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Abstract Recent developments in the isotopic labeling of het-
eroarenes may prove to be useful in the realms of biomedical science,
materials chemistry, and fundamental organic chemistry. The use of the
age-old Zincke reaction, or tactical variants thereof, has become partic-
ularly utilitarian in effecting single-atom nitrogen replacement in vari-
ous azines to generate their desired isotopologues. This chemistry can
be synthetically leveraged at an early stage for diversity-oriented het-
erocyclic labeling of pharmaceuticals and/or natural products. Addi-
tionally, given the prevalence of saturated azacycles in biologically rele-
vant molecules, access to these isotopologues becomes relevant
through dearomative retrosynthetic analysis from the corresponding
15N-labeled heteroarenes.
1 Introduction
2 Our Lab’s Development of the 15NRORC Reaction
3 Other Recent Azine-Labeling Methods
4 Expanded ANRORC Utilization
5 Conclusion and Outlook
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1 Introduction

Heterocyclic chemistry has had a lasting impact on the
fields of medicinal chemistry, materials science, and or-
ganometallic chemistry, amongst many others. Recently,
subfields such as metabolomics and magnetic resonance
imaging (MRI) have demanded more precise isotopic label-
ing as a means of characterizing the behavior of heterocy-
clic carbogens.1,2 However, prior to recently, access to valu-
able isotopically labeled 15N-heterocycles have remained
rare and have limited advances in these translational sub-
fields.3 This Synpact article describes our lab’s and others’
utilization of the Zincke reaction to effect the isotopic label-
ing of azines. Furthermore, these advances are contextual-

ized and summarized within plethora of useful reactions
that expand the palette of heterocyclic functionalizations
and transmutations that have greatly expanded practi-
tioners’ ability to easily synthesize and modify useful azine
chemotypes.

In 1904 at the University of Marburg, Prof. Theodor
Zincke disclosed a seminal discovery regarding an ‘aniline
replacement’ in pyridinium salts (Scheme 1A).4 Following
activation of pyridine with 1-chloro-2,5-dinitrobenzene via
nucleophilic aromatic substitution, Zincke discovered a pe-
culiar behavior of these salts (1) upon treatment with 2
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equivalents of aniline. A ring opening of the pyridinium by
initial dearomative addition of aniline then promoted fur-
ther fragmentation of the ring followed by further displace-
ment of 2,4-dinitroaniline with aniline to generate iminium
3 as an intermediate. When the reaction was conducted at
100 °C, extrusion of one aniline equivalent was observed
concomitant with the rearomatization of 3 to give N-phen-
ylpyridinium chloride (4). This ‘aniline replacement’ was
one of the first reactions of its kind, characterizing what
was later to be known as an ANRORC-type (addition of nuc-
leophile ring opening ring closing) reaction mechanism in
the canon of heterocyclic chemical transforms.5 Over 100
years after its discovery, the Zincke reaction has even
earned an honored role in complex molecule total synthe-
sis. Perhaps in some of the best examples from this centu-
ry,6 the Vanderwal group leverage a ring-opening reaction
of 1 with tryptamine 5 to generate dienal 6 after basic
imine hydrolysis (Scheme 1B). This intermediate was then
treated with KOt-Bu at elevated temperature to promote a
[4+2] cycloaddition and prototropic rearrangement to-
wards enal 7.7,8 This sequence comprised a facile entryway
to the core of various monoterpenoid indole alkaloids, such
as strychnine (8)9 and more recently isolated natural prod-
ucts like alsmaphorazine B (9)10 and alstonlarsine A (10).11

From a strategic standpoint, the Zincke salt (1) contained all
necessary oxidation to enable a nearly isohypsic synthesis
of these indole alkaloid core structures.12 Given the sus-
tained relevance of Zincke-type aziniums to mainstay het-
erocyclic motifs, many chemists continued inquiring as to

how these malleable intermediates might be manipulated
in several adventitious and/or practical synthetic avenues.

