamiltonian operator in eqn (90) is one of several possible
choices that can be used in this theoretical framework. If
desired, the multi-electronic Hamiltonian operator could
include various relativistic corrections, spin-orbit coupling,
and/or spin-spin magnetic coupling, etc.***** For simplicity,
those interactions were not included in the example studied in
this section.

In the absence of externally applied fields, the only inde-
pendent internal geometric coordinate for this molecule is its
bond length. The FCI/aug-cc-pVQZ optimized bond length for
the H, singlet spin state is 74.199 picometer (pm). The triplet
energy was also computed at this same bond length. For both
the singlet and triplet spin states, FCI/aug-cc-pVQZ calculations
were also performed at a series of constrained bond lengths
from 50 to 500 pm.

For each H atom, the aug-cc-pVQZ basis set contains six sets
of s-type basis functions, four sets of p-type basis functions,
three sets of d-type basis functions, and two sets of f-type basis
functions.” One s-type basis function is a contraction of
multiple Gaussian exponents.” The other five s-type basis
functions and all of the p, d, and f basis functions contain one
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Gaussian exponent per basis function.®” As shown in Table S1 of
ESI,} the FCI/aug-cc-pVQZ singlet and triplet energies at 500 pm
are less than 10~ hartree away from the complete basis set limit
value of exactly minus one hartree for two isolated hydrogen
atoms. This shows the FCI/aug-cc-pVQZ results for the H,
molecule are close to the complete basis set limit. Accordingly,
the quantum-mechanically-computed results listed in Table S1
of ESIT are a nearly exact solution to eqn (89) and (90).

At each finite bond length, the exact (i.e.,, FCI near the
complete basis set limit) spin triplet electronic energy of H, is
higher than the spin singlet electronic energy of the same bond
length. At infinite bond length, the exact (i.e., FCI near the
complete basis set limit) spin triplet and spin singlet electronic
energies of H, are equal. Accordingly, there is no singlet-to-
triplet electronic ground-state crossover for this molecule at the
FCI level of theory near the complete basis set limit. Thus, only
one electronic ground-state subdomain (i.e., the singlet elec-
tronic ground state) is needed to construct the nonreactive
forcefield for this molecule.

For the H, molecule, there are no intracluster nonbonded
interactions, because each H atom is directly bonded to the
other H atom. Because the forcefield is nonreactive, this bond
remains active even as the bond length is stretched to arbitrarily
large distances.

For this molecule, the bond stretch energy can be repre-
sented exactly by the following expansion:

ngnded,new [dAB] - Uﬁznded‘new [d;qB} _ kagm [dABy quB} (91)

m=1

(dAB _ dz(}a)erl

dAB (m+1) + dABeq(m+l)

Note that g,, = 0 and 9g,,/ddag = 0 at dyp = dap; g = —1 (if m is
odd) or +1 (if m is even) at dyg = 0, and g,,, = 1 at dyg = ®. Eqn
(92) is not the only possible choice of flexibility terms to expand
the bond stretch energy, but it is a reasonable and workable
choice. The dag = dip datapoint yields

Enldan, dxy] = (92)

bonded,new
Uy " [dis] = Egingial i) (93)

Truncating the summation in eqn (91) at m = 18 yields 18
force constants that can be computed by using linear regression
to fit the bonded interaction model to a training dataset con-
taining the 18 dag # dap quantum-mechanically-computed
Ejinglee datapoints from Table S1 of ESL.¥ To handle the multi-
collinearity issue, I performed this linear regression using the
LASSO method. This minimized the following loss function:

18 18
L= (Ul ) - Byofd)) + 2kl (04)
i=1 m=1
where A is the LASSO regularization parameter.

The Matlab lasso function was used with the following
settings: intercept = false, standardize = false, RelTol = 10 %,
MaxIter = 10°. As lambda decreased, the number of nonzero
parameters increased and the root-mean-squared-error (RMSE)
of the training dataset decreased. Table S2 of ESIT lists the
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resulting force constant values for several values of A. The
optimized force constants had the following numbers of
nonzero values: 7 for A =102, 9 for A = 1072, 12 for A = 10~ *°,
17 for A = 10~**, and 18 for A = 10 ' The sum of absolute
values of the force constants increased as A decreased.

Due to the multicollinearity issue, the solution for A = 0 is ill-
defined. Instead, one generally refers to a A — 0 result that
means the smallest value of A for which converged results were
computed. As the LASSO regularization parameter A becomes
closer to zero in value, the number of iterations allowed for
convergence (i.e., MaxlIter) needs to be increased and the RelTol
needs to be decreased. Here, the tightest convergence achieved
was for RelTol = 10~°, MaxIter = 10'°, and A = 102° as shown
in the last column of Table S1 of ESL ¥

As shown in Table S1 of ESLf this fitted forcefield nearly
reproduced the quantum-mechanically-computed training
data. The RMSE values (in hartree) for the training dataset
decreased monotonically from 2.0 x 10~ for A = 107° to 3.4 x
107> for A = 107°. Fig. 3 plots the QM-computed singlet and
triplet energies for the H, molecule as a function of bond
length. For the singlet state, the model forcefield curves are
shown for comparison and are in extremely close agreement to
the FCI/aug-cc-pVQZ spin singlet data. However, the A = 10~ >°
model behaves erratically in the extrapolated region for bond
lengths <40 pm. This clearly demonstrates that using A values
too close to zero causes the over-fitting problem that decreases
the model's accuracy for describing regions outside the training
data.

In summary, this example illustrates a practical imple-
mentation of parameterizing a formally exact nonreactive
forcefield for an isolated bonded cluster. Formal exactness
means that by improving the computational accuracy and
precision, the parameterized model can be made infinitesimally
close to the exact solution without having to leave the theoret-
ical framework. Some ways to increase the computational
accuracy and/or precision include:

(1) Increasing the basis set size is one aspect of ‘improving
the computational accuracy and precision’. Although the aug-
cc-pVQZ basis set already gets fairly close to the complete basis
set limit for this molecule, increases in the basis set size would
enable the quantum chemistry results to get even closer to the
complete basis set limit. As the basis set size tends towards
infinite, the complete basis set limit can be reached.

(2) The real number models used in the quantum chemistry
calculations and the linear regression calculations have a finite
storage size (e.g., 64 bit real numbers) that determines the
number of stored digits. Increasing the number of stored digits
would enable these calculations to get even closer to the exact
solution.

(3) Iterative quantum chemistry calculations (such as the FCI
calculations performed here) employ convergence tolerances
that allow the energy to be computed to some finite number of
significant digits. Tightening these convergence tolerances
would enable the quantum chemistry results to get even closer
to the exact solution.

(4) The LASSO method for performing regularized linear
regression uses a convergence tolerance, maximum number of
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Fig. 3 Born—-Oppenheimer potential energy surface for the H,
molecule. Quantum chemistry results are compared to fitted force-
field models.

allowed iterations, and a regularization parameter (). A >
0 values increase the model's transferability, robustness, and
conciseness at the expense of introducing some approximation.
To solve the linear regression problem exactly, an infinitesimal
A — 0 solution is required together with extremely tight
convergence tolerances, and this might require an extremely
large number of iterations to converge.

(5) Here, the bonded interaction series expansion was trun-
cated and a finite number of quantum-mechanically-computed
datapoints were used to train the forcefield model. To achieve
exactness for all geometries within the relevant connected
region of the potential energy landscape, the training dataset
would need to be expanded to include all such geometries (an
infinite number) and an untruncated bonded interaction series
expansion would need to be used. Additionally, the linear
regression problem would need to be solved exactly so that the
forcefield model exactly reproduced the training dataset.

My new ansatz for separating bonded interactions from
nonbonded interactions works for developing forcefields using
either machine-learning or non-machine-learning approaches.
The example studied in this section used a series expansion
containing many flexibility terms. Series expansion approaches
can be useful to parameterize machine-learned forcefields that
have been used to study many materials.’**%” A key advantage
of machine-learning strategies is that they can be applied across
a wide range of different systems without requiring as much
manual human labor to develop an effective working model.
Such machine-learning methods allow high accuracy to be
reached at the expense of typically requiring a relatively large
number of fitted parameters.**>*"”

However, it is often desirable to construct and use frugal
forcefields that contain relatively small numbers of fitted
parameters associated with carefully chosen physically-moti-
vated forcefield terms. This is desirable, because atomistic
simulations (e.g., classical molecular dynamics and Monte
Carlo simulations) using frugal forcefields can run quicker than
atomistic simulations employing parameter-heavy forcefields
containing a relatively large number of forcefield terms. The

RSC Adv, 2024, 14, 33345-33383 | 33361


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra01861c

Open Access Article. Published on 22 October 2024. Downloaded on 10/22/2024 3:51:05 PM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

next section revisits this example using a bond stretch model
potential that achieves high accuracy using a small number of
fitted parameters.

2.6.2 A new first-principles-derived bond stretch potential.
The harmonic stretch model potential is simple to apply, but it
only describes the shape of the bond stretch curve for small
magnitude displacements (both bond compression and elon-
gation) near the optimized bond length. As a bond is stretched
to ever larger values, the energy of the harmonic bond stretch
model potential increases proportional to the square of the
displacement length, eventually becoming infinitely large in
energy as the bond length is stretched to infinity.

