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Abstract

We establish dispersive estimates and local decay estimates for the time evolution of non-
self-adjoint matrix Schrodinger operators with threshold resonances in one space dimension.
In particular, we show that the decay rates in the weighted setting are the same as in the
regular case after subtracting a finite rank operator corresponding to the threshold resonances.
Such matrix Schrodinger operators naturally arise from linearizing a focusing nonlinear
Schrodinger equation around a solitary wave. It is known that the linearized operator for
the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an
observation of a favorable structure in the quadratic nonlinearity of the evolution equation
for perturbations of solitary waves of the 1D focusing cubic NLS equation.
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1 Introduction

In this article, we establish dispersive estimates and local decay estimates for the (non-self-
adjoint) matrix Schrodinger operators

_ _[-3Z+un o0 Vi —Va ) )
H—H0+V—[ 0 BZ_M]JF[VQ Vl] on L2(R) x L2(R),  (1.1)

X

where p is a positive constant and Vi, V; are real-valued sufficiently decaying potentials.
The operator H is closed on the domain D(H) = H>(R) x H*(R).

These matrix operators arise when linearizing a focusing nonlinear Schrodinger equation
around a solitary wave. By our assumptions on V; and V,, Weyl’s criterion implies that
the essential spectrum of H is the same as that of Hy, given by (—oo, —u] U [, 00). As
a core assumption in this paper, we suppose that the edges = of the essential spectrum
are irregular in the sense of Definition 4.4. This implies that there exist non-trivial bounded
solutions to the equation H@i = :l:;uifi, see Lemma 4.5. The dispersive estimates for
‘H when the thresholds £ are regular have been obtained in Sections 7-8 of the paper
by Krieger—Schlag [40], building on the scattering theory developed by Buslaev—Perel’man
[9]. See also the recent work of Collot—-Germain [11]. Our proof is instead based on the
unifying approach to resolvent expansions first initiated by Jensen—Nenciu [36], and then
further refined in Erdogan—Schlag [23] for matrix Schrodinger operators. We also adopt
techniques from Erdogan—Green [20], where the authors prove similar dispersive estimates
for one-dimensional Dirac operators.

1.1 Motivation

Our interest in developing dispersive estimates for (1.1) stems from the asymptotic stability
problem for solitary wave solutions to nonlinear Schrodinger (NLS) equations. The NLS
equation

i 4+ 02y + F(|y )¢ =0, where ¥: R, x R, — C, (1.2)

appears in many important physical contexts such as the propagation of a laser beam, the
envelope description of water waves in an ideal fluid, or the propagation of light waves in
nonlinear optical fibers. See, e.g., Sulem—Sulem [56] for physics background.

Under certain general conditions on the nonlinearity F(-) (see, e.g., [7]), the equation
(1.2) admits a parameterized family of localized, finite energy, traveling solitary waves of
the form ¢ (¢, x) = e”“qu(x; a), where ¢ (-; o) is a ground state, i.e., a positive, decaying,
real-valued solution to the (nonlinear) elliptic equation

— 32¢p +a’p = F($)). (1.3)

The existence and uniqueness of these ground state solutions are well-understood, see, e.g.,
[7,41].

The solitary wave solutions (or simply, solitons) are of importance due to the special role
they play for the long-time dynamics of the Cauchy problem (1.2). Consequently, over the
last few decades there has been a significant interest in the study of stability (or instability)
of such solitary waves under small perturbations. The primary notion of stability is that
of orbital stability, and it is by now well-understood for the NLS equation. The pioneering
works in this direction were due to Cazenave—Lions [14], Shatah—Strauss [55], and Weinstein
[62]; see also [33] for the general theory. On the other hand, a stronger notion of stability
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is that of asymptotic stability. There are two general approaches for the asymptotic stability
problem. The first approach is to use integrability techniques, when the underlying partial
differential equation is completely integrable and inverse scattering is available. A second
approach is perturbative, which means that one studies the dynamics of the nonlinear flow in
the neighborhood of the solitary wave, on a restricted set of the initial data. Generally, one
starts by decomposing the perturbed solution into a sum of a solitary wave and a dispersive
remainder term. For the perturbative approach, dispersive estimates for the linear flow are
key.

Let us briefly describe the perturbative approach for the NLS equation. To keep our
exposition short, we will not take into account any modulation aspects related to the Galilean
invariance of the equation. For small @ > 0, consider the perturbation ansatz ¥ (¢, x) =
eite? (¢ (x) + u(t, x)) with the ground state ¢(-) = ¢(-; @) and the dispersive remainder
term u(¢, x). The linearization of (1.2) around the solitary wave e”“qu(x) then leads to the
following nonlinear partial differential equation

idu = (=8> +a* = Vyu+ Wi+ N,

where N = N(¢, u, u) is nonlinear in the variables (u, u), and V = F(qb2) + F’(<ﬁ2)¢2
and W = F'(¢*)¢? are real-valued potentials related to the ground state ¢. Equivalently, the
above equation can be recast as a system for the vector U := (u, )T, which is given by

io,U —HU = N, (1.4)

where N is a nonlinear term, and H is a matrix Schrddinger operator of the form (1.1) with
the parameters u = a2, Vi=V,and Vo = W.

For the study of asymptotic stability of solitary waves for NLS, it is thus crucial to fully
understand the spectral properties of the matrix operator 7 as well as to derive dispersive
estimates for the linear evolution operator ¢!’?. One of the key steps in a perturbative analysis
is to prove that the dispersive remainder (1.4) decays to zero in a suitable topology. Let us
consider for example, the 1D focusing NLS with a pure power nonlinearity, i.e.

o + 02 + Y)Y =0, where o > 0. (1.5)

The ground state ¢ (x; 1) has an explicit formula for all o > 0 given by

$(x; 1) = (o + 1) sech# (o), (1.6)
and the linearized operator around e’ ¢ (x; 1) takes the form

Mo —32 — (0 + D?sech’(ox) +1  —o (o + 1)sech?(ox)
a o (o + 1) sech?(ox) 32 + (0 + 1)?sech?(ox) — 1|°

For monomial nonlinearities, we may obtain ¢(x; «) from rescaling by ¢(x;a) =

a%¢(ax, 1). The matrix operators when linearizing around e”"‘2¢(x; «) are also equiva-
lent to the matrix operator H, by rescaling. The spectra for these matrix operators were
investigated in [12]; see also Section 9 of [40]. For & > 2, Krieger—Schlag [40] were able to
construct finite co-dimensional center-stable manifolds around the solitary waves and prove
asymptotic stability using dispersive and Strichartz estimates developed for the evolution
operator /"M, However, for the completely integrable case (o = 1), it was shown in [12] that
the matrix operator H exhibits the threshold resonance W (x) = (tanh2 (x), — sech? (x))T at
A = 1. The dispersive estimates developed in [40] do not apply in this case. Furthermore, we
note that a key assumption in the papers [9, 11, 32, 40] is that the linearized matrix operator
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‘H does not possess threshold resonances at the edges of the essential spectrum. In these
“generic" (regular) cases, it can be shown that the evolution operator enjoy improved decay
estimates in weighted spaces; see, e.g., Proposition 8.1 in [40]. Thus, a meaningful motiva-
tion for this paper is to prove dispersive estimates in the presence of threshold resonances
under some general spectral assumptions on the matrix operator , which are applicable to
the 1D cubic NLS case (o = 1). We will discuss this particular case briefly in Sect. 1.4.

1.2 Main result

We are now in the position to state the main result of this paper. We begin by specifying some
spectral assumptions on H.

Assumption 1.1A1) —o3V is a positive matrix, where o3 is one of the Pauli matrices
(c.f. (1.9)),
(A2) L_ :=—d>+ pu — Vi + V; is non-negative,
(A3) there exists 8 > 0 such that |V;(x)| + |Va(x)| < e~ V2B for all x € R,
(A4) there are no embedded eigenvalues in (—oo, —u) U (i, 00).

Under these assumptions, we recall the general spectral theory for H from [23].!

Lemma 1.2 [23, Lemma 3] Suppose Assumption 1.1 holds. The essential spectrum of H
equals (—oo, —pu] U [, 00). Moreover,

spec(H) = — spec(H) = spec(H) = spec(H™), (1.7)

and spec(H) C R U iR. The discrete spectrum of H consists of eigenvalues {z W =1 0<

N < oo, of finite multiplicity. For each zj # 0O, the algebraic and geometric multiplicities
coincide and Ran(H — z;) is closed. The zero eigenvalue has finite algebraic multiplicity,
i.e., the generalized eigenspace U ker(H¥) has finite dimension. In fact, there is a finite
m > 1 so that ker(H*) = ker(H*™Y) for all k > m.

The symmetry (1.7) is due to the following commutation properties of H,
H* = o3Hos, —H = o1Hoq, (1.8)

with the Pauli matrices

01:|:(1)(1)i|, 02:|:(l.) :)i], 03:|:(1) _01i| (1.9)

As a core assumption in this paper, we impose that the thresholds 4= of the essential spectrum
are irregular.

Assumption 1.3

(AS) The thresholds £y are irregular in the sense of Definition 4.4. This 1mphes that there
exist non-trivial bounded solutions \Ili = (lI—'1 , V5 )T to the equation H‘-I"i = It/,L\IJi
(A6) The vanishing (bilateral)-Laplace transform condition holds

o0
LIVav] + Viws 1(£y20) = / TV (Va4 VW) (y) dy = 0. (1.10)

! The results in Section 2 of [23] are stated for dimension 3, but they in fact hold for all dimensions. Moreover,
only a polynomial decay on V; and V5 is assumed in [23]. See also [35, Theorem 1.3].
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For details about the characterization of the threshold functions l_I}, we refer the reader to
Deﬁnition 4.4 and Lemma 4.5 in Sect. 4. Due to the commutation identity (1.8), we have the
relation \I/+ = 0] U_. We emphasue that assumption (A6) is used to infer that (non-trivial)
bounded solutions \I/i = (\Ili, \112 ) to the equation Hllli = j:;ul/i satisfy vt = v, €
L®R)\L*(R).

Let Py: L2(R) x LE(R) — L%(R) x L%(R) be the Riesz projection corresponding to the
discrete spectrum of H, and define Ps := I — Py. We now state the main theorem of this
article.

Theorem 1.4 Suppose assumptions (Al)—(A6) hold, and let U = (W), W) be the L®(R) x
L®R)\L2(R) x L%(R) distributional solution to

HY = pn, (1.11)
with the normalization®

Jim (W1 )P + W1 (=0)P) = 2. (1.12)

Then, for any f = (f1, f2) € SR) x S(R), we have

1. the unweighted dispersive estimate

itHp 7 -z
P H < |t 2 , Yt =1, 1.13
¢ sf L®[R)xL®R) ~ 1 L'®R)x LI (R) U ( )
2. and the weighted dispersive estimate
-2, itH z -3 27
P —F H <t2H TS
H(x) (€ Fs 0f L®(R)x L®(R) L s LIR)x L! (R) Il =
(1.14)
where
> elth - o _> el - o -
Fif i= —— (o3, [ )V (o301, f)ogV. (1.15)
! Nk INZTT,

We proceed with some remarks on the main theorem:

1. The estimate (1.14) is an analogue of the weighted dispersive estimates obtained by
Goldberg [26] for the scalar Schodinger operator H = —32 + V on the real line for non-
generic potentials V; see [26, Theorem 2]. The local decay estimate (1.14) shows that the
bulk of the free wave ¢!’ Py enjoys improved local decay at the integrable rate O(|¢|~ 3 ),
and that the slow (’)(Itl’%) local decay can be pinned down to the contribution of the
finite rank operator F;. Such sharp information can be useful for nonlinear asymptotic
stability problems, see also Sect. 1.4 below.

2. We make some comments on the spectral hypotheses. The assumptions (A1)—(A4) are
known to be satisfied by the linearized operator around the solitary wave for the 1D
focusing power-type NLS (1.5). In the case of the 1D focusing cubic NLS (o = 1),
the linearized operator H; satisfies the assumptions (A1)-(A6); see Sect. 1.4.1 below.
More generally, in Lemma 4.5, we show for matrix operators H of the form (1.1)
satisfying assumptions (A1)-(A6) that the edges £ of the essential spectrum of H
cannot be eigenvalues, and that the non-trivial bounded solutions \_IDi = (\Illi, \Ilzi)T to

2 By this, we mean to rescale the vector U > A0 by scalar multiplication where A > 0 is defined so that
(1.12) holds. See (1.20) in Sect. 1.4 for an example.

@ Springer



206 Page6of54 Y.Li

'H\i/i = :l:/u_fJi belong to L%\ L? since \IJIJr(x) = W, (x) has a non-zero limit as x —
+00. In this sense, we characterize the solutions \fli as threshold resonances. However,
it is not yet clear to the author whether assumption (A6) is strictly needed to show
that non-trivial bounded solutions \Ili to H\Ili = :i:,ullli cannot be eigenfunctions.
Moreover, an inspection of the proof of Lemma 4.5 reveals that the strong exponential
decay assumption (A3) and the vanishing condition assumption (A6) are only used in a
Volterra integral equation argument. In all other proofs, we only use some polynomial
decay of the potentials V; and V5.

3. It might be possible to prove Theorem 1.4 using the scattering theory developed by
[9]. However, one major difficulty for this approach is due to the fact that the matrix
Wronskian associated with the vector Jost solutions is not invertible at the origin for cases
where the matrix operators H exhibit threshold resonances. Hence, the vector-valued
distorted Fourier basis functions are not immediately well-defined at zero frequency.
See Corollary 5.21 and Sect. 6 in [40] for further details.

1.3 Previous works

In this subsection, we collect references related to dispersive estimates for Schrodinger
operators and to the study of the stability of solitary waves.

For dispersive estimates for the matrix Schrodinger operator H, we refer to Sections 5-9 of
[40] in dimension 1, and to [19, 23, 28, 46, 58] in higher dimensions. A comprehensive study
on the spectral theory for the matrix operator arising from pure-power type NLS is given
in [12]. See also [13, 49, 60] for related analytical and numerical studies. For dispersive
estimates for the scalar Schrodinger operators, pioneering works include [37, 50, 61], and we
refer to [4, 21, 22, 24-28, 31, 48, 52, 53] for a sample of recent works. Finally, we mention
the papers [5, 36] on resolvent expansions for the scalar Schrodinger operator.

On the general well-posedness theory for the NLS Cauchy problem (1.2), we refer to the
pioneering works [34, 38, 59]. Results on the orbital stability (or instability) of solitary waves
for the NLS equation were first obtained by [2, 14, 55, 62, 63], and a general theory was
established in [33]. Subsequent developments for general nonlinearities were due to [16, 29,
30, 45, 51]. Regarding the asymptotic stability of solitary waves, the first results were due to
Buslaev—Perel’man [8, 9]. Subsequent works in this direction were due to [3, 11, 18, 32, 40,
47, 54]. For surveys on the stability of solitary waves, we refer to the reviews [15, 39] and
the monographs [10, 56].

