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Abstract We introduce a definition of the fractional Laplacian (��)s(·) with
spatially variable order s : ⌦ ! [0, 1] and study the solvability of the associated
Poisson problem on a bounded domain ⌦. The initial motivation arises from
the extension results of Ca↵arelli and Silvestre, and Stinga and Torrea; however
the analytical tools and approaches developed here are new. For instance, in
some cases we allow the variable order s(·) to attain the values 0 and 1 leading
to a framework on weighted Sobolev spaces with non-Muckenhoupt weights.
Initially, and under minimal assumptions, the operator (��)s(·) is identified
as the Lagrange multiplier corresponding to an optimization problem; and its
domain is determined as a quotient space of weighted Sobolev spaces. The
well-posedness of the associated Poisson problem is then obtained for data in
the dual of this quotient space. Subsequently, two trace regularity results are
established, allowing to partially characterize functions in the aforementioned
quotient space whenever a Poincaré type inequality is available. Precise exam-
ples are provided where such inequality holds, and in this case the domain of
the operator (��)s(·) is identified with a subset of a weighted Sobolev space
with spatially variant smoothness s(·). The latter further allows to prove the
well-posedness of the Poisson problem assuming functional regularity of the
data.
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1 Introduction

The goal of this work is twofold: (i) introduce the spectral fractional Laplacian
(��)s(·) associated with a homogeneous Dirichlet condition on a bounded
domain ⌦ ⇢ R

N , N � 1, in the case the fractional order s(·) is spatially
variable and possibly attains the values 0 and 1; (ii) study the well-posedness
of the equation

(��)s(·)v = h in ⌦,

v = 0 on @⌦,
(1.1)

for some classes of data h, and where v = 0 is understood in an appropriate
sense.

Motivated by the extension approach in R
N by Ca↵arelli and Silvestre

[7], or in bounded domains by Stinga and Torrea [23], we define (��)s(·) to
be the Lagrange multiplier associated to a suitable variational problem. This
particular problem is defined in an extended domain and concerns measurable
functions s(·) with range contained in the interval [0, 1]. For a general class of
functions s(·), the domain of (��)s(·) can be identified with a quotient space
X (⌦, w) involving weighted Sobolev spaces,

X (⌦, w) := L
1,2
0,L(C, w)/L

1,2
0 (C, w), (1.2)

where C = ⌦ ⇥ (0,+1) is the open semi-infinite cylinder (the extended do-
main) with base ⌦, and w is a specific weight function. Roughly speaking,
the spaces L

1,2
0,L(C, w) and L

1,2
0 (C, w) are composed of functions that vanish

on the lateral boundary of C, and on the whole boundary (including the base
⌦), respectively. Equation (1.1) is then solvable for every h in the dual space
of X (⌦, w). For a smaller class of possible s(·), the domain can be identified
as a subset of a weighted Lebesgue space L

2(⌦, w̃) for some function w̃, and
the equation (1.1) is solvable when the right hand side is in L

2(⌦, w̃). For an
even smaller class of functions s(·), this result is further improved since the
domain of (��)s(·) is identified with a subset of a new weighted Sobolev space
of functions with spatially variable smoothness related to s(·). Other variable
exponent (weighted) Sobolev-type spaces were introduced in, for example, [22,
17,5,26].

The main application that has motivated this work, in addition to the nat-
ural theoretical interest, is the recent paper [2]. There, initial results on an
extension approach in Hilbert spaces on an open cylinder with base ⌦ are
given. However, the authors stopped short of defining (��)s(·) due to the lack
of a proper functional framework. The current paper aims to fill this gap. It
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is worth mentioning that none of the existing results in the literature are ap-
plicable to our case and new PDE and variational analysis tools are needed
to study the current situation. For example, the extension approaches in [7,
23] assume s 2 (0, 1) to be a constant and avoid the extreme cases of 0 and
1. In this setting, the nonlocal problem (��)sv = h in ⌦, where (��)s is
the s-power of the realization of �� in L

2(⌦) with zero Dirichlet boundary
conditions, can be equivalently formulated as a local one on a Sobolev space
with a Muckenhoupt weight. On the other hand, our s(·) is a function which
is allowed to touch the extreme cases 0 and 1 and therefore, the associated
weights do not fulfill the Muckenhoupt property [2, Proposition 1]. In partic-
ular, fundamental results of type “H = W” or Poincaré inequalities are not
known in our case, leading to a more complex functional analytic framework.

