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Abstract

We establish dispersive estimates and local decay estimates for the time evolution of non-
self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension.
In particular, we show that the decay rates in the weighted setting are the same as in the
regular case after subtracting a finite rank operator corresponding to the threshold resonances.
Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear
Schrödinger equation around a solitary wave. It is known that the linearized operator for
the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an
observation of a favorable structure in the quadratic nonlinearity of the evolution equation
for perturbations of solitary waves of the 1D focusing cubic NLS equation.
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1 Introduction

In this article, we establish dispersive estimates and local decay estimates for the (non-self-
adjoint) matrix Schrödinger operators

H = H0 + V =
[
−∂2

x + µ 0
0 ∂2

x − µ

]
+

[
−V1 −V2

V2 V1

]
on L2(R)× L2(R), (1.1)

where µ is a positive constant and V1, V2 are real-valued sufficiently decaying potentials.
The operator H is closed on the domain D(H) = H2(R)× H2(R).

These matrix operators arise when linearizing a focusing nonlinear Schrödinger equation
around a solitary wave. By our assumptions on V1 and V2, Weyl’s criterion implies that
the essential spectrum of H is the same as that of H0, given by (−∞,−µ] ∪ [µ,∞). As
a core assumption in this paper, we suppose that the edges ±µ of the essential spectrum
are irregular in the sense of Definition 4.4. This implies that there exist non-trivial bounded
solutions to the equation H ��± = ±µ ��±, see Lemma 4.5. The dispersive estimates for
H when the thresholds ±µ are regular have been obtained in Sections 7–8 of the paper
by Krieger–Schlag [40], building on the scattering theory developed by Buslaev–Perel’man
[9]. See also the recent work of Collot–Germain [11]. Our proof is instead based on the
unifying approach to resolvent expansions first initiated by Jensen–Nenciu [36], and then
further refined in Erdogan–Schlag [23] for matrix Schrödinger operators. We also adopt
techniques from Erdogan–Green [20], where the authors prove similar dispersive estimates
for one-dimensional Dirac operators.

1.1 Motivation

Our interest in developing dispersive estimates for (1.1) stems from the asymptotic stability
problem for solitary wave solutions to nonlinear Schrödinger (NLS) equations. The NLS
equation

i∂tψ + ∂2
x ψ + F(|ψ |2)ψ = 0, where ψ : Rt × Rx → C, (1.2)

appears in many important physical contexts such as the propagation of a laser beam, the
envelope description of water waves in an ideal fluid, or the propagation of light waves in
nonlinear optical fibers. See, e.g., Sulem–Sulem [56] for physics background.

Under certain general conditions on the nonlinearity F(·) (see, e.g., [7]), the equation
(1.2) admits a parameterized family of localized, finite energy, traveling solitary waves of
the form ψ(t, x) = ei tα2

φ(x;α), where φ(·;α) is a ground state, i.e., a positive, decaying,
real-valued solution to the (nonlinear) elliptic equation

− ∂2
x φ + α2φ = F(φ2)φ. (1.3)

The existence and uniqueness of these ground state solutions are well-understood, see, e.g.,
[7, 41].

The solitary wave solutions (or simply, solitons) are of importance due to the special role
they play for the long-time dynamics of the Cauchy problem (1.2). Consequently, over the
last few decades there has been a significant interest in the study of stability (or instability)
of such solitary waves under small perturbations. The primary notion of stability is that
of orbital stability, and it is by now well-understood for the NLS equation. The pioneering
works in this direction were due to Cazenave–Lions [14], Shatah–Strauss [55], and Weinstein
[62]; see also [33] for the general theory. On the other hand, a stronger notion of stability
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is that of asymptotic stability. There are two general approaches for the asymptotic stability
problem. The first approach is to use integrability techniques, when the underlying partial
differential equation is completely integrable and inverse scattering is available. A second
approach is perturbative, which means that one studies the dynamics of the nonlinear flow in
the neighborhood of the solitary wave, on a restricted set of the initial data. Generally, one
starts by decomposing the perturbed solution into a sum of a solitary wave and a dispersive
remainder term. For the perturbative approach, dispersive estimates for the linear flow are
key.

Let us briefly describe the perturbative approach for the NLS equation. To keep our
exposition short, we will not take into account any modulation aspects related to the Galilean
invariance of the equation. For small α > 0, consider the perturbation ansatz ψ(t, x) =
ei tα2

(φ(x) + u(t, x)) with the ground state φ(·) = φ(·;α) and the dispersive remainder
term u(t, x). The linearization of (1.2) around the solitary wave ei tα2

φ(x) then leads to the
following nonlinear partial differential equation

i∂t u = (−∂2
x + α2 − V )u +W u + N ,

where N = N (φ, u, u) is nonlinear in the variables (u, u), and V = F(φ2) + F ′(φ2)φ2

and W = F ′(φ2)φ2 are real-valued potentials related to the ground state φ. Equivalently, the
above equation can be recast as a system for the vector U := (u, u)⊤, which is given by

i∂tU −HU = N, (1.4)

where N is a nonlinear term, and H is a matrix Schrödinger operator of the form (1.1) with
the parameters µ = α2, V1 = V , and V2 = W .

For the study of asymptotic stability of solitary waves for NLS, it is thus crucial to fully
understand the spectral properties of the matrix operator H as well as to derive dispersive
estimates for the linear evolution operator ei tH. One of the key steps in a perturbative analysis
is to prove that the dispersive remainder (1.4) decays to zero in a suitable topology. Let us
consider for example, the 1D focusing NLS with a pure power nonlinearity, i.e.

i∂tψ + ∂2
x ψ + |ψ |2σ ψ = 0, where σ > 0. (1.5)

The ground state φ(x; 1) has an explicit formula for all σ > 0 given by

φ(x; 1) = (σ + 1)
1

2σ sech
1
σ (σ x), (1.6)

and the linearized operator around ei tφ(x; 1) takes the form

Hσ =
[
−∂2

x − (σ + 1)2 sech2(σ x)+ 1 −σ(σ + 1) sech2(σ x)

σ (σ + 1) sech2(σ x) ∂2
x + (σ + 1)2 sech2(σ x)− 1

]
.

For monomial nonlinearities, we may obtain φ(x;α) from rescaling by φ(x;α) =
α

1
σ φ(αx, 1). The matrix operators when linearizing around ei tα2

φ(x;α) are also equiva-
lent to the matrix operator Hσ by rescaling. The spectra for these matrix operators were
investigated in [12]; see also Section 9 of [40]. For σ ≥ 2, Krieger–Schlag [40] were able to
construct finite co-dimensional center-stable manifolds around the solitary waves and prove
asymptotic stability using dispersive and Strichartz estimates developed for the evolution
operator ei tH. However, for the completely integrable case (σ = 1), it was shown in [12] that

the matrix operator H1 exhibits the threshold resonance �(x) =
(

tanh2(x),− sech2(x)
)⊤

at
λ = 1. The dispersive estimates developed in [40] do not apply in this case. Furthermore, we
note that a key assumption in the papers [9, 11, 32, 40] is that the linearized matrix operator
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H does not possess threshold resonances at the edges of the essential spectrum. In these
“generic" (regular) cases, it can be shown that the evolution operator enjoy improved decay
estimates in weighted spaces; see, e.g., Proposition 8.1 in [40]. Thus, a meaningful motiva-
tion for this paper is to prove dispersive estimates in the presence of threshold resonances
under some general spectral assumptions on the matrix operator H, which are applicable to
the 1D cubic NLS case (σ = 1). We will discuss this particular case briefly in Sect. 1.4.

1.2 Main result

We are now in the position to state the main result of this paper. We begin by specifying some
spectral assumptions on H.

Assumption 1.1(A1) −σ3V is a positive matrix, where σ3 is one of the Pauli matrices
(c.f. (1.9)),

(A2) L− := −∂2
x + µ− V1 + V2 is non-negative,

(A3) there exists β > 0 such that |V1(x)| + |V2(x)| � e−(
√

2µ+β)|x | for all x ∈ R,
(A4) there are no embedded eigenvalues in (−∞,−µ) ∪ (µ,∞).

Under these assumptions, we recall the general spectral theory for H from [23].1

Lemma 1.2 [23, Lemma 3] Suppose Assumption 1.1 holds. The essential spectrum of H

equals (−∞,−µ] ∪ [µ,∞). Moreover,

spec(H) = − spec(H) = spec(H) = spec(H∗), (1.7)

and spec(H) ⊂ R ∪ iR. The discrete spectrum of H consists of eigenvalues {z j }Nj=1, 0 ≤
N < ∞, of finite multiplicity. For each z j �= 0, the algebraic and geometric multiplicities

coincide and Ran(H − z j ) is closed. The zero eigenvalue has finite algebraic multiplicity,

i.e., the generalized eigenspace ∪∞k=1 ker(Hk) has finite dimension. In fact, there is a finite

m ≥ 1 so that ker(Hk) = ker(Hk+1) for all k ≥ m.

The symmetry (1.7) is due to the following commutation properties of H,

H∗ = σ3Hσ3, −H = σ1Hσ1, (1.8)

with the Pauli matrices

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0
0 −1

]
. (1.9)

As a core assumption in this paper, we impose that the thresholds±µ of the essential spectrum
are irregular.

Assumption 1.3

(A5) The thresholds ±µ are irregular in the sense of Definition 4.4. This implies that there
exist non-trivial bounded solutions ��± = (�±1 , �±2 )⊤ to the equation H ��± = ±µ ��±.

(A6) The vanishing (bilateral)-Laplace transform condition holds

L[V2�
+
1 + V1�

+
2 ](±

√
2µ) =

∫ ∞

−∞
e∓
√

2µy(V2�
+
1 + V1�

+
2 )(y) dy = 0. (1.10)

1 The results in Section 2 of [23] are stated for dimension 3, but they in fact hold for all dimensions. Moreover,
only a polynomial decay on V1 and V2 is assumed in [23]. See also [35, Theorem 1.3].
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For details about the characterization of the threshold functions ��, we refer the reader to
Definition 4.4 and Lemma 4.5 in Sect. 4. Due to the commutation identity (1.8), we have the
relation ��+ = σ1 ��−. We emphasize that assumption (A6) is used to infer that (non-trivial)
bounded solutions ��± = (�±1 , �±2 ) to the equation H ��± = ±µ ��± satisfy �+1 = �−2 ∈
L∞(R)\L2(R).

Let Pd : L2(R)× L2(R)→ L2(R)× L2(R) be the Riesz projection corresponding to the
discrete spectrum of H, and define Ps := I − Pd. We now state the main theorem of this
article.

Theorem 1.4 Suppose assumptions (A1)–(A6) hold, and let �� = (�1, �2) be the L∞(R)×
L∞(R)\L2(R)× L2(R) distributional solution to

H �� = µ ��, (1.11)

with the normalization2

lim
x→∞

(
|�1(x)|2 + |�1(−x)|2

)
= 2. (1.12)

Then, for any �f = ( f1, f2) ∈ S(R)× S(R), we have

1. the unweighted dispersive estimate
∥∥∥ei tH Ps �f

∥∥∥
L∞(R)×L∞(R)

� |t |− 1
2

∥∥∥ �f
∥∥∥

L1(R)×L1(R)
, ∀ |t | ≥ 1, (1.13)

2. and the weighted dispersive estimate
∥∥∥〈x〉−2(ei tH Ps − Ft ) �f

∥∥∥
L∞(R)×L∞(R)

� |t |− 3
2

∥∥∥〈x〉2 �f
∥∥∥

L1(R)×L1(R)
, ∀ |t | ≥ 1,

(1.14)

where

Ft
�f := ei tµ

√
−4π i t

〈σ3 ��, �f 〉 �� − e−i tµ

√
4π i t
〈σ3σ1 ��, �f 〉σ1 ��. (1.15)

We proceed with some remarks on the main theorem:

1. The estimate (1.14) is an analogue of the weighted dispersive estimates obtained by
Goldberg [26] for the scalar Schödinger operator H = −∂2

x +V on the real line for non-
generic potentials V ; see [26, Theorem 2]. The local decay estimate (1.14) shows that the

bulk of the free wave ei tH Ps enjoys improved local decay at the integrable rate O(|t |− 3
2 ),

and that the slow O(|t |− 1
2 ) local decay can be pinned down to the contribution of the

finite rank operator Ft . Such sharp information can be useful for nonlinear asymptotic
stability problems, see also Sect. 1.4 below.

2. We make some comments on the spectral hypotheses. The assumptions (A1)–(A4) are
known to be satisfied by the linearized operator around the solitary wave for the 1D
focusing power-type NLS (1.5). In the case of the 1D focusing cubic NLS (σ = 1),
the linearized operator H1 satisfies the assumptions (A1)–(A6); see Sect. 1.4.1 below.
More generally, in Lemma 4.5, we show for matrix operators H of the form (1.1)
satisfying assumptions (A1)–(A6) that the edges ±µ of the essential spectrum of H

cannot be eigenvalues, and that the non-trivial bounded solutions ��± = (�±1 , �±2 )⊤ to

2 By this, we mean to rescale the vector �� �→ λ �� by scalar multiplication where λ > 0 is defined so that
(1.12) holds. See (1.20) in Sect. 1.4 for an example.
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H ��± = ±µ ��± belong to L∞\L2 since �+1 (x) ≡ �−2 (x) has a non-zero limit as x →
±∞. In this sense, we characterize the solutions ��± as threshold resonances. However,
it is not yet clear to the author whether assumption (A6) is strictly needed to show
that non-trivial bounded solutions ��± to H ��± = ±µ ��± cannot be eigenfunctions.
Moreover, an inspection of the proof of Lemma 4.5 reveals that the strong exponential
decay assumption (A3) and the vanishing condition assumption (A6) are only used in a
Volterra integral equation argument. In all other proofs, we only use some polynomial
decay of the potentials V1 and V2.

3. It might be possible to prove Theorem 1.4 using the scattering theory developed by
[9]. However, one major difficulty for this approach is due to the fact that the matrix
Wronskian associated with the vector Jost solutions is not invertible at the origin for cases
where the matrix operators H exhibit threshold resonances. Hence, the vector-valued
distorted Fourier basis functions are not immediately well-defined at zero frequency.
See Corollary 5.21 and Sect. 6 in [40] for further details.

1.3 Previous works

In this subsection, we collect references related to dispersive estimates for Schrödinger
operators and to the study of the stability of solitary waves.

For dispersive estimates for the matrix Schrödinger operator H, we refer to Sections 5–9 of
[40] in dimension 1, and to [19, 23, 28, 46, 58] in higher dimensions. A comprehensive study
on the spectral theory for the matrix operator arising from pure-power type NLS is given
in [12]. See also [13, 49, 60] for related analytical and numerical studies. For dispersive
estimates for the scalar Schrödinger operators, pioneering works include [37, 50, 61], and we
refer to [4, 21, 22, 24–28, 31, 48, 52, 53] for a sample of recent works. Finally, we mention
the papers [5, 36] on resolvent expansions for the scalar Schrödinger operator.

On the general well-posedness theory for the NLS Cauchy problem (1.2), we refer to the
pioneering works [34, 38, 59]. Results on the orbital stability (or instability) of solitary waves
for the NLS equation were first obtained by [2, 14, 55, 62, 63], and a general theory was
established in [33]. Subsequent developments for general nonlinearities were due to [16, 29,
30, 45, 51]. Regarding the asymptotic stability of solitary waves, the first results were due to
Buslaev–Perel’man [8, 9]. Subsequent works in this direction were due to [3, 11, 18, 32, 40,
47, 54]. For surveys on the stability of solitary waves, we refer to the reviews [15, 39] and
the monographs [10, 56].

1.4 On the solitary wave for the 1D focusing cubic NLS

In this subsection, we present two observations related to the asymptotic stability problem
for the solitary wave of the 1D focusing cubic NLS. First, we verify that the assumption
(A6) holds for the linearized operator around the solitary wave of the 1D focusing cubic
NLS. Second, we use the local decay estimate (1.14) to shed some light on the leading order
structure of the quadratic nonlinearity in the perturbation equation for the solitary wave of
the 1D focusing cubic NLS.

We note that a proof for the asymptotic stability problem has been given by Cuccagna–
Pelinovsky [17] via inverse scattering techniques. See also Borghese–Jenkins–McLaughlin
[6]. On the other hand, a perturbative proof that does not explicitly rely on the integrable
structure has not yet appeared in the literature to the best of the author’s knowledge. We
now briefly discuss the evolution equation for perturbations of the solitary wave for the 1D
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focusing cubic NLS. To keep our exposition short, we do not discuss the modulation aspects
for the solitary wave. For simplicity, consider the perturbation ansatz

ψ(t, x) = ei t (Q(x)+ u(t, x))

for the equation (1.5) (σ = 1). The ground state has the explicit formula

Q(x) := φ(x; 1) =
√

2 sech(x).

The evolution equation for the perturbation in vector form �u = (u1, u2) := (u, ū) is given
by

i∂t �u −H1�u = Q(�u)+ C(�u), (1.16)

where

H1 = H0 + V1 =
[
−∂2

x + 1 0
0 ∂2

x − 1

]
+

[
−4 sech2(x) −2 sech2(x)

2 sech2(x) 4 sech2(x)

]
, (1.17)

and

Q(�u) :=
[
−Qu2

1 − 2Qu1u2

Qu2
2 + 2Qu1u2

]
, and C(�u) :=

[
−u2

1u2

u1u2
2

]
. (1.18)

Recall from [12] that the matrix operator H1 has the essential spectrum (−∞,−1]∪ [1,∞),
and a four-dimensional generalized nullspace

Ng(H1) = span

{[
Q

−Q

]
,

[
(1+ x∂x )Q

(1+ x∂x )Q

]
,

[
∂x Q

∂x Q

]
,

[
x Q

−x Q

]}
, (1.19)

as well as a threshold resonance at +1 given by

�� ≡ ��+ :=
[
�1

�2

]
=

[
1− 1

2 Q2

− 1
2 Q2

]
=

[
tanh2(x)

− sech2(x)

]
. (1.20)

By symmetry, there is also a threshold resonance function at −1 given by

��− = σ1 ��+ =
[
− sech2(x)

tanh2(x)

]
. (1.21)

The eigenfunctions listed in (1.19) are related to the underlying symmetries for the NLS
equation. Note that we have normalized the resonance function �� to satisfy the condition
(1.12) stated in Theorem 1.4.

1.4.1 On assumption (A6) for the 1D focusing cubic NLS

Our first observation is that the assumption (A6) is satisfied by the matrix operator H1.