1.4 On the solitary wave for the 1D focusing cubic NLS

In this subsection, we present two observations related to the asymptotic stability problem
for the solitary wave of the 1D focusing cubic NLS. First, we verify that the assumption
(A6) holds for the linearized operator around the solitary wave of the 1D focusing cubic
NLS. Second, we use the local decay estimate (1.14) to shed some light on the leading order
structure of the quadratic nonlinearity in the perturbation equation for the solitary wave of
the 1D focusing cubic NLS.

We note that a proof for the asymptotic stability problem has been given by Cuccagna—
Pelinovsky [17] via inverse scattering techniques. See also Borghese—Jenkins—McLaughlin
[6]. On the other hand, a perturbative proof that does not explicitly rely on the integrable
structure has not yet appeared in the literature to the best of the author’s knowledge. We
now briefly discuss the evolution equation for perturbations of the solitary wave for the 1D
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focusing cubic NLS. To keep our exposition short, we do not discuss the modulation aspects
for the solitary wave. For simplicity, consider the perturbation ansatz

Yt x) = e (Q(x) + u(t, x))
for the equation (1.5) (o = 1). The ground state has the explicit formula
O(x) := ¢ (x; 1) = V2 sech(x).

The evolution equation for the perturbation in vector form u = (uy, uz) := (u, it) is given
by

8,1 — Hyii = Qi) + C(id), (1.16)
where
B [-32+1 o —4sech?(x) —2sech?(x)
Hl_HOJFVI_[ 0 33—1] [2sech2(x) dsech2x) |0 17D
and
o —Qu%—ZQuluz N —u%uz
Qi) ’_[Qu§+2Qu1u2 , and C(ii) := i |- (1.18)

Recall from [12] that the matrix operator H has the essential spectrum (—oo, —1]U[1, 00),
and a four-dimensional generalized nullspace

Q (I+x0)Q| |0:Q xQ
Ng(H1) = span , , , , 1.19
s(Ft) = sp {[—Q] [(1+x8x)Q 50]" [ ~x0 (19
as well as a threshold resonance at +1 given by
= [w] _[1-30%] [ tanh?(x)
U=y, = |:\112:| = [ —%Qz = |~ sech?(x) | (1.20)
By symmetry, there is also a threshold resonance function at —1 given by
- = [—sech®(x)
V_ =0V = |: tanh?(x) | (1.21)

The eigenfunctions listed in (1.19) are related to the underlying symmetries for the NLS
equation. Note that we have normalized the resonance function W to satisfy the condition
(1.12) stated in Theorem 1.4.

1.4.1 On assumption (A6) for the 1D focusing cubic NLS

Our first observation is that the assumption (A6) is satisfied by the matrix operator H.

Lemmal1.5 Ler Vi(x) = 4sech®(x), Va(x) = 2sech?(x), and (V;(x), ¥2(x)) =
(tanh2(x), — sech?(x)). Then, we have

/R V2 (V)W () + Vi) ¥a(y) dy = 0. (1.22)
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Proof We denote the (two-sided) Laplace transform by

S1/1(s) = / e F()dy, s eC, (123)

—o0

which is formally related to the Fourier transform by
LELf1(s) = V2 F1 f1(is).
By direct computation,

(ViW, + VoW)(x) = 2 sech®(x) — 6 sech®(x),

and
4 2 2 1.5 2
sech™(x) = 3 sech”(x) — 68x (sech”(x)). (1.24)
Recall from [43, Corollary 5.7] that as equalities in S(R),
Flsech?](§) = \/> 3 (1.25)
2 smh( £)’
Hence, using the basic property f[—aff](é) = Szﬂf 1(¢) and (1.24), we obtain
TEA+ED
h* 1.26
Flsech™(§) = 2 Sinh(ZE) (1.26)
As complex functions, we recall that sinh(iz) = i sin(z) and that 7 Sm( 5 is analytlc in
the strip {s +io : s € (—m, w), o € R}. Thus, by analytic continuation,
2 2
LIVIW; + VoW 1(s) = /27 (2 Flsech?](is) — 6Fsech?](is)) = %
sin(%*

forany s € C with R (s) € (-2, 2), which in particular proves the vanishing condition (1.22).
O

The other assumptions (A1)—(AS) for H; are also satisfied by either checking directly or
invoking the results from Section 9 in [40].

1.4.2 Null structure for perturbations of the solitary wave of the 1D focusing cubic NLS

Due to the slow local decay of the Schrodinger waves in the presence of a threshold resonance,
the spatially localized quadratic nonlinearity in (1.16) may pose significant difficulties for
proving decay of small solutions to (1.16). The weighted dispersive estimate (1.14) shows
that the slow local decay is only due to the finite rank projection F;. To shed some light on the
expected leading order behavior of the quadratic nonlinearity Q(i) in (1.16), it is instructive
to insert a free Schrodinger wave

ﬁfree(t) = e_”HPsf,

for some fixed f € S(R) x S(R). By Theorem 1.4, we have

- . e [, ﬂ Wy -
Utree () = C— \/; |:qj2i| + C+\/; |:‘D1i| +r (1), (1.27)

3 tobe pedantic, there is a removable singularity at z = 0 which we can remove by setting the function
equaltolatz =0.

sm(z)
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with
1 - 1 -
- = =l ) e = ——=lon ¥ ), (1.28)
and where the remainder 7 (¢) satisfies
16720 e przoe S 02| (129)
x X x(R)x Ly (R)

Thus, owing to the spatial localization of the quadratic nonlinearity, we have

26‘2” . cyc_ . 26—2it .
Qiifrec (1)) = +t Ql(\IJ)Jerz(\IJ)Jr — p Q3(W) + Op=(|t]72), (1.30)
where

- —ow? _

01(V) = [ QQ\IJ\II;Z—i- 22QQ;:1\;;2] (1.31)
= [—20w,0, — 2007 + 02)

(V) = [ 2Q\111\112+2Q(\IJ121+ %22; ] (1.32)
2 _ = [-0¥ —20u 1,

ABW) =—-0Q1(V) = [ Q‘Ifzzl-i- 200, 0, ] . (1.33)

Due to the critical O(|¢t|~1) decay of the leading order terms on the right-hand side of (1.30),
it is instructive to analyze the long-time behavior of small solutions to the inhomogeneous
matrix Schrodinger equation with such a source term

S Ao
i0tusrc — Hyttsre = Ps

t

Q1(0) + #Qz(\iw

o2 o 2it

t Qa(i/)), t>1,

U sre(1) = 6
(1.34)
To this end, it will be useful to exploit a special conjugation identity for the matrix Schrodinger

operator Hj. It was recently pointed out by Martel, see [47, Section 2.3], that the matrix
operator H can be conjugated to the flat matrix Schrodinger operator Hy. By first conjugating

‘H1 with the unitary matrix J = % |} _ll:| we obtain the equivalent matrix Schrodinger

Operator
o . 0 L_
Ly =—iJ H1T:= |:—L+ Oi|

0 —a§+1] [ 0 —ZSechz(x)]

=Lo+ W= [aﬁ ~1 0 6sech’(x) 0

Introducing the operator

_ a2 2
D:=[ 0 (—97+ DS

2 N } where S:= Q-3 - Q"' = 8, + tanh(x), (1.35)
=9 L4

one has the conjugation identity (see also [12, Section 3.4])

DLy = LyD. (1.36)
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We then transfer the above identity to the matrix operator H by setting D= JpJT " to
obtain the conjugation identity

DH, = HoD. (1.37)

Moreover, it can be checked directly that Dn = 0 for any generalized elgenfunctlon n e
Ng(Hl) and this implies that DPd = 0, which is equivalent to saying that D= DPq Hence,
by applying the transformation Dto the equation (1.34), we obtain the transformed equation
2 62” 02 ele[
Q1 (¥) + 7@2(‘11) +

i9;Vsre — HoUsre = D ( Qg<®)> . (1.38)

where Vg 1= 73ﬁsrc is the transformed variable. Note that the above equation features the
flat operator Hy on the left. The Duhamel formula for v (¢) at times ¢ > 1 reads

2 672H

t 2 eZts R
Usre (1) = —i f - ”HOD< Q1 (¥) + —Qz(lm + Q3(\IJ)> ds
1

(1.39)

The flat, self-adjoint, matrix operator H has the benefit that the semigroup e 7% can be
represented in terms of the standard Fourier transform by the formula

] ; 2 ; ] . 2 .
o—iHo )(x) /e—n(s +D g ( )ezxsd e+ /ezz(s D55 (£)el ¢ dE e,
(1.40)

where g = (g1, gz)T and e, e, are the standard unit vectors in R2. The profile of Vg (¢) is
given by

faae(t) = 050 (1), (1.41)
Setting

DQ;(¥) =: (G,1,Gj2)! for 1 <j<3,

we have for times ¢ > 1 that

is(243) ___

t
Flfore 1) = 3 /] Gl

ts(é +) eisE - __
+c+c_/ sz 1(€)dse; +c* / fG&l(S)dSél
! ! (1.42)

) e isGE=D ___
+C+‘/] fGll@:)dSéz

—is(E2+1) ___ e isGET+3)
+C+C—/ szz(S)dsez‘f‘C / 7G3,2(5)d5€2-
1 1

The uniform-in-time boundedness in LZ° of the Fourier transform of the profile FT fsm ®)1E&)
is related to recovering the free decay rate for v (¢). However, in view of the critical decay
of the integrand, this requires favorable time oscillations. Observe that the above terms with
time phases e*/5¢ Z‘H), eisE+3) are non-stationary for any s € R which implies that they
have a better decay rate using integration by parts in the variable s. On the other hand, the

+is(E2—

terms with the phases e D are stationary at the points & = 1. Thus, it is important to
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know if the Fourier coefficients 637(:!:1) and EL\z(:tl) vanish. Indeed, this is true due to
the following lemma.

Lemma 1.6 It holds that

Gy1(x1) = Gpo(x1) =0. (1.43)

Proof First, to ease notation, we write

D= i (=D1 — D3) (D1 — D7)
P=3 [(—Dl + D2) (D1 + D2)] : (1.44)
where
Dy = (=% + 1)S? = (=82 + 1)(9, + tanh(x)) (3 + tanh(x)), s

Dy := S’L = (8, + tanh(x))(d, + tanh(x))(—d> — 6sech’(x) + 1).

Since 01D = —Doy and Q3(¥) = —01 Q1 () (c.f. (1.33)), it follows that G3 | = G|, as
functions. Note that

Gs) = % (D1(QW]) + D1(QV3) + 2D 2QW W) + D2(QWT) — D2(Q¥3)) (1.46)
where
(QW?)(x) = /2 sech(x) tanh*(x),
(QWW))(x) = —v/2sech®(x) tanh?(x),
(QW3)(x) = v/2sech’ (x).

By using the trigonometric identity sech”(x) +tanh?(x) = 1, we may simplify the expression
for G3,; into

i\/2
G31(x) = %(Dl (sech(x) — 6sech®(x) + 6sech’(x)) + D (sech(x) — 2 sech? (x))).
By patient direct computation, we find

Fi(x) := Dy (sech(x) — 6sech®(x) + 6 sech®(x))

(1.47)
= 192 sech®(x) — 3456 sech®(x) + 9720 sech’ (x) — 6720 sech® (x)

and

F>(x) := D (sech(x) — 2sech®(x)) = 48 sech® (x) — 264 sech’® (x) + 240 sech” (x).
(1.48)

Moreover, using the identities
(9% sech)(x) = sech(x) — 2sech®(x),
(8% sech) (x) = sech(x) — 20 sech’(x) + 24 sech’ (x),
(3® sech) (x) = sech(x) — 182 sech’(x) + 840 sech®(x) — 720sech’ (x),  (1.49)
(83 sech) (x) = sech(x) — 1640 sech®(x)
+ 23184 sech’ (x) — 60480 sech” (x) + 40320 sech’ (x),
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we obtain

1 1
Fi(o)=—¢ (=82 + 307 — 3% + %) sech(x) = —8(—a§ +1)3(—92) sech(x),
(1.50)

and
1 1
R0 =3 (=82 +287 — %) sech(x) = g(—af + 1)?(=d2)sech(x).  (1.51)

Thus, using the property F1—d2 f] = &2F1 f1(¢) and the fact that

— T &
sech(¢) = \/;sech (7) )

T .
Gai(6) = % (&) + F(®)) = —%(sz — DE2(E? + 1)% sech (%) . (1.52)

we compute that

which implies (1.43) as claimed. m]

Remark 1.7 We determined the identities (1.47)—(1.51) with the aid of the Wolfram
Mathematica software.

The above lemma shows that the localized quadratic resonant terms are well-behaved for the
nonlinear perturbation equation (1.16). The presence of this null structure is potentially a key
ingredient for a perturbative proof of the asymptotic stability of the solitary wave solutions
to the 1D focusing cubic NLS. We end this subsection with the following closing remark.

Remark 1.8 The motivation for analyzing the quadratic nonlinearity in the perturbation equa-
tion (1.16) and for uncovering the null structure for the localized quadratic resonant terms
in Lemma 1.6 is due to the recent work by Liihrmann—Schlag [43], where the authors inves-
tigate the asymptotic stability of kink solutions to the 1D sine-Gordon equation under odd
perturbations. In [43], the authors employ a similar conjugation identity like the one we used
in (1.37) to transform the scalar Schrodinger operator H; := —8)% — 2sech?(x) to the flat
operator Hy := —83 for the perturbation equation. In fact, it is easy to check that one has
the conjugation identity SH; = HpS, where S = d, + tanh(x). Moreover, an analogue of
Lemma 1.6 on the non-resonant property for the localized quadratic resonant terms in the
perturbation equation for the sine-Gordon kink was first obtained in [42, Remark 1.2]. This
remarkable null structure for the sine-Gordon model played a key role in the asymptotic
stability proof in [43]. In [44], the same authors obtained long-time decay estimates for even
perturbation of the soliton of the 1D focusing cubic Klein—Gordon equation. The absence
of the null structure in the nonlinearity of the perturbation equation in the focusing cubic
Klein—Gordon model is a major obstruction to full co-dimension one asymptotic stability
result under even perturbations.

Our short discussion on the effects of the threshold resonance on the quadratic term for
(1.16) suggests that the localized quadratic resonant terms are well-behaved for the pertur-
bation equation in the 1D cubic NLS model. However, note that a full perturbative proof
of the asymptotic stability problem for this model has to encompass the modulation theory
associated to the moving solitary wave, and take into account the long-range (modified)
scattering effects due to the non-localized cubic nonlinearities in the perturbation equation.
We point out that Collot—-Germain [11] recently obtained general such asymptotic stability
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results for solitary waves for 1D nonlinear Schrodinger equations under the assumption that
the linearized matrix Schrodinger operator does not exhibit threshold resonances. See also
[47] for related local asymptotic stability results.