Recently, several research groups have leveraged
Zincke-type reactivity for the strategic functionalization of
pyridines or conversion to alternative heterocyclic motifs
(Scheme 2). For example, McNally and co-workers demon-
strated a selective C3-halogenation of pyridines 11 through
activation and ring opening to Zincke imines such as 12.13

While the parent pyridines are electron-poor and relatively
intractable for electrophilic halogenation reactions, the ‘un-
raveled’ dienamine variant serves as a nucleophilic surro-
gate with a much higher HOMO. In practice, treatment of 12
with NIS followed by ring closure with NH4OAc afforded the
iodinated pyridine 13 in 68% overall yield. This procedure
that involves the activation of azines with triflic anhydride
and strategic ring opening with dibenzyl amine to afford
imine 12 laid the groundwork for other groups to leverage
its adventitious reactivity. For example, one year later, the
same intermediate 12 was demonstrated to undergo regio-
divergent arylation by Greaney and co-workers.14 Treat-
ment of 12 with aryl iodoniums 14 promoted substitution
at the nucleophilic C5-position to give products like 15. In
contrast, Heck-type arylation with 12 gave C4-arylated
products 16 following rearomatization with NH4OAc fol-
lowing with McNally’s reported protocol. Through a similar
activation mode, Sarpong and co-workers utilized pyrimi-
dine 17 as precursor to its ‘dehomologated’ pyrazole coun-
terpart 20 in 2022.15 Following activation of 17 with triflic
anhydride and addition of hydrazine, this resulted in the
formation of ring-opened intermediate 18. Subsequent con-
densation of the hydrazine’s terminal N promoted displace-
ment of amidine 19 generating 20 in excellent yield (90%).
This formal ring contraction uniquely demonstrated how
the pyrimidine could be dearomatized and thus manipulat-
ed as if it were a 1,3-dicarbonyl synthon typically employed

Scheme 1  (A) The original Zincke reaction demonstrating nitrogen re-
placement. (B) Examples of Zincke salts leveraged in complex molecule 
synthesis by Vanderwal.
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Scheme 2  Zincke chemistry has had a resurgence in recent years, 
lending itself to novel heterocyclic functionalization and transmutation.

Recent advances in Zincke-inspired reactions
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in classical pyrazole synthesis. Following these contribu-
tions, amongst others, it seemed a renaissance of Zincke-
type chemistry was already afoot.

2 Our Lab’s Development of the 15NRORC 
Reaction

The inspiration for our lab’s utilization of the Zincke re-
action for azine 15N labeling originated in ongoing efforts to
elucidate marine alkaloid biosynthetic pathways. With the
aim of generating isotopically labeled substrates for biosyn-
thetic feeding studies, we hypothesized that the 15N-labeled
pyridines 22 might be suitable for identification of down-
stream metabolites by mass spectrometry and NMR. From a
design standpoint, we thought that ‘surgically’ excising the
nitrogen of the azine 21 through an ANRORC-type mecha-
nism would enable this formal addition of one neutron to
the heterocycle (Scheme 3A).16 This would require the in-
corporation of an appropriately functionalized 15N-labeled
amine to generate an intermediate such as 23 that would be

poised for a subsequent selective ring closure to deliver 22.
If successful, this synthetic process would also open ave-
nues in magnetic resonance imaging (MRI) through a pro-
cess called SABRE-SHEATH, in which labeled azines 22 can
be spin-polarized at the 15N center to afford MRI-active
azines 24.2,17 Until this work, synthetic access to various la-
beled azines had been limited, stunting the breadth of this
potentially useful technique. At the outset of our work,
however, we anticipated that the reaction design was going
to be crucial to its success. The main two factors that had to
be considered in our lab’s approach were (1) the nature of
the activating agent used in the formation of a putative
Zincke imine, and (2) the source of 15N to be used in the re-
placement of the azine nitrogen.

