
1

An Interactive Visualization Tool for Computer
Organization and Design Course

Mateo Garcia∗, Quamar Niyaz∗, Xiaoli Yang†, Ahmad Y. Javaid‡, Sidike Paheding†
∗ECE Department, Purdue University Northwest, Hammond, IN, United States

†CSE Department, Fairfield University, Fairfield, CT, United States
‡EECS Department, The University of Toledo, Toledo, OH, United States

{garci531, qniyaz}@pnw.edu, {spaheding, xyang}@fairfiled.edu, ahmad.javaid@utoledo.edu

Abstract—Computer Organization and Design is a pivotal
course for learning an instruction set architecture (ISA), the
microarchitecture which implements it, and determining a
system’s overall performance. However, many concepts in this
course have been found daunting to understand. To illustrate
those concepts, an interactive desktop application is being
developed using the Unity game engine for the purpose of
enhancing student learning. This tool covers material that is
traditionally covered in the course and adds security concepts
to make students aware of the security issues associated with
micro-architecture.

Index Terms—Computer Organization and Design,
visualization-based learning tool, and cybersecurity

I. INTRODUCTION

Computer Organization and Design (COD) is one of the
most pivotal courses in a Computer Engineering/Science
student’s curriculum. Most students will get their first intro-
duction to the intricacies of computer design and implemen-
tation in this course. The course covers essential low-level
computing topics such as hardware functionality, instruc-
tion set architecture (ISA), and CPU design/performance.
Amongst other things, the knowledge of how computer
software and hardware interact, how high-level programming
language is translated into low-level machine language, and
how a computer interprets the machine language, all serve
as foundational knowledge that computing students will
continue to build on. Despite the importance of COD course,
it is commonly considered to be one of the most difficult
courses in the Computer Engineering/Science curriculum.
This is because most students will only have an abstract
idea of how computers operate. The transition from high-
level knowledge to the “nuts and bolts” of how computers
work is a difficult one to make. As such, many students
struggle with learning the topics covered in this course.

Along with the traditional microarchitecture concepts,
microarchitecture security in the COD course must be a
new addition. The rising danger of cybercrime cannot be
overlooked and the global shift towards the digital medium
has only magnified the attack potency of cybercriminals.
Global cybercrime costs will soar to an estimated $10.5
trillion (annually) by the year 2025 [1]. There is significant
shortage of cybersecurity workforce that can be attributed to

the lack of exposure to cybersecurity in standard computing
curriculum. An increased effort should be put forth towards
raising student awareness of this matter. It is especially im-
portant to include a security component in the COD course
because while certain attacks exploit software vulnerabilities
(e.g., buffer overflow) there exist attacks which exploit the
very microarchitecture which computers are based on. These
types of attacks are even harder to defend against because
they exploit vulnerabilities in the fundamental design of
a computer. It is imperative that computing students are
knowledgeable of these vulnerabilities as they are the next
generation of developers whose work will determine the
security of future digital assets. Introducing students to
security concepts in the COD course may even motivate
them to pursue a career as a full-fledged cybersecurity
professional, which can be considered a “win” given the
aforementioned shortage.

Most computing courses follow the STEM methodology
of utilizing “hands-on” assignments, exams, and a culmi-
nating project to achieve student learning outcomes. While
this has been a tried-and-true approach, many students still
experience hindered learning. Visualization is the missing
ingredient in traditional instruction methods and is a proven
technique to facilitate student learning. Studies have shown
the use of visualization has a positive impact on student mo-
tivation for learning in Computer Engineering and Science
courses [2], [3]. The benefits of visualization methods has
been demonstrated even outside pure computing curriculum
[4]. Positive opinions about visualization are not exclusive
to students but are shared with instructors alike.