1.5 Organization of the article

The remaining sections of this paper are devoted to the proof of Theorem 1.4. In Sect. 2, we
state a few stationary phase lemmas, which will be heavily utilized in Sections 5 and 6, and we
will also provide an analogue of Theorem 1.4 for the free matrix operator Hy. In Sect. 3, we
employ the symmetric resolvent expansion following the framework in [23], and in Sect. 4,
we carefully extract the leading operators for these resolvent expansions. A characterization
of the threshold resonance is stated in Lemma 4.5 under the spectral assumptions (A1)—(A6).
Then, in Sect.5, we prove dispersive estimates for the evolution operator ¢//* in the low
energy regime. The approach taken in Sect.5 largely follows the techniques employed in
[20] for one-dimensional Dirac operators. In Sect. 6, we prove dispersive estimates for the
remaining energy regimes and finish the proof of Theorem 1.4.

1.6 Notation
For any f=01 T, 8= (g1.8)" € LAR) x L2(R), we use the inner product
(f.8) :=/ g dx=/ (fig1 + f2g2) dx, where f*:=(fi, ).  (1.53)
R R

The Schwartz space is denoted by S(R) and we use the weighted L>-spaces

Xo = (x)OL*®R) x (x) L *®R), [ flx, == 1(x)° fll 2@ x12z)» Where o € R.

(1.54)
Note that for any o > B > 0, one has the continuous inclusions
Xo C Xp C Xo=L*R) x L*(R) C X_p C X, (1.55)
and the duality X} = X_,. Our convention for the Fourier transform is
A 1 . - 1 :
FIF1E) = f&) = —/ e fydx, FULI0) = f(xo) = —f e'® f(&)dE.
S16) = fE& N i S S N f(&)dg

We denote by C > 0 an absolute constant whose value is allowed to change from line to line.
In order to indicate that the constant depends on a parameter, say 6, we will use the notation
Cy or C(0). For non-negative X, Y we write X < Y if X < CY. We use the Japanese bracket

notation (x) = (1 + x2)% for x € R. The standard tensors on R? are denoted by

1 0 10 00
€1=[o]a ég:[l], £11=£1€1T:[00], £22=g2g2T:[0 1:|. (1.56)

Acknowledgments. The author would like to thank his Ph.D. advisor Jonas Liihrmann for sug-
gesting the problem and patiently checking the manuscript. The author is grateful to Andrew
Comech, Wilhelm Schlag, Gigliola Staffilani, and Ebru Toprak for helpful discussions.
Data availability. Data sharing is not applicable to this article as no datasets were generated
or analysed during the current study.
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2 Free matrix Schrodinger estimates

In this section, we derive dispersive estimates for the free evolution semigroup /70, We
recall that the free matrix Schodinger operator

—-2+u 0
H0_|: 0 82—;/.:|’

X

has a purely continuous spectrum
spec(Ho) = 0ac(Ho) = (=00, —u] U [, 00),
and the resolvent operator of H is given by

G _[RoG—mw 0
(Fo =) —[ 0 —Ro(—h—p)

where Ry is the resolvent operator for the one-dimensional Laplacian, with an integral kernel
given by

] ’ A€ (C\(—OO, _M]U[u/voo)! (21)

—el¢lx—yl

Ro(cH(x,y) i= (=8> = ¢H 7w, ) = T Cy, 2.2)

where C is the upper half-plane. We obtain from the scalar resolvent theory due to Agmon
[1] that the limiting resolvent operators

(Ho— (x £i0)) ™' = lim (o — (1 + ie))”!, xe (=00, —p) U (1, 0),

are well defined as operators from X, — X_, forany o > % Here, the matrix operator Ho

is self-adjoint and Stone’s formula applies:

1 ; _ _

— / e [(Ho — (A +i0) 7" = (Ho — 0. — i0)) ‘] dr.  (23)
[A|=p

2mi

ezt'Ho —

Let us focus on the spectrum on the positive semi-axis [i, 00), as the negative part can be
treated using the symmetric properties of M (c.f. Remark 3.3). By invoking the change of
variables A > A = u + z% with 0 < z < o0, the kernel of ¢//*0 Pt is then given by

eitHo Ps+ (.X, y)
eitp.

= / [ (Ho— e+ 2 +i0) ! = (Ho— (u+ 2 =i0) ' vz
L Jo

Here, the notation P;"™ means that we restrict the free evolution e""0 to the positive semi-axis
in the integral representation (2.3). By (2.1) and (2.2), we have

iie:tiz\x—y\
e — — 0
_ 2
(Ho—(u+ 2 £i0) ' @wy=| ©  _ vZa | 0<z<oo (24)
24/ 2242
and thus,
. itp I
eltHOPS+(X, y) = 627.[ /ReztzZezz\x—ylg“ dz. 2.5)

Note that the above integral is to be understood in the principal value sense, due to the pole in
(2.4). To this end, we recall the following standard stationary phase results. The first lemma
is a direct consequence of the classic van der Corput lemma.
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Lemma 2.1 Letr € R, and let ¥ (2) be a compactly supported smooth function. Then for any
7] >0,

. . 1
‘ fR ST (2 da| < ClI 20 N 1 - 2.6)

Moreover, if ¥ (2) is supported away from zero, then for all |t| > O,

_3
<Clt|"2

(02 +ird1(¥) HU(R) : @7

/ ei112+izrw(z) dZ
R

Proof The bound (2.6) follows from the van der Corput lemma (see e.g. [57, VIII Proposi-
tion 2]) by observing that the phase ¢(z) = z> + < satisfies |8§¢(z)| = 2 > 0. The last
bound follows by first integrating by parts

itz? izr 1 itz? izr ¢ (Z)
dz = —— a —|d
/ e’ e Y(z)dz 21 / e e |:e 2 4

- I/eitzz+izr[ir+az]|:wj|dz,
R

2it z

and then invoking the van der Corput lemma. O

We will also need the following sharper stationary phase lemma, which may be found in
many text on oscillatory integrals with a Fresnel phase.

Lemma 2.2 Let x (z) be a smooth, non-negative, even cut-off function such that x (z) = 1 for
ze[—1,1]and x(z) =0for|z| = 2. Forr,t € R, define

G.(r) ::/e”zz*"”x(zz) dz. 2.8)
R

Then there exists C = C(||X ) ||W4«'(R)) > 0 such that for any r € R and for any |t| > 0,

T 2 3
‘G,(r) - ‘/_ T < Ol ). 2.9)
—1t
Moreover, if r1, r2 > 0, then
2 2
T _3
‘Gr(rl-i-rz)— Jge "3 e < Clt|T2(ry)(r2). (2.10)
Proof First, the phase ¢ (z) := z> + % has a critical point at z, = —5; € R with ¢”(z) =

2 > 0. We use Taylor expansion of ¢(z) and shift the integral by the change of variables
Z > z+ Z" to obtain

G:(r) Z/ei’¢(z)x(zz)dz:/eit¢(z*)+¢”(z*)(z—z*)zx(Zz)dz
R R

2

= iw / ¢y ((z + 2)?) dz. (2.11)
R
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Using the Fourier transform of the free Schrodinger group and the Plancherel’s identity, we
have

/e”zzx((z+z*)2) dz
R
-5 [T R e A @ ds

= _72/ Foot [x((z+z*)2)](5)d«§

it )fﬁg [x((z—i-z*)z)] (&) de

5,
2w
\/_/TX(Z ) + \/I _l 4r — 1) lZ*E]:[X ((Z + Z*)Z)] (E) d%‘

2
Using the bound |¢' W 1| < C|t|~"£2 and the Holder’s inequality, we bound the remainder

term by

—ig _ l)eiz*éf[x ((z+z)%)] &) dg

-3 2 2 d
‘m [ <cf /R@ Flx ()] de

_3 _3
< Cl 2 X @) llwsagy < Clel72.

Next, we use the fact that |1 — x (z2)| < C|z| forall z € R and for some C > 0 large enough
so that

11— x| < Clzal < Cle|™ (r). (2.12)
Then (2.9) follows (2.11)—(2.12). Finally, we use the estimate (2.9) to obtain
V21 ;1=r)? ) 3 B
Gi(ri +1) — e < Cltl T2 — ) < Clel ) ).

—2it
Thus, by the triangle inequality and the bound

2 2 2 2
i (r|—r2)2 .1 .1y l _,Vl

e ar — e_’ 4t e_’ 4

o 1} < CltI™ (r1) (),

we conclude (2.10). m]

Next, we prove the analogue of Theorem 1.4 for the free evolution. We emphasize that the free
matrix Schrodinger operator H has threshold resonances Hoe; = ue; and Hoe, = —pie,.

Proposition 2.3 For any i = (uy, uz) € S(R) x S(R) and for any |t| > 1, we have

itHo p+3; < .
S L L 1ASY3S (2.13)
and
-1 (itHo p+ _ 10\ ~ < 143 R
[ (o rr — FO) ], SR Ly, (2.14)
where
eitm 2 )2
Fto(x, y) = fe_’%gle_’%gir. (2.15)
—4mit
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Proof We first begin by splitting the evolution operator into low and high energy parts*:

Mo p(x, y) = ey (Ho — D) P (x, y) 4+ €™M0 (1 — x (Ho — D)) P (x, y)

eitﬂ- it22+iz|x—y
- =y (72
elth .
g \/Reltzz+lz‘x—y|(1 _ X(Zz)) dzg“’

where x (z) is a standard smooth, even, non-negative cut-off function satisfying x(z) = 1
for |z] < 1 and x(z) = 0O for |z]| > 2.
In the high energy part in (2.16), following the ideas from [26, 31], we prove the estimate

< minf|e 72, 772 () (). 2.17)

/Remzﬂ'z'*"""(l — x(@)dz

For a more rigorous treatment, we instead use a truncated cutoff x; (z) = (1—x (z*)x(z/L),
where L > 1, and we prove the uniform estimate

sup f Iy () dz| < Cmingle 3, 1073 (1) ), 2.18)
R

L>1

with a constant C > 0 independent of L. This estimate will imply (2.17). Indeed for any
[t] > 0, by the Plancherel’s identity, we have

L2
/eltz +szL(Z)dZ
R

sup
aeR

= sup
aeR

/R FI[eitz2+iaz]($)ﬂXL(Z)](€)dé‘ <Clt _%HHXL]”L;(R)'

. T B 1
Here, we use that the Fourier transform of the tempered distribution e'/> %% has |¢| ™2 decay.
Using the definition of yxr, the scaling properties of the Fourier transform, and Young’s
convolution inequality, we obtain

”ﬂXL]”Lé(]R) < IIF1x (Z/L)]“Lé(R) + IIF1x (Z/L)]”Lé(]]{)”}—[)( (Zz)]||Lé(R) 2.19)
< CILANLE) @y = CIFIE 1oy = Clxllwei S 1

For the high-energy weighted dispersive estimate, we use integration by parts to find that
/ e”zzaz (e’thxfy‘zfl)(L(z)) dz|.
R

When the derivative falls onto ¢'2* I, the weights (x)(y) appear, whereas the term z ! x.(z)
is smooth since y is compactly supported away from the interval [—1, 1]. By following the

<Cle|™!

[ 72 7 J—
/e”*’ ey (2)dz
R

previous argument, we conclude the O(|t|_% (x)(y)) bound for (2.18) in the high-energy
regime.

Next we turn to the low-energy estimates. For the low-energy unweighted estimate, we
employ Lemma 2.1 to obtain

L2, , _1 _1
/Re’” HE Iy () dz| < Cle| 7219 x )l 1wy < Clel 72 (2.20)

4 Symbols like x (Ho — wl) are only used in a formal way to represent the cut-off X(zz) in the z-integrals,
where they arise.
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On the other hand, for the low-energy weighted estimate, we observe that by Lemma 2.2,

V2 2 2

s X 2y 3
—e e | < Clt|T2{x)(y).
—2it

2,
/ Pz +tz|x—y\X(ZZ) dz —
R

Hence, using that e;; = e, ¢, we arrive at the kernel estimate

ey (Ho — ) P (x. ) — F2(x, )| = Clel =3 (), (221

where F,O is given by (2.15). Thus, by combining the high energy bounds (2.17) and the low
energy bounds (2.20)—(2.21) we conclude the dispersive estimates (2.13) and (2.14). O

3 Symmetric resolvent identity

By assumption (A1), we can factorize the matrix potential

V = —o3vv = vV, 3.1

V] = —0o3V = —a—b and v = v = ab
L=7%30=1p 4 2=V " pal

with

where

1 1
a:= E(‘/V‘ F Va4V — vz) and b= 5(\/vl FVa— Vi — vz).
It will be helpful in later sections to keep in mind that
Vi =a*+b* V,=2ab. 3.2)

We denote the resolvent of H = Ho + Vby (H — z)~! for z € p(H). The resolvent identity
states that

H-2'=(I+Ho—2"V) ' (Ho—2~", ¥ze p(Ho) N p(H).

This identity was used in [23] to establish that there is a limiting absorption principle for the
resolvent of H on the semi-axes (—oo, —u) U (u, 0o) in the weighted L2-spaces Xo > X 5,
o> % Note that the lemma below applies in any spatial dimension.

Lemma 3.1 ([23, Lemma 4-Corollary 6], see also the proof in [40, Lemma 6.8]) Suppose
assumptions (Al)—(A4) hold. Then, the following holds.

1. Foro > %, and |A| > w, the operator
(Ho— (o £i0)"'V: Xy > X, (3.3)

is compact and I + (Ho e == 0))_11/ is boundedly invertible on X _.
2. Foro > % and Lo > | arbitrary, we have

< . (3.4)

Xo—>X o

sup |)»|% H (H == is))il‘
[X|=X0,e>0
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3. For |A| > u, define
(H—(.+i0) " = (1 +(Ho— (v % iO))_IV)_l(Ho —0£i0)". (33
Then, as € \( 0,

|t = ien™ = (- Gxi0) | —0 (3.6)

Xo—X_o

forany o > %

We recall the following spectral representation of e/’ from [23].

Lemma 3.2 ([23, Lemma 12]) Under assumptions (Al)—(A4), there is the representation

"’H_L ith _ =1 3 .
T i i [(H (A +i0)" — (K- —i0) ]dk+2e P

3.7

where the sum runs over the entire discrete spectrum and P, is the Riesz projection cor-
responding to the eigenvalue zj. The formula (3.7) and the convergence of the integral are
to be understood in the sense that if ¢, € [W*2(R) x W22(R)] N [(x)"17L2(R) x
()71 L2(R)), then

itH L/‘ i 3 N L AR,
(@M, y) = lim — MWe ([ = 6-+i0) 7" = (1= 2~i0)) ]¢,w>£i;8)

+Z ttHP

forallt € R.