For practical applications, it is often desirable to use a bond
stretch model potential having a realistic shape. Here, I intro-
duce a new first-principles-derived stretch model potential:

3;(“AB2 (1 - G) exp 7o (o = 3 )|

5 AB
3 5.
+(B)ee] Sl - )

The well-known Morse*® potential

= 520 (120t~ 3)] oo

—27aB (dAB - df}i)] >

Manz_stretch __
UAB -

(95)

(96)

has a related form, but with different coefficients and expo-
nents. Although the Morse potential was originally proposed
based on empirical arguments, later authors provided some
physically-based rationalizations for its form.'**'* As the bond
length is stretched to infinity, these stretch potentials approach
the predicted bond dissociation energy of

Morse_stretch __ kAB (97)
dissociation 2 2
YAB
Manz_stretch __ 3kAB
Edissuciation (98)

o 2
57as

The Morse and Manz stretch potentials have the same
number of parameters, but they have different numbers of
empirically-fitted parameters. In the Morse stretch potential,
the exponent y,p is an empirically-fitted regression parameter
that normally requires nonlinear optimization. In the Manz
stretch potential, v,; is a quantum-mechanically-computed
physical property not an empirically-fitted regression param-
eter. My new stretch potential provides a good tradeoff between
accuracy and computational cost without requiring nonlinear
regression when used with my new ansatz for separating
bonded from nonbonded interactions. Analytic first-order
through four-order derivatives of Uyia™*-""[d,.] are listed in
ESI Section S3.7

Using my ansatz for separating bonded from nonbonded
interactions, dyy in eqn (95) or (96) always equals the (experi-
mentally-measured or  quantum-mechanically-computed)
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equilibrium bond length, di%, in the isolated cluster's opti-
mized geometry. Since my approach enables both v, and dis =
dy} to be computed directly, this facilitates using my stretch
potential with forcefield parameterization protocols employing
linear regression methods. In contrast, the old ansatz (for
separating bonded from nonbonded interactions) requires the
value of d5s in eqn (95) or (96) to be an adjustable parameter
di58 that must be optimized using nonlinear regression
techniques. However, iff the molecule is so small (e.g., diatomic
and triatomic molecules) that all intracluster nonbonded
interactions are excluded, then in this limiting case digsting —
ds$ even under the old ansatz.

My stretch potential is derived via the following observations
and steps:

(1) Consider a chemical system comprised of atomic nuclei
and electrons with no externally applied fields (no external
potentials). Within the Born-Oppenheimer approximation, this
system's electronic energy is the sum of the electronic kinetic
energy and the nuclear plus electronic potential energies:

Egleclmnic — Lg¢] + Ve—e + Vnucl—e + Vnucl—nucl (99)
When the AB bond length is at its optimized value,
aEgleclronic =0 (100)

ddap

(2) The electron density of an isolated atom decays approxi-
mately exponentially in the atom's outer valence region (i.e. for
large distances r, from the atom's nucleus), and the value of this
decay exponent b, relates to the isolated atom's first ionization
energy (LE.) via LE. = —b,2/8.110112

(3) The two major paradigms for assigning atoms in mate-
rials are: (a) the overlapping atoms-in-materials paradigm and
(b) the non-overlapping atom-in-materials paradigm. Quantum
Chemical Topology (QCT), which contains Bader's quantum
theory of atoms in molecules (QTAIM) as a subpart, is currently
the main theoretical and computational framework amongst
those methods within the non-overlapping atoms-in-materials
paradigm.”**** The Standard Atoms in Materials Framework
(SAMF), which contains the Density-Derived Electrostatic and
Chemical (DDEC) methods as a subpart, is currently the most
accurate and versatile theoretical and computational frame-
work within the overlapping atoms-in-materials paradigm.***-*>*
To date, the best performing electron-density partitioning
methods within the overlapping atom-in-materials paradigm
assign atom-in-material electron density distributions {p,[Fa]}
such that their spherical averages {pi"®[ra]} decay approximately
exponentially with increasing distance (r,) from the atom's
nucleus.>*>****?” Among these approaches, the DDEC6 method
is the current state of the art.>**¢412%

(4) 1t is useful to construct a set of atomic orbitals in mate-
rials (AOIMs) that describe the effective electronic spin-orbitals
of each atom in the material according to the following criteria.
Criterion 1: each AOIM is the product of an orbital function and
a spin ket, and the orbital function is an exact atomic orbital
angular momentum eigenfunction. This means that each AOIM
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is a pure spherical harmonic function Yy, [0, ¢,] times a radial
function {7[r,] times a spin ket |s}).

AOIM} = CMAISY) = Yim[Oa, $alé ralls?) (101)

Criterion 2: AOIMs on the same atom are orthonormal to each
other:

(ATt = o (102)
(AOIMs on two different atoms can have non-zero overlap)
Criterion 3: these AOIMs have electron populations that satisfy
the Pauli'® exclusion principle:

0=nM ntt <1

(103)

where 7" and n! are the number of spin-up and spin-down
electrons, respectively, on atom A occupying {*[7]. Criterion 4:
the occupation-weighted electron densities of AOIMs on atom A
sum to the assigned atom-in-material electron density of atom
A:

(104)

palia] = S

where

n = T

(105)
and * denotes complex conjugation. This requires that we
include enough AOIMs so that all of the electron density will get
projected onto the combined set of AOIMs. Criterion 5: the
AOIMs are constructed according to some scheme that gives
them good transferability for small changes in the material's
geometry. This means that the shapes and occupations of
individual AOIMs do not change drastically when a bond is
slightly stretched or compressed. Of course, the center of each
AOIM will move along with the position R, of the atom to which
it belongs. (Criterion # 5 can be satisfied by optimizing each
AOIM to be an approximate energy eigenfunction. Together,
these five criteria make each AOIM resemble atomic 1s, 2s, 2p,
3s, 3p, 3d, etc. orbitals. I recently developed such a method and
programmed it into the Chargemol code. The details will be
published in future work.)

(5) In the limit 7—7, the products ATOMA* [FJAIOMA[7] and
AIOMJB[F}AIOMJB* [F] approach the electron density in these
orbitals. Because each AOIM approximately equals a polynomial
function of radius times an exponential decay function, its
spherically averaged electron density scales like:

2 726,'2

(& [rA})z o« (polynomial[n, £, ra])"e (106)

Polynomial[n, £, r,] causes each AOIM to oscillate such that it
has (n—{) radial nodes, where n is the AOIM's principle
quantum number and ¢ is its orbital angular momentum
quantum number. For example, the 4p AOIM has (4 — 1) = 3
radial nodes. For valence AOIMs, these nodes occur in the core
and semi-core regions. Well beyond the last radial node for
large r, (i.e., in the valence region between atoms A and B), we
can absorb the polynomial dependence into an effective
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exponent that approximately equals the effective decay expo-
nent of the atom's valence density:

In[py*[ra]]

br =
A 6rA

(107)

valence rp

—bara

(EMTrAD lvatence 1, € (108)

(6) The energy of the AB bond is affected by exchange, kinetic
energy, coulombic, and dispersion interactions between AOIMs
on atom A and AOIMs on atom B. Depending on the circum-
stances and the value of d,g, the sum of energy contributions to
bonding could be net attractive or net repulsive. For simplicity,
we can classify these energy contributions into two major
groups: (i) Group # 1 comprises interatomic kinetic and
potential energy changes proportional to AIOM4” [Fa]AIOMP[7g].
By the triangle distance inequality,

ra + g = dagp (109)
Due to the exponential decay of these AOIMs' radial func-
tions, the largest contributions to AIOMA* [Fa]AIOM}[7g] occur
for points satisfying
ratrg = dAB (110)
which correspond to points near the bond's axis. This allows us
to approximate this type of term as

Sum (AIOM?* [F’A]AIOM}3 [Fs]energy terms) oc g~ Tan(Tan—dy)
(111)

(ii) Group # 2 comprises the short-range repulsion (SRR)
energy due to Pauli's'® exclusion principle. When two atoms
overlap, their electron orbitals must deform (change) to retain
orthogonality between all of the molecular orbitals. This raises
the energy of the electrons, thus leading to a repulsive force
between the overlapping electron clouds. For dag < dag, the
SRR term dominates the energy function. This SRR energy
contains both kinetic energy and potential energy contributions
and has an exponential dependence on d,g with a decay expo-
nent approximately equal to 0.83 (ie., (5/6)) times some

weighted average between b, and bg:®
SRR « 645/6)weighmed7avg[b,\.bB](dArdj\qB) [112)

(7) A precise value for the exponent v,; can be derived by
noting the scaling behavior of the overlap integral between two
Slater functions

Over]ap |:aA7aB7bA7bB7dAB = |RA — RB|:| — %edA*bArA e B—bre P35

(113)
When b, = bg, this integral has the value®
ber = \/babp = (b + bg)/2 (114)
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7\ [ (berdar)’
Overlap [aA, ag, beff, dAB] = eg'atam b_ff3 f + beft‘dAB

+ 1) @ Dettdan

(115)

On the other hand, when 0 < b, < bg, then atom B looks
almost like a point charge distribution so that the overlap
becomes

Overlap[aa, ap, ba < bp, dap] = e Padar (116)

where

Ng = ffe”“’b”“d’%F: e 87 /by’ (117)
is the volume integral of the Slater function on atom B. For the
overlap between the products of valence AOIMs,
ATOM?" [FA]AIOMP[7g], the effective decay exponents of these
valence AOIMs is approximately b /2 and bg/2, respectively.
Choosing

-1 -1
’YOAB _ bA 72"‘ bB - _ bAbB(ZbA + Z;B) (118)
2(ba + b)) 2(ba” +bg?)
yields the appropriate limits:
min[(1/2)ba, (1/2)bg] < v,z =max[(1/2)ba, (1/2)bs]  (119)
(When v,y = ba/2 (120)
when vy, = (ba + bg)/4 for small ¢ >0 (121)
ba=(bp+e)
(8) Expressed as a Taylor series:
(Egleclronic [quB + AdAB} - Eglectronic [d/e\qB])
0E ceronic . | *EL
= Ad electronic 4+ ~(Ad 2 electronic +h.o.t. 122
AB adAB 2( AB) adABz ( )

Because of eqn (100), the first non-zero term in eqn (122) is
proportional to (Ad,p)” instead of Ad,g. Assembling the above
results means the energy equation should take the form

(Eglectronic [dAB} - Eglectronic d:%%]) =
coeff_1 (1 — coeff_2 e an(4n=%) 4 coeff 3 645/3»;3(11“—11;‘};))
(123)
Since the right-hand side must equal zero when dag =
ds3, this means
1 — coeff 2 + coeff 3 =0 (124)

Since the force (and first derivative of energy) must be zero when
dag = da3, this means
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coeff 2 — (5/3)coeff 3 =0 (125)
Solving these two linear equations gives coeff 2 = 5/2 and
coeff 3 = 3/2. Defining the force constant by
d*E
fap = —— 126
AB ddAB2 ( )
gives
coeff 1 = 3";“32 (127)
SYaB

With these values for the coefficients, eqn (123) becomes my
new stretch potential (eqn (95)).