Lemma 1.5 Let V1(x) = 4 sech2(x), V2(x) = 2 sech2(x), and (�1(x),�2(x)) =
(tanh2(x),− sech2(x)). Then, we have

∫

R

e±
√

2y
(
V2(y)�1(y)+ V1(y)�2(y)

)
dy = 0. (1.22)
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Proof We denote the (two-sided) Laplace transform by

L[ f ](s) =
∫ ∞

−∞
e−sy f (y) dy, s ∈ C, (1.23)

which is formally related to the Fourier transform by

L[ f ](s) =
√

2πF[ f ](is).
By direct computation,

(V1�2 + V2�1)(x) = 2 sech2(x)− 6 sech4(x),

and

sech4(x) = 2

3
sech2(x)− 1

6
∂2

x (sech2(x)). (1.24)

Recall from [43, Corollary 5.7] that as equalities in S(R),

F[sech2](ξ) =
√

π

2

ξ

sinh(π
2 ξ)

. (1.25)

Hence, using the basic property F[−∂2
x f ](ξ) = ξ2F[ f ](ξ) and (1.24), we obtain

F[sech4](ξ) = 1

6

√
π

2

ξ(4+ ξ2)

sinh(π
2 ξ)

. (1.26)

As complex functions, we recall that sinh(i z) = i sin(z) and that z �→ z
sin(z)

is analytic3 in
the strip {s + iσ : s ∈ (−π, π), σ ∈ R}. Thus, by analytic continuation,

L[V1�2 + V2�1](s) =
√

2π
(
2 F[sech2](is)− 6F[sech4](is)

)
= πs(−2+ s2)

sin(πs
2 )

,

for any s ∈ C withℜ(s) ∈ (−2, 2), which in particular proves the vanishing condition (1.22).
⊓⊔

The other assumptions (A1)–(A5) for H1 are also satisfied by either checking directly or
invoking the results from Section 9 in [40].

1.4.2 Null structure for perturbations of the solitary wave of the 1D focusing cubic NLS

Due to the slow local decay of the Schrödinger waves in the presence of a threshold resonance,
the spatially localized quadratic nonlinearity in (1.16) may pose significant difficulties for
proving decay of small solutions to (1.16). The weighted dispersive estimate (1.14) shows
that the slow local decay is only due to the finite rank projection Ft . To shed some light on the
expected leading order behavior of the quadratic nonlinearity Q(�u) in (1.16), it is instructive
to insert a free Schrödinger wave

�ufree(t) := e−i tH Ps �f ,

for some fixed �f ∈ S(R)× S(R). By Theorem 1.4, we have

�ufree(t) = c−
e−i t

√
t

[
�1

�2

]
+ c+

ei t

√
t

[
�2

�1

]
+ �r(t), (1.27)

3 to be pedantic, there is a removable singularity at z = 0 which we can remove by setting the function z
sin(z)

equal to 1 at z = 0.
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with

c− =
1√
−4π i

〈σ3 ��, �f 〉, c+ = −
1√
4π i
〈σ3σ1 ��, �f 〉, (1.28)

and where the remainder �r(t) satisfies

∥∥〈x〉−2�r(t)
∥∥

L∞x (R)×L∞x (R)
� |t |− 3

2

∥∥∥〈x〉2 �f
∥∥∥

L1
x (R)×L1

x (R)
. (1.29)

Thus, owing to the spatial localization of the quadratic nonlinearity, we have

Q(�ufree(t)) =
c2
+e2i t

t
Q1( ��)+ c+c−

t
Q2( ��)+ c2

−e−2i t

t
Q3( ��)+OL∞(|t |−2), (1.30)

where

Q1( ��) =
[
−Q�2

2 − 2Q�1�2

Q�2
1 + 2Q�1�2

]
, (1.31)

Q2( ��) =
[
−2Q�1�2 − 2Q(�2

1 +�2
2 )

2Q�1�2 + 2Q(�2
1 +�2

2 )

]
, (1.32)

Q3( ��) = −σ1Q1( ��) =
[
−Q�2

1 − 2Q�1�2

Q�2
2 + 2Q�1�2

]
. (1.33)

Due to the critical O(|t |−1) decay of the leading order terms on the right-hand side of (1.30),
it is instructive to analyze the long-time behavior of small solutions to the inhomogeneous
matrix Schrödinger equation with such a source term





i∂t �usrc −H1 �usrc = Ps

(
c2
+e2i t

t
Q1( ��)+ c+c−

t
Q2( ��)+

c2
−e−2i t

t
Q3( ��)

)
, t ≥ 1,

�usrc(1) = �0.

(1.34)

To this end, it will be useful to exploit a special conjugation identity for the matrix Schrödinger
operator H1. It was recently pointed out by Martel, see [47, Section 2.3], that the matrix
operator H1 can be conjugated to the flat matrix Schrödinger operator H0. By first conjugating

H1 with the unitary matrix J = 1√
2

[
1 i

1 −i

]
, we obtain the equivalent matrix Schrödinger

operator

L1 = −iJ−1H1J :=
[

0 L−
−L+ 0

]

= L0 +W :=
[

0 −∂2
x + 1

∂2
x − 1 0

]
+

[
0 −2 sech2(x)

6 sech2(x) 0

]
.

Introducing the operator

D :=
[

0 (−∂2
x + 1)S2

−S2 L+ 0

]
, where S := Q · ∂x · Q−1 = ∂x + tanh(x), (1.35)

one has the conjugation identity (see also [12, Section 3.4])

DL1 = L0D. (1.36)
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We then transfer the above identity to the matrix operator H by setting D̃ := JDJ−1 to
obtain the conjugation identity

D̃H1 = H0D̃. (1.37)

Moreover, it can be checked directly that D̃�η = 0 for any generalized eigenfunction �η ∈
Ng(H1), and this implies that D̃Pd ≡ 0, which is equivalent to saying that D̃ = D̃Ps. Hence,
by applying the transformation D̃ to the equation (1.34), we obtain the transformed equation

i∂t �vsrc −H0�vsrc = D̃

(
c2
+e2i t

t
Q1( ��)+ c+c−

t
Q2( ��)+ c2

−e−2i t

t
Q3( ��)

)
, (1.38)

where �vsrc := D̃�usrc is the transformed variable. Note that the above equation features the
flat operator H0 on the left. The Duhamel formula for �vsrc(t) at times t ≥ 1 reads

�vsrc(t) = −i

∫ t

1
e−i(t−s)H0D̃

(
c2
+e2is

s
Q1( ��)+ c+c−

s
Q2( ��)+ c2

−e−2is

s
Q3( ��)

)
ds.

(1.39)

The flat, self-adjoint, matrix operator H0 has the benefit that the semigroup e−i tH0 can be
represented in terms of the standard Fourier transform by the formula
(

e−i tH0 �g
)

(x) = 1√
2π

∫

R

e−i t(ξ2+1)ĝ1(ξ)ei xξ dξ e1 +
1√
2π

∫

R

ei t(ξ2+1)ĝ2(ξ)ei xξ dξ e2,

(1.40)

where �g = (g1, g2)
⊤ and e1, e2 are the standard unit vectors in R2. The profile of �vsrc(t) is

given by

�fsrc(t) := ei tH0 �vsrc(t). (1.41)

Setting

D̃Q j ( ��) =: (G j,1, G j,2)
⊤ for 1 ≤ j ≤ 3,

we have for times t ≥ 1 that

F[ �fsrc(t)](ξ) = c2
+

∫ t

1

eis(ξ2+3)

s
Ĝ1,1(ξ) ds e1

+ c+c−

∫ t

1

eis(ξ2+1)

s
Ĝ2,1(ξ) ds e1 + c2

−

∫ t

1

eis(ξ2−1)

s
Ĝ3,1(ξ) ds e1

+ c2
+

∫ t

1

e−is(ξ2−1)

s
Ĝ1,2(ξ) ds e2

+ c+c−

∫ t

1

e−is(ξ2+1)

s
Ĝ2,2(ξ) ds e2 + c2

−

∫ t

1

e−is(ξ2+3)

s
Ĝ3,2(ξ) ds e2.

(1.42)

The uniform-in-time boundedness in L∞ξ of the Fourier transform of the profile F[ �fsrc(t)](ξ)

is related to recovering the free decay rate for �vsrc(t). However, in view of the critical decay
of the integrand, this requires favorable time oscillations. Observe that the above terms with
time phases e±is(ξ2+1), e±is(ξ2+3) are non-stationary for any s ∈ R which implies that they
have a better decay rate using integration by parts in the variable s. On the other hand, the
terms with the phases e±is(ξ2−1) are stationary at the points ξ = ±1. Thus, it is important to
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know if the Fourier coefficients Ĝ3,1(±1) and Ĝ1,2(±1) vanish. Indeed, this is true due to
the following lemma.

Lemma 1.6 It holds that

Ĝ3,1(±1) = Ĝ1,2(±1) = 0. (1.43)

Proof First, to ease notation, we write

D̃ = i

2

[
(−D1 − D2) (D1 − D2)

(−D1 + D2) (D1 + D2)

]
, (1.44)

where

D1 := (−∂2
x + 1)S2 = (−∂2

x + 1)(∂x + tanh(x))(∂x + tanh(x)),

D2 := S2 L+ = (∂x + tanh(x))(∂x + tanh(x))(−∂2
x − 6 sech2(x)+ 1).

(1.45)

Since σ1D̃ = −D̃σ1 and Q3( ��) = −σ1Q1( ��) (c.f. (1.33)), it follows that G3,1 ≡ G1,2 as
functions. Note that

G3,1 =
i

2

(
D1(Q�2

1 )+ D1(Q�2
2 )+ 2D1(2Q�1�2)+ D2(Q�2

1 )− D2(Q�2
2 )

)
,(1.46)

where

(Q�2
1 )(x) =

√
2 sech(x) tanh4(x),

(Q�1�2)(x) = −
√

2 sech3(x) tanh2(x),

(Q�2
2 )(x) =

√
2 sech5(x).

By using the trigonometric identity sech2(x)+tanh2(x) = 1, we may simplify the expression
for G3,1 into

G3,1(x) = i
√

2

2

(
D1

(
sech(x)− 6 sech3(x)+ 6 sech5(x)

)
+ D2

(
sech(x)− 2 sech3(x)

))
.

By patient direct computation, we find

F1(x) := D1
(

sech(x)− 6 sech3(x)+ 6 sech5(x)
)

= 192 sech3(x)− 3456 sech5(x)+ 9720 sech7(x)− 6720 sech9(x)
(1.47)

and

F2(x) := D2
(

sech(x)− 2 sech3(x)
)
= 48 sech3(x)− 264 sech5(x)+ 240 sech7(x).

(1.48)

Moreover, using the identities

(∂2
x sech)(x) = sech(x)− 2 sech3(x),

(∂4
x sech)(x) = sech(x)− 20 sech3(x)+ 24 sech5(x),

(∂6
x sech)(x) = sech(x)− 182 sech3(x)+ 840 sech5(x)− 720 sech7(x),

(∂8
x sech)(x) = sech(x)− 1640 sech3(x)

+ 23184 sech5(x)− 60480 sech7(x)+ 40320 sech9(x),

(1.49)
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we obtain

F1(x) = −1

6

(
−∂2

x + 3∂4
x − 3∂6

x + ∂8
x

)
sech(x) = −1

6
(−∂2

x + 1)3(−∂2
x ) sech(x),

(1.50)

and

F2(x) = 1

3

(
−∂2

x + 2∂4
x − ∂6

x

)
sech(x) = 1

3
(−∂2

x + 1)2(−∂2
x ) sech(x). (1.51)

Thus, using the property F[−∂2
x f ] = ξ2F[ f ](ξ) and the fact that

ŝech(ξ) =
√

π

2
sech

(
πξ

2

)
,

we compute that

Ĝ3,1(ξ) = i
√

2

2

(
F̂1(ξ)+ F̂2(ξ)

)
= − i

√
π

12
(ξ2 − 1)ξ2(ξ2 + 1)2 sech

(
πξ

2

)
, (1.52)

which implies (1.43) as claimed. ⊓⊔

Remark 1.7 We determined the identities (1.47)–(1.51) with the aid of the Wolfram
Mathematica software.

The above lemma shows that the localized quadratic resonant terms are well-behaved for the
nonlinear perturbation equation (1.16). The presence of this null structure is potentially a key
ingredient for a perturbative proof of the asymptotic stability of the solitary wave solutions
to the 1D focusing cubic NLS. We end this subsection with the following closing remark.

Remark 1.8 The motivation for analyzing the quadratic nonlinearity in the perturbation equa-
tion (1.16) and for uncovering the null structure for the localized quadratic resonant terms
in Lemma 1.6 is due to the recent work by Lührmann–Schlag [43], where the authors inves-
tigate the asymptotic stability of kink solutions to the 1D sine-Gordon equation under odd
perturbations. In [43], the authors employ a similar conjugation identity like the one we used
in (1.37) to transform the scalar Schrödinger operator H1 := −∂2

x − 2 sech2(x) to the flat
operator H0 := −∂2

x for the perturbation equation. In fact, it is easy to check that one has
the conjugation identity SH1 = H0S, where S = ∂x + tanh(x). Moreover, an analogue of
Lemma 1.6 on the non-resonant property for the localized quadratic resonant terms in the
perturbation equation for the sine-Gordon kink was first obtained in [42, Remark 1.2]. This
remarkable null structure for the sine-Gordon model played a key role in the asymptotic
stability proof in [43]. In [44], the same authors obtained long-time decay estimates for even
perturbation of the soliton of the 1D focusing cubic Klein–Gordon equation. The absence
of the null structure in the nonlinearity of the perturbation equation in the focusing cubic
Klein–Gordon model is a major obstruction to full co-dimension one asymptotic stability
result under even perturbations.

Our short discussion on the effects of the threshold resonance on the quadratic term for
(1.16) suggests that the localized quadratic resonant terms are well-behaved for the pertur-
bation equation in the 1D cubic NLS model. However, note that a full perturbative proof
of the asymptotic stability problem for this model has to encompass the modulation theory
associated to the moving solitary wave, and take into account the long-range (modified)
scattering effects due to the non-localized cubic nonlinearities in the perturbation equation.
We point out that Collot–Germain [11] recently obtained general such asymptotic stability
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results for solitary waves for 1D nonlinear Schrödinger equations under the assumption that
the linearized matrix Schrödinger operator does not exhibit threshold resonances. See also
[47] for related local asymptotic stability results.

1.5 Organization of the article

The remaining sections of this paper are devoted to the proof of Theorem 1.4. In Sect. 2, we
state a few stationary phase lemmas, which will be heavily utilized in Sections 5 and 6, and we
will also provide an analogue of Theorem 1.4 for the free matrix operator H0. In Sect. 3, we
employ the symmetric resolvent expansion following the framework in [23], and in Sect. 4,
we carefully extract the leading operators for these resolvent expansions. A characterization
of the threshold resonance is stated in Lemma 4.5 under the spectral assumptions (A1)–(A6).
Then, in Sect. 5, we prove dispersive estimates for the evolution operator ei tH in the low
energy regime. The approach taken in Sect. 5 largely follows the techniques employed in
[20] for one-dimensional Dirac operators. In Sect. 6, we prove dispersive estimates for the
remaining energy regimes and finish the proof of Theorem 1.4.

1.6 Notation

For any �f = ( f1, f2)
⊤, �g = (g1, g2)

⊤ ∈ L2(R)× L2(R), we use the inner product

〈 �f , �g〉 :=
∫

R

�f ∗ �g dx =
∫

R

(
f̄1g1 + f̄2g2

)
dx, where �f ∗ := ( f̄1, f̄2). (1.53)

The Schwartz space is denoted by S(R) and we use the weighted L2-spaces

Xσ := 〈x〉−σ L2(R)× 〈x〉−σ L2(R), ‖ �f ‖Xσ := ‖〈x〉σ �f ‖L2(R)×L2(R), where σ ∈ R.

(1.54)

Note that for any α > β > 0, one has the continuous inclusions

Xα ⊂ Xβ ⊂ X0 = L2(R)× L2(R) ⊂ X−β ⊂ X−α, (1.55)

and the duality X∗α = X−α . Our convention for the Fourier transform is

F[ f ](ξ) = f̂ (ξ) = 1√
2π

∫

R

e−i xξ f (x)dx, F−1[ f ](x) = f̌ (x) = 1√
2π

∫

R

ei xξ f (ξ)dξ.

We denote by C > 0 an absolute constant whose value is allowed to change from line to line.
In order to indicate that the constant depends on a parameter, say θ , we will use the notation
Cθ or C(θ). For non-negative X , Y we write X � Y if X ≤ CY . We use the Japanese bracket

notation 〈x〉 = (1+ x2)
1
2 for x ∈ R. The standard tensors on R2 are denoted by

e1 =
[

1
0

]
, e2 =

[
0
1

]
, e11 = e1e⊤1 =

[
1 0
0 0

]
, e22 = e2e⊤2 =

[
0 0
0 1

]
. (1.56)
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gesting the problem and patiently checking the manuscript. The author is grateful to Andrew
Comech, Wilhelm Schlag, Gigliola Staffilani, and Ebru Toprak for helpful discussions.
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2 Freematrix Schrödinger estimates

In this section, we derive dispersive estimates for the free evolution semigroup ei tH0 . We
recall that the free matrix Schödinger operator

H0 =
[
−∂2

x + µ 0
0 ∂2

x − µ

]
,

has a purely continuous spectrum

spec(H0) = σac(H0) = (−∞,−µ] ∪ [µ,∞),

and the resolvent operator of H0 is given by

(H0 − λ)−1 =
[

R0(λ− µ) 0
0 −R0(−λ− µ)

]
, λ ∈ C \ (−∞,−µ] ∪ [µ,∞), (2.1)

where R0 is the resolvent operator for the one-dimensional Laplacian, with an integral kernel
given by

R0(ζ
2)(x, y) := (−∂2 − ζ 2)−1(x, y) = −eiζ |x−y|

2iζ
, ζ ∈ C+, (2.2)

where C+ is the upper half-plane. We obtain from the scalar resolvent theory due to Agmon
[1] that the limiting resolvent operators

(
H0 − (λ± i0)

)−1 = lim
ε↓0

(
H0 − (λ± iε)

)−1
, λ ∈ (−∞,−µ) ∪ (µ,∞),

are well defined as operators from Xσ → X−σ for any σ > 1
2 . Here, the matrix operator H0

is self-adjoint and Stone’s formula applies:

ei tH0 = 1

2π i

∫

|λ|≥µ

ei tλ
[(

H0 − (λ+ i0)
)−1 −

(
H0 − (λ− i0)

)−1
]

dλ. (2.3)

Let us focus on the spectrum on the positive semi-axis [µ,∞), as the negative part can be
treated using the symmetric properties of H (c.f. Remark 3.3). By invoking the change of
variables λ �→ λ = µ+ z2 with 0 < z <∞, the kernel of ei tH0 P+s is then given by

ei tH0 P+s (x, y)

= ei tµ

π i

∫ ∞

0
ei t z2

z
[(

H0 − (µ+ z2 + i0)
)−1 −

(
H0 − (µ+ z2 − i0)

)−1
]
(x, y) dz.