We write P; = P;" + P, where the signs = refer to the positive and negative halves of
the essential spectrum (—oo, —u] U [, 00). In the following sections, we will focus on the
analysis on the positive semi-axis part of the essential spectrum. We can treat the negative
semi-axis of the essential spectrum by taking advantage of the symmetry properties of H,
see Remark 3.3 below. In view of the spectral representation of ¢/'* from Lemma 3.2, we
use the change of variables A > A = u + z2 with 0 < z < 00 to write

itpn
: e
eltHP+

i = -
— / et z[(H—(u+z2+zO)) ' H=(u+ 22 —i0)) ] dz
0
For the upcoming dispersive estimates, it is convenient to first open up the domain of
integration for the above integral to the entire real line by means of analytic continuation
for the perturbed resolvent. Following the framework of Sect.5 in [23], we introduce the
operator

R(z) == (H— (u+ 2> +i0)~", forz >0,

(3.9)
R@)=MH-(u+722—i0) ' =H—-(n+2z2+i0)~", forz <O,

so that

. itp .
JMpr = % / ¢? 7R (2) dz. (3.10)
R
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Here, the integral should be understood in the principal value sense due to the pole associated
with the resolvent R(z) at the origin. We also set

Ro(z) = (Ho — (u + 2> +i0)~!, forz > 0,

3.11)
Ro(2) := (Ho — (n + 22 +i0)~1, forz <O0.
In particular, with this definition, we have by (2.4) for all z € R \ {0} that
jeizh—yl 0
e 2
Ro(@)(x,y) = (Ho — (u+ 2> +i0) ' (x,y) = g e |- (12)
24/22+2p
As in [23], we employ the symmetric resolvent identity
R(z) = Ro(2) — Ro(@)v1(M(2)) ' 12Ro(2), (3.13)
where
M(z) =14+ vnRo(z)vi, ze€R\{0}. (3.14)
By inserting the above identity, one checks that
. it . itp . _
ey = [ @ Ra@a = [ Ra@n (M) eaRo(o) d
i JRr Tt JR
(3.15)

In the next section, we will investigate the invertibility of the matrix operator M (z) near the
origin. We give the following remark for the evolution operator in the negative part of the
essential spectrum.

Remark 3.3 Using the identities
‘H=—o01Ho1, V= —01Voi, (3.16)
we infer that
dMps =o' ™Mplo. (3.17)

Furthermore, since these identities also hold for Hy, the analogue of Proposition 2.3 for the

weighted estimate of the free evolution e//*0 P is given by

[t (eMops = F)a | sci Wiy, =1 GI8)
where
~ 67”;" - x2 -y2
Fl(x,y) = e, e . (3.19)
! Vazit - 7

Note that 1:";0 =0 FE,cr].
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4 Laurent expansion of the resolvent near the threshold

In this section we study asymptotic expansions of the perturbed resolvent operators near
the thresholds of the essential spectrum, closely following the framework of the seminal
paper [36] for the scalar Schrodinger operators H = —8)% + V on the real line. As specified
in the introduction, we are interested in the irregular case, where the matrix Schrodinger
operator H exhibits a threshold resonance. See Definition 4.4 for a precise definition. This
means that there exist globally bounded non-trivial solutions of HW = 4 W. In this context,
we mention that the threshold regularity can also be characterized by the scattering theory
introduced by [9]; see Lemma 5.20 of [40]. We begin with the terminology used in [52].

Definition 4.1 (Absolutely bounded operators) We say an operator A : L*(R) x L2(R) —
L*(R) x L?(R) with an integral kernel A(x, y) € C?*? is absolutely bounded if the operator
with the kernel |A(x, y)| := (JA(x, ¥)i |)l.2,j.:1 € R?*Z is bounded from L?(R) x L2(R) —
L?*R) x L%(R). In particular, Hilbert-Schmidt and finite rank operators are absolutely
bounded.

To investigate the asymptotic expansions of the operator M (z) (c.f. (3.14)), we start with the
following Taylor expansions of the free resolvent around the origin z = 0.

Lemma4.2 Letzg := min{l, /2u}. Forany 0 < |z| < zo, we have the following expansion

Ro(2)(x,y) = 2Lz€“ +Go(x, y) +2G1(x, y) + E(2)(x, y) 4.1
where
_ =yl 0
%aywz[ o _fﬁwﬂ}, 4.2)
221
gmxyy=[”3¥0] @3)
B 0 o}’ '

and E(z) is an error term which satisfies the estimate
2 IS E@) 0, | < Cp l2P(0) T (p)* T, vike=0,1,2, (4.4)
for any |z| < zp.

Proof Recall from (3.12) that

jelzlx=yl

0
2z
RO(Z)(-X: )’) = O _e*\/ZZ‘FZM‘X*}"
24/ 2242
For 0 < |z| < 1, we have the Laurent expansion
A e T O e U
=—+ + —z+ri(z, |x =y, 4.5)

2z T2z 2 4i

where the remainder term is

i 3 Gzlx =y 1 ey
M@l =YD= R =D R =y = e S — )% ds.
. 0
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By direct computation, for any x, y € R and for any |z| < 1, we have the estimate
l2l* 18 iz 1 = yDI S [P )**, k=0.1.2. (4.6)
In the lower component of the resolvent kernel, for |z| < 2, we have the Taylor expansion
e NPR2lx=yl o=/ Zulx—y|
) 22 +2u T 221

where we denote the remainder term by

+r2(z, [x =y, 4.7

e~V 2 +2ulx—y
202 +2u

2 1
Z
r(z, [x—yl) == 5/0 (1 —S)(afgu)(sz, [x—yDds, gu(z [x—y]):=—

Using the fact that for any n € R, (n) := (1 + 172)%, one has the bounds
s im ™ < et ™R k) < Ce)' KL k=0,1,2,...,
it follows that all derivatives of /z2 + 2 and 2(z% + 2#)_% are uniformly bounded in z up

to a constant depending only on p and the number of derivatives. Therefore, by the Leibniz
formula, we have the estimate

sup 0% g, (z. [x = yD)| = Cunte) (), k=0,1,....4,
zeR
which in turn implies that

k
1z

0o v = 30| S P @XM, k=0,1,2, (48)

Thus, by using (4.6) and (4.8), the error term given by

G x—=yD 0
Fae» "[ 0 nG |x—y|>] @9

satisfies (4.4) as claimed. ]

We insert the above asymptotic expansion into the operator M(z) = I + v Ro(z)v;. First,
we have the transfer operator T on L2(R) x L?(R) with a kernel given by

T(x,y) =14 v2(x)Go(x, y)vi(y). (4.10)
Note that T is self-adjoint because
(12Gov1)* = viGov2 = (—v03)Gov = vGo(—0o3v) = 12GoV1.

Since the potentials v; and v, have exponential decay by assumption (A3), it follows that
v2Gov is a Hilbert-Schmidt operator on L%(R) x L2(R). Hence, T isa compact perturbation
of the identity, and therefore the dimension of ker(7') is finite by the Fredholm alternative.
Recalling the formulas for v; and v, from (3.1), we have the identity

e v :—[Z 8] [g f)] :—[Z] [ab]. (4.11)

Next, we define the orthogonal projection onto the span of the vector (a, b)) € L*(R) x
L>(R) by

P |:f1] o = Jr@ f1(3) 4+ b(y) f2(y)) dy [a(x)]
Ll a2 + b2l 11 gy b(x)
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= T 7, |a)
_”Wmum«mm’f>L@J' (4.12)

Note that we use the identity (3.2) above. From (3.14), the contribution of the singular term
217 e;; of Ro(z) to M(z) will be associated to the following integral operator with the kernel

i —i |:a(x)

5 @enui() = 5= b(x)] [a(y) b(Y)] =: g()P(x, y), (4.13)

where
i
) == ——||V] . 4.14
8(2) 2 Vi1 ) (4.14)
Lastly, we denote the orthogonal projection to the complement of the span of (a, b) T by
Q:=1-P. (4.15)
In summary, we have the following proposition.

Proposition 4.3 Suppose |a(x)|, |b(x)| < (x)7>7, and let zo := min{l, /21}. Then, for
any 0 < |z| < zo, we have

M(z) =8P+ T + zM; + Ma(z), (4.16)
where M| and M (z) are Hilbert-Schmidt operators on L%(R) x LX(R) defined by

lx — y1? Ta(x)
7r [Mmhmwme (4.17)

Ma(2)(x, y) = v2(0)E@)(x, y)vi(y), (4.18)

with G| and E(z) defined in Lemma 4.2. Moreover, the error term M(z) and its derivatives
satisfy the absolute bound

Mi(x,y) = v2(x)G1(x, Yvi(y) =

Sz k=0,1,2, (4.19)

k ||k
z 0o Mo(z
2] H' e Ma(2)] L2(R)x L2(R)— L2(R)x L2(R)

forall |z| < zo.

Proof The identity on the right of (4.17) follows from (4.11). We recall that operators of the
following type

U ) (x) () w (y)

are Hilbert-Schmidt operators on L?(R) whenever U and W are bounded potentials with

polynomial decay |U (x)|, |[W(x)| < (x)_k_%_, for k € N. Hence, under the assumptions
on a(x) and b(x), and using the fact that

1G1 e, WIS Ix = yI2 < (0202

it follows that M is Hilbert-Schmidt. The same argument can be applied to the error term
M (z) and its derivatives using the remainder estimates in (4.4) and we are done. O

The next definition characterizes the regularity of the endpoint u of the essential spectrum.

Definition 4.4 1. We say that the threshold w is a regular point of the spectrum of H
provided that the operator QT Q is invertible on the subspace O(L%(R) x L2(R)).
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2. Suppose w is not a regular point. Let S} be the Riesz projection onto the kernel of QT Q,
and we define Dy = (Q(T + S1)0)~!. Note that QD Q is an absolutely bounded
operator on L?*(R) x L%*(R). The proof for this follows from Lemma 8 of [52] with
minor changes. See also [24, Lemma 2.7].

Note that since we impose symmetry assumptions on the potential V, the thresholds p and
—p are either both regular or irregular. The invertibility of QT Q is related to the absence of
distributional L>®°(R) x L% (R) solutions to H¥ = uW. The following lemma establishes
the equivalent definitions. See [36, Lemma 5.4] for the analogue in the scalar case.

Lemma 4.5 Suppose assumptions (Al)—(A5) hold. Then the following holds.
1. Let ® € S1(L*(R) x L2(R)) \ {O}. If & = (W, W) " is defined by

W(x) := —Golvi PI(x) + coe,, (4.20)
with
a,b)T, Td
co = W (421
then
¢ =00, (4.22)

and ¥V € L®(R) x L*°(R) is a distributional solution to
HY = p\. 4.23)

Furthermore, if additionally assumption (A6) holds, i.e.,

Qi_zwm/‘h@WW@Wﬂw+wUme =0, (4.24)

then
lim @) =co Fer, (4.25)
where
%(x(a(x) b(x)', dx)) = %/Rx(a(x)@](x)—I—b(x)CDz(x))dx. (4.26)
In particular,

W ¢ L2(R). (4.27)

More precisely, the constants cy and c1 cannot both be zero.
2. Conversely, suppose there exists ¥ € L®(R) x L®(R) satisfying (4.23) in the
distributional sense. Then

® =¥ e S (L2(R) x L*2(R)). (4.28)

3. Suppose assumptions (Al)—(A6) hold. Then, dim S (L%(R) x L2(R)) < 1. In the case
dim S (L*(R) x L2(R)) = 1, ie., S{(L*(R) x L*(R)) = span{®} for some ® =
(P1, Do) T € L2(R) x L2(R)\{0}, we have the following identities

SITPTS) = |eol* @3, )S15 (4.29)

L2(R)x L2(R) ” Vl “LI(R
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PTSITP =|col’ P13 5y 12 1 Vi1 P (4.30)

SiM S = —2ile|*|| @] St (4.31)

)
L2(R)x L2(R)

where the constants co and cy are given by (4.21) and (4.26) respectively for this ®.

Proof (Proofof(1))Let® = (b1, ®») € S1(L2(R)x L2(R)) with & # 0. Since S; (L%(R) x
Lz(R)) is a subspace of Q(L2(]R) X L2(]R)), we have Q@ = &. Using the fact that ® €
ker(QT Q) and the definition of T (c.f (4.10)), we obtain

0=0TQd = —-P)T® =+ vrGyv))d — PTD. (4.32)
Since (a, b)" = vae, and P is the orthogonal projection onto the span of (a, b) T, we have

BT, T
pro = @D T T ome, 4.33)
Vil gy

with co defined in (4.21). It follows that
D = —vGov1 P + covze; = v2(—Gov1 P + coe;) = 2.

This proves (4.22). Next, we show (4.23). Denoting ® = (P, @) " and using the definition
of Gy (c.f. (4.2)), we have

(Ho — u1)Go(v1 @) = v,
ie.,

(—32) /R y( —a)®1(y) — b)) dy = —a(x) Py (x) — b(x)P2(x),

92 -2 = e ®5(y)) dy = b(x)d ®
@ — M)/RW( MP1(y) +a()P2(y)) dy = b(x)P1(x) + a(x) P2 (x).