My stretch potential is conceptually related to bond order
changes. Bond orders computed using my bond order equation
applied with DDEC6 partitioning (aka Manz/DDEC6 bond
orders) decay approximately exponentially as the bond length is
stretched beyond its equilibrium value."® My bond order equals
the number of electrons that are dressed exchanged between
two atoms in a material."*® This bond order is also between
approximately 1x and 2x the contact exchange (and DDEC6
overlap population) which also decay approximately exponen-
tially as the bond length is stretched beyond its equilibrium
value.’® For bonds having similar type, the integrated crystal
orbital Hamilton population (ICOHP) strongly correlated to the
computed Manz/DDEC6 bond orders in various materials.**
Moreover, Pauling proposed an empirical bond-distance-to-
bond-order correlation in which the bond order decreases
exponentially as the bond length increases.'*!

I now introduce a straightforward algorithm to compute by
and by, for the AB bond. First, we perform a quantum chemistry
calculation on the material's optimized geometry. Then, we
perform DDEC analysis on the quantum chemistry results.
Starting with the {p3"®[r4]} printed by the Chargemol code, we
first make sure these are monotonically decreasing functions by
imposing

N BN (128)
pREra’l = max[pRe[ra’l, PXra” 1)
for j = (nshells — 1), (nshells — 2),...1 (129)

starting with the outer radial shell and proceeding inward to
successively smaller radial shells. This procedure is done for all
atoms in the material's unit cell. We next identify which atoms
in the material are directly bonded to each other (ie., are
nearest neighbors in the bond connectivity graph) using
a chosen method. For example, we could consider two atoms to
be directly bonded to each other iff the distance between them
was no greater than the sum of their element-dependent atom-
typing radii:*°

dag = RAT + RET (130)
Alternatively, one could consider two atoms A and B to be
directly bonded to each other if their bond order BO,g, overlap
population OP,g, or contact exchange CE,g is above a chosen
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threshold value. For a bond pair AB, find (a) the smallest value
of r, for which pg§8[dag — ra] > pi #[ra] and (b) the largest value of
ra for which p38[dag — ra] < par¥[ra]; let DA® equal the average of
these two r, values. Next, we perform linear regression to fit the
model ay® — bA®r, to the datapoints In[p38[r4/]] over the set of

radial shells satisfying

((DAB = 0.5 bohr)) = ry’ = (DA + 2.5 bohr) (131)
The sampled range of [r{] values is asymmetric about D® to
emphasize the outer valence region of atom A. This ensures the
computed exponent bA® is fairly characteristic of the
p38[r{] decay behavior over the most relevant range of r, values.
This process is repeated for atom B in the AB pair to get
b®. These are plugged into eqn (118) to compute v,5. Finally,
this process is repeated for all bond pairs in the material.

This process assigns a different DA® and hence different
bA® value for each different bond connected to atom A. For
example, in the acetonitrile molecule (H;C-C=N), the central C
atom is singly bonded to another carbon atom and triply
bonded to a nitrogen atom. This has the effect of making the
central carbon atom's D3® slightly smaller for the triple bond
than for the single bond, which means the resulting b4" is fitted
over slightly smaller r, values for the triple bond compared to
the single bond. As another example, we could consider
a hydrogen atom that is covalently bonded to one oxygen atom
and opportunistically ‘hydrogen bonded’ to another oxygen
atom. Since the opportunistic ‘hydrogen bond’ has a greater
length than the O-H covalent single bond, the procedure
described above automatically fits 4" for each bond over the
relevant r, values for that particular bond. Accordingly, this
procedure should provide good results for a wide range of bond
orders.

This procedure was used to analyze the stretched H, singlet
molecule using the FCI/aug-cc-pVQZ quantum chemistry
calculations introduced in the previous section. Also shown are
CCSD calculations for the spin triplet O, molecule using the d-
aug-cc-pvVQZ°**®® basis set (These were performed using
Gaussian (ref. 95) software.) As shown in Fig. 4, both the Morse
and Manz stretch potentials fit the quantum-mechanically-
computed data well. These regression parameters were opti-
mized in Excel using the Generalized Reduced Gradient (GRG)
solver that works for both linear and nonlinear optimization
problems. The Manz stretch potential has the advantage of
requiring only a linear regression, while the Morse potential
required a nonlinear regression to optimize its parameters.

The ‘goodness of fit’ (R-squared) was computed as follows:

R* =1 — SSE/SST (132)
where SSE = sum of squared errors and SST = sum of squares
total. In this case,

(133)

SST = ;<E' Ef,‘pt>2

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Morse stretch: y = 1.067 bohr?,
] k = 0.400 hartree/bohr?, R-squared = 0.9998

Manz stretch: y° = 1.170 bohr?,
k = 0.399 hartree/bohr?, R-squared = 0.9998
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Fig. 4 Comparison of Morse and Manz stretch potentials fitted to the
quantum-mechanically-computed H, singlet (top panel) and O, triplet
(bottom panel) potential energy curves.

SSE::EZ((Eel E;J——(UfF lﬁg)) (134)
u
where the summation runs over the geometries in the dataset.
By fitting the empirical Morse stretch potential to the first-
principles-derived Manz stretch potential, a hack was developed
to accurately estimate the Morse potential exponent
YAS™¢. Equating the Morse potential's force constant (k) and
dissociation energy (Exiosciane® eqn (97)) to those of the Manz
stretch potential (eqn (98)) yields:

R

For the H, molecule, this equation predicts yxs > = 1.068
bohr™' compared to the optimized value of 1.067 bohr™ . For
the O, molecule, this equation predicts Y5 = 1.216 bohr™*
compared to the optimized value of 1.372 bohr™'. If using these
predicted exponents in the Morse potential, the force constant
knorse Would be optimized (using linear regression) to yield
0.401 (H,) and 0.952 (O,) hartree per bohr*> with R-squared
values of 0.9998 (H,) and 0.9881 (O,).

The above procedure does not require a combining (aka
Morse Manz

Morse

YAB (135)

‘mixing’) rule that relates yap and YA to
yhorse yporse . ManZ - and yre™. In the above procedure,
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yhorse — ' 21/5/6 and yManz = v are extracted directly from
quantum chemistry calculations. From eqn (118) and (135), the
following combining rules emerge as approximations:

Morse ,,Morse (., Morse Morse
Yaa VBB (YAA + B )

Morse
AB < 2 2 (136)
() + (135™)
Manz ,,Manz Manz Manz
+
yManz YaAa VBB ('YAA BB ) (137)

anz 2 anz 2
(YAR™)" + (vas™)

2.6.3 A bond stretch in the hexafluorobenzene molecule.
We now consider the C-F bond stretch force constant in the
C¢F¢ molecule. This molecule was chosen for two reasons:

(1) First, its symmetry means there is only one independent
atom-in-material charge value. Specifically, if gc is the net
atomic charge assigned to each carbon atom, then gr = —¢qc is
the net atomic charge assigned to each fluorine atom.

(2) Second, this molecule includes first-, second-, third-,
fourth-, and fifth-nearest neighbors. This ensures that some
nonbonded interactions will still be present even when 1-2 (i.e.,
first-neighbor), 1-3 (i.e., second-neighbor), and/or 1-4 (ie.,
third-neighbor) nonbonded interactions are excluded in the
forcefield model.

First, the geometry was fully optimized in Gaussian 16 (ref.
95) using the B3LYP®>'3>'3% exchange-correlation functional
and def2-TZVPD*** basis set. The geometry was optimized to
tight convergence criteria (i.e., Gaussian keyword opt = tight).
In the fully optimized geometry, the optimized bond lengths
were 1.332 (C-F) and 1.389 A (C-C), the optimized bond angles
were 120.0° (both C-C-C and C-C-F), and all atoms were in the
same plane.

Next, single-point energies were computed when the length
of one C-F bond was changed by —0.14, —0.07, +0.07, and +0.14
A compared to its length in the fully optimized geometry. This
was done by moving one F atom in the C¢F, plane while holding
the positions of all other atoms rigid at the same positions they
had in the fully optimized geometry. All bond angle values were
the same as in the fully optimized geometry. Since all atoms
remained in the plane, no changes in dihedral values occurred.
In summary, only the value of one internal coordinate (i.e., the
length of one and only one C-F bond) changed. This allows us to
isolate the energy change of a single flexibility term; namely, the
bond stretch for this one bond as shown in Fig. 5.
the calculate_Manz_and_Morse
_stretch_potential_exponents program to compute the expo-
nent y°. This program uses the computational algorithm
described in Section 2.6.2 above to analyze the DDEC6-
computed {pi"®[r,]} printed from the Chargemol® program. The
calculate_Manz_and_Morse_stretch_potential_exponents

I wrote and used

program can handle any number (i.e., 0, 1, 2, or 3) of periodic
boundary conditions and works for molecules, dense and
porous solids, solid surfaces, polymers, nanotubes, nanosheets,
ionic and covalent materials, opportunistically-hydrogen-
bonded materials, magnetic and non-magnetic materials, etc.
For the C-F bond in C4Fs, the result was y° = 1.207 bohr*
using the fully optimized geometry.
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Fig. 5 Quantum-mechanically-computed Born—-Oppenheimer
potential energy curve for the C—F bond stretch in the CgFg molecule.
Fitted harmonic and Manz stretch model potentials are shown for
comparison.

The stretch force constants were optimized by minimizing
the following least-squares loss function:

L= ¥ (- ) - (o - o)

ne
training
geoms

(138)

In eqn (138), u is the geometry number in the training dataset
(In this example, there are a total of four nonequilibrium
geometries in the training dataset.). ES is the quantum-
mechanically-computed energy of geometry u. E(e)lpt is the
quantum-mechanically-computed energy of the fully optimized
ground-state geometry. U,," is the forcefield model's potential
energy of geometry u. Ugp, is the forcefield model's potential
energy of the fully optimized ground-state geometry. These
optimizations were performed using Excel's GRG solver.

The forcefield's potential energy was expanded as the sum of
bonded interactions plus non-bonded interactions:

UEF _ Uzonded + Uzonbonded (139)
The atomic charges plus Lennard-Jones parameters model
Uag“™ (eqn (9)) was used for these nonbonded interactions.
Comparisons were made using different values for the atomic
charges and Lennard-Jones parameters. No cutoff distance for
the nonbonded interactions (d?g{g}?”de‘i) was used for these
calculations. Models were built and compared using the
harmonic stretch (eqn (10)) and Manz stretch (eqn (95) and
(118)) potential for the bonded interaction.