Per the aforementioned precedent, azine activation us-
ing Tf2O was first investigated (Scheme 3B).13 Upon treat-
ment of isoquinoline (25) with Tf2O, azinium 28 was easily
generated and subject to attack by benzylamine. The de-
sired pathway (path b) would putatively result in a ring-
opened intermediate 29 and subsequent condensation to
deliver the desired azinium 26. Although some of this prod-
uct was generated, the competing mechanistic pathway
(path a) was just as prevalent resulting in the synthesis of
triflimide 27 in a nearly equal quantity. As the intention
was to use a labeled benzylamine or variant thereof, activa-
tion with Tf2O was not seen as a viable agent in our hands
for attaining high degrees of isotopically labeled azines
through this ‘surgical’ N exchange. Notably, while we were
not successful in engineering a Tf2O-based activation proto-
col, other concurrent contributors in this area including
McNally, Sarpong, and Audisio were able to utilize this acti-
vation method to successfully implement the same desired
15N azine labeling (vide infra).

Subsequently, we opted for the more traditional dini-
troarene activation and utilized isoquinoline as our test
substrate for the desired atomic exchange (see tosylate 30,
Scheme 3C). Additionally, with an interest in facilitating
fragmentation of the benzyl group attached to the labeled
amino unit, three methoxy groups were introduced such
that this group would spontaneously ionize in the reaction
to directly afford the labeled azine (see 31). Several condi-
tions were surveyed including parameters inclusive of sol-
vent, temperature, time, and equivalency of Et3N under mi-
crowave irradiation. It was initially found that Et3N was es-
sential to obtaining reasonable yields of 32 (entry 1) in
addition to the utilization of either n-BuOH or DCE as a sol-
vent (entries 2–6). A constant temperature of 125 °C proved
imperative for cleavage of the TMB moiety, and 1.5 equiva-
lents of 31 were crucial for the reaction to proceed to com-
pletion after 23 min (entry 7). Although a higher yield was
obtained with n-BuOH as solvent (entry 5), purification is-
sues with this solvent as a contaminant allowed for DCE to
emerge as the preferred medium of the reaction. In the end,
32 was cleanly obtained in 75% yield and with 95% isotopic
incorporation as determined by HRMS. Furthermore, re-

Scheme 3  (A) Inspiration and strategic considerations in design of 
transformation. (B) Initial observation with Tf2O activation. (C) Optimi-
zation of desired labeling reaction. a Yield determined by 1H NMR spec-
troscopy with internal standard. b Isolated yield. c Percentage of 15N 
incorporation.
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placement of 31 with 15NH4Cl as the 15N source under these
conditions resulted in poor yield (22%) and 15N incorpora-
tion (56%).

Scheme 4  (A) Scope of azine-labeling protocol; (B) dearoamative syn-
thesis of the 15N-labeled API solifenacin

The scope of the 15NRORC reaction was evaluated under
these optimized reaction conditions (Scheme 4A).16 Activa-
tion of various azines 21 with tosylate 33 resulted in the
formation of intermediate Zincke salts in a yield range of
33% to 92% depending upon the substrate. Treatment of
these salts with amine 31 under the optimized conditions
resulted in the generation of a selection of labeled products
22, to which a small selection is shown in Scheme 4A. Vari-
ous functionalities were tolerated as substituents including
an alcohol (22a), an ester (22b), a halogen (22c), a boronic
ester (22d), and an acetal (22d). Bicyclic substrates were
also successful (22f, 32) in addition to natural products like
nicotine (22g) and toddisoquinoline (22h). Importantly,
these latter examples demonstrated the ability for later-
stage 15N azine labeling which would likely be applicable to
the application of this method to various APIs with azine
moieties. To demonstrate the method’s further utility, we
employed a dearomative synthesis of 15N-solifenacin (35)
starting from the labeled isoquinoline (32). Activation of 32
with ethyl chloroformate followed by addition of phenyl-
magnesium bromide afforded an intermediate dihydroiso-
quinoline (Scheme 4B). Reduction of this dihydroisoquino-
line with TFA in the presence of Et3SiH afforded intermedi-
ate 34 in 36% yield over 2 steps. This compound has a
known conversion into 35 through direct displacement of