This equation is well-defined, since v|® € (x)"'"L'(R) x (x)~'~L'(R). Using (4.20),
(4.22), and (Hy — 1) (coe;) = 0, we have

(Ho — uDV = (Hp — u)[=Go(v1®) + coey] = —v1 @ = —vjn¥ = =V,

which implies (4.23). We now show that W = (W1, W) T is in L®¥(R) x L*®(R). Noting
that

Ui (x) =co + % fR Ix = yl(a(P1(y) + b()P2(y)) dy,
by employing the orthogonality condition ((a, b) ", ®) = 0, we have
B0 =0+ 3 [ 0r =31 = D E0I®I0) +50I02) 0.
Using ||x — y| — |x|| < |yl and |a(y)| + [b(y)| < (y)~2, we have the uniform bound

1
sup [V (x)] < |eol + 3 / [yHa(MP1(y) + b P2 dy S 1Pl 2@)x2®) S 1-

xeR

Since (a,b)" and ® are in L2(R) x L?(R), we have the uniform bound on W, by the
Cauchy-Schwarz inequality
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sup W2 (x)] 5élb(y)¢1(y)+a(y)¢z(y)ldy

xeR

< bl ®illi2®) + lall 2@ P2l 2@y S 1-

Thus, we have shown that ¥ = (¥, U»)T € L®°(R) x L®(R). Finally, we now assume
c2.+ = 0 and show that W cannot be in L>(R)\{0} by a Volterra argument. Using
{(a,b)T,®) =0, forx >0 large, we write

Wi(x)=co—c1 + / (v — ) (a(MP1(y) + b(»)P2(y)) dy. (4.34)

Using ¢ + = 0, we insert —e V24¥¢, o = 0 to write
, -+

1 oo !
v =57 | (e7 VRO _ o=VZRED) (v () Wy () + Vi (1) W2 () dy.
(4.35)
Similarly, for x < 0, using e\/Z’Txcz,_ = 0, we have
Vi(x) =co+cr+ / x = Vi)Y () + Va(»)¥2(y)) dy, (4.36)
—00
1 X
N7, — —V2ux=y) _ ,~/2u(y—x) N N7 .
2(x) NI /_oo (e e )(V2 ) W1 (») + Vi(y)Wa(y)) dy

(4.37)

Suppose now that cp = ¢; = 0. Owing to the exponential decay of V;, V, by assumption
(A3), we obtain from (4.34) and (4.34) a homogeneous Volterra equation for ¥ = (¥, W) T
satisfying

‘I/(x)zf K(x, y)¥(y)dy, x>0,
R

where |K (x, y)| < e77 D! 1y~ forsome 0 < y < B, which is a quasi-nilpotent operator. By
performing a standard contraction on L*>° (M, co), with M > 0 sufficiently large, one arrives
at a solution W(x) = O for all x > M. By the uniqueness theorem for ODEs, this implies
that ¥ = 0 on R. Then, by the relation ® = v, and the fact that v; is a positive matrix,
one finds that & = 0, which contradicts the hypothesis ® 7 0. Thus, the conclusion is that
co and ¢ cannot be both zero. In particular, it follows from (4.34) and (4.36) that

lim W¥i(x) =cyFci.
x— %00

Since either co + ¢1 # 0 or co — ¢ # 0, we conclude that ¥y ¢ L2(R).
Proof of (2). Define ® = v, W. Since W is a distributional solution to (4.23), using
V = vjvy, we have

\Ili/ =ad| + bd,,

Ho — uH¥V =019 <—
(o= pD¥ = {wg—zﬂw2=b<b1+a¢2.

Let n € C3°(R) be a non-negative function satisfying n(x) = 1 for |x| < 1 and n(x) = 0 for
|x] > 2. Using the first equation from above and integrating by parts, we have for any ¢ > 0,
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‘fR(a(y)d>1(y)+b(y)<1>2(y))n(8y)dy‘ = ‘/ ‘l’i/(y)n(sy)dy‘

= ‘/ Wy (y)e’n” (ey) dy
R

< el W1 o) / 1" (o) dx.

By taking the limit ¢ — 0 and using the Lebesgue dominated convergence theorem, we find
that ((a, b) ", ®) = 0. Thus, P® = 0,i.e. ® € Q(L*(R) x L*(R)). Following this fact and
using ® = v, W, we have

QT Q® = OT® = QI + 12Gov)® = Qua (W + Go(WW)). (4.38)

Now setu := W+Go(VW). Since u = (u;, up) " is a distributional solution of (Ho— ul)u =
0, 1.e.

—u] =0,
uy —2uuy =0,
we find that
ui(x) = k1 + Kk2x,
Ur (x) = k3e VY 4y X
forsomek; € C,i € {1, ..., 4}. By similar arguments from Item (1), we obtain that Go (V) €

L®(R) x L*®(R). Since ¥ € L*®°(R) x L*®(R), it follows that u € L*°(R) x L*(R),
which implies that ko = x3 = x4 = 0. Thus, we have u(x) = («1, 07 = Kk1e;. Since
Qure; = 0, we conclude from (4.38) using the definition of u(x) that QT Q® = 0, whence
@ e S (L2(R) x LE(R)).

Proof of (3). Suppose there are two linearly independent &, des H(LER) x L2(R)). As
in the proof of Item (1), for x > 0, we have

Wi(x) = co — 1 + / (v = (Vi)W () + Va() ¥ (3) .

Wy (x) = ¢ VEO=N _ oV (Vo ()W (y) + Vi (7)) Wa(y)) dy,

1
221 Jx

and
Wy (x) =do — dy + f v =) (Vi)W (») + Vo)W () dy,

Ty (x) = e VIO=D _ o=V (v ()T (y) + Vi (1) Ta(y)) dy,

i,

where dy and d; are constants defined from @& which are analogous to ¢o and cj. There is
some constant 6 € C such that

co—c1 = —0(dy — dy),

which imply the Volterra integral equation

w00, [y 0 _ Wi (y) + 091 ()
[sz%} = [ 0 e e YO s (3) + 0200 |

forany x > 0. By the same Volterra equation argument used in Item (1), we obtain ¥ +6 U=
0, which implies that ® +6® = 0, but this contradicts that ® and ® are linearly independent.
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Thus, we have shown that dim §; (L2(R) x L2(R)) < 1. Next, we prove (4.29)—(4.31). Write

S = ||P ||Z22XL2 (P, -)®. By (4.33) and the fact that P, S1, and T are self-adjoint, we compute

for any u € L%2(R) x L*(R) that

_ _ a
SITPTSiu =@ 3 (0 u)SiTPT® =@ ,,c0(®,u)SiT [b]

-2
= leolP 11,3, 2 IVill 1 ey Siu-
A similar computation reveals
-2
PTS\TPu=lcol* |91 3, 2 IVill L1 gy Pu.
For the third identity (4.31), in view of (4.11) and (4.17), we write

ilx — y|? [am

Mi(x,y) = 2(0)G1(x, i) = — b(x)] [a(y) b(»)].

By using the orthogonality

(@, (a,b)") = / (®1(x)a(x) + P2(x)b(x)) dx = 0,
R
and the identity
lx — yI* = x> + y* — 2xy,

we have
[S1MS11(x, y) =/Rz Sp(x, x)My(x1, y1)S1(y1, y) dxy dy

_i %) / < Rk |:a(x1)i| b o )d d P*(y)
—47””%2“2 - =l et | [a(yD) bGYD] P (1) | dxy y17”q>”%2“2

= ([ oo [500 e ) ([ 3 laov pov]e0nan ) 1912, 251, )
= =2ilc1 P @17, 2518, ).

This proves (4.31) and we are done. O

Remark 4.6 By direct computation, the conjugation identity o3 H = H*o3 and the identity

v] = —o3vy imply that the vector ¥ := o3 W solves
HY = pu, (4.39)
where W is the distribution solution to (4.23). Moreover, one has the identities
o3 = Go(a®) + (c0, 0)T, © =W =—v/ ¥ (4.40)
Similarly, using the conjugation identity o1’'H = —Ho, we note that the vector ¥_ = o1 ¥
solves the system
HY_ = —pWv_. 4.41)

Following the preceding discussion, we assume the threshold pu is irregular and we derive
an expansion for the inverse operator M (z)~! on a small punctured disk near the origin. We
employ the inversion lemma due to Jensen and Nenciu [36, Lemma 2.1].

@ Springer



Dispersive estimates for 1D matrix... Page 29 of 54 206

Lemma 4.7 Let H be a Hilbert space, let A be a closed operator and S a projection. Suppose
A + S has a bounded inverse. Then A has a bounded inverse if and only if

B=S—-S(A+9$7's
has a bounded inverse in SH, and in this case,
T=A+8)"'+A+9ISBTIS(A+ 5!, onH.
We will now state the inverse operator of M (z) away from z = 0.

Proposition 4.8 Suppose assumptions (A1)~ (A6) hold. Let S1(L*(R) x L%(R)) = span({®})
for some ® = (&, Dy)T # 0. Letk : =) v | L1 (), and let d be the constant defined
by

d == =2i(lcol* + |1 D@15 > # 0. (4.42)

with co and c1 defined by (4.21) and (4.26) respectively for this ®. Then, there exists a positive
radius zo > 0 such that for all 0 < |z| < zo, M (z) is invertible on L2(R) x L2(R) and

1/1 1 1 1 o177, 21Vl
M@ = i (ES] ~ —PTS) ~ ;SlTP) + (K + Lzl E® ) p

di?
+0A0(2)Q + 20A1(2) + 2A2(2) Q + 22 A3(2), (4.43)

where A j(z) are absolutely bounded operators on L?(R) x L*(R) satisfying the improved
bounds

XA Dl 2@y x 2@ - 2@ 2@ S 1 k=0,1,2, j=0,1,2,3, (444
uniformly in 7 for |z| < zo.

Proof Throughout the proof, we will denote by £;(z), for 0 < j < 3, as error terms that
satisfy the absolute bound

<lzl, Yk=0,1,2, Ylz| < z0,

k|| ak
z 0:Ei(z ‘
l2I H' €@ L2(R)x L2(R)—> L2(R)x L2(R) "

for some zg > 0 small. This convenient notation will be useful in invoking Neumann series
inversion for small values of z. Since we only need the expansion of M(z)~! up to a few
powers of z, the exact expressions of £;(z) are insignificant and we allow it to vary from line
to line. By Proposition 4.3, we rewrite M (z) by setting

M) = %M(z) =P+ E(T + M| + Ma(2), (4.45)
where M (z) is the error term in Proposition 4.3. Using I = P + Q, we write
M@ +0=1+ f(r + M) + Mo (2)), (4.46)
and by choosing z small enough, a Neumann series expansion yields the inverse operator

M)+ Q17" =) (=" ( T+zM1+Mz(z))) onL*(R) x L*(R). (4.47)

n>0

We collect the terms of power order up to 2 to obtain

N 1 1
M@+ 01" =1—-T -7 (—Ml - —2T2> + &(2). (4.48)
K K K
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Note that zM>(z) is of the form £5(z). Recall by Lemma 4.7 that the operator M (z) is
invertible on L2(R) x L%(R) if and only if the operator

Bi():=0Q - Q[Mz) +0] 0 (4.49)
is invertible on the subspace 0L? = Q(L2(R) x L%(R)). Using (4.48), we find that

Z 2 (1 1 2
Bi(z) = ;QTQ +z <;QM1Q - FQT Q) + 08(2) 0.
We rewrite Bj(z) by setting
~ 1
Bi(z2) := %BI(Z) =0TQ+z (QMIQ - ;QT2Q> + 0&6(2)0. (4.50)

Since the threshold u is not regular, the operator Q7 Q is not invertible on QL? according
to Definition 4.4. By considering the operator

~ 1
Bi(2) + 81 =(QTQ + S1) +z (QMIQ - ;QT2Q> +05&(2)0,

and the fact that we have QDgQ = Dy = (QTQ + S1)~! on QL2, we can pick z small
enough such that

-1
< ” QDOQ”LZXLZ—>L2><L2'
L2xL2—L2xL?

1
b4 (QM]Q - ;QT2Q> + 0&6(2)0

This allows for the more complicated Neumann series expansion (c.f. Lemma A) on QL?:

B +5)7" = Do Y (=" ((e(@M10 — £ 71 QT? Q) + 0&()Q) D) QL.
n>0

4.51)
We collect the leading order terms in this expansion and write
(Bi(2) + S)™" = Do —zDo (OM1Q — k' QT?Q) Do + 0&(2)Q.  (4.52)

Atthis step, itis crucial that the operator Dy is absolutely bounded to ensure that the remainder
term Q&> (z) Q and its derivatives are absolutely bounded. Next, we set

By(2) := S1 — S1(Bi(2) + S 7'S1, onS1L* = S{(LX(R) x LA(R)).  (4.53)
Using the orthogonality conditions
S1Dg = DoS1 = Sy,
$10 =08 =9, (4.54)
QTS = 85TQ =0,
we obtain
By(2) = zS1(My — k' TS| + 51£(2) ).

By Lemma 4.5, we note that S L? s spanned by ®(x) and that PT® = T & holds (c.f.
(4.32)), whence §;T2S| = S| T PTS;. Using Lemma 4.5 (c.f. (4.29), (4.31)), we obtain that

d:=Tr(Si(My — k" 'T?)S)) = Tr(Si M1 S1) — k' Tr(S; T PTS))
= =2i(jco* + lalHI®II 7, #0.
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Hence, we apply another Neumann series expansion to invert the operator By (z) on Sy L? for
small z and write

1
By(z)~! = s $1&0(2)S; onS;L>. (4.55)
Moreover, by Lemma 4.7, we have

B ' =Bi@+S) " +(Bi@+S1) ' SiB@ ' $i(Bi@) + S1)” onQL.
Using (4.52), (4.54), and (4.55), we find that
B = dizsl + 080 onQL>.

Hence,

Bi(x)”! fBl<z>— S+~ Qfo(z)Q onQL*.

d2

We return to the expansion of M(z)™! by using Lemma 4.7 with (4.48) to obtain that

M@~ = (M@ +0)" + (@) + Q)" 0B (M) + 0) !
K 1 1 1
(I—fT)+d2S IS - ST+ TST

+ E (Q&()Q + E1(x) 0 + 0&1(2) + £2(2)) -

Here, we used the identity Q = I Q = Q1. By reverting back to M (z) = M (z) we have

Z

1 1
M@~ = i@ = —1+d—sl TSI = SIT+ -5

+ Q& () Q + 1) 0 + 0&1(2) + &2(2).

TS T

Note that we absorb the ’i—zT term into the error £ (z) above. By using the identities I =
QO+ P, Q0TS = 81TQ = 0, and by factoring the powers of z from the error terms £;(z),
we obtain the expansion of M (z)~! on L?: for 0 < |z| < zo,

—1 Z 1 1 1 1 1
M@~ = 2Pt (81— —PTS = —SITP+ S PTSITP

+ O0A0(2)Q +20A1(2) + 2A2(2)Q + z2A3<z>,

where the operators A j(z), j =0, ..., 3, satisfy (4.44). Here, we choose zo > 0 sufficiently
small such that the expansion (4.45) and the Neumann series inversions (4.47), (4.51), (4.55)
are valid for all 0 < |z| < zo. Finally, by Lemma 4.5 (c.f. (4.30)), the term PT S| T P can be
simplified to lcol? ||<I>||szL2 Vil L1 @) P, which finishes the proof. ]

Remark 4.9 We appeal to the reader that each leading term in the expansion (4.43) plays
an important role in revealing the cancellations among the finite rank operators that arise
in the local decay estimate (1.14). Such a precise expression was also obtained for the one-
dimensional Dirac operators in [20], even though the proof we give here is different. See
Remark 3.7 in that paper. For the low-energy unweighted dispersive estimates, it is sufficient
to work with the simpler expression

1 ~ ~ ~ ~
M@= Z0R@0+ 0A1(@) + Aa(2)0 +2A5(2), (4.56)
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where we absorb the operators Sy, S1T P, PT Sy, P in (4 43) into the operators Q Ao(Z)Q
OA1(2), A2(2) 0, A3(z) respectively. The operators A ; j(2), for j = 0,...,3, satisfy the
same estimates as (4.44).