Here, the notation P+s means that we restrict the free evolution ei tH0 to the positive semi-axis
in the integral representation (2.3). By (2.1) and (2.2), we have

(
H0 − (µ+ z2 ± i0)

)−1
(x, y) =



±ie±i z|x−y|

2z
0

0 − e−
√

z2+2µ|x−y|

2
√

z2+2µ


 , 0 < z <∞, (2.4)

and thus,

ei tH0 P+s (x, y) = ei tµ

2π

∫

R

ei t z2
ei z|x−y|e11 dz. (2.5)

Note that the above integral is to be understood in the principal value sense, due to the pole in
(2.4). To this end, we recall the following standard stationary phase results. The first lemma
is a direct consequence of the classic van der Corput lemma.
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Lemma 2.1 Let r ∈ R, and let ψ(z) be a compactly supported smooth function. Then for any

|t | > 0,

∣∣∣∣
∫

R

ei t z2+i zrψ(z) dz

∣∣∣∣ ≤ C |t |− 1
2 ‖∂zψ‖L1

z (R). (2.6)

Moreover, if ψ(z) is supported away from zero, then for all |t | > 0,

∣∣∣∣
∫

R

ei t z2+i zrψ(z) dz

∣∣∣∣ ≤ C |t |− 3
2

∥∥∥[∂2
z + ir∂z]

(ψ
z

)∥∥∥
L1

z (R)
. (2.7)

Proof The bound (2.6) follows from the van der Corput lemma (see e.g. [57, VIII Proposi-
tion 2]) by observing that the phase φ(z) = z2 + zr

t
satisfies |∂2

z φ(z)| = 2 > 0. The last
bound follows by first integrating by parts

∫

R

ei t z2
ei zrψ(z) dz = − 1

2i t

∫

R

ei t z2
∂z

[
ei zr ψ(z)

z

]
dz

= − 1

2i t

∫

R

ei t z2+i zr [ir + ∂z]
[

ψ(z)

z

]
dz,

and then invoking the van der Corput lemma. ⊓⊔

We will also need the following sharper stationary phase lemma, which may be found in
many text on oscillatory integrals with a Fresnel phase.

Lemma 2.2 Let χ(z) be a smooth, non-negative, even cut-off function such that χ(z) = 1 for

z ∈ [−1, 1] and χ(z) = 0 for |z| ≥ 2. For r , t ∈ R, define

G t (r) :=
∫

R

ei t z2+i zrχ(z2) dz. (2.8)

Then there exists C = C
(
‖χ(z2)‖W 4,1(R)

)
> 0 such that for any r ∈ R and for any |t | > 0,

∣∣∣∣G t (r)−
√

π√
−i t

e−i r2
4t

∣∣∣∣ ≤ C |t |− 3
2 〈r〉. (2.9)

Moreover, if r1, r2 ≥ 0, then

∣∣∣∣G t (r1 + r2)−
√

π√
−i t

e−i
r2
1

4t e−i
r2
2

4t

∣∣∣∣ ≤ C |t |− 3
2 〈r1〉〈r2〉. (2.10)

Proof First, the phase φ(z) := z2 + zr
t

has a critical point at z∗ = − r
2t
∈ R with φ′′(z) =

2 > 0. We use Taylor expansion of φ(z) and shift the integral by the change of variables
z �→ z + z∗ to obtain

G t (r) =
∫

R

ei tφ(z)χ(z2) dz =
∫

R

ei tφ(z∗)+φ′′(z∗)(z−z∗)2
χ(z2) dz

= e−i r2
4t

∫

R

ei t z2
χ
(
(z + z∗)2) dz. (2.11)

123



206 Page 16 of 54 Y. Li

Using the Fourier transform of the free Schrödinger group and the Plancherel’s identity, we
have

∫

R

ei t z2
χ
(
(z + z∗)2) dz

= 1√
−2i t

∫

R

e−i
ξ2

4t Fz→ξ

[
χ
(
(z + z∗)2)] (ξ) dξ

= 1√
−2i t

∫

R

Fz→ξ

[
χ
(
(z + z∗)2)] (ξ) dξ

+ 1√
−2i t

∫

R

(
e−i

ξ2

4t − 1
)
Fz→ξ

[
χ
(
(z + z∗)2)] (ξ) dξ

=
√

2π√
−2i t

χ(z2
∗)+

1√
−2i t

∫

R

(
e−i

ξ2

4t − 1
)

ei z∗ξF
[
χ
(
(z + z∗)2)] (ξ) dξ.

Using the bound |ei
ξ2

4t −1| ≤ C |t |−1ξ2 and the Hölder’s inequality, we bound the remainder
term by
∣∣∣∣

1√
−2i t

∫

R

(
e−i

ξ2

4t − 1
)

ei z∗ξF
[
χ
(
(z + z∗)2)] (ξ) dξ

∣∣∣∣ ≤ C |t |− 3
2

∫

R

|ξ2F[χ(z2)](ξ)| dξ

≤ C |t |− 3
2 ‖χ(z2)‖W 4,1(R) ≤ C |t |− 3

2 .

Next, we use the fact that |1−χ(z2)| ≤ C |z| for all z ∈ R and for some C > 0 large enough
so that

|1− χ(z2
∗)| ≤ C |z∗| ≤ C |t |−1〈r〉. (2.12)

Then (2.9) follows (2.11)–(2.12). Finally, we use the estimate (2.9) to obtain
∣∣∣∣∣G t (r1 + r2)−

√
2π√
−2i t

e−i
(r1−r2)2

4t

∣∣∣∣∣ ≤ C |t |− 3
2 〈r1 − r2〉 ≤ C |t |−1〈r1〉〈r2〉.

Thus, by the triangle inequality and the bound
∣∣∣∣e
−i

(r1−r2)2

4t − e−i
r2
1

4t e−i
r2
2

4t

∣∣∣∣ =
∣∣∣∣e
−i

r2
1

4t e−i
r2
2

4t

∣∣∣∣
∣∣∣ei

r1r2
2t − 1

∣∣∣ ≤ C |t |−1〈r1〉〈r2〉,

we conclude (2.10). ⊓⊔

Next, we prove the analogue of Theorem 1.4 for the free evolution. We emphasize that the free
matrix Schrödinger operator H0 has threshold resonances H0e1 = µe1 and H0e2 = −µe2.

Proposition 2.3 For any �u = (u1, u2) ∈ S(R)× S(R) and for any |t | ≥ 1, we have
∥∥∥ei tH0 P+s �u

∥∥∥
L∞x ×L∞x

� |t |− 1
2 ‖�u ‖L1

x×L1
x
, (2.13)

and ∥∥∥〈x〉−1
(

ei tH0 P+s − F0
t

)
�u
∥∥∥

L∞x ×L∞x ‘
� |t |− 3

2 ‖〈x〉�u ‖L1
x×L1

x
, (2.14)

where

F0
t (x, y) := ei tµ

√
−4π i t

e−i x2
4t e1e−i

y2

4t e⊤1 . (2.15)
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Proof We first begin by splitting the evolution operator into low and high energy parts4:

ei tH0 P+s (x, y) = ei tH0χ(H0 − µI )P+s (x, y)+ ei tH0(1− χ(H0 − µI ))P+s (x, y)

= ei tµ

2π

∫

R

ei t z2+i z|x−y|χ(z2) dze11

+ ei tµ

2π

∫

R

ei t z2+i z|x−y|(1− χ(z2)) dze11,

(2.16)

where χ(z) is a standard smooth, even, non-negative cut-off function satisfying χ(z) = 1
for |z| ≤ 1 and χ(z) = 0 for |z| ≥ 2.

In the high energy part in (2.16), following the ideas from [26, 31], we prove the estimate
∣∣∣∣
∫

R

ei t z2+i z|x−y|(1− χ(z2))dz

∣∣∣∣ � min{|t |− 1
2 , |t |− 3

2 〈x〉〈y〉}. (2.17)

For a more rigorous treatment, we instead use a truncated cutoff χL(z) = (1−χ(z2))χ(z/L),
where L ≥ 1, and we prove the uniform estimate

sup
L≥1

∣∣∣∣
∫

R

ei t z2+i z|x−y|χL(z) dz

∣∣∣∣ ≤ C min{|t |− 1
2 , |t |− 3

2 〈x〉〈y〉}, (2.18)

with a constant C > 0 independent of L . This estimate will imply (2.17). Indeed for any
|t | > 0, by the Plancherel’s identity, we have

sup
a∈R

∣∣∣∣
∫

R

ei t z2+iazχL(z) dz

∣∣∣∣

= sup
a∈R

∣∣∣∣
∫

R

F−1[ei t z2+iaz](ξ)F[χL(z)](ξ) dξ

∣∣∣∣ ≤ C |t |− 1
2 ‖F[χL ]‖L1

ξ (R).

Here, we use that the Fourier transform of the tempered distribution ei t z2+iaz has |t |− 1
2 decay.

Using the definition of χL , the scaling properties of the Fourier transform, and Young’s
convolution inequality, we obtain

‖F[χL ]‖L1
ξ (R) ≤ ‖F[χ(z/L)]‖L1

ξ (R) + ‖F[χ(z/L)]‖L1
ξ (R)‖F[χ(z2)]‖L1

ξ (R)

≤ C‖LF[χ](Lξ)‖L1
ξ (R) = C‖F[χ](ξ)‖L1

ξ (R) ≤ C‖χ‖W 2,1(R) � 1.
(2.19)

For the high-energy weighted dispersive estimate, we use integration by parts to find that
∣∣∣∣
∫

R

ei t z2
ei z|x−y|)χL(z) dz

∣∣∣∣ ≤ C |t |−1
∣∣∣∣
∫

R

ei t z2
∂z

(
ei z|x−y|z−1χL(z)

)
dz

∣∣∣∣ .

When the derivative falls onto ei z|x−y|, the weights 〈x〉〈y〉 appear, whereas the term z−1χL(z)

is smooth since χL is compactly supported away from the interval [−1, 1]. By following the

previous argument, we conclude the O(|t |− 3
2 〈x〉〈y〉) bound for (2.18) in the high-energy

regime.
Next we turn to the low-energy estimates. For the low-energy unweighted estimate, we

employ Lemma 2.1 to obtain
∣∣∣∣
∫

R

ei t z2+i z|x−y|χ(z2) dz

∣∣∣∣ ≤ C |t |− 1
2 ‖∂zχ(z2)‖L1(R) ≤ C |t |− 1

2 . (2.20)

4 Symbols like χ(H0 − µI ) are only used in a formal way to represent the cut-off χ(z2) in the z-integrals,
where they arise.
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On the other hand, for the low-energy weighted estimate, we observe that by Lemma 2.2,
∣∣∣∣∣

∫

R

ei t z2+i z|x−y|χ(z2) dz −
√

2π√
−2i t

e−i x2
4t e−i

y2

4t

∣∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉.

Hence, using that e11 = e1e⊤1 , we arrive at the kernel estimate
∣∣∣ei tH0χ(H0 − µ)P+s (x, y)− F0

t (x, y)

∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉, (2.21)

where F0
t is given by (2.15). Thus, by combining the high energy bounds (2.17) and the low

energy bounds (2.20)–(2.21) we conclude the dispersive estimates (2.13) and (2.14). ⊓⊔

3 Symmetric resolvent identity

By assumption (A1), we can factorize the matrix potential

V = −σ3vv = v1v2, (3.1)

with

v1 = −σ3v :=
[
−a −b

b a

]
and v2 = v :=

[
a b

b a

]
,

where

a := 1

2

(√
V1 + V2 +

√
V1 − V2

)
and b := 1

2

(√
V1 + V2 −

√
V1 − V2

)
.

It will be helpful in later sections to keep in mind that

V1 = a2 + b2, V2 = 2ab. (3.2)

We denote the resolvent of H = H0 + V by (H− z)−1 for z ∈ ρ(H). The resolvent identity
states that

(H− z)−1 =
(
I + (H0 − z)−1V

)−1
(H0 − z)−1, ∀z ∈ ρ(H0) ∩ ρ(H).

This identity was used in [23] to establish that there is a limiting absorption principle for the
resolvent of H on the semi-axes (−∞,−µ)∪(µ,∞) in the weighted L2-spaces Xσ → X−σ ,
σ > 1

2 . Note that the lemma below applies in any spatial dimension.

Lemma 3.1 ([23, Lemma 4-Corollary 6], see also the proof in [40, Lemma 6.8]) Suppose

assumptions (A1)–(A4) hold. Then, the following holds.

1. For σ > 1
2 , and |λ| > µ, the operator

(
H0 − (λ± i0)

)−1
V : X−σ → X−σ (3.3)

is compact and I +
(
H0 − (λ± i0)

)−1
V is boundedly invertible on X−σ .

2. For σ > 1
2 and λ0 > µ arbitrary, we have

sup
|λ|≥λ0,ε>0

|λ| 12
∥∥∥
(
H− (λ± iε)

)−1
∥∥∥

Xσ→X−σ

<∞. (3.4)
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3. For |λ| > µ, define

(
H− (λ± i0)

)−1 :=
(

I +
(
H0 − (λ± i0)

)−1
V
)−1(

H0 − (λ± i0)
)−1

. (3.5)

Then, as ε ց 0,
∥∥∥
(
H− (λ± iε)

)−1 −
(
H− (λ± i0)

)−1
∥∥∥

Xσ→X−σ

−→ 0 (3.6)

for any σ > 1
2 .

We recall the following spectral representation of ei tH from [23].

Lemma 3.2 ([23, Lemma 12]) Under assumptions (A1)–(A4), there is the representation

ei tH = 1

2π i

∫

|λ|≥µ

ei tλ
[(

H− (λ+ i0)
)−1 −

(
H− (λ− i0)

)−1
]

dλ+
∑

j

ei tH Pz j
,

(3.7)

where the sum runs over the entire discrete spectrum and Pz j
is the Riesz projection cor-

responding to the eigenvalue z j . The formula (3.7) and the convergence of the integral are

to be understood in the sense that if φ,ψ ∈ [W 2,2(R) × W 2,2(R)] ∩ [〈x〉−1−L2(R) ×
〈x〉−1−L2(R)], then

〈ei tHφ,ψ〉 = lim
R→∞

1

2π i

∫

R≥|λ|≥µ

ei tλ
〈[(

H− (λ+ i0)
)−1−

(
H−(λ−i0)

)−1
]
φ,ψ

〉
dλ

+
∑

j

〈ei tH Pz j
φ,ψ〉,

(3.8)

for all t ∈ R.

We write Ps = P+s + P−s , where the signs ± refer to the positive and negative halves of
the essential spectrum (−∞,−µ] ∪ [µ,∞). In the following sections, we will focus on the
analysis on the positive semi-axis part of the essential spectrum. We can treat the negative
semi-axis of the essential spectrum by taking advantage of the symmetry properties of H,
see Remark 3.3 below. In view of the spectral representation of ei tH from Lemma 3.2, we
use the change of variables λ �→ λ = µ+ z2 with 0 < z <∞ to write

ei tH P+s =
ei tµ

π i

∫ ∞

0
ei t z2

z
[(

H− (µ+ z2 + i0))−1 − (H− (µ+ z2 − i0)
)−1

]
dz.

For the upcoming dispersive estimates, it is convenient to first open up the domain of
integration for the above integral to the entire real line by means of analytic continuation
for the perturbed resolvent. Following the framework of Sect. 5 in [23], we introduce the
operator

R(z) := (H− (µ+ z2 + i0))−1, for z > 0,

R(z) := (H− (µ+ z2 − i0))−1 = (H− (µ+ z2 + i0))−1, for z < 0,
(3.9)

so that

ei tH P+s =
ei tµ

π i

∫

R

ei t z2
zR(z) dz. (3.10)
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Here, the integral should be understood in the principal value sense due to the pole associated
with the resolvent R(z) at the origin. We also set

R0(z) := (H0 − (µ+ z2 + i0))−1, for z > 0,

R0(z) := (H0 − (µ+ z2 + i0))−1, for z < 0.
(3.11)

In particular, with this definition, we have by (2.4) for all z ∈ R \ {0} that

R0(z)(x, y) = (H0 − (µ+ z2 + i0))−1(x, y) =




iei z|x−y|
2z

0

0 − e−
√

z2+2µ|x−y|

2
√

z2+2µ


 . (3.12)

As in [23], we employ the symmetric resolvent identity

R(z) = R0(z)−R0(z)v1(M(z))−1v2R0(z), (3.13)

where

M(z) = I + v2R0(z)v1, z ∈ R \ {0}. (3.14)

By inserting the above identity, one checks that

ei tH P+s =
ei tµ

π i

∫

R

ei t z2
zR0(z) dz − ei tµ

π i

∫

R

ei t z2
zR0(z)v1

(
M(z)

)−1
v2R0(z) dz.

(3.15)

In the next section, we will investigate the invertibility of the matrix operator M(z) near the
origin. We give the following remark for the evolution operator in the negative part of the
essential spectrum.

Remark 3.3 Using the identities

H = −σ1Hσ1, V = −σ1Vσ1, (3.16)

we infer that

ei tH P−s = σ1e−i tH P+s σ1. (3.17)

Furthermore, since these identities also hold for H0, the analogue of Proposition 2.3 for the
weighted estimate of the free evolution ei tH0 P−s is given by

∥∥∥〈x〉−1
(

ei tH0 P−s − F̃0
t

)
�u
∥∥∥

L∞x
≤ C |t |− 3

2 ‖〈x〉�u ‖L1
x
, |t | ≥ 1, (3.18)

where

F̃0
t (x, y) := e−i tµ

√
4π i t

ei x2
4t e2ei

y2

4t e⊤2 . (3.19)

Note that F̃0
t = σ1 F0

−tσ1.
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4 Laurent expansion of the resolvent near the threshold

In this section we study asymptotic expansions of the perturbed resolvent operators near
the thresholds of the essential spectrum, closely following the framework of the seminal
paper [36] for the scalar Schrödinger operators H = −∂2

x + V on the real line. As specified
in the introduction, we are interested in the irregular case, where the matrix Schrödinger
operator H exhibits a threshold resonance. See Definition 4.4 for a precise definition. This
means that there exist globally bounded non-trivial solutions of H� = ±µ�. In this context,
we mention that the threshold regularity can also be characterized by the scattering theory
introduced by [9]; see Lemma 5.20 of [40]. We begin with the terminology used in [52].