Possible definitions of (��)s(·) with non-constant s have been proposed in
the recent years from di↵erent approaches. From the stochastic processes liter-
ature, (��)s(·) was defined in the unbounded case ⌦ = R

N ; see the monograph
[3] and the references therein. By means of the Lévy-Khintchine representa-
tion formula, and the Fourier transform, the operator is determined to be of
Lévy type. However, strong additional assumptions on s(·) are required to
show that the operator is associated to a Feller or a Markov process. To name
a few, these include assuming that s(·) is Lipschitz continuous and satisfies
"  s(·)  1 � " for some " 2 (0, 1); see [3, Example 3.5.9] (see also [4]). An
alternative definition of (��)s(·) in R

N was recently proposed in [10] for radial
functions s(·) 2 C

1(RN ) taking values in the open interval (0, N/2). Regarding
the definition of (��)s(·) in bounded domains ⌦, the literature is restrictive
to the Riesz fractional Laplacian approach [16]; see e.g. [17,28]. In the present
work, we assume no regularity on the order s(·) and allow it to take values in
the closed interval [0, 1].

The paper is further motivated by several applications. The extension ap-
proach with spatially varying s(·) has shown remarkable potential in image
denoising: A rough choice of s(·) performs better than an optimally selected
regularization parameter in total variation approaches; see [2]. This is indeed a
game changer, especially the variable s(·) approach can enable one to replace
the nonlinear Euler-Lagrange equations in case of total variation by a linear
one in the case of the variable fractional. The variable s(·) approach can be
also applied in geophysics: Models governed by a fractional Helmholtz equa-
tion (with constant fractional order) have shown good qualitative agreement
with available magnetoteluric data, see [27]. Given the spatially long-range cor-
related heterogeneity of the medium, nonlocal models with spatially varying
fractional order s(·) appear as an atractive tool to further obtain quantitative
agreement.

Outline. The notation and main assumptions we make, specially those for
the variable exponent s(·), are specified in Section 2. In Section 3 we provide
a succinct idea of the approach that we follow to study the fractional Lapla-
cian with spatially variable order, (��)s(·), which is motivated by well-known
results for the usual spectral fractional Laplacian.
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Our main results begin in Section 4 where we introduce a definition of
(��)s(·) on the quotient space X (⌦, w). Also in this section, we prove the
existence and uniqueness of a solution v 2 X (⌦, w) to the associated Poisson
problem (1.1) for every h in the dual space of X (⌦, h). It is worth mentioning
that the results in Section 4 require minimal conditions on the function s(·),
the weight w, and the domain ⌦. The results given in Section 4, however, do
not provide conditions for solvability of the Poisson problem when the right
hand side of the elliptic equation is a (regular) real valued function defined
only on ⌦.

In a second approach, we are able to better identify the domain of (��)s(·)

as a quotient space also, now on a Sobolev space H
1,2
0,L (C, w) that consist of

functions in W
1,2(C, w) that formally vanish on the lateral boundary of C. Dif-

ferently from the construction given in Section 4, this second approach requires
some extra conditions on both, s(·) and ⌦. These conditions are intimately
related with the existence of ⌦-trace results for functions in H

1,2
0,L (C, w), as

well as with the existence of a Poincaré inequality in H
1,2
0,L (C, w); thus, we

postpone the second construction until Section 7.
In Section 5, we first study the ⌦-traces of functions in H

1,p
0,L (C, w), for

2  p < 1. In particular, we are able to characterize s(·)-dependent integra-
bility and di↵erential regularity of restrictions of functions in H

1,p
0,L (C, w) to

⌦. Subsequently, we are able to prove the existence of a Poincaré inequality
for H

1,p
0,L (C, w) in Section 6, for a special class of non-constant s(·) functions.