Nonbonded interactions were always excluded between
bonded first-neighbors (aka 1-2 interactions) and bonded
second neighbors (aka 1-3 interactions). Comparisons were
made between including or excluding nonbonded interactions
for bonded third neighbors (aka 1-4 interactions). More remote
nonbonded interactions (e.g., 1-5, 1-6, etc.) were always
included.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Comparisons were made using either the old ansatz or my
new ansatz for separating bonded from non-bonded interac-
tions. When using the old ansatz, the reference bond length,
df becomes a regression parameter, dissting which leads to
a nonlinear optimization problem. When using my new ansatz,
the reference bond length, dAB, becomes the optimized bond
length, dif, which gives a linear optimization problem for both
the harmonic and Manz stretch potentials. For the new scheme,
Uﬁ??ﬁﬁiﬁ&sm = Upp?™ was inserted into eqn (48) to compute
@igmacluster which was inserted into eqn (26) to compute
yronbondednew f41 each geometry. For the new scheme, the loss
function of eqn (138) was minimized by varying the value of

new For the old scheme, USgPoPded — 1, .01 was inserted into
eqn (8) to compute U2 ondea for each geometry. For the old
scheme, the loss function of eqn (138) was minimized by
varying the values of k35 and dg" ",

When using my new ansatz for separating bonded from
nonbonded interactions, comparisons were made between the
full potential model that included both intracluster bonded and
intracluster nonbonded interactions (eqn (138) and (139)) and
the leading-order potential model that included only intra-
cluster bonded interactions. As explained in the previous
sections, the leading-order potential model accurately describes
the intracluster interactions up to and including second-order
derivatives of the potential energy at the isolated cluster's
optimized geometry.

The leading-order potential models for the harmonic and
Manz stretch potentials are plotted in Fig. 5 and equal the full
model potential results when all intracluster nonbonded
interactions (e.g., atomic charges and Lennard-Jones potential)
are set to zero. R-Squared values were computed using eqn
(132)—(134). As demonstrated by the results shown in Fig. 5, my
stretch potential (R-squared = 1.0000) fit the QM data nearly
perfectly while the harmonic stretch potential (R-squared =
0.9294) did not capture the bond's significant anharmonicity.
For comparison, optimized values for the Morse stretch
potential were: (a) v (optimized) = 1.093 bohr ™", k (optimized)
= 12.01 eV bohr?, giving R-squared = 1.0000, and (b) v (pre-
dicted using eqn (135)) = 1.102 bohr ™, k (optimized) = 12.00 eV
bohr™?, giving R-squared = 1.0000.
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The full potential model results are summarized in Table 2
(harmonic stretch) and Table 3 (Manz stretch). Results are
compared for the new and old schemes using various parame-
ters for the nonbonded interactions. R-Squared values were
computed using eqn (132)-(134). Tests were performed for three
charge values (gc = 0, 0.10 (DDECS6), and 0.62 (QTAIM)) both
with and without Lennard-Jones (L]) interactions. The LJ
interaction parameters were taken from the Universal
Force Field (UFF): ddc = 3.851 A, dfy = 3.364 A,

dl o =/ad odP g, e = 0.105 keal mol?, ey = 0.050 keal

eFJ c= \/é‘CJ CsF p-° Please see ref. 136-138 for a further

discussion of forcefield nonbonded parameters for this
molecule.

As shown in Tables 2 and 3, the new scheme gave optimized
force constant values that were practically the same irrespective
of the non-bonded interaction model. Under the new scheme,
only third-order and higher-order derivatives (i.e., anharmo-
nicities) of the potential energy are affected by fluctuations in
the intracluster nonbonded parameters. For these reasons, the
bonded force constant values are less sensitive to the particular
choice of intracluster nonbonded potential model under the
new scheme compared to the old scheme. This is an extremely
important consideration, because nonbonded parameters such
as atomic-in-material (AIM) charges, AIM multipole moments,
AIM polarizabilities, AIM dispersion coefficients, Lennard-
Jones parameters, etc. carry some uncertainties in their values.

As shown in Tables 2 and 3, the old scheme yielded force
constants (k35) and resting values (ds""®) that were moderately
but not severely sensitive to the choice of nonbonded interac-
tion model. My new stretch potential was able to describe the C-
F bond's potential energy curve nearly perfectly (i.e., R-squared
= 1.0000) using both the new and old schemes for all of the
nonbonded interaction models tested.

The harmonic stretch potential yielded higher R-squared
values when using the old scheme compared to when using the
new scheme. This was due to the old scheme's additional
regression parameter (i.e., das' ") compared to the new scheme
which uses the quantum-mechanically-computed dig value.
However, the old scheme has the disadvantage of predicting the

mol !

Table 2 Sensitivity of the new and old schemes to the nonbonded parameter model. One C—F bond in the CgFg molecule was modeled using
the harmonic stretch potential. The equilibrium C~F bond length is 1.332 A

Atom charges

New scheme

Old scheme

1-4 nonbonded

gc (method) L] parameters interactions included? kA% (eV bohr™2) R-Squared k3% (ev bohr2) distine (A) R-Squared
0 (none) 0 Y, N 12.58 0.9294 12.58 1.349 0.9920
0.10 (DDECS6) 0 Y 12.58 0.9293 12.62 1.347 0.9919
0.10 (DDECS6) 0 N 12.58 0.9294 12.58 1.347 0.9919
0.62 (QTAIM) 0 Y 12.59 0.9285 12.80 1.340 0.9918
0.62 (QTAIM) 0 N 12.58 0.9295 12.56 1.338 0.9915
0 (none) UFF Y 12.58 0.9294 12.61 1.350 0.9921
0 (none) UFF N 12.58 0.9294 12.58 1.349 0.9920
0.10 (DDECS6) UFF Y 12.58 0.9292 12.65 1.348 0.9920
0.10 (DDECS6) UFF N 12.58 0.9294 12.58 1.347 0.9919
0.62 (QTAIM) UFF Y 12.59 0.9285 12.83 1.341 0.9918
0.62 (QTAIM) UFF N 12.58 0.9295 12.56 1.338 0.9915
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Table 3 Sensitivity of the new and old schemes to the nonbonded parameter model. One C—F bond in the CgFg molecule was modeled using

the Manz stretch potential. The equilibrium C—F bond length is 1.332 A

Atom charges

New scheme

Old scheme

1-4 nonbonded

gc (method) L] parameters interactions included? K" (eV bohr?) R-Squared kM (ev bohr?) disting (R) R-Squared
0 (none) 0 Y, N 12.06 1.0000 12.02 1.3323¢ 1.0000
0.10 (DDECS6) 0 Y 12.06 1.0000 12.17 1.331 1.0000
0.10 (DDECS6) 0 N 12.06 1.0000 12.15 1.331 1.0000
0.62 (QTAIM) 0 Y 12.07 1.0000 12.92 1.323 1.0000
0.62 (QTAIM) 0 N 12.06 1.0000 12.82 1.321 1.0000

0 (none) UFF Y 12.06 1.0000 11.99 1.333 1.0000

0 (none) UFF N 12.06 1.0000 12.03 1.332 1.0000
0.10 (DDECS6) UFF Y 12.06 1.0000 12.13 1.332 1.0000
0.10 (DDECS6) UFF N 12.06 1.0000 12.16 1.330 1.0000
0.62 (QTAIM) UFF Y 12.07 1.0000 12.88 1.324 1.0000
0.62 (QTAIM) UFF N 12.06 1.0000 12.82 1.321 1.0000

“ An extra significant digit is shown here to explain why the optimized k value equals 12.02 instead of 12.06.

wrong value for dig. By construction, the new scheme yields the 0<Oppc =T (143)

correct value d4g = 1.332 A. For the no charges and no L]
parameters model, the old scheme yields the value di} = 1.349
A, which is close but not exact.

In summary, the new scheme is preferable to the old scheme
for the following three reasons. (1) The new scheme requires
only linear regression to optimize the force constants, while the
old scheme sometimes (e.g., Manz and Morse stretch potentials)
requires nonlinear regression to optimize the force constants
and resting values. (2) The new scheme gives optimized force
constant values that are almost insensitive to the choice of
nonbonded interaction model. (3) The new scheme exactly
reproduces the material's optimized reference geometry in
which all atom-in-material forces are zero.

3. A better angle-bending model
potential

3.1 Derivation and comparison to other popular angle-
bending model potentials

An angle bending potential (U apc[fapc]) models the potential
energy change from a change of bond angle #,5c where atom A
is bonded to atom B, and atom C is bonded to atom B. The angle

Oapc is defined as:
, 1” (140)

where (EBA) is the vector from atom B to atom A defined as:

RBA : RBC

6 = cos™! |min [max| —1, ———
| Rea|| Ruc|

Rean = R — Ry (141)
We used min and max functions to cancel the effect of roundoff
error on the results; this forces the argument of the arccosine
function to be between —1 and 1. 6 is the equilibrium value of
this bond angle in the optimized ground-state geometry. The
physically allowed ranges are

0<fy=m

oq = (142)

33368 | RSC Adv, 2024, 14, 33345-33383

feq = 0 is not physically allowed, because this would corre-
spond to either (i) two different atoms occupying the same
nuclear position which is not allowed or (ii) all three atoms
being collinear (i.e., in a line) and in this case . would be
interpreted as m instead of 0. Pauli repulsion* (aka ‘short-
range repulsion’®) prevents f,pc from getting close to zero.

As described in prior literature, the forces exhibited by the
angle-bending potential on atoms A, B, and C are related to this
potential's derivative dU 4 apc|fapc]/d0apc.* At the linear angle
value O pc = m, the angle-bending force should be zero by
symmetry, because the angle decreases as either atom A or atom
C moves in any direction perpendicular to the starting line
ABC.® Accordingly, a physically viable angle-bending potential
satisfies the constraint

dU [0

df =0

=

(144)

For derivatives of all orders to be continuous at f,5c = T, the
angle-bending potential must be symmetric about O pc = T,
which requires:

Uy [0] = Uy 2 — 6] (145)

This requirement arises, because a hypothetical bond angle of 7
+ 4 where 4 = 0 is actually computed (via eqn (140)) to be
a bond angle of § = — 4.