After identifying the struggles of students enrolled in the
COD course, the need for an effective supplementary ap-
proach to present the course materials became apparent. [2]–
[4] validate visualization as a legitimate method to improve
student learning and prove it effective when combined with
some level of interactivity. With this motivation, this work
presents an interactive visualization-based learning tool that
is being developed specifically for the COD course. The
tool contains visualization-based learning modules that will
cover the concepts traditionally taught in a COD course and
introduce micro-architecture security concepts.

 979-8-3503-3064-9/24/$31.00©2024 EEE

457

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

le
ct

ro
 In

fo
rm

at
io

n 
Te

ch
no

lo
gy

 (e
IT

) |
 9

79
-8

-3
50

3-
30

64
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

eI
T6

06
33

.2
02

4.
10

60
98

97

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 06:48:45 UTC from IEEE Xplore.  Restrictions apply. 



2

The remainder of the paper is structured as follows. Sec-
tion II will discuss related work related to the development of
educational tools for teaching computing concepts. Section
III will briefly discuss the topics that will be covered in
the proposed tool. Section IV is dedicated to the design
and implementation of the visualization tool. Section V will
conclude the paper with future work and final remarks.

II. RELATED WORK

In this section, we outline a few recent works carried
out for the development of educational tool for COD or
similar courses. An educational tool, DrMIPS, was devel-
oped in [5] to support students in a computer architecture
course. This tool simulates the well-known MIPS processor
and allows users to create or load assembly programs
and simulate execution. In a step-by-step visualization the
user can observe the contents of the processor’s registers
and data memory. The tool includes both single-cycle and
pipelined processors. Another work focuses on the impact
the EduMIPS64 simulator had on a different computer
architecture courses at the University of Catania [6]. This
simulator served as the primary means of learning topics,
completing homework assignments, and taking the final
exam. EduMIPS64 can simulate instruction execution in
a pipeline processor by drawing different pipeline stages
in sub-windows. Thesis work done at the University of
Illinois introduces the Datapath Simulator [7], which is
described as “a tool for visually teaching the fundamentals
of hardware architecture.” The Datapath Simulator is a web-
based program written in JavaScript and uses the React
library to display the content in the user’s browser. The
simulator is built around the MIPS architecture and supports
execution of the MIPS32 ISA on simulated circuits.

A web-based tool, eduARM [8], focuses on the increas-
ingly popular ARM ISA. It was designed to simulate the
functionality of the unicycle and pipelined ARMv8 CPU.
Users can create their own assembly code and observe what
occurs in the processor during execution. WebRISC-V [9] is
another web-based application that focuses on the RISC-
V architecture however it exclusively simulates pipelined
processors. The front-end is implemented with HTML and
JavaScript while the backend is implemented with PHP.

III. OVERVIEW OF COVERED TOPICS

The related works have demonstrated great success
in visualization-based instruction of COD concepts. This
project offers a new contribution to the genre with the de-
velopment of a Unity desktop application as a supplemental
educational resource for the ECE 37100 (COD) course at
Purdue University Northwest. The tool intentionally visual-
izes concepts with a level of abstraction. This approach was
taken to make the tool more approachable (which increases
the likelihood of students actually using it). This design
approach does not detriment the tool because the tool is
a supplemental resource by nature. It is not intended to
replace the instructor, the course textbook or other course

resources in any capacity. In correlation to the course, the
tool focuses on the ARM Instruction Set Architecture (ISA)
and the associated microarchitecture. Current topics include
the ARM ISA (arithmetic and memory access instructions)
and CPU pipelining. Strong reference was made to the COD
textbook, Digital Design and Computer Architecture [10]
during the development of the two modules covering these
topics. As previously mentioned, the visualization tool will
also contain learning modules for microarchitecture security
concepts. A module for the Spectre [11] attack is currently in
development and current plans also seek to develop a module
for Meltdown [12]. Besides the ones aforementioned, the
concepts covered in the tool will continue to expand in future
works.