Definition 4.1 (Absolutely bounded operators) We say an operator A : L2(R) × L2(R)→
L2(R)× L2(R) with an integral kernel A(x, y) ∈ C2×2 is absolutely bounded if the operator
with the kernel |A(x, y)| := (|A(x, y)i, j |)2

i, j=1 ∈ R2×2 is bounded from L2(R)× L2(R)→
L2(R) × L2(R). In particular, Hilbert-Schmidt and finite rank operators are absolutely
bounded.

To investigate the asymptotic expansions of the operator M(z) (c.f. (3.14)), we start with the
following Taylor expansions of the free resolvent around the origin z = 0.

Lemma 4.2 Let z0 := min{1,
√

2µ}. For any 0 < |z| < z0, we have the following expansion

R0(z)(x, y) = i

2z
e11 + G0(x, y)+ zG1(x, y)+ E(z)(x, y) (4.1)

where

G0(x, y) :=
[
− |x−y|

2 0

0 − e−
√

2µ|x−y|
2
√

2µ

]
, (4.2)

G1(x, y) :=
[
|x−y|2

4i
0

0 0

]
, (4.3)

and E(z) is an error term which satisfies the estimate

|z|k |∂k
z E(z)(x, y)| ≤ Cµ,k |z|2〈x〉3+k〈y〉3+k, ∀ k = 0, 1, 2, (4.4)

for any |z| < z0.

Proof Recall from (3.12) that

R0(z)(x, y) =




iei z|x−y|
2z

0

0 − e−
√

z2+2µ|x−y|

2
√

z2+2µ


 .

For 0 < |z| < 1, we have the Laurent expansion

iei z|x−y|

2z
= i

2z
+ −|x − y|

2
+ |x − y|2

4i
z + r1(z, |x − y|), (4.5)

where the remainder term is

r1(z, |x − y|) := i

2z
r̃1(z, |x − y|), r̃1(z, |x − y|) := (i z|x − y|)3

2!

∫ 1

0
eisz|x−y|(1− s)2 ds.
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By direct computation, for any x, y ∈ R and for any |z| < 1, we have the estimate

|z|k |∂k
z r1(z, |x − y|)| � |z|2〈x〉3+k〈y〉3+k, k = 0, 1, 2. (4.6)

In the lower component of the resolvent kernel, for |z| < 2µ, we have the Taylor expansion

− e−
√

z2+2µ|x−y|

2
√

z2 + 2µ
= −e−

√
2µ|x−y|

2
√

2µ
+ r2(z, |x − y|), (4.7)

where we denote the remainder term by

r2(z, |x−y|) := z2

2!

∫ 1

0
(1− s)(∂2

z gµ)(sz, |x−y|) ds, gµ(z, |x−y|) := −e−
√

z2+2µ|x−y|

2
√

z2 + 2µ
.

Using the fact that for any η ∈ R, 〈η〉 := (1+ η2)
1
2 , one has the bounds

|∂k
η 〈η〉−1| ≤ Ck〈η〉−1−k |∂k

η 〈η〉| ≤ Ck〈η〉1−k, k = 0, 1, 2, . . . ,

it follows that all derivatives of
√

z2 + 2µ and 2(z2 + 2µ)−
1
2 are uniformly bounded in z up

to a constant depending only on µ and the number of derivatives. Therefore, by the Leibniz
formula, we have the estimate

sup
z∈R

∣∣∣∂k
z gµ(z, |x − y|)

∣∣∣ ≤ Cµ,k〈x〉k〈y〉k, k = 0, 1, . . . , 4,

which in turn implies that

|z|k
∣∣∣∂k

z r2(z, |x − y|)
∣∣∣ � |z|2〈x〉2+k〈y〉2+k, k = 0, 1, 2. (4.8)

Thus, by using (4.6) and (4.8), the error term given by

E(z)(x, y) :=
[

r1(z, |x − y|) 0
0 r2(z, |x − y|)

]
(4.9)

satisfies (4.4) as claimed. ⊓⊔
We insert the above asymptotic expansion into the operator M(z) = I + v2R0(z)v1. First,
we have the transfer operator T on L2(R)× L2(R) with a kernel given by

T (x, y) = I + v2(x)G0(x, y)v1(y). (4.10)

Note that T is self-adjoint because

(v2G0v1)
∗ = v∗1G0v2 = (−vσ3)G0v = vG0(−σ3v) = v2G0v1.

Since the potentials v1 and v2 have exponential decay by assumption (A3), it follows that
v2G0v1 is a Hilbert-Schmidt operator on L2(R)× L2(R). Hence, T is a compact perturbation
of the identity, and therefore the dimension of ker(T ) is finite by the Fredholm alternative.
Recalling the formulas for v1 and v2 from (3.1), we have the identity

v2e11v1 = −
[

a 0
b 0

] [
a b

0 0

]
= −

[
a

b

] [
a b

]
. (4.11)

Next, we define the orthogonal projection onto the span of the vector (a, b)⊤ ∈ L2(R) ×
L2(R) by

P

[
f1

f2

]
(x) : =

∫
R
(a(y) f1(y)+ b(y) f2(y)) dy

‖a2 + b2‖L1(R)

[
a(x)

b(x)

]
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= 1

‖V1‖L1(R)

〈(a, b)⊤, �f 〉
[

a(x)

b(x)

]
. (4.12)

Note that we use the identity (3.2) above. From (3.14), the contribution of the singular term
i

2z
e11 of R0(z) to M(z) will be associated to the following integral operator with the kernel

i

2z
v2(x)e11v1(y) = −i

2z

[
a(x)

b(x)

] [
a(y) b(y)

]
=: g(z)P(x, y), (4.13)

where

g(z) := − i

2z
‖V1‖L1(R). (4.14)

Lastly, we denote the orthogonal projection to the complement of the span of (a, b)⊤ by

Q := I − P. (4.15)

In summary, we have the following proposition.

Proposition 4.3 Suppose |a(x)|, |b(x)| � 〈x〉−5.5−, and let z0 := min{1,
√

2µ}. Then, for

any 0 < |z| < z0, we have

M(z) = g(z)P + T + zM1 +M2(z), (4.16)

where M1 and M2(z) are Hilbert-Schmidt operators on L2(R)× L2(R) defined by

M1(x, y) := v2(x)G1(x, y)v1(y) = |x − y|2
4i

[
a(x)

b(x)

] [
a(y) b(y)

]
, (4.17)

M2(z)(x, y) := v2(x)E(z)(x, y)v1(y), (4.18)

with G1 and E(z) defined in Lemma 4.2. Moreover, the error term M2(z) and its derivatives

satisfy the absolute bound

|z|k
∥∥∥|∂k

z M2(z)|
∥∥∥

L2(R)×L2(R)→L2(R)×L2(R)
� |z|2, k = 0, 1, 2, (4.19)

for all |z| < z0.

Proof The identity on the right of (4.17) follows from (4.11). We recall that operators of the
following type

U (x)〈x〉k〈y〉k W (y)

are Hilbert-Schmidt operators on L2(R) whenever U and W are bounded potentials with

polynomial decay |U (x)|, |W (x)| � 〈x〉−k− 1
2−, for k ∈ N. Hence, under the assumptions

on a(x) and b(x), and using the fact that

|G1(x, y)| � |x − y|2 ≤ 〈x〉2〈y〉2,
it follows that M1 is Hilbert-Schmidt. The same argument can be applied to the error term
M2(z) and its derivatives using the remainder estimates in (4.4) and we are done. ⊓⊔

The next definition characterizes the regularity of the endpoint µ of the essential spectrum.

Definition 4.4 1. We say that the threshold µ is a regular point of the spectrum of H

provided that the operator QT Q is invertible on the subspace Q(L2(R)× L2(R)).
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2. Suppose µ is not a regular point. Let S1 be the Riesz projection onto the kernel of QT Q,
and we define D0 = (Q(T + S1)Q)−1. Note that Q D0 Q is an absolutely bounded
operator on L2(R) × L2(R). The proof for this follows from Lemma 8 of [52] with
minor changes. See also [24, Lemma 2.7].

Note that since we impose symmetry assumptions on the potential V, the thresholds µ and
−µ are either both regular or irregular. The invertibility of QT Q is related to the absence of
distributional L∞(R) × L∞(R) solutions to H� = µ�. The following lemma establishes
the equivalent definitions. See [36, Lemma 5.4] for the analogue in the scalar case.

Lemma 4.5 Suppose assumptions (A1)–(A5) hold. Then the following holds.

1. Let � ∈ S1(L2(R)× L2(R)) \ {0}. If � = (�1, �2)
⊤ is defined by

�(x) := −G0[v1�](x)+ c0e1, (4.20)

with

c0 =
〈(a, b)⊤, T �〉
‖V1‖L1(R)

, (4.21)

then

� = v2�, (4.22)

and � ∈ L∞(R)× L∞(R) is a distributional solution to

H� = µ�. (4.23)

Furthermore, if additionally assumption (A6) holds, i.e.,

c2,± :=
1

2
√

2µ

∫

R

e±
√

2µy
(
V2(y)�1(y)+ V1(y)�2(y)

)
dy = 0, (4.24)

then

lim
x→±∞

�1(x) = c0 ∓ c1, (4.25)

where

c1 :=
1

2
〈x(a(x), b(x))⊤,�(x)〉 = 1

2

∫

R

x
(
a(x)�1(x)+ b(x)�2(x)

)
dx . (4.26)

In particular,

�1 /∈ L2(R). (4.27)

More precisely, the constants c0 and c1 cannot both be zero.

2. Conversely, suppose there exists � ∈ L∞(R) × L∞(R) satisfying (4.23) in the

distributional sense. Then

� = v2� ∈ S1(L2(R)× L2(R)). (4.28)

3. Suppose assumptions (A1)–(A6) hold. Then, dim S1(L2(R) × L2(R)) ≤ 1. In the case

dim S1(L2(R) × L2(R)) = 1, i.e., S1(L2(R) × L2(R)) = span{�} for some � =
(�1,�2)

⊤ ∈ L2(R)× L2(R)\{0}, we have the following identities

S1T PT S1 = |c0|2‖�‖−2
L2(R)×L2(R)

‖V1‖L1(R)S1, (4.29)
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PT S1T P = |c0|2‖�‖−2
L2(R)×L2(R)

‖V1‖L1(R) P, (4.30)

S1 M1S1 = −2i |c1|2‖�‖−2
L2(R)×L2(R)

S1, (4.31)

where the constants c0 and c1 are given by (4.21) and (4.26) respectively for this �.

Proof (Proof of (1)) Let � = (�1,�2) ∈ S1(L2(R)×L2(R)) with � �= 0. Since S1(L2(R)×
L2(R)) is a subspace of Q(L2(R) × L2(R)), we have Q� = �. Using the fact that � ∈
ker(QT Q) and the definition of T (c.f (4.10)), we obtain

0 = QT Q� = (I − P)T � = (I + v2G0v1)�− PT �. (4.32)

Since (a, b)⊤ = v2e1 and P is the orthogonal projection onto the span of (a, b)⊤, we have

PT � = 〈(a, b)⊤, T �〉
‖V1‖L1(R)

(a, b)⊤ = c0v2e1, (4.33)

with c0 defined in (4.21). It follows that

� = −v2G0v1�+ c0v2e1 = v2(−G0v1�+ c0e1) = v2�.

This proves (4.22). Next, we show (4.23). Denoting � = (�1,�2)
⊤ and using the definition

of G0 (c.f. (4.2)), we have

(H0 − µI )G0(v1�) = v1�,

i.e.,




(−∂2
x )

∫

R

−|x − y|
2

(
− a(y)�1(y)− b(y)�2(y)

)
dy = −a(x)�1(x)− b(x)�2(x),

(∂2
x − 2µ)

∫

R

−e−
√

2µ|x−y|

2
√

2µ

(
b(y)�1(y)+ a(y)�2(y)

)
dy = b(x)�1(x)+ a(x)�2(x).

This equation is well-defined, since v1� ∈ 〈x〉−1−L1(R) × 〈x〉−1−L1(R). Using (4.20),
(4.22), and (H0 − µI )(c0e1) = 0, we have

(H0 − µI )� = (H0 − µI )[−G0(v1�)+ c0e1] = −v1� = −v1v2� = −V�,

which implies (4.23). We now show that � = (�1, �2)
⊤ is in L∞(R) × L∞(R). Noting

that

�1(x) = c0 +
1

2

∫

R

|x − y|
(
a(y)�1(y)+ b(y)�2(y)

)
dy,

by employing the orthogonality condition 〈(a, b)⊤,�〉 = 0, we have

�1(x) = c0 +
1

2

∫

R

(|x − y| − |x |)
(
a(y)�1(y)+ b(y)�2(y)

)
dy.

Using
∣∣|x − y| − |x |

∣∣ ≤ |y| and |a(y)| + |b(y)| � 〈y〉−2, we have the uniform bound

sup
x∈R
|�1(x)| ≤ |c0| +

1

2

∫
|y| |a(y)�1(y)+ b(y)�2(y)| dy � ‖�‖L2(R)×L2(R) � 1.

Since (a, b)⊤ and � are in L2(R) × L2(R), we have the uniform bound on �2 by the
Cauchy-Schwarz inequality
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sup
x∈R
|�2(x)| �

∫

R

|b(y)�1(y)+ a(y)�2(y)| dy

≤ ‖b‖L2(R)‖�1‖L2(R) + ‖a‖L2(R)‖�2‖L2(R) � 1.

Thus, we have shown that � = (�1, �2)
⊤ ∈ L∞(R) × L∞(R). Finally, we now assume

c2,± = 0 and show that �1 cannot be in L2(R)\{0} by a Volterra argument. Using
〈(a, b)⊤,�〉 = 0, for x ≥ 0 large, we write

�1(x) = c0 − c1 +
∫ ∞

x

(y − x)
(
a(y)�1(y)+ b(y)�2(y)

)
dy. (4.34)

Using c2,± = 0, we insert −e−
√

2µx c2,+ = 0 to write

�2(x) = 1

2
√

2µ

∫ ∞

x

(
e−
√

2µ(y−x) − e−
√

2µ(x−y)
)(

V2(y)�1(y)+ V1(y)�2(y)
)

dy.

(4.35)

Similarly, for x < 0, using e
√

2µx c2,− = 0, we have

�1(x) = c0 + c1 +
∫ x

−∞
(x − y)(V1(y)�1(y)+ V2(y)�2(y)) dy, (4.36)

�2(x) = 1

2
√

2µ

∫ x

−∞

(
e−
√

2µ(x−y) − e−
√

2µ(y−x)
)(

V2(y)�1(y)+ V1(y)�2(y)
)

dy.

(4.37)

Suppose now that c0 = c1 = 0. Owing to the exponential decay of V1, V2 by assumption
(A3), we obtain from (4.34) and (4.34) a homogeneous Volterra equation for � = (�1, �2)

⊤

satisfying

�(x) =
∫

R

K (x, y)�(y) dy, x ≥ 0,

where |K (x, y)| � e−γ |y|
1y>x for some 0 < γ < β, which is a quasi-nilpotent operator. By

performing a standard contraction on L∞(M,∞), with M > 0 sufficiently large, one arrives
at a solution �(x) ≡ 0 for all x ≥ M . By the uniqueness theorem for ODEs, this implies
that � ≡ 0 on R. Then, by the relation � = v2� and the fact that v2 is a positive matrix,
one finds that � ≡ 0, which contradicts the hypothesis � �= 0. Thus, the conclusion is that
c0 and c1 cannot be both zero. In particular, it follows from (4.34) and (4.36) that

lim
x→±∞

�1(x) = c0 ∓ c1.

Since either c0 + c1 �= 0 or c0 − c1 �= 0, we conclude that �1 /∈ L2(R).
Proof of (2). Define � = v2�. Since � is a distributional solution to (4.23), using

V = v1v2, we have

(H0 − µI )� = v1�⇐⇒
{

� ′′1 = a�1 + b�2,

� ′′2 − 2µ�2 = b�1 + a�2.

Let η ∈ C∞0 (R) be a non-negative function satisfying η(x) = 1 for |x | ≤ 1 and η(x) = 0 for
|x | ≥ 2. Using the first equation from above and integrating by parts, we have for any ε > 0,
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∣∣∣∣
∫

R

(
a(y)�1(y)+ b(y)�2(y)

)
η(εy) dy

∣∣∣∣ =
∣∣∣∣
∫

R

� ′′1 (y)η(εy) dy

∣∣∣∣

=
∣∣∣∣
∫

R

�1(y)ε2η′′(εy) dy

∣∣∣∣ ≤ ε‖�1‖L∞(R)

∫

R

∣∣η′′(x)
∣∣ dx .

By taking the limit ε→ 0 and using the Lebesgue dominated convergence theorem, we find
that 〈(a, b)⊤,�〉 = 0. Thus, P� = 0, i.e. � ∈ Q(L2(R)× L2(R)). Following this fact and
using � = v2�, we have

QT Q� = QT � = Q(I + v2G0v1)� = Qv2
(
� + G0(V�)

)
. (4.38)

Now set u := �+G0(V�). Since u = (u1, u2)
⊤ is a distributional solution of (H0−µI )u =

0, i.e.

−u′′1 = 0,

u′′2 − 2µu2 = 0,

we find that

u1(x) = κ1 + κ2x,

u2(x) = κ3e−
√

2µx + κ4e
√

2µx ,

for someκi ∈ C, i ∈ {1, . . . , 4}. By similar arguments from Item (1), we obtain thatG0(V�) ∈
L∞(R) × L∞(R). Since � ∈ L∞(R) × L∞(R), it follows that u ∈ L∞(R) × L∞(R),
which implies that κ2 = κ3 = κ4 = 0. Thus, we have u(x) ≡ (κ1, 0)⊤ = κ1e1. Since
Qv2e1 = 0, we conclude from (4.38) using the definition of u(x) that QT Q� = 0, whence
� ∈ S1(L2(R)× L2(R)).