5 Low energy estimates

In this section, we prove the low energy bounds for the perturbed evolution, following the
ideas in Sect. 4 of [20]. We will frequently exploit the crucial orthogonality condition

ngnvl(x)Q(x, y)dx = /R Q(x, y)va(y)ey; dy = 02x2. (6.0
The following calculus lemma will be helpful for dealing with the lower entry of the free
resolvent kernel.
Lemma5.1 Foranym > 0 andr > 0, we define
o—rx2m?

gm(x) = Wi (5.2)
Then, there exists C,, > 0 (independent of r) such that
195 gm Iz < Cn S 1, Yk =0,1,2. (53)
Proof First, by rescaling, we set g, (x) = %g(x /m) where
e rmVxI+T 1
gx) = T = T ri=rm. 54

Hence, it sufficient to prove the same estimate (5.3) for g(x). For k = 0, it is clear that
|g(x)| < 1forall x € R. For k = 1, 2, direct computation shows that

x(1+7(x))
xg( ) = W (3.5)
and
PE0) = 3x2 + 3Fx% (x) — (x)?2 4+ 72x2(x)? — F(x)4. 5.6)

ef(x) (x)S
Since e~ max{1, 7, 72} < 1, it follows from (5.5), (5.6) that the estimate (5.3) holds for
¢ and thus for g(x) too. O

The next proposition establishes the dispersive estimates for the evolution semigroup e’*f P

for small energies close to the threshold 1.

Proposition 5.2 Let the assumptions of Theorem 1.4 hold. Let xo(z) be a smooth, even, non-
negative cut-off function satisfying xo(z) = 1 for|z| < ~° and xo(z) = 0 for|z| > zo, where
z0 > 0 is given by Proposition 4.8. Then, for any |t| > 1 and it = (uy, u2) € S(R) x S(R),
we have

e ™ xo(H — i) Pl Loomyx ooy S 11172 il 1 ryw ) - (5.7)

and

_ P 5 _3 .
1) "2 xo (H — wD) P — F)iill pomyxzoe@) S 11721100l L1 ywpt @) (5-8)
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where Fﬁ is defined by

it

Fr(x,y) = tif(x)[azfv(y)]? (5.9)

N —4mi
We begin with the proof of the dispersive decay estimate (5.7).

Proof of of (5.7) We recall the spectral representation from (3.15):

irH p+ et itz? e i1z? -1
pr = [ era@ s - [ @ Ri@u M) R dz
R R

Tl

Note that the first term on the right is the spectral representation for the free evolution e/ *0 Pt
and it satisfies the same estimate as (5.7) thanks to Proposition 2.3. We insert the weaker
expansion (4.56) for M (z)~! following Remark 4.9, and write

/R €17 202 Ro@)01 (M ()™ 2 Ro(2) dz
- /R ¢ Y02 Ro(@)1 0 Ko2) 003 Ro(2) dz
4 /R ¢ 210 () Ro(2)u1 O K1 (2)v2Ro (2) dz
+/Re”ZZZXO(ZQ)Ro(Z)v]Kz(Z)szRo(Z) dz

+ / ¢ 2 0@ Ro(2)v1 A3 ()02 Ro(2) dz
R
=1+ L+ J3+ s
It remains to show fork =1, ..., 4 that
_1
||Jk||leLl*>Loo><Loo E C|l| 2, (5]0)

In what follows, we will prove the bound for J; in detail, and explain the other cases at the
end of the proof. First, we recall the kernel of Rg(z) from (3.12) and write

ieizl—yl —e VP 2ulx—yl
e+ €2,
2z 222+ 2,

(5.11)

Ro(z)(x, y) :=Ri1(@)(x,y) + R2(2)(x,y) :=

and we further decompose the integral J; as
I = J1(1,1)+Jl(1,2) +jl(2,1) +J1(2’2),
where

JED (e, y) = /R ¢ xoIRi (w1 QA0(2) Qua R ()I(x, ) dz, i, j € {1,2).

We begin with the most singular term

2

2 _ . Z ~

P @ y) = |ttt altly nh X&) )[QllvlQAO(Z)QUZQU](XI,J’l)dzdxl dyi.
R3 (2lZ)2

(5.12)
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The orthogonality conditions (5.1) imply that

/R e“Fley 1 (x1) Qx1, x2) dxy = /R PO, yDva (e dyr =0. (5.13)

Hence, writing

) ) [x—x1| . . [y=xl
el _ pizlxl iz/ e'**1ds; and =l _ izl — iz/ 2 ds,,
x| [yl
(5.14)

we obtain
1 [x=xi| ply=»l | )
Jl(l,l)(x, y) = - / f ezt22+tZ(Sl+Sz)A(Z, x1, y1) dsy dsp dxq dy; dz,
4 Jrs Jix) Iyl

where A(z, x1, y1) = )(o(zz)[g1 11 QKo(z) Quvzeq1(x1, y1), and note that A is differentiable
and compactly supported in z due to Proposition 4.8 and the compact support of xo(z2). We
obtain by Lemma 2.1 and the Fubini theorem that

an N lx—=xi| ply=yil
‘Jl ' (X,y)) <Clt|2 / / / [0;A(z, x1, x2)| dzdsy dsz dxy dy;.
R? Jlx| [yl R
Using
[x=x1l ply=wil
N N Ldsydsy < [lx —xi| = Ix[| - [ly =yl = Y[l S {(x0){y1), (5.15)
x y
as well as
0;A(z, x1, y1) = [eq1v1 Qaz(XO(Zz)KE)(Z))QU2§11](3€15 1), (5.16)

along with the bound (4.44) on 7\0, we deduce that

[x—=xil ply=yl
/2/ / [0;A(z, x1, x2)| dz dsy dsp dxy dy;
R= J1x] [yl R

< ClQIa, 2 D) v D 2y 1D V2D 2y

(5.17)
: / MA@ 2xr2—r2xr2 + M0 A0@ M p2x 2 125 12) dz
[—2z0,z0]
<I.
Hence,
1,1 _1
1D i1 poopoe < Clel 72
Next, we consider the least singular term
2
Jl(z’z)(x,y) = /36”1 B(z,x,y,x1, y1)dx; dy dz, (5.18)
R\

where
2
_ /A _ _ x0(z7) ~
B(z,x,y,x1, y1) 1= e VPl 288 1o v QAo(2) Quaes 1(x1, V1)

4(z%2 +2p)
(5.19)
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By Lemma 2.1, we have
1722 (x, y)] < Clel2, (5.20)

if we can show the uniform estimate

sup / |0;B(z, x,y,x1,y1)|dzdx; dy; < 1.
x,yeR JIR3

By Lemma 5.1, we have

. (e_, /2242 (| x—x1|+y—y11) )
ad
z

sup
zeR

<C,<1, k=01,
4(z2 +2u) - h

uniformly in the x, y, x1, y; variables. Hence, using the Cauchy-Schwarz inequality in the
X1, y1 variables and the bound (4.44) on A, we have

/3 [0;B(z, x,y, x1, y1)| dzdx dy;
R

< Cu [ 100+ 8000 e 0Fo(2) Quaenlas, y)| dz i dyy
]R;
S ”Q”i2xL2—>L2xL2”v1||L2(R)||U2||L2(R)
- / (A0 2012 12512 + MA@l 23 125 125 12) d2
[—z0,20]
<1.

Jl(],Z)

Hence, the bound (5.20) is proven. Next, for the term , using (5.14) we write

e—x1| .
I @, y) = /z / MEHEC(z, x, y, 21, y1) ds dy dyy dz,
RS J|

x|

where

_J2 o X&) ~
Clz,x,y,x1, y1) 1= e VP22 2 [ 01 QA0(2) Quaeny (x1, ¥1)-

422+ 2u

Note that C is differentiable and compactly supported in the z variable due to Proposition 4.8
and Lemma 5.1. Using Fubini theorem, (5.15), and Lemma 5.1, we obtain the bound

[x—2x1]
/1.@/ /R|81C(z,x,y,x1,y1)|dzdsdxl dy;
x|

2
< CullOlgay 2 2y 2 D VIGD I 2wy V21l L2 Ry
/ (A 212 1222 + 1B A0l 2512 12 12) dz
[—20.20]

<1

Hence, by Lemma 2.1 we obtain the bound

ol —

(1,2) -
”‘]1 ||L1><L1—>L°O><L°C ,S |t|

’

and the analogous bound for the term J 1(2’ Y canbe proven similarly. For the remaining cases
Ja, J3, and J4, we may use the additional powers of z in place of the missing Q orthogonality
to obtain the same bounds (5.10) as the term J;. This finishes the proof of (5.7). ]
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Next, we turn to the proof of the low-energy weighted estimate (5.8).

Proofof of (5.8) Recall that the threshold resonance function ¥ = (W, ¥5)T has been
normalized in Theorem 1.4, which means that we need to carefully treat the constants relat-
ing to the function ® where ® := v, W. By Lemma 4.5, note that ® spans the subspace
S1(L*(R) x L*(R)). We define

n =Pl (5:21)

-2
L2(R)x L2(R) 70,

so that Sy(x, y) = n®(x)®*(y), and we fix the constants co and c; defined by (4.21) and
(4.26) respectively for this . By Lemma 4.5, one finds the relation

2= lim (101017 + (W1 (=0 ) = 2(eo* + [e1), (5.22)

by the polarization identity (c.f. (4.25)). Thus, the precise expansion (4.43) of M (z)~! from
Proposition 4.8 simplifies to

] 1
M@ =8 +——PTs,
2nz Vil

2i 2|col?
n SITP + i . |col p (5.23)
Vil gy Villoiy Vil )

+ 0A0(R)Q + 20A1(2) + 2M2(2) Q + 22 A3(z), 0 < |z < zo.

We insert the above expression into the spectral representation of e/** yo(H — 1 )P, and
obtain that

eMyo(H — uh Py

it . itp .
= /ff”zzzxo(zz)Ro(z)dzf S /e”zzzxo(zz)Ro(z)vl(M(z))_lszo(z)dz
i JR Tt JR
B ei[/L B eitu L[ N 1 by + 1 I (524)
T \ 2 il T Vil
N % 2eol ), )€™ (s 42t T334 154)
WVillig Vil ) ) " i T R2TEITRAR
where
I ::/Re”zzzxo(zz)Ro(z)dz, (5.25)
2
Iy = / ¢ xo()Ro(2)v1 S1vaRo(2)] dz., (5.26)
R
hy = / ¢ 2x0(2)[Ro(2)v1$1 T PraRo(2)] dz, (5.27)
R
by = f "7 230 () [Ro(2)v1 PT S 02 Ro(2)] dz. (5.28)
R
Iy = / &7 2 40 () Ro(@)v1 PryRo(2)] dz. (5.29)
R
and
202
I = / ¢ 2x0(2%)[Ro(2)v1 QAo (z) QuaRo(2)] dz, (5.30)
R
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L= / ¢ 2 0@ [Ro(2)v1 QA1 (D)2 Ro(2)] dz, (5.31)

R
L= / 7 2 402 [Ro(2)v1 A2(2) QuaRo(2)] dz, (5.32)

R

)

Ly = /R "2 x0(z)[Ro(2)v1 A3(2)vaRo(2)] dz. (5.33)
Now we study the local decay of the terms Iy, 12 j, I3 ¢, for j, £ € {1, ..., 4} and we will
observe in the following propositions that the terms /1, I2 1, . . ., I2 4 contribute to the leading
order for the local decay estimate while the remainder terms 131, . . ., I3 4 satisfy the stronger

local decay estimate O(Itl’% (x)(y)). We first handle these remainder terms by Lemma 2.1
in a similar spirit to the proof for the (unweighted) dispersive bound (5.7), exploiting the
additional power of z. O

Proposition 5.3 Fori € {1,2,...,4} and |t| > 1, we have
_3
[13,:(x, y)| < Clt| " 2{x){y). (5.34)

Proof We treat the case for /3 | as the other cases follow similarly by using the additional
powers of z in place of the missing operators Q. As before, we consider the decomposition

Iy = 150+ 102 £ 180 4 182,

where
PR . 2 . .
I = / ¢ 2x0 ()R (2)v1 QA0 (2) QR ()] dz, i j € {1,2},
R
with R and R defined in (5.11). We begin with the term

(2iz)?
Using the orthogonality condition (5.1) like in (5.14), we obtain

[x=x1| ply—yil . .
i) = /R/ / / PIEHEIE) A ) y) dz st sy dxy i,
|x]

where A(z, x1, y1) 1= xo(z2 e viQAo(z)v2 Qe 1(x1, y1). By Lemma 2.1, we obtain that

2x0(2%)
1P, y) = /R et izl D 202 T 0 A0 (2) Quaey, 1(x1. 1) dz diy dy.

LSRR

[x=x1] ply=y1l 5 (5.35)
ST / / / / (10ZA] + (s1 + $2)19; Al + |A]) dz ds; dsp dx; dy;.
R2 J|x| [—z0,20]

Using the bounds

[x=x1| ply=yil
/ / Lds1 ds> < (x1) (v1),
x| [yl

x—xil ply=yil (5.36)
/| f 1+ 52) dsidsy S () () () (),

we have

(1,1 -3 2
‘13 (x,y)‘ Stz /Rz /“ | J(m)(yl)(lazz‘\l + (1) (y1) (x)(¥}9: Al + [A]) dzdx; dy;.
Z|=z0
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Noting that (x)v;(x1) and (y1)va(y1) are in L? and that Ay satisfies the bound (4.44), we
apply Cauchy-Schwarz inequality in x; and y; variables to obtain the bound

1,1 —2
1550 @)l S el 2||Q||L2%2||<x1>v1|m @2l @

‘ / 32 A0@ I 212 12512 + 1A 1250125 12512) dz
[lzI<zo]
_3

72 MICIT 2 ) vl @l D)v2l3, @) (5.37)

/ 18- A0@) 212 1212 d

[lzI<zo]

<172 (x) ().