A. ARM Instruction Set Architecture

Arithmetic Operations: The arithmetic logic unit (ALU),
as the name suggests, performs arithmetic operations. The
ALU uses instructions such as ADD, SUB, logical AND, and
logical ORR. The ALU strictly operates between registers.
The basic syntax of these instructions is <operation>
Rd, Rn, Operand2. Rd is the destination register where
the result of the ALU operation will be stored. Rn is the first
source register where data is retrieved from and Operand2
is optionally used. For example, the instruction ADD R1,
R2, R3 would be understood as content of registers R2 and
R3 will be added and stored in register R1.

Memory Access: LDR and STR are the instructions
used for memory access. These instructions have the basic
format of <operation> Rd,[<address in Rn>].
Despite similar syntax, LDR and STR differ in how they
function. The instruction LDR R1, [R2] would be under-
stood as the content from the memory location specified
by register R2 will be stored in register R1. On the other
hand, STR R1, [R2] would be understood as the content
of register R1 will be stored at the memory location specified
by register R2. Memory access instructions prove especially
challenging for students to understand. This is because un-
like ALU operations, which only operate between registers,
memory access instructions operate between registers and
memory. Visualizing data transfer between registers and
memory will prove to be especially beneficial for students.

B. Pipelining

Pipelining significantly enhances the processor’s perfor-
mance in comparison to its single-cycle implementation,
which can only perform one instruction per clock cycle.
Pipelining allows for the parallelization of instruction ex-
ecution and greatly improves throughput. To achieve this an
instruction traverses through different pipelining stages, e.g.
Fetch, Decode, Execute, Memory, and Writeback in a five-
stage pipeline. In the Fetch stage, the instruction is read from
instruction memory by the processor. In the Decode stage,
the processor reads the operands from the register file and
prepares the control signals. In the Execute stage, the ALU
operation is performed. In the Memory stage the processor

458

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 06:48:45 UTC from IEEE Xplore.  Restrictions apply. 



3

reads/writes data memory. Finally, in the Writeback stage
the result is written to a register (when necessary). Note that
while multiple instructions can be simultaneously executed,
different instructions will be in different pipelining stages.

Pipeline hazards come at the cost of the increased per-
formance. There are three types of hazards including data,
control, and structure hazards. A data hazard occurs when
a sequence of instructions requires operands to be accessed
in a certain order. A distinction is made for the Read-After-
Write (RAW) data hazard which occurs when an instruction
reads an operand before a previous instruction was able to
write to it. Control hazards occur when the CPU arrives
at a branching instruction and is forced to make a branch
decision before the decision is ready to be made. In the
structure hazard, there is a conflict to access resources.
The visualization module will cover the hazards and the
methods used to handle them. In the pipelining module,
we specifically focus on the use of NOP instructions, data
forwarding, stalling, and flushing.

The use of NOP instruction to resolve data hazards is
a software approach that forces the CPU to remain idle
until the data is ready to be read. Students are made aware
of the fact that this approach complicates programming
and severely degrades performance. With Forwarding, the
pending data is forwarded from the Memory or Writeback
stage to a dependent instruction in the Execute stage. Stalling
involves halting operation until the pending data is ready.
This approach is superior to NOP because a new instruction
can enter the pipeline and the CPU is not kept at idle.
Flushing is a control hazard management method in which
the CPU makes a branch prediction instead of idling until
the branch decision is ready. The CPU loads sequential
instructions into the pipeline based on its branch prediction.
In the case of an incorrect branch prediction, all the executed
branch instructions would be discarded.

C. Microarchitecture Security

Recently, several micro-architectural attacks were dis-
covered. For example, the Spectre attack [11], discovered
by Google’s Project Zero in 2018, takes advantage of the
speculative execution feature (intended as a performance
optimization) to execute malicious code. A CPU with the
speculative execution feature preemptively performs tasks
to have data ready in the case of it being useful in the
future. Intel, Apple, ARM, and AMD have produced CPU
which are vulnerable to this attack. The Meltdown attack
affects Intel and Apple processors and, similar to the Spectre
attack, it exploits speculative execution. Unlike Spectre,
which can only gain unauthorized access to data within the
same program, the Meltdown attack [12] can expose data
from separate programs. It is important that these attacks
should be discussed in a COD course. With this focus, we
intend to include a visualization of such attacks in our tool.

