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Abstract
In this paper, we prove an intersection-theoretic result pertaining to curves in certain
Hilbert modular surfaces in positive characteristic p. Specifically, let C, D be two
proper curves inside a mod p Hilbert modular surface associated to a real quadratic
field split at p. Suppose that the curves are generically ordinary, and that at least one
of them is ample. Then, the set of points in (x, y) ∈ C × D with abelian surfaces
parameterized by x and y isogenous to each other is Zariski dense in C × D, thereby
proving a case of a just-likely intersection conjecture. We also compute the change
in Faltings height under appropriate p-power isogenies of abelian surfaces with real
multiplication over characteristic p global fields.

1 Introduction

The study of intersection theory in the context of Shimura varieties has produced
several breakthroughs in arithmetic. For instance, Gross-Zagier [13] prove their cel-
ebrated theorem on ranks of elliptic curves by extensively studying the arithmetic
intersection theory of Heegner points on modular curves. This program has been gen-
eralized in various directions. For example, it has been extended to Shimura curves
[16, 28], higher dimensional unitary Shimura varieties [17], and function field ana-
logue of Shimura curves [26]. Arithmetic intersection theory has been crucial to the
development of this program.

In a different direction, the proof of the André-Oort conjecture heavily relies on the
Average Colmez conjecture (interesting in its own right), whose proof [1, 27] relies
on the Arakelov intersection theory of special cycles in orthogonal Shimura varieties.

Most relevant to our paper is the work of Charles [5] proving that two elliptic curves
over a number field are isogenous modulo infinitely many primes. This is achieved
by studying the arithmetic intersection theory of the modular curve by an approach
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inspired by work of Chai-Oort, who prove the analogous result over function fields
[6, Proposition 7.3]. This work has been generalized to the splitting of abelian sur-
faces over global fields [19, 21, 22], (where the authors prove that abelian surfaces
over global fields are isogenous to a product of elliptic curves modulo infinitely many
primes) and to Picard-rank jumping results [18, 21]. These theorems are obtained by
proving that any fixed arithmetic curve intersects the Hecke translates of an appro-
priate “special divisor” at infinitely many points. These special divisors solve moduli
problems, and parameterize abelian varietieswith extra endomorphisms (the interested
reader may look at [1] or [21, Section 2.3−2.5] for precise definitions). This moduli-
theoretic interpretation of special divisors is crucial to understanding and computing
local and global intersections.

Despite the proofs relying heavily on this moduli theory of special divisors, these
problems can be naturally phrased in the setting of arbitrary subvarieties of a Shimura
variety of Hodge type. Specifically, let (G, X) denote a Shimura datum of Hodge type
with reflex field E . Let S/E denote the Shimura variety of Hodge type associated to
(G, X). We also work with a fixed Hodge embedding of S into the moduli space of
polarized abelian varieties. We assume the level structure K ⊂ G(A f ) is neat, so that
S carries a universal abelian scheme. Let S/OE [1/N ] denote the integral canonical
model of S as constructed by Kisin in [15] where N is a sufficiently large integer. We
refer the interested reader to loc. cit. for the definition of integral canonical models and
for a precise description of N in terms of G and the level structure K. Let C, D ⊂ S
be subschemes having complementary dimension. How does the set of points on
C isogenous1 to some point of D distribute in C? In a recent AIM workshop, the
participants developed a framework that makes the following prediction.

Conjecture 1 Let S be as above, and let SFq denote the fiber of S at some prime
p ⊂ OE [1/N ]. Suppose that C, D ⊂ SFq are generically ordinary subvarieties
having complementary dimension. Then, the set of points in C isogenous to some
point of D is Zariski-dense in C. Further, the subset of C × D consisting of pairs of
isogenous points is dense in C × D.

This conjecture is inspired both by the work in [5, 6, 19, 21, 22] as well as the
Hecke orbit conjecture. There is also an arithmetic (i.e., number-field) analogue of
this conjecture. These conjectures have several applications. For instance, they would
imply that any abelian fourfold over a global field should be isogenous to a Jacobian
modulo infinitely many primes! This is all the more striking as the existence of abelian
fourfolds over global fields not isogenous to Jacobians has been established in [23] and
[24]. The characteristic-zero analogue of Conjecture 1 has been proven ([25, Theorem
1.22]).