Next, we consider the term

I . y)

2

122 bizlx—x1 | —/22 _ x0(z%)

_ /R3 pit izl —xi|—/22+2uly yllﬁgnvlQAo(z)szgzz](xl,yl)dzdxl dy;.
iv/2 "

By using the Q orthogonality (c.f. (5.1)) condition, we write

[x—x1] .
5@y = /R 3 [ S1PHII Bz ) v, x, y)ds dzdxy dy;, (5.38)

where

eVl
B(z, x1, ¥1, %, ¥) i= ——————x0(2")[e; v1 QA0(2) Quaep, ] (x1, y1). (5.39)
4i/z2 +2u

Since B is compactly supported in z, we can exchange the order of integration and we use
Lemma 2.1 to obtain

3 [x—x1]
1P )| SCIII*f/ / /|[312+i513z]3(2,x1,yl,x,y)ldzdsldxldyl.
x| R

By Lemma 5.1, we have

—m\y—m
gk (2N 0 <1, Vk=0,1,2, 5.40
izﬂg Z( 4in/2242u ) - o

which implies by Holder’s inequality and Leibniz rule that
/ (07 + is10:1B(z, x1. y1. x, y)| dz
R

Ctn) [ lenm @11+ 2.+ 21000(%) (@) Quaenn] d
Repeating the arguments from (5.35) —(5.37), we obtain
12 )| < i),
Similarly, one has the bounds
0wy i), P e | <o,

and we are done. O
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Proposition 5.4 For all |t| > 1, we have

11 (x, y) = Fl e, )| < Clel™2 ()2 (02, (5.41)
where
Flx,y) = Zg[coel — W)W (y) — coeyl* (5.42)

Proof As in the previous propositions, we decompose I, into the sum
b= 150+ 1P+ 130 415,
with
L = /Re”z2xo(z2)[7€,~(z)vlSlszj(z)]dz, i,je{l,2).
We start with the most singular term

1D it izl Hy-y X0
(x,y) = - (2i Z)Z

Noting that §; L?> C QL?, the orthogonality conditions (5.1) imply that

[e; viS1vae; 1(x1, ¥1) dx1 dy; dz.

/ e “Mlel vy ()81 (x1, x2) dxy = / ¢S (2, y)va(v1)eg dyr = 0252, Vx,y € R
R R
(5.43)

Hence, by the Fubini theorem,

x—x1l ply=—y1l
(1 D(X y) = /1;2[ / \/R
[yl

Ol 30 (D)o vy Sjvge, 1(x1, y1) dz dsy dsy dxg dy,

[x=x1| ply=y1l
/ / G (s1 + s52) dsy dS2/2|£11v151v2€11](x1,yl)dx1 dyi,
x| R

where G, (+) is the function defined in Lemma 2.2, which satisfies the estimate

ﬁ i % _3
G:(s1 +52) — e lareT A | < Clt|72 (s1) (52). 5.44
‘ 1(s1+ 52) N 2172 (s1) (s2) (5.44)
Using the bound
[x—x1] \V—yll 5 5
/ f )s2) dsi dsz S (e ()2 () (), (5.45)
x| By

the decay assumptions on vy, v2, and the estimate (5.44), we have

JT
VT
< ClI™2 IS 22 122 10101 GO 2 1D 20202 2 < ClrI ™2 () (),

where we set

1" ) =

T / Hy (x1, x)[e; v1 S1vae; 11, yi1) Hy (v1, y) dxp dyy

[x1—x| 2
H;(x1, x) ::/ e "% ds. (5.46)
|

x|
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Since S (x, y) = n®(x)d*(y), the orthogonality conditions (5.1) imply that

/ [xle v (xSt (xy, y1) dxg = 77/ lxleyvi(x) P (x1) dx1 @ (y1) = 0252, Vy €R,
R R

/ [¥1S1(x1, yDv2(yey dyr = nd’(xl)/ Y|P (yDva(y1)ey; dyr = 0242, Vx € R.
R R

Hence, using the bound

|Hy (x1, %) = (Ix = x1] = |xD] < Cle|~ (x)2(x1)?, (5.47)
and the exponential decay of vy, vp, we conclude the estimate
b3 _3
P y) - IV Goter 1 @) N Goler, @ O] < Cli~F (1) ()2, (5.48)
’ N =1t
where
1
Go(x,y) == —Elx -y, (5.49)
and

1
[Goleu1®) ()] = —7 fR Ix — xilev1(xp) @ (x1) dxy,

1
(Goley )OI 1=~ fR ly = y11B* v ey dy.

In the preceding definition, we used the identity v5 = v;. Next, we treat the term

2,2
547 (e y)
5 e~V 2ulx—xi] V2 +2uly=y1l
= / ¢ x0(22) ————————TIenp V1 S1v225 | (x1, Y1) ————— dx1 dy dz.
R3 —2vZ2 +2u —2vZ2 +2u
By Taylor expansion, we have
e—\/ﬂlx—xll e—mb’—yl\

(2,2) it7? 2
12,1 (x,y) = /R3 e xo(z )Tm[ézzvlslvzgzz](xl,)ﬁ)w dx;dy dz

+ / eiZZZZQXO(ZZ)[Ezzvlsl v2es, ] (x1, yDKk (x, x1)K (¥, y1) dxy dyy dz
R? (5.50)
=7 /R ¢ x0(2%) dz[Ga (€231 D) ()]G ey 12 ®) ()]

.2
+ / K 22 x0(z%)[exnv1 S1v2€051(x1, Y1)k (x, X1k (v, 1) dx1 dy; dz,
R,

where we set

e~ 21lx—yl
—2/2u

and where « (x, x1)k (v, y1) is an error term bounded by C (x){x;)(y)(y)e~cx=x1l+ly=yil),

for some C, ¢ > 0, (c.f. (4.7)). The definitions for G2 (e, v1®)(x) and G2(eyv2P)(y) are

defined analogously to the ones for Go(e;;v1P)(x) and Go(e;;v2P)(y). By non-stationary
phase, one has the uniform estimate

2
‘/ ettz ZZXO(ZZ) dz
R

Gor(x,y) = (5.5D)

<Cpl. (5.52)
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Hence, we can control the remainder term in 12(21’2) by

.2 _3
‘ / K 22 X0(2%)[e2pv1S1v2€5)1(x1, Y1)k (x, X1 (y, y1) dxy dyy dz| < Cle] 72 (x)(y).
R

(5.53)
On the other hand, by Lemma 2.2, one has
c 2 ﬁ 3
ez 2)dz =Y + R, |R|<Clt|"2.
fR X0 &z = S== 4+ Ri. R < Cll|

Hence, the leading contribution of /,° @ 2) can be written as

ot x0(z%) dz[Ga(e5pv1 @) (1[G (erpv2 @) ()]I* — M [G2(exv1®)()[Ga(exnv2®) (M
R

/=it
< Clt\_%.
Thus, one concludes the estimate for I 2, 2).
3
5> 3*/__[62@221)1 D) (N)][G2(erua®)(MI*| < Clel 2 (x){y).  (5.54)

Finally, we note that a similar analysis holds for the terms 1211’2) and 12(21’1) yielding the
contributions

B - f/__[Go(env1<1>)(x>][Gz(e22vz<I>><y)]* < ClIT T ()2 (y).
«/_ (5.55)
5 - j/—[Gz(ezzm(D)(x)][Go(envzd))()’)]* < Clt™2 (x) ()2

By adding all leading order contributions, we obtain

el [(Goey; + G2exp)v1®PI(0)[(Goey | + Gaeyy) 2 P]*(y).

=

Recalling that Gy = Goe;; + Gaey, from Lemma 4.1, that Go(vi®) = coe; — ¥ from
Lemma 4.5, and that Gy (v2®) = 03W — ¢pe; from Remark 4.6 (c.f. (4.40)), we arrive at

Flx,y)=

Flx,y) = — W ()1[o3 W (y) — coe, 1%,

IVT Leve

J=ir

as claimed s
We continue the analysis for the terms involving the operators S17 P and PT S;.

Proposition 5.5 Forall |t| > 1, we have

3
|la(x, y) — FA(x, )| < Clt| 72 (x)* ()% (5.56)

3
13(x, y) — F2(x, p)| < Clt| ™2 (x)2(y)?, (5.57)

where
inlVillpiwy /7 ;2
F(x,y) = coe; — V()] 7 cpe, T, 5.58
2(x, y) 5 ﬁ[ 0e; — W(x)l[e' 7 eyl (5.58)
l V xz

R e,y = -1 ‘2”“<R)f_;i T e llos () — coe I (5.59)
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Proof As in the proof of Proposition 5.4, we decompose I into
ha= 53"+ 55"+ 15+ 15,
with
. .
Ly = f ¢ 2 x0IR @i SIT PuaRj ()] dz, i, j € (1,2},
R

where R and R, were defined in (5.11). We start with

eizlx—xil eizly=yil

(1,1) itz2 2
18 (x,y)=/R}e”Z 0 5 lenmiSiT Pusey 1 )

dx; dy; dz.

Using the orthogonality (5.43), we have

(11 1 L L T
Ly x5 = 4 Jp3 x| byl e TR 2 x0 (2 [e 1 v1S1T Puzey 1 1(x1, y1) dsy dsp dxq dy dz
x y

1 x=xil . 5 .

+ E/Rﬁ/u Ty ) leyvi SIT Poae 1(xy, ye' <P dsy dxy dyy dz
X

_. (LD (1,1

=thogt 1o,

By Lemma 2.1, we have

. . 3
/eltlZﬂzmﬂ”Z}(o(zz)dz < Clt|™ 2 {s1)(s2).-
R

Using this estimate, the bound
[x—x1|  ply—yil 5 5
(s1)(s2) ds1ds2 S {x1)™(y2)" (x)(¥),
vl

x| ly

the absolute boundedness of S;7 P, and the exponential decay of vy, v2, we deduce that

(1,1) < 141-3 270,042
151G )| S 12 (x)(y) R2|<x1> (»2)7le vi 81T Pvzey1(x1, y1)l dxi dy s

60)
_3
S T2 (y).
By Lemma 4.5 and direct computation,
/RslTP(xl,m)vz(m)gu dyr = nlVill 1 @)@ x1)lcoe; 1" (5.61)

Hence, integrating in y;, we have

nHVIHLI R lx—x1] L2
5w = T ([ /| [ D g )01 dz sy i ) e 1

x|

nlvi ”Ll R lx—x1]
=— /R/| Gi(s1 + IyD dsieqvr ()@ (xr) dxy | [eoey 1%,

x|

where G; is the function defined in Lemma 2.2. By Lemma 2.2 (c.f. (5.44)—(5.48) for similar
computations), we have

_inlVill @y
2

74D

>V2 o
2,2;2()5’ y) [GO(gllvlq))(x)][el?Cogl]*‘ = C|t|_% <x)2(y>21
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where G is the operator defined in (5.49). This completes the analysis of the term 12(12’1).

Next, we treat the term

(2 l)(x y)
=/ eitZZZXO(ZZ)@[e v1$1T Pvzeg](x yl)eiz‘y_yll dx; dy; dz.
R3 _zm £22 11 ’
(5.62)
By inserting /%1, we write
15 . y)
-/ 2 oty ST P 61,3 / €552 dsy dxy dy) dz
2 Jgr3 —2V22+2u
+/ e 2x0(22 )mgmmmzen]m e e —dxidy;dz
R3 —2y22+2u
= I3 () + L5060,
where 12(2212) is the leading term. By Lemma 2.1 and Lemma 5.1,
/ ei’Zz+iZS2sz(z2>@ dz| < Clrl =3 (s2), (5.63)
R —2J22+2u B

Hence, using the absolute boundedness of S| 7 P and the bound (5.45), we have
12D < -3 2 <1p-3
Ly Sl 2<y1> (V) exnuiSiT Pvaey](x1, y1) dxpdyr S [¢]72(y).
R

On the other hand, we treat 12(221 1) similarly as in (5.50)—(5.53) and find that

i 2y
55 y) - 3 [ 0 @) Gaw, x1)eggui $1T Puaey1(x1. y1) dxy dyr dz
R,

_3
< Cle|l"2{x){y),
where G is defined in (5.51). Hence, by Lemma 2.2 and (5.61), we conclude that

(2 1)( y) — ”7||V1||L1(]R) «/_

; F[G2(622U1¢)(X)][€ % coe | = Cl ),

(5.64)

Finally, we show that the terms 12(’12’2) and Iz(?éz) satisfy the better decay rates of
(’)(|t|‘% (x)(y)). By orthogonality (c.f. (5.43)),

157 )
1 122 o (2 =zl 131 dg e 10181 T Pvyern](x1. v1) — 2+2u|y7y1\d dy; d
= 5 e X0z e s1lerv19o1 V€92 1(X], Y1) — —F———— dxp dy; dz.
-2 Jr3 Jx| —2J2+2u

By Lemma 2.1 and Lemma 5.1, we note that the z-integral satisfy the bound

itz2+izs| 2 e 2 +2uly-nl -3
e 2x0(z°) ———=——dz| < Clt]" 2 {s1).
R —2/72 + 20
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Hence, by the absolute boundedness of S;7 P and decay of vy, v2, we conclude that
152 | < i),

The analysis of 12(’22’2) is analogous to the preceeding one, yielding the bound
1357 ] < curi.

Thus, using Go = Goe;| + G2¢yy, and Go(v1P) = cpe; — W from Lemma 4.5, we conclude
(5.56) and (5.58). For the estimate (5.57) involving I 3, one should instead use the identity

/ e vi(x) PT Sy (x1, y1) dx1 = =l Vil o1 gycoe; P (y1)*, (5.65)
R
and we leave the remaining details to the reader. O

Next, we remark that the analysis for 1> 4 involving the operator P leads to a similar estimate
as the free evolution in Proposition 2.3.

Proposition 5.6 Forall |t| > 1, we have

4 —3,02,.\2
|La(x,y) — FHx, y)| < Cltl™2(x)(y)%, (5.66)
where
\% 2 )2
Ft4(x7 y) — ” l”Ll(R) f 7lﬂglefl)4fl€-l|—. (5.67)

TS
Proof As before, we write
b= 12(1 D 12(1 2) +12(2 1) +I(2 2,
with
L= /R ¢ 2 xo(@DIRi (@)1 PR (@)1dz, i) € (1,2},

where R and R, were defined in (5.11). We first treat the leading term

(1 D elzlx—xil eizly—yil
(x,y)= / * 2 x0( )71[311U1PU26’11]()51 yl)T dxpdy; dz.
R
(5.68)
By adding and subtracting e/?*! and ¢/?1”! twice, we further consider
(i 12 ef<hl 'l
15w = [ 206 S ey Praen e o S ddy g
1 itz2 2 “lxl lZS
+§ RSe b4 Xo(z ) [elllevzell](xl yl) 2 dsydxy dyy dz
1 122 ) [x— lZ|V|
+E/R3 e 2 x0(z )/ &' dsiley vi Pvoey 1(x1, y1) dx1 dy1 dz
| , . ly=yil
+ 7/ '’ zzxo(zz)/ e’z‘”dm[gnv]Pvzgnl(n,yl) "2 dsy dxy dy; dz
4 Jr3 x| [yl
1,1 1,1 1,1 1,1
= e+ 550w + 150 + 15 e .
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By direct computation,

/Rz[énvlpvzgn](xl,yl)dxl dyr = — Vil wyese] -

Hence, by Lemma 2.2,

illprwy V7
TS

JISRISD.

For the terms 2400143 the additional factor of z allows to invoke Lemma 2.1,

2
/ Pz +zz(\x|+s2)ZX0(Z2) dz
R

2 2
1,1 X2 ;X _3
JAES Tee el | < CltI™2 (x) ().

< O™ (x)(s2).