Fig. 1: Flow chart of modules interaction in the tool

IV. DESIGN AND IMPLEMENTATION

The tool was built following a modular design. A modular
design is defined by the separation of distinct components.
Each module present in this tool has a distinct concept. This
design approach is beneficial both from a user experience
and development perspective. This design allows the user
to focus on a specific concept of their choice, as opposed
to having multiple concepts grouped together. The modules
are also concise thanks to this design, which shortens play-
through time. This ideally not only conveniences the user but
also has the benefit of speeding up their learning process. On
the same token, the conciseness of the modules also speeds
up the development process. A single-concept module can be
developed faster in comparison to a multi-concept module
(assuming the same amount of content for each concept).
The debugging process is simplified by organizing the con-
tents in a modular fashion, which makes it easier to locate
the issue. In addition, the total impact of revising the tool
is lessened as revising one module uniquely changes that
module and does not affect other modules. This decreases the
risk typically associated with updating software over time.

All modules follow the same design principles. Modules
will first begin with providing conceptual information. To
avoid becoming a text-heavy PowerPoint-like presentation,
the modules provide concise explanations of concepts. These
learning modules serve as a supplemental resource to en-
hance the utility of the course textbook, not replace it. The
conceptual information is followed by a visualization of
the concept. The visualization strives to keep things simple.
Many students in the course will just be getting acquainted
with certain concepts and excessively complex visualizations
can potentially be detrimental. As mentioned in [13], the

459

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 06:48:45 UTC from IEEE Xplore.  Restrictions apply. 



4

Fig. 2: Sample visualization for LDR instruction

benefit of visualization-based learning is enhanced by inter-
activity. This comes in the form of activities related to the
visualizations, and/or multiple-choice quizzes. The quizzes,
taken at the end of each module, are a great method for
students to assess their understanding of the concept. The
quizzes are graded, and students can review their answers
after submission. A great feature of all modules is the
randomization of the content within visualizations, activities,
and quizzes. This feature ensures a unique experience upon
each use of the tool and avoids (or at least delays) user
fatigue.

The tool was built using Unity, a powerful cross-platform
game engine. It supports the development of 2D, 3D, virtual
reality (VR), and augmented reality (AR) based games.
Unity’s potency as a game engine and ability to distribute
to a variety of platforms made it a clear choice for being
used to develop this visualization tool. In addition the lead
designer of this tool has a strong familiarity with Unity.
The Unity game environment is hierarchical in nature. At
the very top of this hierarchy is the Scene. Every Unity
project has at least one Scene, which contains the actual
game environment. Multiple Scenes can be used for both
organizational and functional purposes to do things such
as change character or change the level of the game. Each
Scene contains one or more GameObjects. GameObjects
are the most fundamental entity within Unity and can be
a range of things such as characters, props, or cameras. A
GameObject can contain one or more children GameObjects
and the child will inherit attributes from its parent. A

Component describes a GameObject’s features such as
size, position, or color. The Script component is the most
powerful component a GameObject can possess. The Script
component allows developers to create C# programs to gain
precise control of GameObjects during run-time.

Unity provides integration with the Visual Studio IDE
which is a great convenience during GameObject scripting.
Visual Studio Community edition was used in this project
for C# development. All GameObject scripts were created
following traditional software development practices as best
as possible. The game environment includes a 3D computer
asset [14], purchased from the Unity Asset Store. The use of
this asset, among other things, were “stylistic” choices made
in this project. Although these choices do not technically
improve the tool, the hope is that they would make the
tool more appealing to students. To date, learning modules
for Memory Access and Pipelining have been completed.
Figure 1 shows the interaction of different modules in the
visualization tool.