Our results finish in Section 7, where the details on the second definition of
(��)s(·) are given. Here, we identify the domain of (��)s(·) with a subset of
a weighted Lebesgue space L2(⌦, w̃) for some weight w̃, provided s(·) vanishes
only on a set of zero measure and a Poincaré inequality holds for functions
in H

1,2
0,L (C, w). Further, we improve this result for the case when ⌦ is the N -

dimensional unit square and s(·) satisfies some extra conditions. In this latter
case we identify the domain of (��)s(·) with a subset of a Sobolev space of
functions with variable smoothness on ⌦. The paper closes with Section 8 that
includes, in addition to conclusions, a number of open questions and future
research directions.

More general elliptic operators of the form

(�divAr)s(·)v = h,

with spatially variable fractional order s(·), can be defined by extending the
ideas in this paper in a natural way.

2 Notation and main assumptions

We assume that ⌦ ⇢ R
N , N � 1, is a non-empty bounded open set with a

Lipschitz boundary @⌦ (except in Section 4, where no condition is imposed
on the ⌦ boundary). We denote by C the open semi-infinite cylinder with base
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⌦, by @LC the lateral boundary of C, and by C⌦ the cylinder C with the base
⌦, that is,

C = ⌦ ⇥ (0,1), @LC = @⌦ ⇥ [0,1), C⌦ = C [ (⌦ ⇥ {0}).

A generic point X in R
N+1 is denoted by (x, y), where x 2 R

N and y 2 R.
A function ⇢ is said to be a weight if ⇢ is positive and finite almost every-

where. For an open set U , and a weight ⇢, we denote by L
p(U, ⇢) the space of

measurable functions u : U ! R such that

kukLp(U,⇢) :=

✓Z

U

|u(x)|p⇢(x) dx
◆1/p

< +1.

The space L
p(U, ⇢) endowed with the norm k · kLp(U,⇢) is a Banach space.

Further, given p 2 [2,+1) we say that a weight ⇢ satisfies the Bp condition,
and write ⇢ 2 Bp, if ⇢�1/p�1 is locally integrable, that is,

⇢ 2 Bp , ⇢
�1/(p�1) 2 L

1
loc(U).

For a weight ⇢ 2 Bp, we define the weighted Sobolev space W
1,p(U, ⇢) as the

subset of Lp(U, ⇢) of functions u with weak gradients ru such that |ru| 2
L
p(U, ⇢). Endowed with the norm

kukW 1,p(U,⇢) :=

✓Z

U

|u(x)|p⇢(x) dx+

Z

U

|ru(x)|p⇢(x) dx
◆1/p

< +1,

W
1,p(U, ⇢) is a Banach space; see [15]. Notice that Bp is a larger class of

weights than the Muckenhoupt weights Ap. The latter is also used to define
weighted Sobolev spaces; see [25]. Throughout the paper we assume p 2 [2,1)
and denote the (Hölder) conjugate exponent of p by p

0.
The measurable function s(·) : ⌦ ! R, which will characterize the spatially

variable order of the fractional Laplacian, is assumed to satisfy:

(H1) s(x) 2 [0, 1] for almost all x 2 ⌦.

We use the notation s(·) to emphasize the dependence of the function s : ⌦ !
R on the spatial variable x 2 ⌦, and use s to denote a constant in the interval
(0, 1).