If an angle-bending potential does not satisfy eqn (144), the
consequent spurious force discontinuity at § = 7 could poten-
tially degrade the accuracy of trajectories computed using
numerical integrators (e.g., Verlet integration'**'*°) for molec-
ular dynamics calculations. As shown in Fig. 6, the following
currently used angle-bending potentials violate eqn (144) when
Ooq #+ T

Uharmonic_bcnd[ﬂ] = %k(e - acq)z (146)

Ucosinefbend[a] = k(l - COS[& - 0eq]) (147)

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra01861c

Open Access Atrticle. Published on 22 October 2024. Downloaded on 10/22/2024 3:51:05 PM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

angle bending potential

harmonic cosine bending potential

new angle bending potential

0.9 1
0.8 A
0.7 A
0.6 1
0.5 A1
0.4 1
0.3 A
0.2 A
0.1 A

View Article Online

RSC Advances

c

6]
KX
u[e]

N
\, k
N
N

\

= (1 - cos[G -0, ]) cosine bend (solid lines)

\
\

2

=‘/2(9—90q)

harmonic bend (dashed lines)

AT 3% 11 T
* 2 3 4
16 — =%(0-0,) (1+a(40)+b(40) +<(A0)' +d(a0)') MM3
= 180° B WL L (4 S
S| B 144 20=(0-0,)———:a=—0.014;b=+5 6E-5; c=7E-7; d=+2.2E-8
] \ n
S 1.2 A ,
/’ ; \\ M*‘/:(()—OQQ)- harmonic bend (dashed lines)
£ 1 \ k
° \ N
; =t N
3 =
K
&
©

T

/4 n'/3 nl/z

angle (0)

2n/3 3n/4

9n/10

2n/3 3n/4  9m/10 =

1['/2
angle (0)

A\

v,

4

ul6 5 4—2 4 The new potential is
L = '/2(0086 —COS ch ) £ 35 4 symmetric about 0 = 7.
k w 3
g 25
® 21
™
¢ ]
0.5 4
o, . — ; 0 . r . . , . r
0 n/4 m/3 /2 2n/3 3n/4  9n/10 =« 0 /4 n/2  3n/4 n Sn/4  3m/2 7n/4  2n
angle (6) angle (0)
> T ™ 2
\ =
a5 4| u[e] | 2(cose cos0,, )
\ k —
\ .
4 . - L tanh| 2sin[6/2] |
I . sin” 6 +3sin” 0,
o :
a5 41 tanh [2sm[eeq/2ﬂ
. N
N N
N A Y
\ N U 9 2 . .
3 - * ) L = /2(6 — ecq) harmonic bend (dashed lines)
&
3
4
,/

TC} 4 nl/3

/2 97/10

angle (0)

2n/3 3n/4 T

Fig. 6 The new angle-bending potential has continuous derivatives of all orders even for an angle of  radians while retaining a harmonic-like
shape around the equilibrium angle (i.e., dzU/dﬂZ\(,:,,eq > 0) for all values of . > 0. As shown in the top two and middle left panels, common angle-
bending potentials described in prior literature do not achieve this. The middle right panel shows the new potential is symmetric about § = . See
the text for a complete description. The lines are colored as follows: ¢q = /4 (red), 7t/3 (orange), 7/2 (black), 27/3 (green), 3w/4 (brown), 97t/10
(blue), and 7 (purple).
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UMM.Lbcnd = (1/2)k(6 - 0cq>2
(1 + a(A0) + b(AG) + c(A0) + d(Aa)“)

1 o
Af = (06— beq) %; a = —0.014; b= +0.000056;

¢ = —-0.0000007; d = +0.000000022 (148)

The MM3 bend parameters in eqn (148) are from Allinger's
MM3-2000 parameter set, which uses an updated value of the
parameter d compared to the original 1989 value of Lii and
Allinger.**** The cosine bend in eqn (147) has not been widely
used in forcefields to date; however, there have been some
special cases of its use, especially for f.q — 7.>*'*
The harmonic cosine potential**?

Unarmonic_cosinel#] = 3(cos[f] — cos[feq])” (149)
obeys eqn (144) but suffers the drawback that the potential's
curvature for § — f.q is zero when 0.y = m:

2
d Uharmonic,cosinc [lﬂ

a6’ =0

(150)

O=0cq=10

This means Uharmonic_cosine €Xhibits too weak restoring force for
small displacements when f.q = 7." As shown in Fig. 6, the
potential energy curve for Uparmonic_cosine[f] is too flat under
these conditions.

The practical consequence of the above problems is that
flexible forcefields have often used different forms of angle-
bending potentials for nearly linear angles (ie., f.q = )
compared to significantly bent angles (i.e., fq < ). For
example, van der Spoel et al. introduced a special angle-bending
potential applicable to only linear bond angles (i.e., fq = 7).***
The DREIDING forcefield used the harmonic_cosine potential
for bent angles (i.e., fq < 1) and the cosine_bend potential for
linear bond angles (i.e., f.q = 7).*** As another example, version
2 of the QuickFF protocol used the harmonic_bend potential for
bent angles (i.e., f.q < ) and the cosine_bend potential for
linear bond angles (i.e., f.q = 7).** These workarounds raise the
additional question of how small (7 — fq) should be to trigger
the linear bond angle potential. For such potentials, f.q must be
rounded to 7 to remove the force discontinuity at § = 7. For
example, if 6.4 = 179°(1/180°) triggers the linear bond angle
potential and gets rounded up to 9eq = m, then this can intro-
duce a small non-zero change in the optimized equilibrium
geometry.

A new angle-bending potential is required to resolve these
problems. Its form was derived as follows. Since

cos[f] = cos[21t — 4] (151)
it follows that eqn (145) is satisfied by choosing
Ul6] = func[cos[6]] (152)
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If func[s] is an infinitely differentiable function with respect to
the independent variable s, then U[d] will be an infinitely differ-
entiable function with respect to the independent variable 6.

The second derivative of the harmonic_cosine potential (eqn
(149)) is

2
d tharmonicﬁcosinc

I = k sin’ [0y

0=0q

(153)

Therefore, the angle-bending potential's curvature at 6 = 6. will
equal its force constant k if we divide the harmonic_cosine
potential by sin’[feq]:

(cos[f] — cos[ﬁeq])z

Unodification 0] =1/2k .
dificat _1[] / smz[ﬁeq]

(154)

Unfortunately, this modified potential becomes infinite (aka
‘blows up’) when f.q = T, because  # . makes the numerator
greater than zero while the denominator is zero when . = .
Close examination reveals this issue can be resolved by
choosing
2(cos[f] — cos[feq] )2

=k 155
sin’[0] + 3 sin’ [0 (159)

Unodification_2 0]

In the denominator, the 1 to 3 ratio of coefficients for sin’[f]
relative to sin®[f.q] is required to make the potential's curvature
equal to the force constant k at the equilibrium angle even when
Ooq = T

2
d Umodiﬁcationj

=k

(156)

Eqn (156) holds for any possible value of the equilibrium
angle 0 < f.q = 7. Eqn (155) has the deficiency that the restoring
force approaches zero as ¢ approaches zero. Unfortunately, this
means the modification_2 potential does not have sufficient
repulsive force to prevent the bond angle from reaching § = 0.

This problem is resolved by including a factor that makes the
potential's denominator approach zero as § approaches zero:

2(cos 6 — cos 0eq)2 )
tanh|2 sin[6/2]]

tanh|[2 sin|f.q /2]]

The denominator of eqn (157) includes the factor

_ tanh(v sin[0/2]]
MO = anh [y sin[fe /2]

Unew [0] =k

sin® 6 + 3 sin’ (

(158)

with the tanh multiplier » having the specific value v = 2. h[f]
has the following important limits:

ho =0]=0 (159)
O = 0] = 1 (160)
O > 0] > 1 (161)
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h[o < ] <1 (162)

h[ = 7] = tanh[v]/tanh[v sin[f.q/2]] (163)

Fig. 6 plots the new potential shown in eqn (157). Because
this new potential approaches infinite value as # approaches
zero, it prevents a physical system with finite energy from
reaching § = 0. This behavior models the Pauli repulsion™** that
prevents bond angles in a real physical system from reaching
bond angles of § = 0. Since

1— 0

sin[8/2] = %” (164)
Unew[0] can be rewritten as a function of cos[f]:
Unew[e] =k Z(COS b~ cos Heq)z

tanh|\/2(1 — 0
1 — cos?f + 3(1 — cos? f) anh[\/2(1 — cos 0) ]
tanh{ 2(1 = cos Beq)]
(165)

Accordingly, this new angle-bending potential has contin-
uous well-defined derivatives of all orders for all 0 < § = 7. ESI
Section S47 gives the analytic first- and second-order derivatives
of Upew[6]-

As shown in Fig. 6, Uyew[f] has the same function value, first
derivative, and second derivative (curvature) as both
Uharmonic_bend[0] and Ucosine_bend[#] at the energy minimum 6 =
fOcq- This leads to the following resolution. In every classical
forcefield that uses Unharmonic_bend[f] and/0r Ucosine_pend[d], the
angle-bending potential can be upgraded to U,ey[6] without
requiring a change in the angle-bending force constant values.
If a forcefield has been optimized to use Upey[6] but a molecular
dynamics or Monte Carlo simulation program has not yet been
updated to include this potential, in the meantime is it feasible
to substitute either Unarmonic bend[#] OF Ucosine bend[f] Without
requiring a change in the angle-bending force constant values,
but in the long-term it is preferable to update the simulation
code to use the more robust and general Uy.,[f] potential.

A potential argument against using Upey[6] is that its form is
more complicated which will increase the computational costs
during classical molecular dynamics and Monte Carlo simula-
tions. However, a closer analysis shows the increased compu-
tational cost is likely to be insignificant in practical use, because
the number of bonded interactions is typically much smaller
than the number of non-bonded interactions during such
simulations. Specifically, an atom-in-material A only shares
bond angles with its first and second bonded neighbors, while it
shares non-bonded interactions with a potentially much larger
number of atoms within the non-bonded interaction cutoff
distance (if used) or with all atoms in the entire simulation unit
cell and their periodic images (if a non-bonded interaction
cutoff distance is not used) except those within {excluded,}.
Accordingly, the increased robustness and generality of this
new angle-bending potential outweighs its relatively insignifi-
cant increased computational cost.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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3.2 Computational results for real molecules

Table 4 summarizes the optimized geometries for ten triatomic
molecules. CCSD calculations were performed in Gaussian 16
(ref. 95) using the def2-TZVPD*** basis set (In this article, CCSD
not CCSD(T) calculations were used.). For molecules containing
no elements heavier than neon, all electrons were correlated in
the coupled-cluster calculation. For molecules containing one
or more elements heavier than neon, the FreezeNobleGasCore
keyword was used, which applies the coupled-cluster correla-
tion to the valence shell electrons only on all atoms. Geometries
were optimized to the following convergence criteria: (1) the
maximum force is less than 0.00045 hartrees per bohr; (2) the
root-mean squared (RMS) force is less than 0.0003 hartrees per
bohr; (3) the maximum displacement is less than 0.0018 bohr;
and (4) the RMS displacement is less than 0.0012 bohr.