In [9], the first-named author proves this conjecture in the setting of X(1)n . In
this paper, we establish this conjecture for Hilbert modular surfaces (with some mild
constraints).

Theorem 1.1 Let F denote a real quadratic field, and let p denote a rational prime
that splits in F. Let H denote the mod p Hilbert modular surface associated to OF ,

1 The universal abelian scheme on S defines for us the notion of isogeny.
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and let C, D ⊂ H denote two generically ordinary, proper curves in H, at least one
of which is ample. Then Conjecture 1 holds for C, D ⊂ H.

We expect this result to hold for curves that are not necessarily proper or ample.We are
hopeful that an appropriate prime-to-p Hecke translate of a fixed curve inH should be
ample (but to our knowledge, this is not yet known). Such a result would immediately
reduce the non-ample case to the ample case.

1.1 Outline of proof

Our proof is inspired by Chai-Oort’s work. Roughly speaking, we consider a sequence
of Hecke operators Tn , and consider the intersections (Tn(C).D). In order to prove
our theorem, it suffices to prove that the local contributions of any finite set of points
x1 . . . xm ∈ D to the intersection (Tn(C).D) is smaller than the global intersection
number (Tn(C).D) for some n. However, we encounter several additional difficulties
that aren’t present in their work.

Firstly, their ambient space is a product of curves, and their proof makes crucial use
of the product structure. In the hitherto solved cases where the ambient space is not
a product variety, either C or D is special and the local intersection numbers at any
fixed point is bounded using the moduli interpretation of the special divisor (see [21,
Lemma 7.2], and [19, Lemma 7.2.1]).We overcome this first difficulty by constructing
a local product structure at every closed point (see Proposition 2.2) which is adapted
to a very specific set of Hecke operators that exist only in positive characteristic. In
fact, these Hecke operators endow H with a partial Frobenius structure (see 2). This
construction allows us to control the local intersectionmultiplicites (see Theorem 3.1).

The second difficulty is in estimating the global intersection number. The previously
known cases (in the setting of special divisors) use earlier results establishing the
modularity of sequences of special divisors ([3]) to compute the global intersection
numbers. In our setting,we have no suchmodularity results andwe instead compute the
intersections of Tn(C)with the non-ordinary locus ofH, and then use the ampleness of
D to control (Tn(C).D).While doing so,we establish a result (Theorem4.2) pertaining
to the change of Faltings height under p-power isogeny which is of independent
interest.

1.2 Change of Faltings height under p-power isogeny

The Faltings height of an abelian variety over a number field is defined to be the
Arakelov degree of the Hodge bundle. The change of the Faltings height of an Abelian
variety under isogeny was a crucial ingredient in the proof of the Mordell Conjecture
by Faltings.

In the function field case, the definition of Faltings height for a proper curve is even
simpler. SupposeA/C is a family of abelian varieties over a proper curve C . Then we
define the Faltings height ofA/C to just be the degree of the Hodge bundle. In our set-
ting, this height only depends on the image ofC inH. The prime-to-pHecke operators
onH are étale, and this makes it easy to compute the change in Faltings height under
prime-to-p isogeny. The non-étaleness of p-power Hecke operators makes computing
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the change-in-height a formidable prospect. Further, p-power Hecke correspondences
aren’t even separable!

Indeed, the only prior work pertaining to this that we are aware of is [11]. They
consider an isogeny ϕ : E1 → E2 between two elliptic curves over k(C) forC a curve
over Fq and [11, Theorem A] proves that

h( j(E2)) = degins(ϕ)

degins(ϕ̂)
h( j(E1))

where h denotes theWeil height on X(1) and degins(ϕ) denotes the inseparable degree
of ϕ. The proof there proceeds by an identification of theWeil height with an intersec-
tion number: since the Picard group of X(1) is simply Z, and the only p-power Hecke
operators (mod p) are iterates of Frobenius and Verschiebung, this lets one calculate
the effect of a Hecke translation on the Picard group simply as multiplication by an
integer.

In our case, the Picard group ofH is complicated and the action of p-power Hecke
correspondences (which are not étale!) on the Picard group is not a-priori easy to
compute. Nevertheless we fully compute the change in Faltings height of an abelian
surface with real multiplication by OF under p-power isogenies that respect the OF -
action.