Proof of (3). Suppose there are two linearly independent �, �̃ ∈ S1(L2(R)× L2(R)). As
in the proof of Item (1), for x ≥ 0, we have

�1(x) = c0 − c1 +
∫ ∞

x

(y − x)
(
V1(y)�1(y)+ V2(y)�2(y)

)
dy,

�2(x) = 1

2
√

2µ

∫ ∞

x

(
e−
√

2µ(y−x) − e−
√

2µ(x−y)
)(

V2(y)�1(y)+ V1(y)�2(y)
)

dy,

and

�̃1(x) = d0 − d1 +
∫ ∞

x

(y − x)
(
V1(y)�̃1(y)+ V2(y)�̃2(y)

)
dy,

�̃2(x) = 1

2
√

2µ

∫ ∞

x

(
e−
√

2µ(y−x) − e−
√

2µ(x−y)
)(

V2(y)�̃1(y)+ V1(y)�̃2(y)
)

dy,

where d0 and d1 are constants defined from �̃ which are analogous to c0 and c1. There is
some constant θ ∈ C such that

c0 − c1 = −θ(d0 − d1),

which imply the Volterra integral equation
[
�1 + θ�̃1

�2 + θ�̃2

]
(x) =

∫ ∞

x

[
y − x 0

0 e−
√

2µ(y−x)−e−
√

2µ(x−y)

2
√

2µ

]
V(y)

[
�1(y)+ θ�̃1(y)

�2(y)+ θ�̃2(y)

]
dy,

for any x ≥ 0. By the same Volterra equation argument used in Item (1), we obtain �+θ�̃ ≡
0, which implies that �+θ�̃ ≡ 0, but this contradicts that � and �̃ are linearly independent.
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Thus, we have shown that dim S1(L2(R)× L2(R)) ≤ 1. Next, we prove (4.29)–(4.31). Write
S1 = ‖�‖−2

L2×L2〈�, ·〉�. By (4.33) and the fact that P , S1, and T are self-adjoint, we compute

for any u ∈ L2(R)× L2(R) that

S1T PT S1u = ‖�‖−2
L2×L2〈�, u〉S1T PT � = ‖�‖−2

L2×L2 c0〈�, u〉S1T

[
a

b

]

= |c0|2‖�‖−2
L2×L2‖V1‖L1(R)S1u.

A similar computation reveals

PT S1T Pu = |c0|2‖�‖−2
L2×L2‖V1‖L1(R) Pu.

For the third identity (4.31), in view of (4.11) and (4.17), we write

M1(x, y) = v2(x)G1(x, y)v1(y) = i |x − y|2
4

[
a(x)

b(x)

] [
a(y) b(y)

]
.

By using the orthogonality

〈�, (a, b)⊤〉 =
∫

R

(
�1(x)a(x)+�2(x)b(x)

)
dx = 0,

and the identity

|x − y|2 = x2 + y2 − 2xy,

we have

[S1 M1S1](x, y) =
∫

R2
S1(x, x1)M1(x1, y1)S1(y1, y) dx1 dy1

= i

4

�(x)

‖�‖2
L2×L2

∫

R2

(
|x1 − y1|2�∗(x1)

[
a(x1)

b(x1)

] [
a(y1) b(y1)

]
�(y1)

)
dx1dy1

�∗(y)

‖�‖2
L2×L2

= −2i

(∫

R

x1

2
�∗(x1)

[
a(x1)

b(x1)

]
dx1

)(∫

R

y1
2

[
a(y1) b(y1)

]
�(y1) dy1

)
‖�‖−2

L2×L2 S1(x, y)

= −2i |c1|2‖�‖−2
L2×L2 S1(x, y).

This proves (4.31) and we are done. ⊓⊔

Remark 4.6 By direct computation, the conjugation identity σ3H = H∗σ3 and the identity
v1 = −σ3v2 imply that the vector �̃ := σ3� solves

H∗�̃ = µ�̃, (4.39)

where � is the distribution solution to (4.23). Moreover, one has the identities

σ3� = G0(v2�)+ (c0, 0)⊤, � = v2� = −v⊤1 �̃ (4.40)

Similarly, using the conjugation identity σ1H = −Hσ1, we note that the vector �− = σ1�

solves the system

H�− = −µ�−. (4.41)

Following the preceding discussion, we assume the threshold µ is irregular and we derive
an expansion for the inverse operator M(z)−1 on a small punctured disk near the origin. We
employ the inversion lemma due to Jensen and Nenciu [36, Lemma 2.1].
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Lemma 4.7 Let H be a Hilbert space, let A be a closed operator and S a projection. Suppose

A + S has a bounded inverse. Then A has a bounded inverse if and only if

B = S − S(A + S)−1S

has a bounded inverse in SH, and in this case,

A−1 = (A + S)−1 + (A + S)−1SB−1S(A + S)−1, onH .

We will now state the inverse operator of M(z) away from z = 0.

Proposition 4.8 Suppose assumptions (A1)–(A6) hold. Let S1(L2(R)×L2(R)) = span({�})
for some � = (�1,�2)

⊤ �= �0. Let κ := (2i)−1‖V1‖L1(R), and let d be the constant defined

by

d := −2i(|c0|2 + |c1|2)‖�‖−2
L2×L2 �= 0, (4.42)

with c0 and c1 defined by (4.21) and (4.26) respectively for this �. Then, there exists a positive

radius z0 > 0 such that for all 0 < |z| < z0, M(z) is invertible on L2(R)× L2(R) and

M(z)−1 = 1

d

(
1

z
S1 −

1

κ
PT S1 −

1

κ
S1T P

)
+

(
1

κ
+
|c0|2‖�‖−2

L2×L2‖V1‖L1(R)

dκ2

)
z P

+Q�0(z)Q + zQ�1(z)+ z�2(z)Q + z2�3(z), (4.43)

where � j (z) are absolutely bounded operators on L2(R) × L2(R) satisfying the improved

bounds

‖|∂k
z � j (z)|‖L2(R)×L2(R)→L2(R)×L2(R) � 1, k = 0, 1, 2, j = 0, 1, 2, 3, (4.44)

uniformly in z for |z| < z0.

Proof Throughout the proof, we will denote by E j (z), for 0 ≤ j ≤ 3, as error terms that
satisfy the absolute bound

|z|k
∥∥∥|∂k

z E j (z)|
∥∥∥

L2(R)×L2(R)→L2(R)×L2(R)
� |z| j , ∀ k = 0, 1, 2, ∀ |z| < z0,

for some z0 > 0 small. This convenient notation will be useful in invoking Neumann series
inversion for small values of z. Since we only need the expansion of M(z)−1 up to a few
powers of z, the exact expressions of E j (z) are insignificant and we allow it to vary from line
to line. By Proposition 4.3, we rewrite M(z) by setting

M̃(z) := z

κ
M(z) = P + z

κ

(
T + zM1 +M2(z)

)
, (4.45)

where M2(z) is the error term in Proposition 4.3. Using I = P + Q, we write

M̃(z)+ Q = I + z

κ

(
T + zM1 +M2(z)

)
, (4.46)

and by choosing z small enough, a Neumann series expansion yields the inverse operator

[M̃(z)+ Q]−1 =
∑

n≥0

(−1)n
( z

κ

(
T + zM1 +M2(z)

))n

onL2(R)× L2(R). (4.47)

We collect the terms of power order up to 2 to obtain

[M̃(z)+ Q]−1 = I − z

κ
T − z2

(
1

κ
M1 −

1

κ2 T 2
)
+ E3(z). (4.48)
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Note that zM2(z) is of the form E3(z). Recall by Lemma 4.7 that the operator M̃(z) is
invertible on L2(R)× L2(R) if and only if the operator

B1(z) := Q − Q
[
M̃(z)+ Q

]−1
Q (4.49)

is invertible on the subspace QL2 ≡ Q(L2(R)× L2(R)). Using (4.48), we find that

B1(z) =
z

κ
QT Q + z2

(
1

κ
QM1 Q − 1

κ2
QT 2 Q

)
+ QE3(z)Q.

We rewrite B1(z) by setting

B̃1(z) :=
κ

z
B1(z) = QT Q + z

(
QM1 Q − 1

κ
QT 2 Q

)
+ QE2(z)Q. (4.50)

Since the threshold µ is not regular, the operator QT Q is not invertible on QL2 according
to Definition 4.4. By considering the operator

B̃1(z)+ S1 = (QT Q + S1)+ z

(
QM1 Q − 1

κ
QT 2 Q

)
+ QE2(z)Q,

and the fact that we have Q D0 Q = D0 = (QT Q + S1)
−1 on QL2, we can pick z small

enough such that
∥∥∥∥z

(
QM1 Q − 1

κ
QT 2 Q

)
+ QE2(z)Q

∥∥∥∥
L2×L2→L2×L2

< ‖Q D0 Q‖−1
L2×L2→L2×L2 .

This allows for the more complicated Neumann series expansion (c.f. Lemma A) on QL2:

(B̃1(z)+ S1)
−1 = D0

∑

n≥0

(−1)n
((

z(QM1 Q − κ−1 QT 2 Q)+ QE2(z)Q
)
D0

)n

onQL2.

(4.51)

We collect the leading order terms in this expansion and write

(B̃1(z)+ S1)
−1 = D0 − zD0

(
QM1 Q − κ−1 QT 2 Q

)
D0 + QE2(z)Q. (4.52)

At this step, it is crucial that the operator D0 is absolutely bounded to ensure that the remainder
term QE2(z)Q and its derivatives are absolutely bounded. Next, we set

B2(z) := S1 − S1(B̃1(z)+ S1)
−1S1, onS1L2 ≡ S1(L2(R)× L2(R)). (4.53)

Using the orthogonality conditions

S1 D0 = D0S1 = S1,

S1 Q = QS1 = S1,

QT S1 = S1T Q = 0,

(4.54)

we obtain

B2(z) = zS1(M1 − κ−1T 2)S1 + S1E2(z)S1.

By Lemma 4.5, we note that S1L2 is spanned by �(x) and that PT � = T � holds (c.f.
(4.32)), whence S1T 2S1 = S1T PT S1. Using Lemma 4.5 (c.f. (4.29), (4.31)), we obtain that

d := Tr(S1(M1 − κ−1T 2)S1) = Tr(S1 M1S1)− κ−1 Tr(S1T PT S1)

= −2i(|c0|2 + |c1|2)‖�‖−2
L2×L2 �= 0.

123



Dispersive estimates for 1D matrix... Page 31 of 54 206

Hence, we apply another Neumann series expansion to invert the operator B2(z) on S1L2 for
small z and write

B2(z)
−1 = 1

dz
S1 + S1E0(z)S1 onS1L2. (4.55)

Moreover, by Lemma 4.7, we have

B̃1(z)
−1 =

(
B̃1(z)+ S1

)−1 +
(
B̃1(z)+ S1

)−1
S1 B2(z)

−1S1
(
B̃1(z)+ S1

)−1
onQL2.

Using (4.52), (4.54), and (4.55), we find that

B̃1(z)
−1 = 1

dz
S1 + QE0(z)Q onQL2.

Hence,

B1(z)
−1 = κ

z
B̃1(z)

−1 = κ

dz2 S1 +
κ

z
QE0(z)Q onQL2.

We return to the expansion of M̃(z)−1 by using Lemma 4.7 with (4.48) to obtain that

M̃(z)−1 =
(
M̃(z)+ Q

)−1 +
(
M̃(z)+ Q

)−1
Q B1(z)

−1 Q
(
M̃(z)+ Q

)−1

=
(
I − z

κ
T
)
+ κ

dz2 S1 −
1

dz
T S1 −

1

dz
S1T + 1

dκ
T S1T

+ κ

z
(QE0(z)Q + E1(z)Q + QE1(z)+ E2(z)) .

Here, we used the identity Q = I Q = Q I . By reverting back to M(z) = κ
z

M̃(z), we have

M(z)−1 = z

κ
M̃(z)−1 = z

κ
I + 1

dz
S1 −

1

dκ
T S1 −

1

dκ
S1T + z

dκ2
T S1T

+ QE0(z)Q + E1(z)Q + QE1(z)+ E2(z).

Note that we absorb the z2

κ2 T term into the error E2(z) above. By using the identities I =
Q + P , QT S1 = S1T Q = 0, and by factoring the powers of z from the error terms E j (z),
we obtain the expansion of M(z)−1 on L2: for 0 < |z| < z0,

M(z)−1 = z

κ
P + 1

d

(
1

z
S1 −

1

κ
PT S1 −

1

κ
S1T P + 1

κ2
PT S1T P

)

+ Q�0(z)Q + zQ�1(z)+ z�2(z)Q + z2�3(z),

where the operators � j (z), j = 0, . . . , 3, satisfy (4.44). Here, we choose z0 > 0 sufficiently
small such that the expansion (4.45) and the Neumann series inversions (4.47), (4.51), (4.55)
are valid for all 0 < |z| < z0. Finally, by Lemma 4.5 (c.f. (4.30)), the term PT S1T P can be
simplified to |c0|2‖�‖−2

L2×L2‖V1‖L1(R) P , which finishes the proof. ⊓⊔

Remark 4.9 We appeal to the reader that each leading term in the expansion (4.43) plays
an important role in revealing the cancellations among the finite rank operators that arise
in the local decay estimate (1.14). Such a precise expression was also obtained for the one-
dimensional Dirac operators in [20], even though the proof we give here is different. See
Remark 3.7 in that paper. For the low-energy unweighted dispersive estimates, it is sufficient
to work with the simpler expression

M(z)−1 = 1

z
Q�̃0(z)Q + Q�̃1(z)+ �̃2(z)Q + z�̃3(z), (4.56)
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where we absorb the operators S1, S1T P, PT S1, P in (4.43) into the operators Q�̃0(z)Q,
Q�̃1(z), �̃2(z)Q, �̃3(z) respectively. The operators �̃ j (z), for j = 0, . . . , 3, satisfy the
same estimates as (4.44).

5 Low energy estimates

In this section, we prove the low energy bounds for the perturbed evolution, following the
ideas in Sect. 4 of [20]. We will frequently exploit the crucial orthogonality condition

∫

R

e11v1(x)Q(x, y) dx =
∫

R

Q(x, y)v2(y)e11 dy = 02×2. (5.1)

The following calculus lemma will be helpful for dealing with the lower entry of the free
resolvent kernel.

Lemma 5.1 For any m > 0 and r ≥ 0, we define

gm(x) := e−r
√

x2+m2

√
x2 + m2

. (5.2)

Then, there exists Cm > 0 (independent of r) such that

‖∂k
x gm‖L∞(R) ≤ Cm � 1, ∀ k = 0, 1, 2. (5.3)

Proof First, by rescaling, we set gm(x) = 1
m

g̃(x/m) where

g̃(x) := e−rm
√

x2+1

√
x2 + 1

= 1

er̃〈x〉〈x〉 , r̃ := rm. (5.4)

Hence, it sufficient to prove the same estimate (5.3) for g̃(x). For k = 0, it is clear that
|̃g(x)| ≤ 1 for all x ∈ R. For k = 1, 2, direct computation shows that

∂x g̃(x) = − x(1+ r̃〈x〉)
er̃〈x〉〈x〉3 , (5.5)

and

∂2
x g̃(x) = 3x2 + 3r̃ x2〈x〉 − 〈x〉2 + r̃2x2〈x〉2 − r̃〈x〉4

er̃〈x〉〈x〉5 . (5.6)

Since e−r̃〈x〉max{1, r̃ , r̃2} ≤ 1, it follows from (5.5), (5.6) that the estimate (5.3) holds for
g̃ and thus for g(x) too. ⊓⊔

The next proposition establishes the dispersive estimates for the evolution semigroup ei tH P+s
for small energies close to the threshold µ.

Proposition 5.2 Let the assumptions of Theorem 1.4 hold. Let χ0(z) be a smooth, even, non-

negative cut-off function satisfying χ0(z) = 1 for |z| ≤ z0
2 and χ0(z) = 0 for |z| ≥ z0, where

z0 > 0 is given by Proposition 4.8. Then, for any |t | ≥ 1, and �u = (u1, u2) ∈ S(R)× S(R),

we have

‖ei tHχ0(H− µI )P+s �u‖L∞(R)×L∞(R) � |t |− 1
2 ‖�u‖L1(R)×L1(R), (5.7)

and

‖〈x〉−2(ei tHχ0(H− µI )P+s − F+t )�u‖L∞(R)×L∞(R) � |t |− 3
2 ‖〈x〉2 �u‖L1(R)×L1(R), (5.8)
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where F+t is defined by

F+t (x, y) = ei tµ

√
−4π i t

��(x)[σ3 ��(y)]⊤. (5.9)

We begin with the proof of the dispersive decay estimate (5.7).

Proof of of (5.7) We recall the spectral representation from (3.15):

ei tH P+s =
ei tµ

π i

∫

R

ei t z2
zR0(z) dz − ei tµ

π i

∫

R

ei t z2
zR0(z)v1(M(z))−1v2R0(z) dz.

Note that the first term on the right is the spectral representation for the free evolution ei tH0 P+s
and it satisfies the same estimate as (5.7) thanks to Proposition 2.3. We insert the weaker
expansion (4.56) for M(z)−1 following Remark 4.9, and write

∫

R

ei t z2
zχ0(z

2)R0(z)v1(M(z))−1v2R0(z) dz

=
∫

R

ei t z2
χ0(z

2)R0(z)v1 Q�̃0(z)Qv2R0(z) dz

+
∫

R

ei t z2
zχ0(z

2)R0(z)v1 Q�̃1(z)v2R0(z) dz

+
∫

R

ei t z2
zχ0(z

2)R0(z)v1�̃2(z)Qv2R0(z) dz

+
∫

R

ei t z2
z2χ0(z

2)R0(z)v1�̃3(z)v2R0(z) dz

=: J1 + J2 + J3 + J4.

It remains to show for k = 1, . . . , 4 that

‖Jk‖L1×L1→L∞×L∞ ≤ C |t |− 1
2 . (5.10)

In what follows, we will prove the bound for J1 in detail, and explain the other cases at the
end of the proof. First, we recall the kernel of R0(z) from (3.12) and write

R0(z)(x, y) := R1(z)(x, y)+R2(z)(x, y) := iei z|x−y|

2z
e11 +

−e−
√

z2+2µ|x−y|

2
√

z2 + 2µ
e22,

(5.11)

and we further decompose the integral J1 as

J1 = J
(1,1)
1 + J

(1,2)
1 + J

(2,1)
1 + J

(2,2)
1 ,

where

J
(i, j)
1 (x, y) :=

∫

R

ei t z2
χ0(z

2)[Ri (z)v1 Q�̃0(z)Qv2R j (z)](x, y) dz, i, j ∈ {1, 2}.