< CltI™ 3 (y){s1).

D |
/ eztz +1z(51+|)\)ZX0(Z2) dz
R
Thus, we infer from the exponential decay of v and v, that

3
B0 n|+ B8 »| = 3w o), (5.69)

For the term 12( 4:4> We can use non-stationary phase to conclude the same bound. Hence, we
have

(1 1)( ||V1||L1(]R) \/_
PRV
(2,1)

Thus, 1t remains to prove that the other terms I, (l 2 s Ly, 12(242) have the better

< Cle| 73 () ().

42 )2
_l 4 4)‘ e
ere e

O(|t|~: (x) (v)) weighted decay estimate to finish the proposition. We first treat the term

1 .
(1 2)(x y) / elIZZZXO(ZZ)
21 R3
e~ N F2uly-nl (5.70)

e lle vy Puses,y 1(x1, y1) ———=——dx1 dy; dz.
-2 ZZ+2M

By Lemma 2.1 and Lemma 5.1,

2 iz ) ) e~V 2 +2uly=yil
/e’z T 7 50(27) —————dz
R

3
N = Cle]™2 (x) {x1).
-2z M

Hence, using the decay assumptions on v and v, we conclude that

52 0 w| < cu ).

The same bound holds for the term I, (2 D and we will skip the details. Finally, we are left
with
2,2
L7 (x, y)
/ , e Vz 24 2plx—x1] e~V Z+2uly-yl
= Z XO(Z )7@ v Pvaey](xy, y1) ————dx; dy; dz.
/2t 2 22+ 21
By direct computation using (3.2),
1
2001 Puaeny](x1, y1) = 1 Vaey (e [Vagy] T (1),
Vil e
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and by Lemmas 2.1 and 5.1, we have the uniform estimate

e~ NP 2ulx—x1] p—a/ 2220l —y1]

202 3
20 dz| < Cplt| 2.
/R 222 +2n =222+ 2u a
Hence, by exchanging the order of integration, we conclude that
132 0| < cu (5.71)
Thus, we conclude (5.66) by summing over the four terms. O

Finally, we are ready to complete the proof of the local decay estimate (5.8). We sum the

leading contributions of the spectral representation of el xo(H — nl) PS+ in (5.24) by
invoking Propositions 2.3, Proposition 5.4, Proposition 5.5, and Proposition 5.6 to obtain

ety L S S SN L= I 2, 2ol )
! i \2n ! 77HV1HL1(]R) ! 77||V1||L1(R) ! ”Vl”Ll(R) l‘HVLHLl(]R) !

2

Lt i Y
= «/% (—[coel —W)[o3¥(y) — coer1* — [coey — W(x)1le' 4 coe; I*

2 2 2
-3 * 2 —i%s i T
+le " # coello3W(y) —coe]” +lcpl“e " e " deeg

ity . x2 ._,2
- \/e_?m_t (\P(X)[U3\l’(y)]* + (4 — Deoloz W (NI* + (i - DW(x)[coe; I*

:x2 -)‘2 32 -.V2
N I Ok Ok T B

)
7 i1 g
the first term gives us the finite rank operator

where we use the cancellation Fto — Ft4 = 0 in the first equality. We note that

ity

Frx,y) = ———=¥ @03 ¥ ()", 5.72
¢ (. y) Nar=r ()[o3¥(y) (5.72)
and we show that the last three terms satisfy the better decay rate. Using,
- x2 Xz
-] < ——, (5.73)
41|

and the fact that ¥ € L*®°(R) x L*°(R), we have

T Deoey o) S 1 2
e 4 — 1)cpe o3 Sl z2{x)”,
2«/7«/? =1 y
and similarly
ellteld ;22 _ T 3,
e 'Tm —DegW(x)e, | S |t72 .
2«/;«/;( ) )e) [7172(y)
For the last term, we have
2 2 22 2 2
‘1 —e W — W oo | = ‘1 —e ' }1 —eiw <1172 (x) 2 ()2
(5.74)
Thus, the leading contribution to e/’ xo(H — wl) P is F". ]
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6 Intermediate and high energy estimates

In order to complete the proof of Theorem 1.4, we also need to prove the dispersive estimates
when the spectral variable is bounded away from the thresholds £ . As usual, we focus on
the positive semi-axis [, 0o) of the essential spectrum and prove the dispersive estimates
for energies A > . The negative semi-axis (—oo, —u] can be treated by symmetry of . We
recall from Sect. 2 that the kernel of the limiting resolvent operator for H has the formula

ie:tiz\xfyl

+ 0
. _ 2
Ry @ y) = (Ho =@ +pxion™ = | B iy |, V0<z<oo
222420

6.1)
From this, we have the following bound
IRy @l g1t roowpoe < Clzl ™"

Hence, for sufficiently large z, the perturbed resolvent R*(z) canbe expanded into the infinite
Born series

R*(2) =Y Ry @(-VRF ()" (6.2)
n=0

More precisely, since the operator norm L' x L' — L x L in the n-th summand above is
bounded by C|z|~'(C||V|11z]~1)", the Born series converges in the operator norm whenever
|z| > z1 :=2C|| V|11« 1. We define the high-energy cut-off by

() =1-x(2), (6.3)

where yx (z) is a standard smooth even cut-off supported on [—z, z1] satisfying x (z) = 1 for
lz] < %‘ and x (z) = 0 for |z] > z;. We insert the cut-off and the Born series expansion into
the spectral representation /" yp, (H — ul )Pt and look to bound the following

e xn(H — nD) P, 9)| =

/ eitZZZXh(Zz)([R+(z) —R™(2)]4, v) dz'
0

seyy

+ n=0

(

N 6.4)
/ ¢ (@) (R @) VRG ()i, B) dz
0

’

where i, v € S(R) x S(R). From [40], we have the following dispersive estimates:
Proposition 6.1 Under the same hypothesis as Theorem 1.4, we have

. R 1l
" Myn(H — wh)Pi ST 2l gywrt ) - (6.5)

L®([R)x L®(R)
and

-1 - _3 >
|1 - wn P S0 i@ 66)

L®(R)x L (R)
forany |t| > 1.

Proof For (6.5), see the proof of [40, Proposition 7.1], and for (6.6), see the proof of [40,
Proposition 8.1]. Note that the high-energy dispersive estimate holds irrespective of the
regularity of the thresholds . O
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Let zop > 0 be the constant from Proposition 4.8. It may happen that z; is strictly larger
than zg. In this case, we need to derive estimates analogous to the above proposition in the
remaining intermediate energy regime [—z1, —zo] U [z0, z1]. To this end, we set xm (z) to be
the intermediate energy cut-off given by

Xm(2) =1 —= x0(2) — xn(2), (6.7)
where xo(z) was the cut-off defined in the previous section in Proposition 5.2.

Proposition 6.2 For any |t| > 1, we have

. 1
e Mym(H — ul) Pl < |e172 i , 6.8
Xm ( wul) Py L@y L () S 2l wyx L w) (6.8)
and
—1irH +5 =3 | (x)ii
x) e H—ul)PTu < |t]72 ||{x)u . 6.9
H( ) Xm(H — )P, Lo @y L (B) Sl 2 Hxu i wyx el ®) (6.9)

Before proving the above proposition, we need the following lemmas for pointwise bounds
and operator norm bounds on the resolvent operators and its derivatives. The first lemma
follows immediately from the expression (6.1) and the triangle inequality ||x — x1| — |x|| <
[x1]-

Lemma 6.3 Let yg > 0. For every 7 > yo, and k € {0, 1, 2}, we have

PRE@G, )| = g TH =)k, 610
and hence
8§R6‘:(Z)(x’ ) HX 1 = C70717k<x)k. (611)
—(5+k)—
Moreover, define
Fielal pieteaid
2z
G+ (@) (x, x1) = [e 0 l] RE@)(x, x1) = Oz e
24/22 42
(6.12)
Then, for any k > 0,
sup [0 G* (@) (v, x0)| < Cy Il 6.13)
xeR

With these bounds, we are able to give operator norm bounds on the perturbed resolvent via
the resolvent identity.

Lemma 6.4 Let yy > 0. We have

sup [ R¥@)y, Ly, S (6.14)
lzI>v0 7+ -5-
sup |02RF @), Ly, S (6.15)
lzI>» 5+ -5-
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Proof By Lemma 3.1, for any |z| > yp, we have
R*2) = U + Ry @QV) 'Ry () =: 5% (2) 'Ry (2), (6.16)

as a bounded operator from X 1y to X . . Note that $*(z) is boundedly invertible on X
for any o > 0. By d1fferent1at10n we have

RRE@) = —SF (@), RE(VS* ()" RE(2) + T2 19, RT(2). 6.17)

Moreover, as a multiplication operator, V : X_, — X, is bounded for any o > 0 due to the
exponential decay of V. By Lemma 6.3, 9 R0 (): X N X_ 3 is bounded and since the

embedding X _ 1 CcX_ 3 is continuous, we infer the bound (6 14) by taking composition.
By a similar argument,

||3?R @lxs -x s S1. (6.18)
2t Ta-
O

Proof of Proposition 6.2 By iterating the second resolvent identity, we write the perturbed
resolvent as a finite sum

RE¥(2) = Ry () — Ry (2)VRF (2) + Ry (2)VRE (VR (2), (6.19)

and we write

Mo (H = wD P (x, y) = ij /0 N ¢ 2 tm @) (= DTER @) — &5 @)(x, y)dz,
B (6.20)
with
@ =Ry@, &@ =R5@VR;(1). &) =Ri@VRT@VR; (). (6.21)

Hence, to prove (6.8) and (6.9), it is sufficient to establish the estimates

I N |
sup sup Smin{|t72, [t 72 (x){(y)}.  (6.22)

+ j=123

/ ¢ L (@EE () (v, y) dz
0

The term involving Si is handled by the earlier Proposition 2.3, while the second term
involving Si can be treated analogously as in Proposition 6.1. We refer the reader to [31,
Lemma 3] and [26, Proposition 3] for similar computations. For the term involving Si we
first write

eFizlsil

R#;(z)(sl,sz)=[ 0 ]gi(zxsl 52).

where the operator G4 (z) was defined in (6.12). Then, using that the kernel Rét (2)(x, y) is
symmetric in x and y variables, and using the matrix identity

apy az _ T .
€jj [am 022} ek = ajkejees ok e{l,2) (6.23)
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we compute the following kernel identity

@, y) = fR i Ry (e, x)VRE@VI(x1, yORE (v, y1) dxi dy

= [eig'x' (1’] [ G (e, 1) IVRE Vi1 ynGE (y. y1) dxr dyy [ 0
R2
= ¢TIV (G () (x, e, VRE(VGE(2) (v, Dey) eref
+ e GH* @) (x, ey VRT(@VGT(2) (v, Ve ) e, e
+ e G * @) (x, Dy VRE(@VGT () (v, )ey) eref
+ (G *@)(x. Dy, VRE@VGT () (y. )ey) ere;
— eiiz(\XIHyI)AT(Z, Xy + eiiz‘xlAzi(z, Xy + eiizly‘A3i(z, X, )
+ Af(z, X, y).

We plug this identity into the left hand side of (6.22), and hence it will be sufficient to provide
the bounds

eEizlyl O]

Sminfle|72, (172 (r)), ke {l.....4),

o0
P
/ THET i (AT (2, x, y) dz
0

(6.24)

where r can represent O or |x|, |y|, or the sum of both variables. For the case k = 1, by
Lemma 2.1, we have that

o0
L2
/ P izz(lxl-&-\yl)zxm(ZZ)A:ll:(Z, x, y)dz
0

_1
< Cli1™2110; (2xm GHAT @, ) Iy

Since the term zym(z2) is smooth and has compact support, we only need to track the
derivatives when they fall onto either GF(z) or R*(z). In any case, thanks to the exponential
decay of V, and the bounds (6.13), (6.14) from the previous lemmas, we have the following
uniform bound

supsup sup [9:((GH) @y, Dej, VRT(DVGT()(x, el
+ zesupp(xm) j.k=1.2

Ssup supsup [VIVIG) (IRE@ @, )] + 10:RE @) (x1, 1)) vIVICe)

+ zesupp(tm) j k=12 Ly =L
VIV (1G5 @@, 0] +10:G5 @ @ x0)) €512,
VI 02) (197 @) (2 )]+ 18:G5 @) (2, 0)]) g2,
SL
(6.25)

forall x,y € R.
To prove the weighted dispersive estimate, we invoke the stronger estimate in Lemma 2.1:

o0
2 .
/ 1TEHYD 2y () AE (2, x, y) dz
0

= ClI™3 102 & i + Do) (tm AT @ %, 9) 11 vy

Here, we can apply the same argument as in (6.25) for the two derivatives bound on Af
using the estimates (6.13) and (6.15), whereas the bound on one derivative for AI‘L leads to
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the weights (x)(y). Thus, we prove (6.24) for k = 1. The other cases follow by the same
argument and we are done. O

Finally, we conclude with the proof of Theorem 1.4.

Proof of Theorem 1.4 By combining the estimates from Propositions 5.2, 6.1, and 6.2, we
have established the bounds

’eitHP+ﬁ

1
s ST 2w L @yxrt ®)»

LY ®R)xLP(R)
as well as

2 - T
H (x) (" PY — Fii STz yxrl wy»

LP@®R)x L (R)

forany i := (u1, u2)" € S(R) x S(R) and |¢| > 1, with F,+ given by (5.9). By Remark 3.3,
we can similarly deduce that the unweighted dispersive estimate for the evolution e'! HPS_
using the identity (3.17). On the other hand, for the weighted estimate, we find that the leading

contribution to /" P~ is given by

e*illL
F7(x,y) =01 Ff(x,y)o1 = — [o1 W (x)][o301 ¥ (V)] (6.26)
t y t y \/m y
where we used the anti-commutation identity 0307 = —o103. Thus, we conclude the local
decay estimate (1.14) and the formula (1.15) by setting F; := Ft+ + F[. O

Appendix A: Neumann series

LemmaA Let A be an invertible operator and B be a bounded operator satisfying || B| <
|A=Y||~". Then, A — B is invertible with

o0
(A—B)y =41 Z(BA_])” =A '+ A ' BAT AT BATIBAT ., (AD)
n=0

and
A =B <A™~ = 1B~ (A2)

Proof By the hypothesis || B| < A=, we have || A~'B|| < 1. Consider the identity
A-B) '=ug—-aptal

The term on the right hand side can be written in the usual Neumann series

(I—-A"'B)"' =) (a'B)".

n=0

Thus, by multiplying A~!, we deduce (A.1). Note that the argument also holds true for
(A—B)"' = A=1(1 — BA~")~!. Now, since we have the estimate

I —A""B)~ | <a—a~tBp~!,

we deduce (A.2) by the sub-multiplicative property for operator norms. O
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