SupposeC is a proper curve andA/C is a generically ordinary abelian surface with
endomorphisms by OF (with F a real quadratic field as in Theorem 1.1) so that the
image of C under the corresponding map C → H is an ample divisor of H. Suppose
moreover that An/C is another abelian surface, also having endomorphisms by OF ,
isogenous to A/C by a purely inseparable isogeny ϕ : A′ → A which respects the
OF -actions, whose kernel is cyclic of size pn (indeed, this is the hardest case to treat,
and the general case can be deduced from this case). Let hF (A/C) denote the Faltings
height of the abelian variety A/C , which is defined to be the degree of the Hodge
bundle ω of H restricted to C . Then, the height of An/C grows exponentially in n.

In fact, we prove an exact formula for the change of height under inseparable
isogenies (Theorem 4.2) but for simplicity of notation, we will be content with the
version above for the introduction.Weprove this result by comparing theHodge bundle
to the class of the Hasse invariant, and using our computation of the intersection of
Hecke orbits of C with the non-ordinary locus, and the product structure that we
construct.

2 Backgroundmaterial

We provide some background (and standardize notation) on Hilbert modular surfaces
in this section, define the notion of a partial Frobenius structure and prove a theorem
about curves parametrizing abelian varieties without extra endomorphisms.

Let F be a real quadratic field,OF its ring of integers, p = P1P2 a prime that splits
in OF and a a fractional ideal of OF . One can define a moduli space parametrizing
Abelian surfaces with endomorphisms by OF :
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Definition 1 Let Ha
n be the moduli functor that associates to a Fp-scheme S the

groupoid of tuples (A, ι, λ, η) where:

1. A → S is an abelian surface;
2. ι : OF → EndS(A) is a ring homomorphism;
3. λ : a → HomSym

OF
(A, A∨) is anOF -linear homomorphism such that λ(a) is anOF -

linear polarization of A for every totally positive a ∈ a, and the homomorphism
A ⊗OF a

∼→ A∨ induced by λ is an isomorphism of abelian surfaces;
4. η : (OF/nOF )2S → A[n] is an OF -linear isomorphism from the constant group

scheme (OF/nOF )2S to A[n].
It is known thatHa

n is represented by a Deligne-Mumford stack over Fp and when
n ≥ 3, it is even represented by a scheme (see [10, Section 5 of Chapter 3]). From now
on, we fix some n ≥ 3 that is prime to p, a polarization a and denote the representing
scheme by H. We note that H is smooth (see [20, Theorem 2.1.2]).

We now set up some notation. Let A/H denote the universal Abelian surface over
H, and let G denote its p-divisible group. We have that End(A) = OF , and as p splits
in F , we have that End(G) = OF ⊗ Zp = Zp × Zp. This implies that G = G1 × G2.
At any point x ∈ H, let Ax and Gi,x denote the pullback of A and Gi to x . Note that
both factors Gi are one-dimensional and have height 2.

Lemma 2.1 Let x ∈ H(Fp) and let the deformation space of Gi be Spf Fp[[ti ]].2 Then
̂Hx is canonically isomorphic to Spf Fp[[t1]] × Spf Fp[[t2]].
Proof The formal neighbourhood ̂Hx parameterizes formal deformations ofAx which
admit an action of OF (compatible with the action of OF on Ax ). By the Serre-Tate
lifting theorem, we have that this is the same as formal deformations of Gx which
admit an action ofOF ⊗Zp – but this is the same as pairs of p-divisible groups which
lift the pair (G1,x ,G2,x ). The lemma follows. 
�

Henceforth, we will refer to the decomposition above as the product structure on
̂Hx .

2.1 Partial Frobenius structure and coordinates

For ease of exposition, we henceforth assume that P1 (and therefore P2) are trivial
in the narrow class group of OK . Otherwise, the analysis below will go through
identically, except we work with pa (and Frobpa ) in place of p (and Frobp), where a
is the order of Pi in the narrow class group.

Definition 2 We say a surface X over Fp has partial Frobenius structure if there is a
factorization

Frobp = π1π2,

2 Implicit here is that the deformation space of a p-divisible group having height 2 and dimension 1 is
one-dimensional and smooth.
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where πi : X → X are maps which satisfy the following condition:
For any q = pr a power of p, locally around any x ∈ X(Fq), we can find coordinates
t1, t2 such that:

(πr
i )∗(t j ) =

{

tqj if i = j,

t j otherwise .
(1)

A product of curves over Fp is one example of a variety that has a partial Frobenius
structure (where the π1, π2 are induced from each factor independently), and there is
an obvious choice of coordinates as in (1). In particular, the product of modular curves
will be a very pertinent example.