A. Memory Access Module

The memory access module focuses on the LDR and
STR instructions, which are used for accessing computer
memory. The LDR instruction is covered first with the
basic instruction syntax being provided. Afterwards two
visualizations are shown with a step-by-step explanation
of the LDR instruction execution. The registers, data, and
memory follow a layout similar to what is typically shown in
the DDCA textbook. Students can visit the visualizations as

460

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 06:48:45 UTC from IEEE Xplore.  Restrictions apply. 



5

Fig. 3: Sample visualization for pipeline

Fig. 4: Sample visualization for Spectre

many times as they want. As mentioned before, the content
associated with the visualization, such as the assembly
instruction and data values, is randomly generated and will
be unique upon each play through.

This same process of explanation and visualization is
repeated for the STR instruction. After both instructions
are explained and visualized, there is an activity where the
user can “manually execute” the instruction to reinforce
their learning. This activity contains three examples of
either an LDR or STR instruction (again due to content
randomization). The student must get the correct answer
to progress, but they have unlimited attempts to do so.
After completing the activity, the user is challenged with a
six-question multiple-choice quiz. The questions incorporate
randomization to avoid the user simply remembering the
correct answers after long enough playtime. Once they have
submitted their answers, they are shown their quiz score
and have completed the module. The user can either review
their submission or return to the main menu. Figure 2 shows
sample visualization for LDR instruction.

B. Pipelining Module

The pipelining module has been developed closely refer-
encing Chapter 7 of the DDCA textbook [15]. The pipelining
technique and the five pipeline stages are explained in the
visualization tool. Afterwards, a visualization of a pipelined
CPU executing three randomized instructions is shown. The
visualization shows the execution of each instruction on a
per clock cycle basis, and states which pipeline stage they
are currently in. The users can review the visualization as
many times as they want. The module shares the downside of
a pipelined CPU’s increased performance, which is hazards.
The data hazard, specifically the Read After Write (RAW)
hazard, is covered first. A visualization of a pipelined CPU

461

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 06:48:45 UTC from IEEE Xplore.  Restrictions apply. 



6

executing three instructions is once again shown, however
these instructions now present a RAW hazard. The decode
stage and the hazardous register are highlighted in red to il-
lustrate where the hazard is occurring. After this the methods
used to manage data hazards are explained. These methods
include the use of NOP instructions, forwarding, and stalling.
The limitations of the NOP and forwarding approach are
discussed. Each method is given a visualization to portray
what is done to prevent the hazard. The pipeline forwarding
visualization includes an arrow animation showing the data
being forwarded from the memory and writeback stages to
the execute stage of the subsequent instructions.

The pipeline stalling visualization distinguishes which
clock cycle the stall is happening and shows a loading
animation. The control hazard and the pipeline flushing
method which prevents it are the final topics of the module.
The pipeline flushing visualization shows a pipelined CPU
execute four instructions where the first instruction branches
to the last. The visualization shows the status of the branch
decision, highlights what is flushed, and includes an anima-
tion of the instructions being “discarded” into a trash can.
After this visualization the user can take the end of module
quiz. A few sample visualization screenshots are shown in
Figure 3.

C. Spectre

The Spectre module is currently in development so it
will be briefly discussed because details may be subject to
change. It is important to acknowledge [11] for serving as the
”ground truth” and SEED Labs [16] for providing practical
experience on how the attack functions. The module will
discuss the discovery of the attack, related terms (such as
speculative execution and side-channel attacks), then discuss
attack methodology. According to the knowledge acquired
from both of the aforementioned resources, the attack can
be divided into four steps: flush, train, invoke, and reload.
In the first step of the attack, the side-channel is flushed
from the cache. The second step of the attack is to train the
CPU to perform speculative execution. In the third step the
attacker invokes a “target function” to steal private data. In
the final step of the attack the side-channel is reloaded. The
visualization shown for this module in Figure 4 follows a
proof of concept C program demonstrating this procedure.
It is mentioned that the C program is pseudo-code. Students
are encouraged to do additional online research for a full
Spectre program. As with the others, this module will be
concluded with a short multiple-choice quiz.