We begin with the most singular term

J
(1,1)
1 (x, y) =

∫

R3
ei t z2+i z(|x−x1|+|y−y1|) χ0(z

2)

(2i z)2 [e11v1 Q�̃0(z)Qv2e11](x1, y1) dz dx1 dy1.

(5.12)
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The orthogonality conditions (5.1) imply that
∫

R

ei z|x |e11v1(x1)Q(x1, x2) dx1 =
∫

R

ei z|y|Q(y2, y1)v2(y1)e11 dy1 = 0. (5.13)

Hence, writing

ei z|x−x1| − ei z|x | = i z

∫ |x−x1|

|x |
ei zs1 ds1 and ei z|y−y1| − ei z|y| = i z

∫ |y−y1|

|y|
ei zs2 ds2,

(5.14)

we obtain

J
(1,1)
1 (x, y) = 1

4

∫

R3

∫ |x−x1|

|x |

∫ |y−y1|

|y|
ei t z2+i z(s1+s2) A(z, x1, y1) ds1 ds2 dx1 dy1 dz,

where A(z, x1, y1) = χ0(z
2)[e11v1 Q�̃0(z)Qv2e11](x1, y1), and note that A is differentiable

and compactly supported in z due to Proposition 4.8 and the compact support of χ0(z
2). We

obtain by Lemma 2.1 and the Fubini theorem that

∣∣∣J
(1,1)
1 (x, y)

∣∣∣ ≤ C |t |− 1
2

∫

R2

∫ |x−x1|

|x |

∫ |y−y1|

|y|

∫

R

|∂z A(z, x1, x2)| dz ds1 ds2 dx1 dy1.

Using
∫ |x−x1|

|x |

∫ |y−y1|

|y|
1 ds1 ds2 ≤ ||x − x1| − |x || · ||y − y1| − |y|| � 〈x1〉〈y1〉, (5.15)

as well as

∂z A(z, x1, y1) = [e11v1 Q∂z(χ0(z
2)�̃0(z))Qv2e11](x1, y1), (5.16)

along with the bound (4.44) on �̃0, we deduce that
∫

R2

∫ |x−x1|

|x |

∫ |y−y1|

|y|

∫

R

|∂z A(z, x1, x2)| dz ds1 ds2 dx1 dy1

≤ C‖Q‖2
L2→L2‖〈x1〉v1(x1)‖L2(R)‖〈y1〉v2(y1)‖L2(R)

·
∫

[−z0,z0]
(‖|�̃0(z)|‖L2×L2→L2×L2 + ‖|∂z�̃0(z)|‖L2×L2→L2×L2) dz

� 1.

(5.17)

Hence,

‖J
(1,1)
1 ‖L1×L1→L∞×L∞ ≤ C |t |− 1

2 .

Next, we consider the least singular term

J
(2,2)
1 (x, y) =

∫

R3
ei t z2

B(z, x, y, x1, y1) dx1 dy1 dz, (5.18)

where

B(z, x, y, x1, y1) := e−
√

z2+2µ(|x−x1|+|y−y1|) χ0(z
2)

4(z2 + 2µ)
[e22v1 Q�̃0(z)Qv2e22](x1, y1).

(5.19)
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By Lemma 2.1, we have

|J (2,2)
1 (x, y)| ≤ C |t |− 1

2 , (5.20)

if we can show the uniform estimate

sup
x,y∈R

∫

R3
|∂z B(z, x, y, x1, y1)| dz dx1 dy1 � 1.

By Lemma 5.1, we have

sup
z∈R

∣∣∣∣∣∂
k
z

(
e−
√

z2+2µ(|x−x1|+|y−y1|)

4(z2 + 2µ)

)∣∣∣∣∣ ≤ Cµ � 1, k = 0, 1,

uniformly in the x, y, x1, y1 variables. Hence, using the Cauchy-Schwarz inequality in the
x1, y1 variables and the bound (4.44) on �̃0, we have

∫

R3
|∂z B(z, x, y, x1, y1)| dz dx1 dy1

≤ Cµ

∫

R3

∣∣(1+ ∂z)χ0(z
2)[e22v1 Q�̃0(z)Qv2e22](x1, y1)

∣∣ dz dx1 dy1

� ‖Q‖2
L2×L2→L2×L2‖v1‖L2(R)‖v2‖L2(R)

·
∫

[−z0,z0]

(
‖|�̃0(z)|‖L2×L2→L2×L2 + ‖|∂z�̃0(z)|‖L2×L2→L2×L2

)
dz

� 1.

Hence, the bound (5.20) is proven. Next, for the term J
(1,2)
1 , using (5.14) we write

J
(1,2)
1 (x, y) =

∫

R3

∫ |x−x1|

|x |
ei t z2+i zsC(z, x, y, x1, y1) ds dx1 dy1 dz,

where

C(z, x, y, x1, y1) := e−
√

z2+2µ|y1−y| χ0(z
2)

4
√

z2 + 2µ
[e11v1 Q�̃0(z)Qv2e22](x1, y1).

Note that C is differentiable and compactly supported in the z variable due to Proposition 4.8
and Lemma 5.1. Using Fubini theorem, (5.15), and Lemma 5.1, we obtain the bound

∫

R2

∫ |x−x1|

|x |

∫

R

|∂zC(z, x, y, x1, y1)| dz ds dx1 dy1

≤ Cµ‖Q‖2
L2×L2→L2×L2‖〈x1〉v1(x1)‖L2(R)‖v2‖L2(R)

·
∫

[−z0,z0]

(
‖|�̃0(z)|‖L2×L2→L2×L2 + ‖|∂z�̃0(z)|‖L2×L2→L2×L2

)
dz

� 1.

Hence, by Lemma 2.1 we obtain the bound

‖J
(1,2)
1 ‖L1×L1→L∞×L∞ � |t |− 1

2 ,

and the analogous bound for the term J
(2,1)
1 can be proven similarly. For the remaining cases

J2, J3, and J4, we may use the additional powers of z in place of the missing Q orthogonality
to obtain the same bounds (5.10) as the term J1. This finishes the proof of (5.7). ⊓⊔
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Next, we turn to the proof of the low-energy weighted estimate (5.8).

Proof of of (5.8) Recall that the threshold resonance function � = (�1, �2)
⊤ has been

normalized in Theorem 1.4, which means that we need to carefully treat the constants relat-
ing to the function � where � := v2�. By Lemma 4.5, note that � spans the subspace
S1(L2(R)× L2(R)). We define

η := ‖�‖−2
L2(R)×L2(R)

�= 0, (5.21)

so that S1(x, y) = η�(x)�∗(y), and we fix the constants c0 and c1 defined by (4.21) and
(4.26) respectively for this �. By Lemma 4.5, one finds the relation

2 = lim
x→∞

(|�1(x)|2 + |�1(−x)|2) = 2(|c0|2 + |c1|2), (5.22)

by the polarization identity (c.f. (4.25)). Thus, the precise expansion (4.43) of M(z)−1 from
Proposition 4.8 simplifies to

M(z)−1 = i

2ηz
S1 +

1

η‖V1‖L1(R)

PT S1

+ 1

η‖V1‖L1(R)

S1T P +
(

2i

‖V1‖L1(R)

+ 2|c0|2
i‖V1‖L1(R)

)
z P

+ Q�0(z)Q + zQ�1(z)+ z�2(z)Q + z2�3(z), 0 < |z| < z0.

(5.23)

We insert the above expression into the spectral representation of ei tHχ0(H− µI )P+s , and
obtain that

ei tHχ0(H− µI )P+s

= ei tµ

π i

∫

R

ei t z2
zχ0(z2)R0(z) dz − ei tµ

π i

∫

R

ei t z2
zχ0(z2)R0(z)v1(M(z))−1v2R0(z) dz

= ei tµ

π i
I1 −

ei tµ

π i

(
i

2η
I2,1 +

1

η‖V1‖L1(R)

I2,2 +
1

η‖V1‖L1(R)

I2,3

+
(

2i

‖V1‖L1(R)

+ 2|c0|2
i‖V1‖L1(R)

)
I2,4

)
− ei tµ

π i

(
I3,1 + I3,2 + I3,3 + I3,4

)
,

(5.24)

where

I1 :=
∫

R

ei t z2
zχ0(z

2)R0(z) dz, (5.25)

I2,1 :=
∫

R

ei t z2
χ0(z

2)[R0(z)v1S1v2R0(z)] dz, (5.26)

I2,2 :=
∫

R

ei t z2
zχ0(z

2)[R0(z)v1S1T Pv2R0(z)] dz, (5.27)

I2,3 :=
∫

R

ei t z2
zχ0(z

2)[R0(z)v1 PT S1v2R0(z)] dz, (5.28)

I2,4 :=
∫

R

ei t z2
z2χ0(z

2)[R0(z)v1 Pv2R0(z)] dz, (5.29)

and

I3,1 :=
∫

R

ei t z2
zχ0(z

2)[R0(z)v1 Q�0(z)Qv2R0(z)] dz, (5.30)
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I3,2 :=
∫

R

ei t z2
z2χ0(z

2)[R0(z)v1 Q�1(z)v2R0(z)] dz, (5.31)

I3,3 :=
∫

R

ei t z2
z2χ0(z

2)[R0(z)v1�2(z)Qv2R0(z)] dz, (5.32)

I3,4 :=
∫

R

ei t z2
z3χ0(z

2)[R0(z)v1�3(z)v2R0(z)] dz. (5.33)

Now we study the local decay of the terms I1, I2, j , I3,ℓ, for j, ℓ ∈ {1, . . . , 4} and we will
observe in the following propositions that the terms I1, I2,1, . . . , I2,4 contribute to the leading
order for the local decay estimate while the remainder terms I3,1, . . . , I3,4 satisfy the stronger

local decay estimate O(|t |− 3
2 〈x〉〈y〉). We first handle these remainder terms by Lemma 2.1

in a similar spirit to the proof for the (unweighted) dispersive bound (5.7), exploiting the
additional power of z. ⊓⊔

Proposition 5.3 For i ∈ {1, 2, . . . , 4} and |t | ≥ 1, we have

|I3,i (x, y)| ≤ C |t |− 3
2 〈x〉〈y〉. (5.34)

Proof We treat the case for I3,1 as the other cases follow similarly by using the additional
powers of z in place of the missing operators Q. As before, we consider the decomposition

I3,1 = I
(1,1)
3,1 + I

(1,2)
3,1 + I

(2,1)
3,1 + I

(2,2)
3,1 ,

where

I
(i, j)
3,1 :=

∫

R

ei t z2
zχ0(z

2)[Ri (z)v1 Q�0(z)Qv2R j (z)] dz, i, j ∈ {1, 2},

with R1 and R2 defined in (5.11). We begin with the term

I
(1,1)
3,1 (x, y) =

∫

R3
ei t z2+i z(|x−x1|+|y−y1|) zχ0(z

2)

(2i z)2 [e11v1 Q�0(z)Qv2e11](x1, y1) dz dx1 dy1.

Using the orthogonality condition (5.1) like in (5.14), we obtain

I
(1,1)
3,1 (x, y) = 1

4

∫

R2

∫ |x−x1|

|x |

∫ |y−y1|

|y|

∫

R

ei t z2+i z(s1+s2)z A(z, x1, y1) dz ds1 ds2 dx1 dy1,

where A(z, x1, y1) := χ0(z
2)[e11v1 Q�0(z)v2 Qe11](x1, y1). By Lemma 2.1, we obtain that

∣∣∣I (1,1)
3,1 (x, y)

∣∣∣

� |t |− 3
2

∫

R2

∫ |x−x1|

|x |

∫ |y−y1|

|y|

∫

[−z0,z0]

(
|∂2

z A| + (s1 + s2)|∂z A| + |A|
)

dz ds1 ds2 dx1 dy1.

(5.35)

Using the bounds
∫ |x−x1|

|x |

∫ |y−y1|

|y|
1 ds1 ds2 � 〈x1〉〈y1〉,

∫ |x−x1|

|x |

∫ |y−y1|

|y|
(s1 + s2) ds1 ds2 � 〈x1〉2〈y1〉2〈x〉〈y〉,

(5.36)

we have
∣∣∣I (1,1)

3,1 (x, y)

∣∣∣ � |t |− 3
2

∫

R2

∫

[|z|≤z0]
〈x1〉〈y1〉(|∂2

z A| + 〈x1〉〈y1〉〈x〉〈y〉|∂z A| + |A|) dz dx1 dy1.
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Noting that 〈x〉v1(x1) and 〈y1〉v2(y1) are in L2 and that �0 satisfies the bound (4.44), we
apply Cauchy-Schwarz inequality in x1 and y1 variables to obtain the bound

|I (1,1)
3,1 (x, y)| � |t |− 3

2 ‖Q‖2
L2→L2‖〈x1〉v1‖L2

x1
(R)‖〈y1〉v2‖L2

y1
(R)

·
∫

[|z|≤z0]
(‖|∂2

z �0(z)|‖L2×L2→L2×L2 + ‖|�0(z)|‖L2×L2→L2×L2) dz

+ |t |− 3
2 〈x〉〈y〉‖Q‖2

L2→L2‖〈x1〉v1‖L2
x1

(R)‖〈y1〉v2‖L2
y1

(R)

·
∫

[|z|≤z0]
‖|∂z�0(z)|‖L2×L2→L2×L2 dz

� |t |− 3
2 〈x〉〈y〉.

(5.37)

Next, we consider the term

I
(1,2)
3,1 (x, y)

=
∫

R3
ei t z2+i z|x−x1|−

√
z2+2µ|y−y1| χ0(z

2)

4i
√

z2 + 2µ
[e11v1 Q�0(z)Qv2e22](x1, y1) dz dx1 dy1.

By using the Q orthogonality (c.f. (5.1)) condition, we write

I
(1,2)
3,1 (x, y) =

∫

R3

∫ |x−x1|

|x |
ei t z2+i zs1 zB(z, x1, y1, x, y) ds1 dz dx1 dy1, (5.38)

where

B(z, x1, y1, x, y) := e−
√

z2+2µ|y−y1|

4i
√

z2 + 2µ
χ0(z

2)[e11v1 Q�0(z)Qv2e22](x1, y1). (5.39)

Since B is compactly supported in z, we can exchange the order of integration and we use
Lemma 2.1 to obtain
∣∣∣I (1,2)

3,1 (x, y)

∣∣∣ ≤ C |t |− 3
2

∫

R2

∫ |x−x1|

|x |

∫

R

|[∂2
z + is1∂z]B(z, x1, y1, x, y)| dz ds1 dx1 dy1.

By Lemma 5.1, we have

sup
z∈R

∣∣∣∣∂
k
z

(
e−
√

z2+2µ|y−y1 |

4i
√

z2+2µ

)∣∣∣∣ ≤ Cµ � 1, ∀k = 0, 1, 2, (5.40)

which implies by Hölder’s inequality and Leibniz rule that
∫

R

∣∣[∂2
z + is1∂z]B(z, x1, y1, x, y)

∣∣ dz

≤ C〈s1〉
∫

R

∣∣e11v1 Q[1+ ∂z + ∂2
z ](χ0(z

2)�0(z))Qv2e22

∣∣ dz.

Repeating the arguments from (5.35) –(5.37), we obtain
∣∣∣I (1,2)

3,1 (x, y)

∣∣∣ ≤ C |t |− 3
2 〈x〉.

Similarly, one has the bounds
∣∣∣I (2,1)

3,1 (x, y)

∣∣∣ ≤ C |t |− 3
2 〈y〉,

∣∣∣I (2,2)
3,1 (x, y)

∣∣∣ ≤ C |t |− 3
2 ,

and we are done. ⊓⊔
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Proposition 5.4 For all |t | ≥ 1, we have

∣∣I2,1(x, y)− F1
t (x, y)

∣∣ ≤ C |t |− 3
2 〈x〉2〈y〉2, (5.41)

where

F1
t (x, y) := η

√
π√
−i t
[c0e1 −�(x)][σ3�(y)− c0e1]∗. (5.42)

Proof As in the previous propositions, we decompose I2,1 into the sum

I2,1 = I
(1,1)
2,1 + I

(1,2)
2,1 + I

(2,1)
2,1 + I

(2,2)
2,1 ,

with

I
(i, j)
2,1 :=

∫

R

ei t z2
χ0(z

2)[Ri (z)v1S1v2R j (z)] dz, i, j ∈ {1, 2}.

We start with the most singular term

I
(1,1)
2,1 (x, y) =

∫

R3
ei t z2+i z(|x−x1|+|y−y1|) χ0(z

2)

(2i z)2
[e11v1S1v2e11](x1, y1) dx1 dy1 dz.

Noting that S1L2 ⊂ QL2, the orthogonality conditions (5.1) imply that
∫

R

ei z|x |e11v1(x1)S1(x1, x2) dx1 =
∫

R

ei z|y|S1(y2, y1)v2(y1)e11 dy1 = 02×2, ∀x, y ∈ R.

(5.43)

Hence, by the Fubini theorem,

I
(1,1)
2,1 (x, y) = 1

4

∫

R2

∫ |x−x1|

|x |

∫ |y−y1|

|y|

∫

R

ei t z2+i z(s1+s2)χ0(z
2)[e11v1S1v2e11](x1, y1) dz ds1 ds2 dx1 dy1

= 1

4

∫ |x−x1|

|x |

∫ |y−y1|

|y|
G t (s1 + s2) ds1 ds2

∫

R2
[e11v1S1v2e11](x1, y1) dx1 dy1,

where G t (·) is the function defined in Lemma 2.2, which satisfies the estimate
∣∣∣∣G t (s1 + s2)−

√
π√
−i t

e−i
s2
1

4t e−i
s2
2

4t

∣∣∣∣ ≤ C |t |− 3
2 〈s1〉〈s2〉. (5.44)

Using the bound
∫ |x−x1|

|x |

∫ |y−y1|

|y|
〈s1〉〈s2〉 ds1 ds2 � 〈x1〉2〈y1〉2〈x〉〈y〉, (5.45)

the decay assumptions on v1, v2, and the estimate (5.44), we have
∣∣∣∣I

(1,1)
2,1 (x, y)−

√
π

4
√
−i t

ei π
4

∫

R2
Ht (x1, x)[e11v1S1v2e11](x1, y1)Ht (y1, y) dx1 dy1

∣∣∣∣

≤ C |t |− 3
2 〈x〉〈y〉‖S1‖L2×L2→L2×L2‖〈x1〉2v1(x1)‖L2‖〈y1〉2v2(y2)‖L2 ≤ C |t |− 3

2 〈x〉〈y〉,
where we set

Ht (x1, x) :=
∫ |x1−x |

|x |
e−i s2

4t ds. (5.46)
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Since S1(x, y) = η�(x)�∗(y), the orthogonality conditions (5.1) imply that
∫

R

|x |e11v1(x1)S1(x1, y1) dx1 = η

∫

R

|x |e11v1(x1)�(x1) dx1�
∗(y1) = 02×2, ∀y ∈ R,

∫

R

|y|S1(x1, y1)v2(y1)e11 dy1 = η�(x1)

∫

R

|y|�∗(y1)v2(y1)e11 dy1 = 02×2, ∀x ∈ R.