The key assumption that p splits inOF results in a partial Frobenius structure onH.
In this case,wemaydefine themapsπi using ourmoduli interpretation. Suppose S is an
arbitraryFp-scheme andA/S is an abelian surface corresponding to a point x ∈ H(S).
Define π1(x) to be the point y corresponding to the abelian scheme A/G1, where
G1 ⊂ G1,x is the kernel of Frobenius. According to Section 2.2 of [20], A 
→ A/G1
defines a morphismHa → HP1a. AsP1 is trivial in the narrow class group, we have
indeed obtained a morphism π1 : Ha → Ha.

We define π2(x) analogously. Clearly, Frobp = π1π2. Given this description, we
see that for any x ∈ H(Fq), πr

1 induces the q th-power map on the deformation space
of G1,x and leaves the deformation space of G2,x unchanged. We therefore have the
following proposition:

Proposition 2.2 H has a partial Frobenius structure, with Frob = π1π2. Furthermore,
at every point x ∈ H(Fp), the coordinates t1, t2 are just the coordinates induced by
the product structure as in Lemma 2.1.

Let x ∈ Z(Fq) be a point, where Z ⊂ H is the non-ordinary locus. Then according to
the discussion above, the formal completion ̂Hx = Spf Fq [[t1, t2]], where ti controls
the deformation theory of Gx,i and leaves Gx,i+1 constant (here, the indices are read
modulo 2). Therefore, if Gx,1 is ordinary and Gx,2 is supersingular, the local equation
of Z at x is just t1 = 0; if G2,x is ordinary and G1,x is supersingular, then the local
equation is t2 = 0; and if x itself is supersingular, then the local equation is t1t2 = 0.

We also recall the global geometry of Z ⊂ H, following [2, §4, Theorem 4.2]
and relate it with the local geometry of Z just discussed. The non-ordinary locus is
a union of smooth irreducible curves which intersect transversally at supersingular
points. There are two ‘types’ of curves – curves of type 1 and curves of type 2. Every
non-supersingular point x on curves of type 1 has the property that G1,x is ordinary
while every non-supersingular point y on curves of type 2 has the property that G2,y is
ordinary. Curves of type 1 never intersect (and neither do curves of type 2) while every
supersingular point has exactly one curve of type 1 and one curve of type 2 passing
through it. Finally, the local equations of these curves are precisely as described in the
paragraph just above.

We will use the following lemma in the proof of the theorem immediately after.

Lemma 2.3 Assume K is a global function field, and Kv is a completion of K at some
place v. Let G/K be an ordinary p-divisible group over K with height 2 and dimension
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1, and GKv be its base change to Kv . If the connected-étale exact sequence for GKv

splits then the connected-étale exact sequence for G splits over K .

Proof Jiang proves a more general result in [14], but we include a different proof here
for completeness. For any n, the connected-étale exact sequence of G/Kv [pn] splits
over some finite extension Ln/K . We will prove that Ln can be chosen to be a subfield
of Kv .

In order to show that we can choose Ln ⊂ Kv , we use the representability of
Homgp sch(H ,G) for any finite flat group schemes H ,G. In general, HomS(X ,Y ) is
representable if X ,Y are finite type schemes over S and moreover, X is flat, projective
and Y is quasi-projective over S [§4c, [12]] and the conditions for being a homo-
morphism of groups defines a closed subscheme. Splittings of the connected étale
sequence

0 → Gn,conn → Gn
π→ Gn,ét → 0

can be identified with the closed subset of points of f ∈ Homgp sch(Gn,ét,Gn) such
that f ◦ π = id. In particular, they are parametrized by a scheme which we call
Split /Spec K .

We therefore have a splitting over Kv, Ln , i.e., Kv, Ln valued points of Split. We
now consider Kv, Ln ⊂ M for some algebraically closed field M . Let α ∈ Split(M)

be defined over some subfield L . Since any two splittings over M differ by an auto-
morphism of Gn,conn × Gn,t defined over M , and every one of these automorphisms
is already defined over the ground field K , we have that every element of Split(M) is
defined over L . Therefore,

Split(Kv) = Split(M) = Split(Ln) �⇒ Split(Kv) = Split(Ln ∩ Kv).