Throughout the paper we consider the function w : C ! R defined by

w(x, y) = Gs(x)y
1�2s(x)

,

and such that for a given s(·), and p, the function Gs : ⌦ ! R satisfies that

(H2) Gs 2 Bp, and if s(·) = s 2 (0, 1) constant, then

Gs(x) =
22s�1

� (s)

� (1� s)
,

for all x 2 ⌦. Here � is the standard Euler-Gamma function.
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Assumptions (H1) and (H2) imply that w 2 Bp. However, it is known that (in
general) w is not expected to be of Muckenhoupt type, see [2, Proposition 1].

Given ⌧ > 0, we denote by C⌧ the truncated cylinder C of height ⌧ , that is,

C⌧ = ⌦ ⇥ (0, ⌧),

and define the sets @LC⌧ and C⌧

⌦
accordingly. The restriction of the weight w

to C⌧ is also denoted by w.

Example 1 A possible choice for the function s(·) is given by

s(x) = �min(dist(x,B), "),

where 0 < " < 1, B ⇢ ⌦ is a closed subset with zero-measure of R
N ,

dist(x,B) := inf{|x � y| : y 2 B} and � 2 (0, 1). This type of functions
are useful in image processing where the set B is the approximated set of
edges/discontinuities of a certain image that one tries to recover; see [2].

The two examples for Gs that are of relevance to us are defined by

G(1)
s

(x) = 22s�1 � (s)

� (1� s)
and G(2)

s
(x) = 22s(x)�1 � (s(x))

� (1� s(x))
, (2.1)

where s =
1

|⌦|

Z

⌦

s(x)dx. It follows that (H2) is satisfied given that � 2 (0, 1).

3 The extended domain approach

This section is devoted to review briefly the well-known extension domain
approach to define the spectral fractional Laplacian, see for instance [7,23,11].
Throughout this section, we assume that s 2 (0, 1) is constant.

We denote by {�n} the sequence of eigenvalues of the Laplace operator
with homogeneous Dirichlet boundary conditions, and consider an orthonor-
mal basis {'n} of L2(⌦) of associated eigenfunctions. The spectral fractional
Laplacian is defined by

(��)sv =
1X

n=1

�
s

n
bn'n where bn =

Z

⌦

v'n dx, (3.1)

on the space

H =

(
v =

1X

n=1

bn'n 2 L
2(⌦) : kvk2

H
=

1X

n=1

�
s

n
b
2
n
< 1

)
.

For extensions of (3.1) to non-homogeneous boundary conditions, we refer to
[1]. It is worth mentioning that H = H

s

0(⌦) if s 2
�
0, 1

2

�
or s 2

�
1
2 , 1
�
and

H = H
s

00(⌦) for s = 1
2 . Here, Hs

0(⌦) is the closure in H
s(⌦) of the space of

infinitely continuous di↵erentiable functions with compact support in ⌦, and
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H
s

00(⌦) is the Lions-Magenes space [24]. Moreover, Hs(⌦) is the fractional
Sobolev space of order s,

H
s(⌦) =

⇢
v 2 L

2(⌦) :

Z

⌦

Z

⌦

|v(x)� v(y)|2

|x� y|N+2s
dx dy < 1

�
,

and it is endowed with the norm

kvkHs(⌦) =

✓Z

⌦

|v|2 dx+

Z

⌦

Z

⌦

|v(x)� v(y)|2

|x� y|N+2s
dx dy

◆1/2

.

The extension approach introduced by Ca↵arelli and Silvestre [8], see [23,
9] for the case of bounded domains, establishes that if h 2 H

0 (dual space of
H) then the unique solution to the elliptic equation

(��)sv = h in ⌦,

v = 0 on @⌦,

is given by v = tr⌦ u, where u 2 H
1
0,L(C, y1�2s) satisfies

hh, tr⌦ iH0,H =
22s�1

� (s)

� (1� s)

Z

C
y
1�2sru·r dX, 8 2 H

1
0,L(C, y1�2s),

(3.2)
see [9, Lemma 2.2]. Here, h·, ·iH0,H denotes the dual pairing between H

0 and
H. Moreover, tr⌦ is the ⌦-trace operator for functions in the space

H
1
0,L(C, y1�2s) =

�
u 2 H

1(C, y1�2s) : u = 0 on @LC in the trace sense
 
.