Hence, using the bound

|Ht (x1, x)− (|x − x1| − |x |)| ≤ C |t |−1〈x〉2〈x1〉3, (5.47)

and the exponential decay of v1, v2, we conclude the estimate
∣∣∣∣I

(1,1)
2,1 (x, y)− η

√
π√
−i t
[G0(e11v1�)(x)][G0(e11v2�)(y)]∗

∣∣∣∣ ≤ C |t |− 3
2 〈x〉2〈y〉2, (5.48)

where

G0(x, y) := −1

2
|x − y|, (5.49)

and

[G0(e11v1�)(x)] := −1

2

∫

R

|x − x1|e11v1(x1)�(x1) dx1,

[G0(e11v2�)(y)]∗ := −1

2

∫

R

|y − y1|�∗(y1)v2(y1)e11 dy1.

In the preceding definition, we used the identity v∗2 = v2. Next, we treat the term

I
(2,2)
2,1 (x, y)

=
∫

R3
ei t z2

χ0(z2)
e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ
[e22v1S1v2e22](x1, y1)

e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dx1 dy1 dz.

By Taylor expansion, we have

I
(2,2)
2,1 (x, y) =

∫

R3
ei t z2

χ0(z
2)

e−
√

2µ|x−x1|

−2
√

2µ
[e22v1S1v2e22](x1, y1)

e−
√

2µ|y−y1|

−2
√

2µ
dx1 dy1 dz

+
∫

R3
ei t z2

z2χ0(z
2)[e22v1S1v2e22](x1, y1)κ(x, x1)κ(y, y1) dx1 dy1 dz

= η

∫

R

ei t z2
χ0(z

2) dz[G2(e22v1�)(x)][G2(e22v2�)(y)]∗

+
∫

R3
ei t z2

z2χ0(z
2)[e22v1S1v2e22](x1, y1)κ(x, x1)κ(y, y1) dx1 dy1 dz,

(5.50)

where we set

G2(x, y) := e−
√

2µ|x−y|

−2
√

2µ
, (5.51)

and where κ(x, x1)κ(y, y1) is an error term bounded by C〈x〉〈x1〉〈y〉〈y1〉e−c(|x−x1|+|y−y1|),
for some C, c > 0, (c.f. (4.7)). The definitions for G2(e22v1�)(x) and G2(e22v2�)(y) are
defined analogously to the ones for G0(e11v1�)(x) and G0(e11v2�)(y). By non-stationary
phase, one has the uniform estimate

∣∣∣∣
∫

R

ei t z2
z2χ0(z

2) dz

∣∣∣∣ ≤ C |t |− 3
2 . (5.52)
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Hence, we can control the remainder term in I
(2,2)
2,1 by

∣∣∣∣
∫

R3
ei t z2

z2χ0(z
2)[e22v1S1v2e22](x1, y1)κ(x, x1)κ(y, y1) dx1 dy1 dz

∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉.

(5.53)

On the other hand, by Lemma 2.2, one has
∫

R

ei t z2
χ0(z

2) dz =
√

π√
−i t
+ Rt , |Rt | ≤ C |t |− 3

2 .

Hence, the leading contribution of I
(2,2)
2,1 can be written as

∣∣∣∣
∫

R

ei t z2
χ0(z2) dz[G2(e22v1�)(x)][G2(e22v2�)(y)]∗ − η

√
π√
−i t
[G2(e22v1�)(x)][G2(e22v2�)(y)]∗

∣∣∣∣

≤ C |t |−
3
2 .

Thus, one concludes the estimate for I
(2,2)
2,1 :

∣∣∣∣I
(2,2)
2,1 −

η
√

π√
−i t
[G2(e22v1�)(x)][G2(e22v2�)(y)]∗

∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉. (5.54)

Finally, we note that a similar analysis holds for the terms I
(1,2)
2,1 and I

(2,1)
2,1 yielding the

contributions
∣∣∣∣I

(1,2)
2,1 −

η
√

π√
−i t
[G0(e11v1�)(x)][G2(e22v2�)(y)]∗

∣∣∣∣ ≤ C |t |− 3
2 〈x〉2〈y〉,

∣∣∣∣I
(2,1)
2,1 −

η
√

π√
−i t
[G2(e22v1�)(x)][G0(e11v2�)(y)]∗

∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉2.

(5.55)

By adding all leading order contributions, we obtain

F1
t (x, y) = η

√
π√
−i t
[(G0e11 + G2e22)v1�](x)[(G0e11 + G2e22)v2�]∗(y).

Recalling that G0 = G0e11 + G2e22 from Lemma 4.1, that G0(v1�) = c0e1 − � from
Lemma 4.5, and that G0(v2�) = σ3� − c0e1 from Remark 4.6 (c.f. (4.40)), we arrive at

F1
t (x, y) = η

√
π√
−i t
[c0e1 −�(x)][σ3�(y)− c0e1]∗,

as claimed ⊓⊔
We continue the analysis for the terms involving the operators S1T P and PT S1.

Proposition 5.5 For all |t | ≥ 1, we have

|I2,2(x, y)− F2
t (x, y)| ≤ C |t |− 3

2 〈x〉2〈y〉2, (5.56)

|I2,3(x, y)− F3
t (x, y)| ≤ C |t |− 3

2 〈x〉2〈y〉2, (5.57)

where

F2
t (x, y) :=

iη‖V1‖L1(R)

2

√
π√
−i t
[c0e1 −�(x)][ei

y2

4t c0e1]∗, (5.58)

F3
t (x, y) := −

iη‖V1‖L1(R)

2

√
π√
−i t
[e−i x2

4t c0e1][σ3�(y)− c0e1]∗. (5.59)
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Proof As in the proof of Proposition 5.4, we decompose I2,2 into

I2,2 = I
(1,1)
2,2 + I

(1,2)
2,2 + I

(2,1)
2,2 + I

(2,2)
2,2 ,

with

I
(i, j)
2,2 :=

∫

R

ei t z2
zχ0(z

2)[Ri (z)v1S1T Pv2R j (z)] dz, i, j ∈ {1, 2},

where R1 and R2 were defined in (5.11). We start with

I
(1,1)
2,2 (x, y) =

∫

R3
ei t z2

zχ0(z
2)

ei z|x−x1|

−2i z
[e11v1S1T Pv2e11](x1, y1)

ei z|y−y1|

−2i z
dx1 dy1 dz.

Using the orthogonality (5.43), we have

I
(1,1)
2,2 (x, y) = 1

4

∫

R3

∫ |x−x1|

|x |

∫ |y−y1|

|y|
ei t z2+i z(s1+s2)zχ0(z2)[e11v1S1T Pv2e11](x1, y1) ds1 ds2 dx1 dy1 dz

+ 1

4i

∫

R3

∫ |x−x1|

|x |
ei t z2+i zs1χ0(z2)[e11v1S1T Pv2e11](x1, y1)ei z|y| ds1 dx1 dy1 dz

=: I
(1,1)
2,2;1 + I

(1,1)
2,2;2.

By Lemma 2.1, we have
∣∣∣∣
∫

R

ei t z2+i z(s1+s2)zχ0(z
2) dz

∣∣∣∣ ≤ C |t |− 3
2 〈s1〉〈s2〉.

Using this estimate, the bound
∫ |x−x1|

|x |

∫ |y−y1|

|y|
〈s1〉〈s2〉 ds1 ds2 � 〈x1〉2〈y2〉2〈x〉〈y〉,

the absolute boundedness of S1T P , and the exponential decay of v1, v2, we deduce that
∣∣∣I (1,1)

2,2;1(x, y)

∣∣∣ � |t |− 3
2 〈x〉〈y〉

∫

R2
|〈x1〉2〈y2〉2[e11v1S1T Pv2e11](x1, y1)| dx1 dy1

� |t |− 3
2 〈x〉〈y〉.

(5.60)

By Lemma 4.5 and direct computation,
∫

R

S1T P(x1, y1)v2(y1)e11 dy1 = η‖V1‖L1(R)�(x1)[c0e1]∗. (5.61)

Hence, integrating in y1, we have

I
(1,1)
2,2;2(x, y) =

η‖V1‖L1(R)

4i

(∫

R

∫ |x−x1|

|x |

∫

R

ei t z2+i z(s1+|y|)χ0(z2)e11v1(x1)�(x1) dz ds1 dx1

)
[c0e1]∗

=
η‖V1‖L1(R)

4i

(∫

R

∫ |x−x1|

|x |
Gt (s1 + |y|) ds1e11v1(x1)�(x1) dx1

)
[c0e1]∗,

where G t is the function defined in Lemma 2.2. By Lemma 2.2 (c.f. (5.44)–(5.48) for similar
computations), we have

∣∣∣∣I
(1,1)
2,2;2(x, y)−

iη‖V1‖L1(R)

2
[G0(e11v1�)(x)][ei

y2

4t c0e1]∗
∣∣∣∣ ≤ C |t |− 3

2 〈x〉2〈y〉2,
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where G0 is the operator defined in (5.49). This completes the analysis of the term I
(1,1)
2,2 .

Next, we treat the term

I
(2,1)
2,2 (x, y)

=
∫

R3
ei t z2

zχ0(z
2)

e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ
[e22v1S1T Pv2e11](x1, y1)

ei z|y−y1|

−2i z
dx1 dy1 dz.

(5.62)

By inserting ei z|y|, we write

I
(2,1)
2,2 (x, y)

= − 1

2

∫

R3
ei t z2

zχ0(z2)
e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ
[e22v1S1T Pv2e11](x1, y1)

∫ |y−y1|

|y|
ei zs2 ds2 dx1 dy1 dz

+
∫

R3
ei t z2

zχ0(z2)
e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ
[e22v1S1T Pv2e11](x1, y1)

ei z|y|

−2i z
dx1 dy1 dz

=: I
(2,1)
2,2;1(x, y)+ I

(2,1)
2,2;2(x, y),

where I
(2,1)
2,2;2 is the leading term. By Lemma 2.1 and Lemma 5.1,

∣∣∣∣∣

∫

R

ei t z2+i zs2 zχ0(z
2)

e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ
dz

∣∣∣∣∣ ≤ C |t |− 3
2 〈s2〉. (5.63)

Hence, using the absolute boundedness of S1T P and the bound (5.45), we have
∣∣∣I (2,1)

2,2;1(x, y)

∣∣∣ � |t |− 3
2

∫

R2
〈y1〉2〈y〉[e22v1S1T Pv2e11](x1, y1) dx1 dy1 � |t |− 3

2 〈y〉.

On the other hand, we treat I
(2,1)
2,2;1 similarly as in (5.50)–(5.53) and find that

∣∣∣∣I
(2,1)
2,2;2(x, y)− i

2

∫

R3
ei t z2+i z|y|χ0(z

2)G2(x, x1)[e22v1S1T Pv2e11](x1, y1) dx1 dy1 dz

∣∣∣∣

≤ C |t |− 3
2 〈x〉〈y〉,

where G2 is defined in (5.51). Hence, by Lemma 2.2 and (5.61), we conclude that
∣∣∣∣I

(2,1)
2,2 (x, y)−

iη‖V1‖L1(R)

2

√
π√
−i t
[G2(e22v1�)(x)][ei

y2

4t c0e1]∗
∣∣∣∣ ≤ C |t |− 3

2 〈x〉〈y〉.

(5.64)

Finally, we show that the terms I
(1,2)
2,2 and I

(2,2)
2,2 satisfy the better decay rates of

O(|t |− 3
2 〈x〉〈y〉). By orthogonality (c.f. (5.43)),

I
(1,2)
2,2 (x, y)

= 1

−2

∫

R3
ei t z2

zχ0(z2)

∫ |x−x1|

|x |
ei zs1 ds1[e11v1S1T Pv2e22](x1, y1)

e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dx1 dy1 dz.

By Lemma 2.1 and Lemma 5.1, we note that the z-integral satisfy the bound
∣∣∣∣∣

∫

R

ei t z2+i zs1 zχ0(z
2)

e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dz

∣∣∣∣∣ ≤ C |t |− 3
2 〈s1〉.
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Hence, by the absolute boundedness of S1T P and decay of v1, v2, we conclude that
∣∣∣I (1,2)

2,2 (x, y)

∣∣∣ ≤ C |t |− 3
2 〈x〉.

The analysis of I
(2,2)
2,2 is analogous to the preceeding one, yielding the bound

∣∣∣I (2,2)
2,2 (x, y)

∣∣∣ ≤ C |t |− 3
2 〈y〉.

Thus, using G0 = G0e11+G2e22, and G0(v1�) = c0e1−� from Lemma 4.5, we conclude
(5.56) and (5.58). For the estimate (5.57) involving I2,3, one should instead use the identity

∫

R

e11v1(x1)PT S1(x1, y1) dx1 = −η‖V1‖L1(R)c0e1�(y1)
∗, (5.65)

and we leave the remaining details to the reader. ⊓⊔

Next, we remark that the analysis for I2,4 involving the operator P leads to a similar estimate
as the free evolution in Proposition 2.3.

Proposition 5.6 For all |t | ≥ 1, we have

∣∣I2,4(x, y)− F4
t (x, y)

∣∣ ≤ C |t |− 3
2 〈x〉2〈y〉2, (5.66)

where

F4
t (x, y) :=

‖V1‖L1(R)

4

√
π√
−i t

e−i x2
4t e1e−i

y2

4t e⊤1 . (5.67)

Proof As before, we write

I2,4 = I
(1,1)
2,4 + I

(1,2)
2,4 + I

(2,1)
2,4 + I

(2,2)
2,4 ,

with

I
(i, j)
2,4 :=

∫

R

ei t z2
z2χ0(z

2)[Ri (z)v1 Pv2R j (z)] dz, i, j ∈ {1, 2},

where R1 and R2 were defined in (5.11). We first treat the leading term

I
(1,1)
2,4 (x, y) =

∫

R

ei t z2
z2χ0(z

2)
ei z|x−x1|

2i z
[e11v1 Pv2e11](x1, y1)

ei z|y−y1|

2i z
dx1 dy1 dz.

(5.68)

By adding and subtracting ei z|x | and ei z|y| twice, we further consider

I
(1,1)
2,4 (x, y) =

∫

R3
ei t z2

z2χ0(z2)
ei z|x |

2i z
[e11v1 Pv2e11](x1, y1)

ei z|y|

2i z
dx1 dy1 dz

+ 1

2

∫

R3
ei t z2

z2χ0(z2)
ei z|x |

2i z
[e11v1 Pv2e11](x1, y1)

∫ |y−y1|

|y|
ei zs2 ds2 dx1 dy1 dz

+ 1

2

∫

R3
ei t z2

z2χ0(z2)

∫ |x−x1|

|x |
ei zs1 ds1[e11v1 Pv2e11](x1, y1)

ei z|y|

2i z
dx1 dy1 dz

+ 1

4

∫

R3
ei t z2

z2χ0(z2)

∫ |x−x1|

|x |
ei zs1 ds1[e11v1 Pv2e11](x1, y1)

∫ |y−y1|

|y|
ei zs2 ds2 dx1 dy1 dz

=: I
(1,1)
2,4;1(x, y)+ I

(1,1)
2,4;2(x, y)+ I

(1,1)
2,4;3(x, y)+ I

(1,1)
2,4;4(x, y).
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By direct computation,∫

R2
[e11v1 Pv2e11](x1, y1) dx1 dy1 = −‖V1‖L1(R)e1e⊤1 .

Hence, by Lemma 2.2,∣∣∣∣I
(1,1)
2,4;1(x, y)−

‖V1‖L1(R)

4

√
π√
−i t

e−i x2
4t e1e−i

y2

4t e⊤1

∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉.

For the terms I
(1,1)
2,4;2 , I

(1,1)
2,4;3 , the additional factor of z allows to invoke Lemma 2.1,
∣∣∣∣
∫

R

ei t z2+i z(|x |+s2)zχ0(z
2) dz

∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈s2〉,

∣∣∣∣
∫

R

ei t z2+i z(s1+|y|)zχ0(z
2) dz

∣∣∣∣ ≤ C |t |− 3
2 〈y〉〈s1〉.

Thus, we infer from the exponential decay of v1 and v2 that∣∣∣I (1,1)
2,4;2(x, y)

∣∣∣+
∣∣∣I (1,1)

2,4;3(x, y)

∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉. (5.69)

For the term I
(1,1)
2,4;4 , we can use non-stationary phase to conclude the same bound. Hence, we

have ∣∣∣∣I
(1,1)
2,4 (x, y)−

‖V1‖L1(R)

4

√
π√
−i t

e−i x2
4t e1e−i

y2

4t e⊤1

∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉.

Thus, it remains to prove that the other terms I
(1,2)
2,4 , I

(2,1)
2,4 , I

(2,2)
2,4 have the better

O(|t |− 3
2 〈x〉〈y〉) weighted decay estimate to finish the proposition. We first treat the term

I
(1,2)
2,4 (x, y) = 1

2i

∫

R3
ei t z2

zχ0(z
2)

ei z|x−x1|[e11v1 Pv2e22](x1, y1)
e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dx1 dy1 dz.

(5.70)

By Lemma 2.1 and Lemma 5.1,
∣∣∣∣∣

∫

R

ei t z2+i z(|x−x1|)zχ0(z
2)

e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dz

∣∣∣∣∣ ≤ C |t |− 3
2 〈x〉〈x1〉.

Hence, using the decay assumptions on v1 and v2, we conclude that
∣∣∣I (1,2)

2,4 (x, y)

∣∣∣ ≤ C |t |− 3
2 〈x〉〈y〉.