the ethoxy group of the carbamate.18 Beyond the synthesis
of labeled compounds such as 35, it is anticipated that this
chemistry will be useful in understanding the isoforms of
variously formulated APIs through 15N NMR applications,
which is work currently ongoing in our group.

3 Other Recent Azine-Labeling Methods

Several other research groups investigated the 15N-la-
beling of azines concurrently with our efforts (Scheme 5).
Based on their initial work in pyridine halogenation, Mc-
Nally and co-workers were able to 15N label various pyri-
dines through their Tf2O-based Zincke reactivity platform.
Under this method, the same activation of pyridine starting
materials 36 was operable to afford their corresponding
ring-opened intermediates 37. Following isolation of 37
from the starting pyridine, exposure of this intermediate to
15NH4Cl resulted in the formation of the labeled product 38.
This two-step procedure has a broad scope of pyridines that
could undergo labeling including monocyclic substrates
such as 38a, 38b, and 38d that were labeled with 92%, >99%,
and >99% 15N-isotopic incorporations, respectively. Notably,
each of these examples are pyridines with electron-with-
drawing substituents and/or C2 substitution (38a,d). Fur-
thermore, pyridine rings could be selectively labeled in
fused substrates (38g) with high yield and isotopic incorpo-
ration in addition to selective pyridine labeling in sub-
strates with multiple heteroaromatic moieties (38e). Lastly,
one of the best advantages to this method is its ability to
enable late-stage functionalization of drug molecules. To
this end, the synthesis of 15N-loratidine was accomplished
in 35% yield and >99% 15N incorporation over the two steps,
and 15N-vismodegib was also generated in 28% yield and
with 98% isotopic incorporation. Also concurrent with Mc-
Nally’s work, Sarpong and co-workers were able to activate
substituted pyrimidines 39 with Tf2O and perform a nitro-
gen displacement with 15N-dimethylaspartic acid in the
presence of 2-bromopyridine to form the intermediate py-
rimidinium 40.19 This intermediate underwent mild elimi-
nation with DBU to afford the labeled product 41. While the
15N incorporation for this process was much more modest
(Scheme 5B), the broad labeling of pyrimidines was an add-
ed benefit to the scope of azines that could undergo this
atomic ‘swap’. Thus, pyrimidines such as 41a and 41b were
synthesized with 92% and 21% 15N incorporation, respec-
tively. In applying this protocol to various pyridines, once
again triflate activation enabled the successful incorpora-
tion of the 15N nucleus into an azaindole (41d), a fused tri-
cycle pyridine (41c), and two tricyclic bypridines (41e and
41f). Notably, the more sterically hindered of these two
substrates (41e) had reduced 15N incorporation at 16% com-
pared with 77% for the latter. Lastly, the Audisio20 group re-
ported a nearly identical protocol to McNally at the same
point in time. While much of the scope is quite similar to
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that of the McNally group one additional entry of note was
their incorporation of a 13N radioactive label into a parent
azine (Scheme 5C). In the event, 4-phenylpyridine (42) was
converted into imine 43 in analogous fashion to McNally
followed by treatment with aqueous 13NH3 (generated via
cyclotron) at elevated temperature to produce 44 with a
78% radiochemical yield (RCY) after 6 min of reaction.

Scheme 5  Recently described azine-labeling methods from (A) McNal-
ly, (B) Sarpong, and (C) Audisio reported concurrent with the 15NRORC 
protocol.