More precisely,

tr⌦ : H1
0,L(C, y1�2s) ! H

s

0(⌦),

is the unique bounded linear operator that satisfies tr⌦u = u( · , 0) for every
u 2 C

1(C̄) that vanishes on @LC; which is also onto over H, that is

tr⌦H
1
0,L(C, w) = H, (3.3)

see [9, Proposition 2.1].
Additionally, since the minimization problem

minimize
1

2

Z

C
y
1�2s |ru|2 dX over H

1
0,L(C, y1�2s),

subject to tr⌦u = v,

(3.4)

admits a unique solution u 2 H
1
0,L(C, y1�2s) for any v 2 tr⌦H1

0,L(C, w), the
harmonic extension operator

S : tr⌦H
1
0,L(C, y1�2s) ! H

1
0,L(C, y1�2s), v 7! S(v) = u,
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where u is the solution to problem (3.4), is well-defined, linear, and bounded.
Then one finds that the spectral fractional Laplacian given by (3.1) satisfies

h(��)sv, tr⌦ iH0,H =
22s�1

� (s)

� (1� s)

Z

C
y
1�2srS(v) ·r dX, (3.5)

for all  2 H
1
0,L(C, y1�2s) and all v 2 H, which provides an equivalent defini-

tion for (��)s. This second approach is our starting point to study the frac-
tional Laplacian with spatially variable order: We identify a space of traces on
which we can define the fractional Laplacian (��)s(·) by a formula analogous
to (3.5).

4 Abstract definition and solution to (��)s(·)v = h

We consider in this section an abstract derivation of the spatially variable
fractional Laplacian (��)s(·). The advantage of this initial approach is that
it requires minimal assumptions, namely (H1) and (H2), which are primarily
su�cient conditions to have w 2 Bp; this leads to an appropriate definition
of the associated weighted Sobolev spaces. Also, it is worth noticing that the
arguments in this section do not require any assumption on the regularity of
the ⌦ boundary @⌦. This path starts with the proper derivation of the trace
space for the weighted Sobolev spaces in study. For this matter, we consider
the space

L
1,2(C, w) = {u : C ! R measurable : ru 2 L

2(C, w)},

and endow it with the semi-norm

kukL1,2(C,w) := krukL2(C,w).

Note that u 7! kukL1,2(C,w) is a norm on the subset of C1 functions in L
1,2(C, w)

that vanish at @C or @LC. Subsequently, we define L
1,2
0,L(C, w) and L

1,2
0 (C, w)

as the completion in L
1,2(C, w) of the infinitely di↵erentiable functions in

L
1,2(C, w) with compact support in C⌦ and C, respectively, that is:

L
1,2
0,L(C, w) := completion of C

1
c
(C⌦) \ L

1,2(C, w) for k · kL1,2(C,w),

L
1,2
0 (C, w) := completion of C

1
c
(C) \ L

1,2(C, w) for k · kL1,2(C,w),

where
C

1
c
(C⌦) = {u 2 C

1(C̄) : supp(u) \ @LC = ;}. (4.1)

The only portion of the boundary where functions in C
1
c
(C⌦) do not neces-

sarily vanish is the ⌦ cap. A few words are in order concerning L
1,2
0,L(C, w)

and L
1,2
0 (C, w). Note that C

1
c
(C⌦) \ L

1,2(C, w) and C
1
c
(C) \ L

1,2(C, w) are
both pre-Hilbert spaces when endowed with the inner product

(u1, u2)L1,2(C,w)
=

Z

C
w ru1 ·ru2 dX.
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Thus, it follows that their completion, L
1,2
0,L(C, w) and L

1,2
0 (C, w), are Hilbert

spaces; in particular for z1, z2 2 L
1,2
0,L(C, w) there exist Cauchy sequences {zn1 }

and {zn2 } in C
1
c
(C⌦) \ L

1,2(C, w) such that

(z1, z2)L 1,2
0,L(C,w) := lim

n!1

Z

C
w rz

n

1 ·rz
n

2 dX.