The same bound holds for the term I
(2,1)
2,4 and we will skip the details. Finally, we are left

with

I
(2,2)
2,4 (x, y)

=
∫

R3
ei t z2

z2χ0(z
2)

e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ
[e22v1 Pv2e22](x1, y1)

e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dx1 dy1 dz.

By direct computation using (3.2),

[e22v1 Pv2e22](x1, y1) =
1

‖V1‖L1(R)

[V2e2](x1)[V2e2]⊤(y1),
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and by Lemmas 2.1 and 5.1, we have the uniform estimate
∣∣∣∣∣

∫

R

ei t z2
z2χ0(z

2)
e−
√

z2+2µ|x−x1|

−2
√

z2 + 2µ

e−
√

z2+2µ|y−y1|

−2
√

z2 + 2µ
dz

∣∣∣∣∣ ≤ Cµ|t |−
3
2 .

Hence, by exchanging the order of integration, we conclude that
∣∣∣I (2,2)

2,4 (x, y)

∣∣∣ ≤ C |t |− 3
2 . (5.71)

Thus, we conclude (5.66) by summing over the four terms. ⊓⊔
Finally, we are ready to complete the proof of the local decay estimate (5.8). We sum the
leading contributions of the spectral representation of ei tHχ0(H − µI )P+s in (5.24) by
invoking Propositions 2.3, Proposition 5.4, Proposition 5.5, and Proposition 5.6 to obtain

F0
t −

ei tµ

π i

(
i

2η
F1

t +
1

η‖V1‖L1(R)

F2
t +

1

η‖V1‖L1(R)

F3
t +

(
2i

‖V1‖L1(R)

+ 2|c0|2
i‖V1‖L1(R)

)
F4

t

)

= ei tµ

√
−4π i t

(
−[c0e1 −�(x)][σ3�(y)− c0e1]∗ − [c0e1 −�(x)][ei

y2
4t c0e1]∗

+[e−i x2
4t c0e1][σ3�(y)− c0e1]∗ + |c0|2e

−i x2
4t e
−i

y2
4t e1e⊤1

)

= ei tµ

√
−4π i t

(
�(x)[σ3�(y)]∗ + (e

−i x2
4t − 1)c0[σ3�(y)]∗ + (e

−i
y2
4t − 1)�(x)[c0e1]∗

+(1− e
−i x2

4t − e
−i

y2
4t + e

−i x2
4t e
−i

y2
4t )|c0|2e1e⊤1

)
,

where we use the cancellation F0
t − ei tµ

π i
2i

‖V1‖L1(R)
F4

t = 0 in the first equality. We note that

the first term gives us the finite rank operator

F+t (x, y) = ei tµ

√
−4π i t

�(x)[σ3�(y)]∗, (5.72)

and we show that the last three terms satisfy the better decay rate. Using,

|1− e−i x2
4t | ≤ x2

4|t | , (5.73)

and the fact that � ∈ L∞(R)× L∞(R), we have
∣∣∣∣∣

ei tµei π
4

2
√

π
√

t
(e−i x2

4t − 1)c0e1[σ3�(y)]∗
∣∣∣∣∣ � |t |− 3

2 〈x〉2,

and similarly
∣∣∣∣∣

ei tµei π
4

2
√

π
√

t
(e−i

y2

4t − 1)c0�(x)e⊤1

∣∣∣∣∣ � |t |− 3
2 〈y〉2.

For the last term, we have
∣∣∣∣1− e−i x2

4t − e−i
y2

4t + e−i x2
4t e−i

y2

4t

∣∣∣∣ =
∣∣∣∣1− e−i x2

4t

∣∣∣∣
∣∣∣∣1− e−i

y2

4t

∣∣∣∣ � |t |−2〈x〉2〈y〉2.

(5.74)

Thus, the leading contribution to ei tHχ0(H− µI )P+s is F+t . ⊓⊔
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6 Intermediate and high energy estimates

In order to complete the proof of Theorem 1.4, we also need to prove the dispersive estimates
when the spectral variable is bounded away from the thresholds ±µ. As usual, we focus on
the positive semi-axis [µ,∞) of the essential spectrum and prove the dispersive estimates
for energies λ > µ. The negative semi-axis (−∞,−µ] can be treated by symmetry of H. We
recall from Sect. 2 that the kernel of the limiting resolvent operator for H0 has the formula

R±0 (z)(x, y) := (H0 − (z2 + µ± i0))−1 =



± ie±i z|x−y|

2z
0

0 − e−
√

z2+2µ|x−y|

2
√

z2+2µ


 , ∀ 0 < z <∞.

(6.1)

From this, we have the following bound

‖R±0 (z)‖L1×L1→L∞×L∞ ≤ C |z|−1.

Hence, for sufficiently large z, the perturbed resolvent R±(z) can be expanded into the infinite
Born series

R±(z) =
∞∑

n=0

R±0 (z)(−VR±0 (z))n . (6.2)

More precisely, since the operator norm L1× L1 → L∞× L∞ in the n-th summand above is
bounded by C |z|−1(C‖V‖1|z|−1)n , the Born series converges in the operator norm whenever
|z| > z1 := 2C‖V‖L1×L1 . We define the high-energy cut-off by

χh(z) := 1− χ(z), (6.3)

where χ(z) is a standard smooth even cut-off supported on [−z1, z1] satisfying χ(z) = 1 for
|z| ≤ z1

2 and χ(z) = 0 for |z| ≥ z1. We insert the cut-off and the Born series expansion into
the spectral representation ei tHχh(H− µI )P+s and look to bound the following

|〈ei tHχh(H− µI )P+s �u, �v〉| =
∣∣∣∣
∫ ∞

0
ei t z2

zχh(z
2)〈[R+(z)−R−(z)]�u, �v〉 dz

∣∣∣∣

≤ C
∑

±

∞∑

n=0

∣∣∣∣
∫ ∞

0
ei t z2

zχh(z
2)〈R±0 (z)(VR±0 (z))n �u, �v〉 dz

∣∣∣∣ ,
(6.4)

where �u, �v ∈ S(R)× S(R). From [40], we have the following dispersive estimates:

Proposition 6.1 Under the same hypothesis as Theorem 1.4, we have
∥∥∥ei tHχh(H− µI )P+s �u

∥∥∥
L∞(R)×L∞(R)

� |t |− 1
2 ‖�u ‖L1(R)×L1(R) , (6.5)

and ∥∥∥〈x〉−1ei tHχh(H− µI )P+s �u
∥∥∥

L∞(R)×L∞(R)
� |t |− 3

2 ‖〈x〉�u ‖L1(R)×L1(R) , (6.6)

for any |t | ≥ 1.

Proof For (6.5), see the proof of [40, Proposition 7.1], and for (6.6), see the proof of [40,
Proposition 8.1]. Note that the high-energy dispersive estimate holds irrespective of the
regularity of the thresholds ±µ. ⊓⊔

123



206 Page 48 of 54 Y. Li

Let z0 > 0 be the constant from Proposition 4.8. It may happen that z1 is strictly larger
than z0. In this case, we need to derive estimates analogous to the above proposition in the
remaining intermediate energy regime [−z1,−z0] ∪ [z0, z1]. To this end, we set χm(z) to be
the intermediate energy cut-off given by

χm(z) := 1− χ0(z)− χh(z), (6.7)

where χ0(z) was the cut-off defined in the previous section in Proposition 5.2.

Proposition 6.2 For any |t | ≥ 1, we have

∥∥∥ei tHχm(H− µI )P+s �u
∥∥∥

L∞x (R)×L∞x (R)
� |t |− 1

2 ‖�u ‖L1
x (R)×L1

x (R) , (6.8)

and
∥∥∥〈x〉−1ei tHχm(H− µI )P+s �u

∥∥∥
L∞x (R)×L∞x (R)

� |t |− 3
2 ‖〈x〉�u ‖L1

x (R)×L1
x (R) . (6.9)

Before proving the above proposition, we need the following lemmas for pointwise bounds
and operator norm bounds on the resolvent operators and its derivatives. The first lemma
follows immediately from the expression (6.1) and the triangle inequality ||x − x1| − |x || ≤
|x1|.

Lemma 6.3 Let γ0 > 0. For every z > γ0, and k ∈ {0, 1, 2}, we have

∣∣∣∂k
z R±0 (z)(x, y)

∣∣∣ ≤ Cγ−1−k
0 〈x − y〉k, (6.10)

and hence
∥∥∥∂k

z R±0 (z)(x, ·)
∥∥∥

X−( 1
2+k)−

≤ Cγ−1−k
0 〈x〉k . (6.11)

Moreover, define

G±(z)(x, x1) =
[

e∓i z|x | 0
0 1

]
R±0 (z)(x, x1) =



± ie±i z(|x−x1 |−|x |)

2z
0

0 − e−
√

z2+2µ|x−x1 |

2
√

z2+2µ


 .

(6.12)

Then, for any k ≥ 0,

sup
x∈R

∣∣∣∂k
z G±(z)(x, x1)

∣∣∣ ≤ Cγ−1−k
0 |x1|. (6.13)

With these bounds, we are able to give operator norm bounds on the perturbed resolvent via
the resolvent identity.

Lemma 6.4 Let γ0 > 0. We have

sup
|z|>γ0

∥∥∂zR
±(z)

∥∥
X 3

2+
→X− 3

2−
� 1, (6.14)

sup
|z|>γ0

∥∥∂2
z R±(z)

∥∥
X 5

2+
→X− 5

2−
� 1. (6.15)
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Proof By Lemma 3.1, for any |z| > γ0, we have

R±(z) = (I +R±0 (z)V)−1R±0 (z) =: S±(z)−1R±0 (z), (6.16)

as a bounded operator from X 1
2+

to X− 1
2−

. Note that S±(z) is boundedly invertible on X−σ

for any σ > 0. By differentiation, we have

∂zR
±(z) = −S±(z)−1∂zR

±
0 (z)VS±(z)−1R±0 (z)+ S±(z)−1∂zR

±
0 (z). (6.17)

Moreover, as a multiplication operator, V : X−σ → Xσ is bounded for any σ > 0 due to the
exponential decay of V. By Lemma 6.3, ∂z R±0 (z) : X 3

2+
→ X− 3

2−
is bounded and since the

embedding X− 1
2−
⊂ X− 3

2−
is continuous, we infer the bound (6.14) by taking composition.

By a similar argument,

‖∂2
z R±(z)‖X 5

2+
→X− 5

2−
� 1. (6.18)

⊓⊔

Proof of Proposition 6.2 By iterating the second resolvent identity, we write the perturbed
resolvent as a finite sum

R±(z) = R±0 (z)−R±0 (z)VR±0 (z)+R±0 (z)VR±(z)VR±0 (z), (6.19)

and we write

ei tHχm(H− µI )P+s (x, y) =
3∑

j=1

∫ ∞

0
ei t z2

zχm(z2)(−1) j+1(E+j (z)− E−j (z))(x, y)dz,

(6.20)

with

E±1 (z) = R±0 (z), E±2 (z) = R±0 (z)VR±0 (z), E±3 (z) = R±0 (z)VR±(z)VR±0 (z). (6.21)

Hence, to prove (6.8) and (6.9), it is sufficient to establish the estimates

sup
±

sup
j=1,2,3

∣∣∣∣
∫ ∞

0
ei t z2

zχm(z2)E±j (z)(x, y) dz

∣∣∣∣ � min{|t |− 1
2 , |t |− 3

2 〈x〉〈y〉}. (6.22)

The term involving E±1 is handled by the earlier Proposition 2.3, while the second term
involving E±2 can be treated analogously as in Proposition 6.1. We refer the reader to [31,
Lemma 3] and [26, Proposition 3] for similar computations. For the term involving E±3 , we
first write

R±0 (z)(s1, s2) =
[

e±i z|s1| 0
0 1

]
G±(z)(s1, s2),

where the operator G±(z) was defined in (6.12). Then, using that the kernel R±0 (z)(x, y) is
symmetric in x and y variables, and using the matrix identity

e j j

[
a11 a12

a21 a22

]
ekk = a jke j e

⊤
k , j, k ∈ {1, 2}, (6.23)

123



206 Page 50 of 54 Y. Li

we compute the following kernel identity

E±3 (z)(x, y) =
∫

R2
R±0 (x, x1)[VR±(z)V](x1, y1)R

±
0 (y, y1) dx1 dy1

=
[

e±i z|x | 0
0 1

] ∫

R2
G±(x, x1)[VR±(z)V](x1, y1)G

±(y, y1) dx1 dy1

[
e±i z|y| 0

0 1

]

= e±i z(|x |+|y|)〈(G±)∗(z)(x, ·)e1,VR±(z)VG±(z)(y, ·)e1〉 e1e⊤1
+ e±i z|x |〈(G±)∗(z)(x, ·)e2,VR±(z)VG±(z)(y, ·)e1〉 e1e⊤2
+ e±i z|y|〈(G±)∗(z)(x, ·)e1,VR±(z)VG±(z)(y, ·)e2〉 e2e⊤1
+ 〈(G±)∗(z)(x, ·)e2,VR±(z)VG±(z)(y, ·)e2〉 e2e⊤2
=: e±i z(|x |+|y|) A±1 (z, x, y)+ e±i z|x |A±2 (z, x, y)+ e±i z|y|A±3 (z, x, y)

+ A±4 (z, x, y).

We plug this identity into the left hand side of (6.22), and hence it will be sufficient to provide
the bounds∣∣∣∣

∫ ∞

0
ei t z2±i zr zχm(z2)A±k (z, x, y) dz

∣∣∣∣ � min{|t |− 1
2 , |t |− 3

2 〈r〉}, k ∈ {1, . . . , 4},

(6.24)

where r can represent 0 or |x |, |y|, or the sum of both variables. For the case k = 1, by
Lemma 2.1, we have that
∣∣∣∣
∫ ∞

0
ei t z2±i z(|x |+|y|)zχm(z2)A±1 (z, x, y) dz

∣∣∣∣ ≤ C |t |− 1
2 ‖∂z

(
zχm(z2)A±1 (z, x, y)

)
‖L1

z (R).

Since the term zχm(z2) is smooth and has compact support, we only need to track the
derivatives when they fall onto either G±(z) or R±(z). In any case, thanks to the exponential
decay of V, and the bounds (6.13), (6.14) from the previous lemmas, we have the following
uniform bound

sup
±

sup
z∈supp(χm)

sup
j,k=1,2

|∂z〈(G±)∗(z)(y, ·)e j ,VR±(z)VG±(z)(x, ·)ek〉|

� sup
±

sup
z∈supp(χm)

sup
j,k=1,2

∥∥∥
√
|V|(x1)

(
|R±(z)(x1, x2)| + |∂zR

±(z)(x1, x2)|
)√
|V|(x2)

∥∥∥
L2

x2
→L2

x1

· ‖
√
|V|(x1)

(
|G±(z)(x, x1)| + |∂zG

±(z)(x, x1)|
)

e j‖L2
x1

· ‖
√
|V|(x2)

(
|G±(z)(x2, y)| + |∂zG

±(z)(x2, y)|
)

ek‖L2
x2

� 1,

(6.25)

for all x, y ∈ R.
To prove the weighted dispersive estimate, we invoke the stronger estimate in Lemma 2.1:

∣∣∣∣
∫ ∞

0
ei t z2±i z(|x |+|y|)zχm(z2)A±1 (z, x, y) dz

∣∣∣∣

≤ C |t |− 3
2
∥∥[∂2

z ± i(|x | + |y|)∂z]
(
χm(z2)A±1 (z, x, y)

)∥∥
L1

z (R)

Here, we can apply the same argument as in (6.25) for the two derivatives bound on A±1
using the estimates (6.13) and (6.15), whereas the bound on one derivative for A±1 leads to
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the weights 〈x〉〈y〉. Thus, we prove (6.24) for k = 1. The other cases follow by the same
argument and we are done. ⊓⊔

Finally, we conclude with the proof of Theorem 1.4.

Proof of Theorem 1.4 By combining the estimates from Propositions 5.2, 6.1, and 6.2, we
have established the bounds∥∥∥ei tH P+s �u

∥∥∥
L∞x (R)×L∞x (R)

� |t |− 1
2 ‖�u ‖L1

x (R)×L1
x (R),

as well as ∥∥∥〈x〉−2(ei tH P+s − F+t )�u
∥∥∥

L∞x (R)×L∞x (R)
� |t |− 3

2 ‖�u ‖L1
x (R)×L1

x (R),

for any �u := (u1, u2)
⊤ ∈ S(R)×S(R) and |t | ≥ 1, with F+t given by (5.9). By Remark 3.3,

we can similarly deduce that the unweighted dispersive estimate for the evolution ei tH P−s
using the identity (3.17). On the other hand, for the weighted estimate, we find that the leading
contribution to ei tH P−s is given by

F−t (x, y) = σ1 F+−t (x, y)σ1 = −
e−i tµ

√
4π i t
[σ1�(x)][σ3σ1�(y)]∗, (6.26)

where we used the anti-commutation identity σ3σ1 = −σ1σ3. Thus, we conclude the local
decay estimate (1.14) and the formula (1.15) by setting Ft := F+t + F−t . ⊓⊔

Appendix A: Neumann series

Lemma A Let A be an invertible operator and B be a bounded operator satisfying ‖B‖ <

‖A−1‖−1. Then, A − B is invertible with

(A − B)−1 = A−1
∞∑

n=0

(B A−1)n = A−1 + A−1 B A−1 + A−1 B A−1 B A−1 + · · · , (A.1)

and

‖(A − B)−1‖ ≤ (‖A−1‖−1 − ‖B‖)−1. (A.2)

Proof By the hypothesis ‖B‖ < ‖A−1‖−1, we have ‖A−1 B‖ < 1. Consider the identity

(A − B)−1 = (I − A−1 B)−1 A−1.

The term on the right hand side can be written in the usual Neumann series

(I − A−1 B)−1 =
∞∑

n=0

(A−1 B)n .

Thus, by multiplying A−1, we deduce (A.1). Note that the argument also holds true for
(A − B)−1 = A−1(I − B A−1)−1. Now, since we have the estimate

‖(I − A−1 B)−1‖ ≤ (1− ‖A−1 B‖)−1,

we deduce (A.2) by the sub-multiplicative property for operator norms. ⊓⊔
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22. Erdoğan, M.B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance
and/or an eigenvalue at zero energy in dimension three: I. Dyn. Partial Differ. Equ. 1(4), 359–379 (2004)
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