Fig. 7 compares the new angle-bending model potential to
quantum-mechanically-computed angle-bending energy curves
for these ten molecules. CCSD/def2-TZVPD energy curves were
computed by varying the bond angle with and without relaxing
the bond lengths. The settings for these calculations were
similar to those described in the previous paragraph, except
that some of the geometric parameters were constrained. As
shown in Fig. 7, relaxing the bond lengths (blue curves) lowered
the energy by only a small amount compared to keeping the
bond lengths fixed (orange curves) as the constrained angle
varied. The angle-bending force constant used in the model
potential (black curves) is displayed on each graph. The
particular value for the angle-bending force constant was
chosen by visual inspection to achieve approximate agreement
between the quantum-mechanically-computed and model
potential energy curves.

Even though this model potential requires only a single
parameter (i.e., the force constant value) to be adjusted, it was
generally in reasonable agreement with the quantum-mechan-
ically-computed energy curves. Notably, this model potential
reasonably matched the slope, height, and curvature of the
quantum-mechanically-computed energy curve as the bond
angle approached the limiting value 6 = . The reasons for this
are understood. Specifically, the model potential has contin-
uous well-defined derivatives of all orders over the entire range
0 < § = m, and the values of these derivatives change at
reasonable rates. Eqn (145) imposes reflection symmetry about

Table 4 Optimized geometries for ten triatomic molecules

Molecule Angle (°) Bond length (A)
CaH, (HCaH) 180.0 2.065

€O, (0CO) 180.0 1.157

HNO 108.4 1.056 (HN), 1.201(NO)
H,O (HOH) 104.7 0.962

Li,O (LiOLi) 180.0 1.619

NO, (ONO) 135.0 1.185

NS, (SNS) 154.1 1.543

SF, (FSF) 97.7 1.586

SiH, (HSiH) spin singlet 92.4 1.515

S0, (0SO) 119.4 1.426
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Fig.7 Angle-bending energy curves for ten triatomic molecules. The orange curves show the quantum-mechanically-computed (CCSD/def2-
TZVPD) values holding the bond lengths fixed as the angle varied, while the blue curves (CCSD/def2-TZVPD) relaxed the bond lengths. The black
curves show the new angle-bending model potential with the displayed force constant value. In some of the panels, green curves show modified
model potentials. (For purposes of reporting the force constant values, radians were treated as dimensionless units.)

6 = 7. The slope (i.e., first derivative) varies from a value of zero
at § = f.q to a value of approximately k(m — 0.4)/3 at the
midpoint § = Y7 + 6.q) to a value of zero at § = . These
constraints on the slope approximately determine the third
derivative's values over this range of bond angles. Together with
the function's value of zero at § = 0.4 and the second-deriva-
tive's value of k at § = 0.4, these various conditions approxi-
mately determine the curve's shape over the range of angles
between 6.4 and .

33372 | RSC Adv, 2024, 14, 33345-33383

For SF,, the quantum-mechanically-computed energy curve
rises more steeply than the model potential (eqn (157)) over the
range 6 < f.q. This can be partially but not fully resolved by
modifying the model potential in eqn (157) such that the tanh
multiplier used is smaller (e.g., 0.5) instead of 2. The result is
plotted as the green curve in the SF, panel of Fig. 7. For SF,,
further reducing the tanh multiplier value towards zero does
not result in significant improvement compared to the » = 0.5
curve. For HNO, a slightly improved fit between the model

© 2024 The Author(s). Published by the Royal Society of Chemistry
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potential and the quantum-mechanically-computed energy
curve can be obtained by using a tanh multiplier value of 5
instead of 2 as shown by the green curve in the HNO panel of
Fig. 7. For SiH,, a slightly improved fit between the model
potential and the quantum-mechanically-computed energy
curve can be obtained by using a tanh multiplier value of 4
instead of 2 as shown by the green curve in the SiH, panel of
Fig. 7. The tanh multiplier value of 2 (as shown in eqn (157)) was
chosen as a compromise value that provides acceptably good
results for most materials. Since sin[f.q] = 0 when fq = 180°,
the value of the tanh multiplier » has no impact on the model
curves for CaH,, CO,, Li,O, and other triatomic molecules
having .4 = 180°.

For NO,, the quantum-mechanically-computed energy
curves have a shoulder in the range of 90 to 110°. This appears
to be due to some chemical hybridization changes within the
molecule (aka ‘chemical effects’) that are not captured by the
model potential. For NS,, the quantum-mechanically-computed
energy curves have a shoulder around 100° and a local
maximum around 90°. This appears to be due to the formation
of a S-S bond that lowers the energy as the bond angle is
decreased to approximately 80°.

4. Flexibility parameters that
approximately reproduce experimental
vibrational frequencies

4.1 Homodiatomic molecules

Using the Manz stretch model potentials for H, and O, shown
in Fig. 4, the following one-dimensional Schrodinger equation
was solved for the vibrational eigenstates:

P d

—) b ldrs] = .9 [drs]  (166)

(kalémzfslrelch [dAB} _ 2luAB ddABz

The reduced mass is defined as

_mans (167)

This Schrodinger equation corresponds to the situation in
which the molecule is not rotating, its center-of-mass remains
stationary, the Born-Oppenheimer approximation applies,
relativistic effects are neglected, and the molecule is in the
electronic ground state. The zero point energy (ZPE) corre-
sponds to » = 0, while » = 1 is the first excited vibrational
level.

I wrote a Matlab script to solve for the eigenvalues ¢, and
eigenfunctions ¢,[dsg] for v = 0, 1, 2,.... This script and its
output results are provided in the ESLt This script used
a uniform grid for (dag — 1.5 bohr) =< dp =< (dag + 5 bohr) with
a grid spacing of 0.001 bohr. The second-derivative in eqn (166)
was computed using the central finite difference approxima-
tion. Computational tests with a finer grid spacing (0.0005 bohr)
and the slightly larger range (di} — 2 bohr) = d,g = (d3g + 6
bohr) changed the (¢, — ¢, 1) and ZPE results for H, and O, by

less than 0.1 cm ™.
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As shown in Table 5, the computed ZPE and first dozen
excited vibrational levels for the H, molecule differed by less
than 10% from the experimental values. For different isotopes,
the Born-Oppenheimer potential energy curve (and hence
optimized force constant) remains the same, but the vibrational
frequencies change owing to changes in reduced mass. Table 6
shows good agreement between the computed and experi-
mental values for the first vibrational transition frequency of
each hydrogen molecule isotope. As shown in Table 7, the
model potential predicted the first 25 vibrational energy levels
for the O, molecule within 3% of the experimental values. The
relative deviations became larger closer to the bond dissociation
energy (e.g., 7% error for the v,9 — 30 transition of O,). Overall,
these results show the Manz stretch model potential approxi-
mately reproduces experimental bond vibration frequencies.

4.2 Triatomic molecules

Why is it useful to compute both rigid and relaxed angle-
bending scans as shown in Fig. 7? Comparing the rigid scan
energy curve to the relaxed scan energy curve provides extremely
valuable insights into the relative importance of some cross
terms. Iff the relaxed scan curve is greatly below the rigid scan
curve, then this indicates that changing bond lengths
substantially lowers the energy at non-equilibrium angle values,
and in this case bond-bend cross terms may be needed to
construct an accurate forcefield. Iff the relaxed and rigid angle-
scan curves are nearly identical, this suggests bond-bend cross
terms are not required to construct an accurate forcefield
model.

In this section, flexibility models were constructed for several
triatomic molecules as examples, because these molecules do
not require dihedral terms. Owing to the lengthy space required
to thoroughly explain the dihedral terms, I decided that it would
be easier for readers if the content related to dihedral model

Table 5 Comparison of vibrational frequencies (in wavenumber,
cm™Y calculated using the Manz stretch model potential to experi-
mental values for the H, molecule. Each value is the energy of that
vibrational level minus the energy of the prior vibrational level. ZPE =
zero point energy

%

v Experiment® Calculated error
ZPE 2179 2254 3%
1 4161 4312 4%
2 3926 4048 3%
3 3695 3782 2%
4 3468 3515 1%
5 3242 3247 0%
6 3014 2976 —1%
7 2782 2704 —3%
8 2543 2429 —4%
9 2293 2151 —6%
10 2026 1871 —8%
11 1737 1587 —9%
12 1415 1299 —8%

¢ Experimental data from ref. 144-146.
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Table 6 Comparison of vg  ; transition frequency (in wavenumber,
cm™) calculated using the Manz stretch model potential to experi-
mental values for different isotopes of the hydrogen molecule: H,, HD,
D,, HT, DT, and T,

Experiment Calculated % error
H, 4161 (ref. 145 and 147) 4312 4
HD 3632 (ref. 145 and 147) 3765 4
D, 2994 (ref. 145 and 147) 3104 4
HT 3435 (ref. 148) 3561 4
DT 2743 (ref. 148) 2845 4
T, 2465 (ref. 148) 2556 4

potentials is presented in a subsequent companion article
rather than incorporating it here.

As shown in Table 8, several flexibility models were param-
eterized and compared for the CO,, water, HNO, and SO,
molecules. For each molecule in this set, Fig. 7 shows that the
relaxed angle-scan energy curve is approximately the same as
the rigid angle-scan energy curve for the same molecule.
Consequently, bond-bend cross terms were not required to
build accurate flexibility models for these molecules. The con-
structed flexibility models contained bond-stretch and angle-
bend terms. Flexibility models with and without Urey-Bradley
or bond-bond cross terms were compared. My new angle-
bending model potential (eqn (157)) was used for all of these
flexibility models. Both bond and Urey-Bradley stretches were
modeled using either the harmonic stretch (eqn (10)) or Manz
stretch (eqn (95)) model potential. When present, the bond-
bond cross term had the form:

URBE M = K(dap — db)(dpc — dib) (168)

The force constants (i.e., k values) were the only adjustable
parameters in these flexibility models. Nonadjustable parame-
ters included the equilibrium lengths and equilibrium bond
angle, which were taken from the CCSD/def2-TZVPD optimized
geometries. For the Manz stretch potential, the y° values
computed using the method described in Section 2.6.2 were (in
bohr): (a) 1.203 (C-0) and 1.257 (0-O) for CO,, (b) 1.276 (H-
0) and 1.129 (H-H) for water, (c) 1.246 (H-N), 1.251 (N-O), and
1.212 (H-O) for HNO, and (d) 1.079 (S-O) and 1.151 (O-O) for
SO,. v° between the two outer atoms was only relevant when the
flexibility model contained Urey-Bradley interaction.