All four of these concurrent azine-labeling methods
have important complimentary advantages in their respec-
tive scopes. With the 15NRORC protocol, the two-step pro-
cedure tolerates functionality like alcohols and dialkyl am-
ides that may not be amenable to azine activation with tri-
flic anhydride. That being said, there are limitations to the

activation of azines with arenes associated with the elec-
tronic structure and substitution patterns of the azine in-
puts. Products such as 38a–g would be inaccessible do to
their inability to be activated under classical Zincke condi-
tions due to their electron-poor nature and/or substitution
at the 2-position. This scope issue is greatly addressed by
the triflate activation and ring-opening popularized by Mc-
Nally and co-workers. The labeling efforts of Sarpong im-
portantly addressed the isotopic labeling of pyrimidines in
addition to pyridines, a useful expansion of the heterocyclic
breadth of this tactic. However, as compared with the other
methods, not forcing an azine ring opening with an amine
like Bn2NH diminished the degree of isotopic incorporation
through this tactic. Sarpong, however, was able to partially
circumvent this issue through separation of aziniums of
structure 40 followed by subsequent elimination. When
separated, azinium 40 could be converted into 41 with 15N
incorporations improving by an average of 45%. With regard
to 15N sourcing, the utilization of 15NH4Cl ($74.30/g, Cam-
bridge Isotope Laboratories) by McNally and Audisio has a
cost advantage of the designer 15N surrogate used in the
15NRORC reaction (31) and the use of the 15N-dimethylas-
partate by Sarpong ($558/g for amino acid, Cambridge Iso-
tope Laboratories). 

4 Expanded ANRORC Utilization

Even recently, work from several groups has expanded
upon Zincke-inspired ANRORC chemistry for the trans-
mutation of various aromatic moieties (Scheme 6). For ex-
ample, earlier this year, Sorenson and co-workers were able
to generate arenes 47 from their corresponding pyridinium
N-oxides 45 through nucleophilic dearomatization of a
lithiated sulfoxide anion to generate a ring-opened inter-
mediate such as 46.21,22 Subseqent condensation of the sulf-
oxide -center and extrusion of all the heteroatomic moi-
eties led to a net N to C replacement. Greaney has reported
a similar transformation, but through employment of the
azine activation with Tf2O.23 Following a similar ANRORC
pathway, conversion of 48 to intermediate 49 following
dearomatization with diethylmalonate proceeds smoothly
to then allow for a decarboxylative rearomatization to forge
benzoate 50 in good yield. McNally has recently utilized py-
rimidines 51 as 1,3-dicarbonyl synthons to transmutate
these heterocycles into several other congeners.23 A selec-
tion of the several transformations from this report are
shown in Scheme 6. Following activation of 51 and ANRORC
substitution with aniline to generate pyrimidinium 52, ring
opening with piperidine and condensation with amidine 53
generated pyrimidine 54 in 75% yield (one-pot protocol).
The pyrimidinium 52 could also be formally intercepted
with hydrazine to synthesize pyrazole 55 and undergo sub-
stitution with hydroxylamine to generate oxazole 56 in 40%
yield.

A.15N-Labeling from McNally and co-workers

B. 15N-Labeling from Sarpong and co-workers
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Scheme 6  Recently described chemistry from Sorenson, Greaney, and 
McNally on ANRORC-based arene transmutation.

5 Conclusion and Outlook

While Zincke set the stage for the power of ANRORC
chemistry in the canon of organic synthesis, we have seen
its recent renaissance in the 21st century lay the ground-
work for impactful scientific discovery. From total synthesis
to heterocyclic transmutation to isotopic labeling, the sur-
gical precision that these transformations offer certainly
benefit the toolbox of the academician in addition to the
practitioners of translational molecular discovery. It is of
little doubt that Zincke’s legacy will continue to earn a con-
siderable role in the future of synthetic heterocyclic chem-
istry. Indeed, it has enabled access to molecular motifs that,
at least in the context of 15N-labeled azines, have remained
largely elusive, or intractable until recently.
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