Therefore, we can replace Ln by Ln ∩ Kv to assume that Ln ⊂ Kv .
We now claim that Ln/K is separable. Indeed, being a one-parameter function

field, K admits a unique degree p inseparable extension necessarily containing all
p-th roots of K , and which therefore contains the p-th root of a uniformizer of K at
v, which therefore can’t be contained in Kv . It follows that Ln/K is indeed separable.

The splitting behaviour of the connected-étale exact sequence for any p-divisible
group is insensitive to separable extensions, and therefore the connected-étale exact
sequenc for G[pn] splits over K for all n. The result follows. 
�
Theorem 2.4 Let D ⊂ H be a generically ordinary, reduced, irreducible curve such
that the generic abelian variety A/K (D) does not have an extra endomorphism.3 We
identify ̂OH,x with Fp[[t1, t2]] as in Lemma 2.1. Let ̂OH,x/( fD,x ) be the formal com-
pletion of the local ring of D at x. Then ti does not divide fD,x for any i .

Remark 1 As an analogous situation to the above lemma, consider X = X(1)× X(1),
then locally around x , we may choose ti to be the corresponding coordinate of the i-th
X(1) ∼= P

1.

3 i.e., the ring of endomorphisms is OF .
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Proof Without loss of generality, we may replace D with its normalization, and pull
back the universal abelian surface to D. Therefore, we may assume that D is smooth -
however, the map D → H need no longer be an embedding. Nevertheless, given any
point x ∈ D, we obtain a map of formal schemes ψ : ̂Dx → ̂Hx (we abuse notation
by letting x denote both the point of D and its image in H). Let fD,x ∈ ̂OHx denote
the defining equation of the image of ̂Dx .

It suffices to prove that if ti divides fD,x for i = 1 or 2, then either D is not
generically ordinary, orA/K (D) has extra endomorphisms.Without loss of generality,
assume t1 | fD,x . If Gx,1 is supersingular, then by the description of the non-ordinary
locus following Proposition 2.2, we see that A/D must be non-ordinary. Therefore,
we suppose that Gx,1 is ordinary. The inclusion of the divisor corresponds to

̂Dx ∼= SpecFp[[u]] → ̂Hd,x ∼= Spec ̂OH,x ;
t1

ψ→ 0,

t2
ψ→ t̄2 ∈ Fp[[u]].

Here, ̂Dx is the formal completion of D at x . As in Lemma 2.1, we know ̂OH,x is
the product of the deformation spaces of Gi,x . Notice that ψ(t1) = 0 implies that Gx,1
remains constant along ̂Dx . In other words,

G
̂Dx

= (Gx,1 × ̂Dx ) × G
̂Dx ,2.

The connected-étale exact sequence of Gx,1 splits since it is over a perfect field and
hence, so does the connected-étale exact sequence of AD̂x

[p∞]1. By Lemma 2.3,
this implies that the connected-étale exact sequence for G1 already splits over K (D).
Consequently, End(GD,1) = Zp⊕Zp,whenceEnd(GD) is strictly larger thanZp⊗OF .
Applying the crystalline Tate conjecture for endomorphisms of abelian varieties ([7,
Theorem 2.6]) implies AD has endomorphism ring larger than OF , as required. 
�

3 Local intersection on varieties with a split Frobenius

In this section, we assume that X is a surface overFp with a partial Frobenius structure.
Throughout this section, we fix such a system of coordinates around each point as in
(1). As in Sect. 2, Hilbert modular surfaces where p = P1P2 with Pi trivial in the
narrow class group of OF are examples of such surfaces. As noted in Sect. 2, as long
as p splits completely in OF , H will admit a partial pa-Frobenius structure where a
is the order of P1 in the narrow class group.

Note that the Frobenius (and hence the πi ) are universal homeomorphisms, i.e.,
they induce homeomorphisms on the underlying topological space. In particular, the
preimage of any point under the πi is also exactly one point.