The training and validation datasets contained quantum
chemistry calculations at the CCSD/def2-TZVPD level of theory.
For each molecule, the training dataset contained:

(1) The QM optimized geometry and energy.

(2) Both the relaxed angle-scan and rigid angle-scan geom-
etries and energies for the subset of angles satisfying (63%c —
30°) = Oapc = (0apc + 30°). This subset of angles was chosen,
because it focused the fit on angle values that are not extremely
far away from 65%c. The specific datapoints used were those
plotted in Fig. 7 that satisfied the additional condition that they
were within this angle range.
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Table 7 Comparison of vibrational frequencies (in wavenumber,
cm™Y calculated using the Manz stretch model potential to experi-
mental values for the O, molecule (**0O isotope). Each listed value is
the energy of that vibrational level minus the energy of the prior
vibrational level. ZPE = zero point energy

%

v Experiment® Calculated error
ZPE 787 761 —3%
1 1556 1506 —3%
2 1533 1484 —3%
3 1510 1463 —3%
4 1486 1441 —-3%
5 1463 1420 —3%
6 1440 1398 —-3%
7 1419 1377 —3%
8 1395 1355 —3%
9 1372 1334 —-3%
10 1350 1312 —-3%
11 1329 1290 —3%
12 1304 1269 —3%
13 1280 1247 —3%
14 1258 1225 —3%
15 1236 1203 —-3%
16 1212 1181 —3%
17 1188 1160 —2%
18 1166 1138 —2%
19 1141 1116 —2%
20 1117 1094 —2%
21 1092 1072 —2%
22 1067 1050 —2%
23 1040 1028 —1%
24 1013 1006 —1%
25 985 983 0%
26 956 961 1%
27 925 939 2%
28 891 917 3%
29 858 894 4%
30 818 872 7%

¢ Experimental data as compiled in ref. 149.

(3) QM-computed single-point energies for a set of geome-
tries in which each bond length was changed by —0.14, —0.07,
0.00, +0.07, +0.14 A relative to the fully-relaxed unconstrained
geometry. For these structures, the bond angle was held rigid at
633c. For each structure, the single-point energy was computed
without constrained geometry relaxation. For a symmetric
triatomic (e.g., CO,, H,0, SO,), this yielded 14 distinct displaced
geometries. For HNO, this yielded 24 distinct displaced
geometries.

The GRG solver in Excel was used to solve this linear
regression problem that minimizes the least-squares loss
function shown in eqn (138) subject to the following force
constant bounds. The angle-bending, bond stretch, and Urey-
Bradley stretch (if present) force constants were constrained to
be non-negative. No bounds were placed on the bond-bond
cross (if present) force constant.

For each molecule, the validation dataset was constructed by
using an uniform random number generator to generate
random bond displacements in the interval —0.07 to +0.07 A
and random angle displacements in the interval —30 to +30°

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Flexibility parameters fitted for the CO,, H,O, HNO, and SO, molecules. UB = Urey—Bradley term. BBC = bond—bond cross term.
Entries marked with “—" indicate that type of term was not considered for inclusion in the model. Entries marked with "0” mean that type of term
was considered but converged to a value of zero. Please see the main text for a list of y° values. For each molecule, results for the recommended

flexibility model are shown in boldface type

R-Squared R-Squared

Stretch type Kstreten (€V bohr?) kbena (€V) kg (eV bohr?) kssc (eV bohr™?) training validation
CO, Manz 30.58 5.17 — — 0.9928 0.9940
CO, Manz 27.26 5.03 2.31 — 0.9995 0.9998
CO, Harmonic 31.58 5.17 — 0.9287 0.9911
CO, Harmonic 28.15 5.02 2.86 — 0.9341 0.9982
CO, Harmonic 31.01 5.17 — 2.86 0.9341 0.9929
H,0 Manz 14.95 4.26 — — 0.9996 0.9974
H,0 Manz 14.87 4.11 0.10 — 0.9996 0.9978
H,0 Harmonic 15.62 4.26 — — 0.9456 0.9957
H,0 Harmonic 15.62 4.26 0.00 — 0.9456 0.9957
H,0 Harmonic 15.66 4.26 — —0.16 0.9457 0.9957
HNO Manz 8.97 (HN), 22.34 (NO) 8.07 — — 0.9902 0.9816
HNO Manz 8.55 (HN), 21.89 (NO) 6.23 0.61 — 0.9922 0.9751
HNO Harmonic 9.03 (HN), 23.45 (NO) 7.99 — — 0.9410 0.9787
HNO Harmonic 7.47 (HN), 21.74 (NO) 4.07 2.50 — 0.9472 0.9907
HNO Harmonic 9.03 (HN), 23.45 (NO) 8.00 — 1.71 0.9465 0.9814
SO, Manz 20.34 11.60 — 0.9970 0.9948
SO, Manz 19.90 9.71 0.46 — 0.9986 0.9973
SO, Harmonic 20.86 11.56 — — 0.9648 0.9934
SO, Harmonic 19.88 9.42 1.11 — 0.9658 0.9943
SO, Harmonic 20.83 11.56 — 0.16 0.9648 0.9934

relative to the optimized geometry. In each validation geometry, normal_mode Z( hormalmode \/m_A) (171)

three separate random numbers were used to independently
displace each of the two bonds and the angle. For each mole-
cule, nine validation geometries were prepared in this manner.

R-Squared values for the training and validation datasets
were then computed using eqn (132)-(134). Table 8 lists the
optimized force constant values, R-squared training, and R-
squared validation.

For each flexibility model, normal vibrational mode analysis
within the harmonic oscillator approximation was performed
by diagonalizing the mass-weighted Hessian (MWH) matrix
expressed in Cartesian coordinates:

1 >U
MWH(3(A—1)+I').(3(B—1)+,/') = \/m a(R» ) a(ﬁ > (169)
A B
i J

where m, is the mass of atom A. Here, (Ry); for i € {1, 2, 3}
denotes the X, Y, or Z component of the nuclear position R4. The
second derivatives can be computed either analytically or
numerically; here, they were computed numerically using the
central finite difference approximation. The eigenvalues {A;} of
the MWH matrix are related to the normal mode frequencies
{freq;} via:**

freq, = v/ / (2m)

(170)

Each normal mode frequency was converted to wavenumber
by dividin dg by the speed of light, c. Each eigenvector
(ﬂnormal M%) of the MWH matrix is the corresponding normal
mode's mass—weighted differential displacement vector:

© 2024 The Author(s). Published by the Royal Society of Chemistry

A

for infinitesimal |e]|.

For linear molecules, five of the MWH eigenvalues are zero;
these correspond to molecular rotation (2 modes) and center-of-
mass translation (3 modes). For nonlinear molecules, six of the
MWH eigenvalues are zero; these correspond to molecular
rotation (3 modes) and center-of-mass translation (3 modes).

Table 9 lists the computed vibrational frequencies (in
wavenumber, cm ') and their percent errors relative to experi-
mental reference values. Examining Tables 8 and 9, flexibility
models using the Manz stretch potential performed slightly
better than those using the harmonic stretch potential.
However, all of the parameterized flexibility models performed
reasonably well. Including a Urey-Bradley term improved the
results for CO, and SO, but had little effect for H,O and HNO.
Including a bond-bond cross term had little effect. In Tables 8
and 9, the ‘recommended’ flexibility model shown in boldface
type achieves a good combination of high R-squared validation,
high R-squared training, and accuracy for computed frequen-
cies, while not introducing an excessive number of force
constants.

For CO,, the energy splitting between the asymmetric stretch
and the symmetric stretch was not predominantly due to Urey-
Bradley or bond-bond cross interactions as mistakenly sug-
gested in the companion article.” That suggestion was based on
the observation that without Urey-Bradley or bond-bond cross
terms, the Hessian matrix is already diagonal (with equal
eigenvalues for the two bond stretches) when expressed in
terms of the internal coordinates (dyg, dgc, fanc) as:*

RSC Adv, 2024, 14, 33345-33383 | 33375
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Table 9 Computed vibrational frequencies (in wavenumber, cm™ using different forcefields for the CO,, H,O, HNO, and SO, molecules. For
CO,, the bend mode is 2-fold degenerate. The percent error relative to experimentally-measured value (ref. 150) is shown in parentheses. For
each molecule, results for the recommended flexibility model are shown in boldface type

Stretch type UB? BBC? Bend Stretch # 1¢ Stretch # 2¢
co, Manz No No 694 (4%) 1363 (2%) 2609 (11%)
Co, Manz Yes No 684 (3%) 1391 (4%) 2463 (5%)
Co, Harmonic No No 694 (4%) 1385 (4%) 2651 (13%)
CO, Harmonic Yes No 684 (3%) 1434 (8%) 2503 (7%)
CO, Harmonic No Yes 694 (4%) 1434 (8%) 2503 (7%)
H,0 Manz No No 1634 (2%) 3885 (6%) 3942 (5%)
H,0 Manz Yes No 1629 (2%) 3889 (6%) 3932 (5%)
H,0 Harmonic No No 1633 (2%) 3972 (9%) 4030 (7%)
H,0 Harmonic Yes No 1633 (2%) 3972 (9%) 4030 (7%)
H,0 Harmonic No Yes 1633 (2%) 3956 (8%) 4055 (8%)
HNO Manz No No 1451 (-3%) 3047 (14%) 1776 (13%)
HNO Manz Yes No 1407 (—6%) 3032 (13%) 1723 (10%)
HNO Harmonic No No 1453 (—3%) 3058 (14%) 1807 (15%)
HNO Harmonic Yes No 1434 (—4%) 3051 (14%) 1714 (10%)
HNO Harmonic No Yes 1455 (—3%) 3051 (14%) 1798 (15%)
SO, Manz No No 550 (6%) 1259 (9%) 1468 (8%)
SO, Manz Yes No 529 (2%) 1255 (9%) 1452 (7%)
SO, Harmonic No No 549 (6%) 1275 (11%) 1487 (9%)
SO, Harmonic Yes No 553 (7%) 1272 (11%) 1452 (7%)
SO, Harmonic No Yes 549 (6%) 1279 (11%) 1480 (9%)

“ For CO,, H,0 and SO,, stretch # 1 is the symmetric stretch, and stretch # 2 is the asymmetric stretch. For HNO, stretch # 1 is the H-N stretch, and

stretch # 2 is the N-O stretch.