V. CONCLUSION

As mentioned in the literature, visualization is an effective
learning technique. This project sought to satisfy the need for
a fresh approach to teach computing organization and design.
Two interactive and visualization-based learning modules
have been developed for the undergraduate Computer Orga-
nization and Design course. The tool is to be distributed this
Spring 2024 semester and results will be collected to assess

the effectiveness of the developed modules. The focus is on
developing more modules in the immediate future. The two
modules that have already been developed cover traditional
microarchitecture, the next module to be developed will shift
to micro-architecture security. After this additional modules
will continue to be developed and the tool will be released
publicly for widespread adoption by instructors in other
universities.

ACKNOWLEDGEMENT

This work is based upon the work supported by the Na-
tional Science Foundation (NSF) under Grant No. 2021345.
Any opinions, findings, and conclusions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES

[1] M. H. U. Sharif and M. A. Mohammed, “A literature review of
financial losses statistics for cyber security and future trend,” World
Journal of Advanced Research and Reviews, vol. 15, no. 1, pp. 138–
156, 2022.

[2] J. Á. Velázquez-Iturbide, I. Hernán-Losada, and M. Paredes-Velasco,
“Evaluating the effect of program visualization on student motivation,”
IEEE Transactions on Education, vol. 60, no. 3, pp. 238–245, 2017.

[3] M. K. Quweider and F. Khan, “Visualization as effective instructional
and learning tools in the computer science curriculum,” in 2017 ASEE
Annual Conference & Exposition, 2017.

[4] P. N. A. Barata, M. Ribeiro Filho, and M. V. A. Nunes, “Consolidating
learning in power systems: Virtual reality applied to the study of
the operation of electric power transformers,” IEEE Transactions on
Education, vol. 58, no. 4, pp. 255–261, 2015.

[5] B. Nova, J. C. Ferreira, and A. Araújo, “Tool to support computer
architecture teaching and learning,” in 2013 1st International Confer-
ence of the Portuguese Society for Engineering Education (CISPEE),
pp. 1–8, IEEE, 2013.

[6] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania, “Sup-
porting undergraduate computer architecture students using a visual
mips64 cpu simulator,” IEEE Transactions on Education, vol. 55,
no. 3, pp. 406–411, 2012.

[7] C. D. Hazlett, A MIPS datapath simulator for enhancing visual
learning of computer architecture. PhD thesis, 2020.

[8] M. I. F. Alves, “eduarm: Web platform to support the teaching and
learning of the arm architecture,” 2022.

[9] R. Giorgi and G. Mariotti, “Webrisc-v: A web-based education-
oriented risc-v pipeline simulation environment,” in Proceedings of
the workshop on computer architecture education, pp. 1–6, 2019.

[10] S. Harris and D. Harris, Digital Design and Computer Architecture:
ARM Edition. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1st ed., 2015.

[11] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, et al., “Spectre
attacks: Exploiting speculative execution,” Communications of the
ACM, vol. 63, no. 7, pp. 93–101, 2020.

[12] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[13] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of
algorithm visualization effectiveness,” Journal of Visual Languages &
Computing, vol. 13, no. 3, pp. 259–290, 2002.

[14] SnowQ (Unity Asset Store Publisher), “3d computer asset.” https://
assetstore.unity.com/packages/3d/props/electronics/computer-211592,
2022. Purchased: 10/20/2022.

[15] S. Harris and D. Harris, Digital Design and Computer Architecture:
ARM Edition. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1st ed., 2015.

[16] Wenliang Du, “Seed labs – spectre attack lab.” https://seedsecuritylabs.
org/Labs 16.04/PDF/Spectre Attack.pdf, 2018. Accessed: March
2024.

462

Authorized licensed use limited to: Purdue University. Downloaded on October 23,2024 at 06:48:45 UTC from IEEE Xplore.  Restrictions apply. 