The results in this section will be purely local around a point x ∈ X(Fq). Note that
π1 need not fix x but some power of it will so we may assume that X = Spec R with
R = Fq [[t1, t2]] and x is the origin given by the vanishing of t1, t2. In local coordinates
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(a power of) πi corresponds to (a power of) Frobenius along the ti coordinates. For a
point x ∈ X , we define r(x) as the smallest value so that πr(x)

1 (x) = π
r(x)
2 (x) = x .

Now, let C, D ⊂ X be two curves and x ∈ C ∩ D and define Cn = (πn
1 )−1(C) to

be the pullback of C under πn
1 , where n satisfies πn

1 (x) = x . In this section, we prove
results about the intersection numbers Cn · D. Theorem 3.1 (1) owes its inspiration to
[6, Proposition 7.3].

Theorem 3.1 Let C = V ( f ), D = V (g) locally around x ∈ H and n = mr(x) → ∞
be part of a sequence of integers divisible by r(x) and increasing without bound.
Suppose moreover that t1, t2 � f and t1 � g.

1. Suppose t2 � g. Then, the local intersection number (Cn ·D)x is bounded as n → ∞.
2. Suppose t2 | g. Then, the local intersection number (Cn · D)x → ∞ as n → ∞.

The analogous result holds with the roles of π1, π2 (and t1, t2) reversed.

Proof In order to compute intersection numbers, we can replace D by its normaliza-
tion and consider each component separately [8, Example A.3.1]. We therefore have
̂OD,x = Fp[[u]] and we suppose that the morphism D → H is locally around x given
by

Fp[[t1, t2]] → Fp[[u]]
ti → αi .

For the first part of the theorem, α1, α2 �= 0 since t1, t2 � g. We therefore define
αi = aiuki with ai a unit and ki ≥ 1. Since x ∈ C and r(x)|n, we have x ∈ Cn . As C
is defined by f (t1, t2), Cn is defined by f (t p

n

1 , t2) so that

(Cn .D)x = dim
Fp

Fp[[u]]
f (α pn

1 , α2)
.

By assumption, t1 � f so that we can write f (t1, t2) = te2 f̃ (t2) + t1h(t1, t2) for e ≥ 1
and f̃ (t2) a unit. Therefore,

f (α pn

1 , α2) = αe
2 f̃ (α2) + α

pn

1 h(α
pn

1 , α2)

= ae2u
k2e f̃ (a2u

k2) + a pn

1 u pnk1h(a pn

1 u pnk1 , a2u
k2).

For n large enough, the u-adic valuation of the second term is larger than the u-
adic valuation of the first term since f̃ is a unit. Consequently (for n large enough),
f (α pn

1 , α2) is divisible by exactly uek2 which proves that (Cn .D)x = ek2 which is
independent of n.

In the second case, α2 = 0. Let f (t1, 0) = td1 w(t1) with d ≥ 1 and w(t1) a unit.
We then have (with k1 as in the first part)

(Cn .D)x = dim
Fp

Fp[[u]]
f (α pn

1 , 0)
= dk1 p

n (2)
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which proves that (Cn .D)x → ∞ as n → ∞. 
�
We have the following corollary.

Corollary 3.2 Let C be as above, and suppose now that Zi ⊂ ̂Hx are the formal
curves defined by ti = 0 for i = 1, 2. Then, (Cn .Z1)x = (C .Z1)x and (Cn .Z2)x =
pn(C .Z2)x .

Proof The first equality follows by inspection and the second from Equation (2). 
�

4 Change of height under p-power isogenies

In this section,wewill describe some instances inwhichwecandescribe how theheight
of a generically ordinary proper curve C ⊂ H changes under isogenies induced by
the πi . The idea is to use the fact that the Faltings height equals (up to a scaling factor
of 1

p−1 ) the intersection of C with the non-ordinary locus.

4.1 The non-ordinary locus

Let Z be the non-ordinary locus. We recall the following description of Z given in
§2. The non-ordinary locus is a union of smooth irreducible curves which intersect
transversally at supersingular points. There are two ‘types’ of such curves – curves of
type 1 and curves of type 2 (coming from the local splitting of the Frobenius). Every
non-supersingular point x on curves of type 1 has the property that G1,x is ordinary
while every non-supersingular point y on curves of type 2 has the property that G2,y is
ordinary. Curves of type 1 never intersect (and neither do curves of type 2) while every
supersingular point has exactly one curve of type 1 and one curve of type 2 passing
through it. Finally, the local equations of these curves are precisely as described in the
paragraph following Proposition 2.2.