If there is no risk of confusion, and in order to simplify notation, occasionally
we simply write

(z1, z2)L 1,2
0,L(C,w) =

Z

C
w rz1 ·rz2 dX,

and analogously we treat L
1,2
0 (C, w).

Given that C
1
c
(C) \ L

1,2(C, w) ⇢ C
1
c
(C⌦) \ L

1,2(C, w), then we observe
that L

1,2
0 (C, w) is a closed subspace of L

1,2
0,L(C, w). Thus, we can define an

abstract space of traces on ⌦ of functions in L
1,2
0,L(C, w) as the quotient space

X (⌦, w) := L
1,2
0,L(C, w)/L

1,2
0 (C, w).

We then define
Tr⌦ u := [u],

i.e., the abstract trace on ⌦ of a function u 2 L
1,2
0,L(C, w) is identified with

the equivalence class [u] that contains u. The space X (⌦, w) is then endowed
with the usual norm

kTr⌦ ukX (⌦,w) = k[u]kX (⌦,w) := inf{ku� zk
L

1,2
0,L(C,w)) : z 2 L

1,2
0 (C, w)}.

Note that
Tr⌦ : L

1,2
0,L(C, w) ! X (⌦, w), (4.2)

is a linear and bounded operator, and that X (⌦, w) is a Hilbert space, given
that L

1,2
0,L(C, w) and L

1,2
0 (C, w) are also Hilbert spaces. We denote its in-

ner product as (·, ·)X . Further notice that, by definition, Tr⌦ L
1,2
0,L(C, w) =

X (⌦, w). Unless it is not clear from the context, we denote the class [v] 2
X (⌦, w) simply by v. The following result establishes the existence of the
harmonic extension operator in this setting.

Theorem 1 Let v 2 X (⌦, w) and µ > 0 be given. The minimization problem:

minimize Jµ(u, v) over u 2 L
1,2
0,L(C, w), (Pµ,v)

where

Jµ(u, v) :=
1

2
kuk2

L
1,2
0,L(C,w)

+
µ

2
kTr⌦ u� vk2

X (⌦,w),

admits a unique solution uµ 2 L
1,2
0,L(C, w) that, as µ ! 1, converges strongly

to the unique solution to

minimize J(u) over L
1,2
0,L(C, w),

subject to Tr⌦ u = v,

(Pv)
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where

J(u) :=
1

2
kuk2

L
1,2
0,L(C,w)

.

Proof The existence of a solution {uµ} to (Pµ,v) follows from arguments of the
direct method for calculus of variations: The functional u 7! Jµ(u, v) is non-
negative, coercive, and weakly lower semicontinuous; for the latter part note
that L

1,2
0,L(C, w) 3 w 7! kTr⌦ wkX (⌦,w) is also weakly lower semicontinuous.

Uniqueness follows from the strict convexity of u 7! Jµ(u, v).
Since v 2 X (⌦, w), there exists ũ 2 L

1,2
0,L(C, w) such that v = [ũ] = Tr⌦ ũ.