2
d U2 0
ddag
p
Hessian = 0 O_Uz 0 (172)
ddpc
U
0 3
LN

However, the normal vibrational modes must be computed by
diagonalizing the Hessian matrix defined by mass-weighted
Cartesian coordinates, as shown in eqn (169).°* For CO,, this
mass-weighted Hessian contains some non-zero off-diagonal
elements even when the flexibility model contains no Urey-
Bradley or bond-bond cross interactions, and this leads to
a splitting between asymmetric and symmetric stretch
frequencies even if no Urey-Bradley or bond-bond cross inter-
actions are contained in the flexibility model.

5. Conclusions

In this article, I derived theoretical foundations of force field
functional theory (FFFT). FFFT studies topics related to the
functional representation of nonreactive forcefields to achieve
various desirable properties such as:

(a) Formal exactness of the forcefield's energy functional
under certain conditions.

(b) A formally exact ansatz separating the bonded potential
energy from the nonbonded potential energy within a bonded
cluster in a way that enables bonded parameters to be opti-
mized using linear regression instead of requiring nonlinear
regression.

33376 | RSC Adv, 2024, 14, 33345-33383

(c) The potential energy's continuous differentiability to
various orders with respect to energetically accessible internal
coordinate displacements within a subdomain defined by one
electronic ground state.

(d) Forcefield design that guarantees the reference ground-
state geometry is exactly reproduced as an equilibrium structure
on the forcefield's potential energy landscape.

(e) Reasonably accurate and broadly applicable frugal model
potentials.

(f) Computationally efficient embedded feature selection
that identifies and removes unimportant forcefield terms.

(g) Well-designed methods to parameterize the forcefield
from quantum-mechanically-computed and (optionally) exper-
imental reference data.

(h) Forcefields that approximately reproduce experimentally-
measured properties.

Theoretical foundations of items (a), (b), and (d) were
derived in Sections 2.1-2.5 above and demonstrated with
examples in Sections 2.6, 4.1, and 4.2. Examples of (e) frugal
model potentials include my new angle-bending and bond
stretch model potentials that have (c) continuous differentia-
bility to all orders. A companion article describes and applies
several (f) embedded feature selection techniques including
dihedral pruning, dihedral mode smart selection, and LASSO
regression to identify and remove unimportant forcefield
terms.”” A companion article performs (g) quantum-mechan-
ically-derived forcefield parameterization for more than
a hundred MOFs that (h) exactly reproduces the experimental
lattice constants.*

In general, a forcefield's potential energy is a functional of
the material's chemical geometry and externally applied fields

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(if any) that exactly or approximately matches the quantum-
mechanically-computed Born-Oppenheimer electronic energy
as shown in eqn (14) or (88). This Born-Oppenheimer electronic
energy surface is composed of subdomains such that chemical
geometries within the same subdomain share the similar elec-
tronic ground state. Within each subdomain, ES& . [{Rs, Za}]
has continuous first-order derivatives with respect to changes in
the atomic coordinates {R,}; however, its first (and/or higher-
order) derivatives may be discontinuous at boundaries where
two or more subdomains (i.e., two or more different electronic
ground states) intersect in energy. As shown in eqn (16), the
system's total energy is obtained by adding the nuclear kinetic
energy to the potential energy.

For convenience, USF [{Ra,7a}] is often partitioned into
bonded and nonbonded interactions. In this article, I showed
how to construct such a partition in a way that always guaran-
tees the reference ground-state geometry of an isolated bonded
cluster is exactly reproduced as a stationary point on the
forcefield's potential energy landscape independently of the
particular values to be assigned to the forcefield's force
constants. At this optimized geometry, the new scheme's
bonded interaction terms completely account for the isolated
bonded cluster's geometry, potential energy, forces (first deriv-
atives of potential energy), and Hessian (second derivatives of
potential energy) with non-bonded interactions affecting only
higher-order derivatives. This partitioning scheme is formally
exact, because it does not introduce any new approximations
into the forcefield model. In this partitioning scheme, the so-
called ‘resting values’ contained in each flexibility term are
precisely equal to the equilibrium values from the material's
quantum-mechanically-computed  ground-state  geometry.
Because these equilibrium values can be computed directly and
do not need to be fitted during the forcefield parameterization,
this transforms the task of optimizing the forcefield's bonded
parameters from a nonlinear regression problem into a linear
regression problem. Because linear regression problems are
convex, this prevents separated regions in the optimization
landscape from containing different local minima that can trap
the optimizer. Moreover, multicollinearity issues can be more
easily resolved (e.g., by using the LASSO**** method) in linear
regression compared to nonlinear regression.

A key advantage of this new ansatz for separating intracluster
nonbonded interactions from bonded interactions is that it
reduces the sensitivity of optimized values for the bonded
parameters on the particular choice of nonbonded interaction
model. This allows the bonded interaction terms to be optimally
parameterized to leading order without having to first choose
specific values for the nonbonded interaction parameters. As an
example, these important features were clearly demonstrated
for the C-F bond stretch in the CcFs molecule.

Section 2.5 above discusses the particular conditions that
must be satisfied for U [{Rx,Zs}] to exactly equal

o [ {Ra, Za}]. Formal exactness requires that the forcefield
was parameterized for the exact system being studied by the
forcefield. The formally exact nonreactive forcefield requires
a full series expansion of USES[{R,, Z4}] in terms of the mate-
rial's internal in most practical

coordinates; however,
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applications the explicit form of this exact expansion is
unknown. In most practical applications, UFE [{Ra,7Za}] is
represented by a weighted sum of model potentials to provide
a pragmatic approximation of Egon. ..[{Ra,Za}]. The coeffi-
cients in front of these model potentials are called force
constants.

In practice, the formally exact series expansion is normally
truncated by using model potentials having a finite number of
interaction terms. This truncation introduces approximation.
Careful choice of the model potentials can yield high compu-
tational efficiency, a relatively small number of required flexi-
bility terms, continuous derivatives of all orders with respect to
energetically accessible atom-in-material displacements, and
excellent accuracy. This article introduced new angle-bending
and bond-stretch model potentials that require only a small
number of terms to achieve excellent accuracy, high computa-
tional efficiency, and continuous derivatives of all orders with
respect to atom-in-material displacements.

The new angle-bending model potential was carefully
derived to capture correct dynamics across a wide range of bond
angles including the limiting value of # = . In contrast, most
previously used angle-bending model potentials have either
a derivative discontinuity or incorrect dynamics when the bond
angle reaches § = . This new angle-bending model potential
was compared to CCSD/def2-TZVPD quantum-mechanically-
computed energy curves for ten triatomic molecules: CaH,,
CO,, H,0, HNO, Li,0, NO,, NS,, SF,, SiH,, and SO,. In all ten
cases, the new angle-bending potential provided reasonably
good results. However, some moderate discrepancies for § < f.q
were observed for NS, (due to chemical bonding changes), NO,
(due to chemical hybridization changes), and SF, (due to steric
repulsion between the two F atoms).

The new bond-stretch model potential was derived using
first principles. This provides the key advantage that its expo-
nent v, is directly quantum-mechanically computed. This new
bond-stretch model potential provides excellent accuracy for
many bonds across a wide range of Adxp = dap — dag values,
even as the bond length is stretched to infinity. Remarkably,
this is accomplished with only one empirically-fitted parameter,
which is the bond's force constant (Ksretch)-

In this work, complete flexibility models (i.e., bonded inter-
action models) were constructed for the H,, O,, CO,, water,
HNO, and SO, molecules. For each of these molecules, vibra-
tional frequencies predicted by the parameterized flexibility
model agreed closely with previously published experimentally-
measured frequencies. For H, and O,, these parameterized
flexibility models agreed closely with the quantum-mechan-
ically-computed bond-energy-versus-bond-distance curve. For
CO,, water, HNO, and SO,, these parameterized flexibility
models gave excellent R-squared values for approximately
reproducing the quantum-mechanically-computed energies of
independently chosen sets of validation geometries.

In a companion article, this new theory was used to optimize
bonded parameters (aka flexibility parameters) for 116 MOFs.**
As shown in that article, flexible forcefields constructed using
FFFT and my new angle-bending and dihedral torsion model
potentials gave excellent performance. Specifically, the model-

RSC Adv, 2024, 14, 33345-33383 | 33377


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra01861c

Open Access Article. Published on 22 October 2024. Downloaded on 10/22/2024 3:51:05 PM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

predicted forces yielded goodness-of-fit (R-squared values) of
0.910 (avg across all MOFs) £+ 0.018 (st. dev.) for atom-in-
material forces across a quantum-mechanically-computed vali-
dation set of geometries generated using ab initio molecular
dynamics in the NVE ensemble, where the parameterized
forcefield model used dihedral pruning, individual equilibrium
values, and no bond-bond cross terms.** This clearly demon-
strates FFFT has enormous practical utility. That companion
article introduces new best practices for: (a) typing bonds,
angles, dihedrals, and other internal coordinates, (b) pruning
dihedrals to reduce the redundancy of internal coordinates, (c)
using the LASSO method in least-squares regression of the force
constants to identify and eliminate unimportant forcefield
terms, and (d) designing the forcefield to exactly reproduce
experimental lattice constants defining the material's unit cell.
That article introduces the well-designed SAVESTEPS protocol
to parameterize the forcefield's bonded terms from quantum-
mechanically-computed reference data.

Data availability

Optimized geometries of molecules, data analysis spreadsheets,
Matlab codes and results, and outputs of the calcu-

late_Manz_and_Morse_stretch_potential_exponents program
are included as part of the ESL{ The «calcu-
late_Manz_and_Morse_stretch_potential_exponents program

is available for download from http://ddec.sourceforge.net.
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