For brevity, we write Z = Z1 ∪ Z2, where Zi is the union of curves of type i . The
main result of this section is the following:

Theorem 4.1 Let C/ ⊂ H denote a proper generically ordinary curve defined over
Fq ′ , and suppose that all the non-ordinary points of C are contained in C(Fq) for some
q = pn0 . Then as n goes to infinity, we have ((π

n0n
1 )−1(C) · Z) = qn(C .Z2)+(C .Z1),

and ((π
n0n
2 )−1(C).Z) = qn(C · Z1) + (C .Z2).

Proof This follows directly from the description of the non-ordinary locus as well as
Corollary 3.2. 
�

We keep the notation in the previous result. Recall that we define the Faltings
height of the abelian variety AC to be the degree of the Hodge bundle ω restricted to
C . As in [18] and [19], the class of the Hodge bundle can be expressed in terms of the
non-ordinary locus. To be precise, we have that Z is the vanishing locus of the Hasse
invariant, which is a section of ωp−1 (for example, see [4, Section 1.4]). This, together
with Theorem 4.1 gives the following result.
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Theorem 4.2 The Faltings heights of A
(π

n0n
1 )−1(C)

and A
(π

n0n
2 )−1(C)

are

hF (A
(π

n0n
1 )−1(C)

) = qn(C · Z2) + (C .Z1)

p − 1
and hF (A

(π
n0n
2 )−1(C)

) = qn(C .Z1) + (C .Z2)

p − 1
.

In particular, if C is also ample,4 we have hF (A
(π

n0n
1 )−1(C)

) � qn � hF (A
(π

n0n
2 )−1(C)

)

as n → ∞.

5 Just-likely intersections on Hilbert Modular Surfaces

Definition 3 Given two proper curves C, D ⊂ H defined over Fq parametrizing
Abelian surfaces AC ,AD , we let

I (C, D) = {(x, y) ∈ H2 : AC,x is isogenous to AD,y through a power of πn
i }.

Moreover, let

˜I (C, D) = {(x, y) ∈ H2 : AC,x is isogenous to AD,y through a p-power isogeny }.

Note that I (C, D) ⊂ ˜I (C, D).

We use the results of Sect. 3 to prove:

Theorem 5.1 Let C, D be as above and suppose that AC ,AD parametrized respec-
tively by C, D have no extra endomorphisms generically, are generically ordinary
and suppose moreover that D is ample.

ThenI (C, D) has infinitely many points not contained in a finite union of axes of
the form

⋃

i {xi } × D ∪ ⋃

j C × {y j }.
Remark 2 If one of the curves generically does have extra endomorphisms, then the
theorem is still true by the results of [19].

Theorem 5.2 Suppose that C, D ⊂ H are two curves such thatI (C, D) has infinitely
many points not contained in a finite union of the axes as in the previous theorem.
Then, ˜I (C, D) is dense in C × D.

The strategy for the proof of Theorem 5.1 is as follows. We first prove that the
local intersection numbers dn = ((πn

1 )−1(C).D)x are bounded for any x ∈ D. Next,
we prove that the global intersection numbers ((πn

1 )−1(C).D) are unbounded, by
comparing these numbers with the quantities ((πn

1 )−1(C).Z), using Theorem 4.1 and
the ampleness of D. Finally, Theorem 5.2 follows by a soft argument. Note that
Theorem 5.2 always holds for two curves which satisfy the conclusions of Theorem
5.1.

4 This would imply that (C .Z1) and (C .Z2) are both positive. Even if C is not ample, the curve Z1 ∪ Z2
is ample, and so either (C .Z1) or (C .Z2) must be positive, whence we obtain the same asymptotic formula
for the Faltings heights of either A

(π
n0n
1 )−1(C)

orA
(π

n0n
2 )−1(C)

.
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Throughout, we use the local coordinates t1, t2 of Lemma 2.1. Let C, D be as in
Theorem 5.1. We prove Theorem 5.1 through a sequence of lemmas. Recall that for a
point x ∈ X , r(x) is the smallest value so that πr(x)

1 (x) = π
r(x)
2 (x) = x .

Lemma 5.3 For any point x ∈ C, the intersection number of (πn
i )−1(C) with D at

(πn
i )−1(x) = x is bounded absolutely as n ranges through the multiples of r(x).

Proof Around any point x ∈ C, D, the curves C, D don’t contain the divisors ti = 0
since otherwise they would either be generically non-ordinary or generically have
extra endomorphisms (by Lemma 2.4).

Therefore, part (1) of Theorem 3.1 applies and shows that the intersection number
of ((πn

i )−1(C) · D) at (πn
1 )−1(x) is absolutely bounded as n = mr(x) → ∞. 
�

The next lemma deals with the global intersection number. We have that (C .Z) =
(C .Z1) + (C .Z2) is positive, so we assume without loss of generality that (C .Z2) is
positive and define Cn = (πn

i )−1(C).

Lemma 5.4 The global intersection number Cn · Z → ∞ as n → ∞ through the
multiples of r(x).

Proof This follows immediately from Theorem 4.1. 
�
Lemma 5.5 Let D now be an arbitrary ample, proper divisor. Then, the global inter-
section number Cn · D → ∞ as n → ∞.

Proof We will reduce to the case where our divisor is Z , the Hasse locus.
Since D is ample, we can find a large enough m such that mD − Z is also ample.

Therefore:

Cn .(mD − Z) ≥ 0 ⇐⇒ mCn .D ≥ Cn .Z

and since Cn .Z → ∞ by the previous Lemma 5.4, Cn .D is also unbounded. 
�
We are now ready to prove the main results of this paper.

Proof of Theorem 5.1 Let Sn ⊂ Cn = (πn
1 )−1(C) be the set of points xi,n on Cn

isogenous to somepoint yi,n on D. Note that there is a unique xi ∈ C so thatπn
1 (xi,n) =

xi since π1 is a universal homeomorphism. We first show that |Sn| → ∞ as n → ∞.
For contradiction, suppose that |Sn| ≤ N . Then, for r � 0 and n ranging through the
multiples of the lcm of r(x1), . . . , r(xN ):

(Crn · D) =
N

∑

i=1

(Crn · D)xi,n ≤ NC0

where the bound on the right hand side follows from Lemma 5.3 and C0 is some
constant. On the other hand, the left hand side goes to infinity by Lemma 5.5 which
provides us with our contradiction.

123



Just-likely intersections... 1479

We have thus shown that there is an infinite set of points x1, x2, · · · ⊂ C isogenous
to some point on D. We would like to show that the corresponding points y1, y2, . . .
on D also form an infinite set. Suppose otherwise for contradiction.

Thus, we can find an infinite subset xi1 , xi2 , . . . isogenous to the same point y on
D through the isogenies corresponding to π

n1
1 , π

n2
2 , . . . with ni → ∞. That is:

π
n j
1 (y) = xi j .

On the other, the orbit ofπ1 on anyFq point ofH is finite since, in local coordinates,
π1 just corresponds to the Frobenius on one of the coordinates which certainly has a
finite orbit. This forces us to identify some of the xi j which is contradictory to our
assumption that the xi are distinct.

We have thus shown that we can find two sequences xi , yi ∈ C, D such that
xi �= x j , yi �= y j for i �= j and the xi are isogenous to the yi as required. 
�

We now prove Theorem 5.2, and therefore finish the proof of Theorem 1.1.

Proof of Theorem 5.2 Suppose for contradiction that the closure of ˜I (C, D) is a proper
subset of C × D ⊂ H2. Let W be the complement of the axes inside the closure of
I (C, D). ByTheorem5.1,W has positive dimension.We can therefore find an infinite
sequence of points (x1, y1), (x2, y2), · · · ∈ W such that the fields of definition of yi
individually go to infinity. We will prove that Ni = #{y ∈ D : (xi , y) ∈ W } → ∞ as
i → ∞ which contradicts the fact that W is a closed subset of C × D and therefore
has finite degree projections onto the first factor.

Indeed, if yi has field of definition Fqmi , then the size of the orbit of yi under Frobq
has size mi and moreover, each point in this orbit is p-power isogenous to xi and lies
on D (since D is defined over Fq ). Since W is defined over Fq too, it is fixed by any
Frobenius and the entire orbit is contained inside W proving that Ni ≥ mi → ∞ as
i → ∞. 
�
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