Thus, given that uµ is a minimizer of Jµ(·, v),

Jµ(uµ, v)  Jµ(ũ, v) = J(ũ), (4.3)

for every µ > 0. Then, by basic theory for penalty functions (see [18, Lemma
1 in Chapter 10]) we have that

lim
µ!1

µ

2
kTr⌦ uµ � vk2

X (⌦,w) = 0. (4.4)

The inequality in (4.3) implies that the sequence {uµ} is bounded in
L

1,2
0,L(C, w), and thus it admits a weakly convergent subsequence, say

uµ0 * u in L
1,2
0,L(C, w). (4.5)

Further, by (4.4) we observe that Tr⌦ u = v. Next we show that J(uµ) ! J(u)
with u being the minimizer to (Pv). By the weak lower semicontinuity of J
and (4.4), we observe:

J(u)  lim
µ0!1

J(uµ0)  lim
µ0!1

J(uµ0) = lim
µ0!1

Jµ0(uµ0 , v)  lim
µ0!1

Jµ0(u, v) = J(u),

that is, we have shown that J(uµ0) ! J(u). The fact that u is a minimizer to
(Pv) follows by selecting an arbitrary ũ such that Tr⌦ ũ = v, then the previous
to last inequality above yield

J(u)  lim
µ0!1

Jµ0(ũ, v) = J(ũ),

i.e., u is a minimizer. Further, by strict convexity, minimizers to (Pv) are
unique, so that the entire sequence {uµ} satisfies

uµ * u in L
1,2
0,L(C, w), (4.6)

and also J(uµ) ! J(u). Using (4.4), this limit is equivalent to

lim
µ!1

kuµkL
1,2
0,L(C,w) = kuk

L
1,2
0,L(C,w),

which together with (4.6) implies that

uµ ! u in L
1,2
0,L(C, w), (4.7)

see [6, Proposition 3.32].
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Theorem 1 ensures the existence of the abstract weighted harmonic exten-
sion operator

S : Tr⌦ L
1,2
0,L(C, w) ! L

1,2
0,L(C, w), v 7! S(v) = u.

where u is the solution to (Pv). In addition, the map S is linear and bounded:
Linearity follows directly from the examination of the first order optimality
conditions. For boundedness, consider (4.3) with u � z instead of ũ, where
u solves (Pv) and z 2 L

1,2
0 (C, w), to obtain Jµ(uµ, v)  J(u � z). Then, by

taking the limit as µ ! 1 we observe

kS(v)k
L

1,2
0,L(C,w) = kuk

L
1,2
0,L(C,w)  ku� zk

L
1,2
0,L(C,w).

Then, by considering the infimum over all z 2 L
1,2
0 (C, w), we obtain

kS(v)k
L

1,2
0,L(C,w)  kvkX (⌦,w).

The well-posedness of the map S allows us to establish a definition for the
fractional Laplacian with spatially variable order.

Definition 1 Let X (⌦, w)0 be the dual space of X (⌦, w). The operator

(��)s(·) : X (⌦, w) ! X (⌦, w)0

is described as follows: for v 2 X (⌦, w), then we define (��)s(·)v 2 X (⌦, w)0

in the following sense

h(��)s(·)v,Tr⌦  iX 0,X = (S(v), )
L

1,2
0,L(C,w), 8 2 L

1,2
0,L(C, w).

(4.8)

Remark 1 The relation of the above definition with the classical spectral frac-
tional Laplacian (3.5) is straightforward: In light of the abuse of notation
disclosed at the beginning of the section, we can write

h(��)s(·)v,Tr⌦  iX 0,X =

Z

C
wrS(v) ·r dX, 8 2 L

1,2
0,L(C, w).

Furthermore, by a formal integration-by-parts formula and using the fact that
S(v) is weighted harmonic, we obtain that (��)s(·) is equal to the generalized
Neumann trace of S(v) when restricted to⌦⇥{0}. Then, as for the cassical case
with constant order s, (��)s(·) can be understood as a Dirichlet-to-Neumann
map.

Remark 2 In view of Theorem 1, the expression in (4.8) is equivalent to

h(��)s(·)v,Tr⌦  iX 0,X = lim
µ!1

µ(Tr⌦ uµ�v,Tr⌦  )X , 8 2 L
1,2
0,L(C, w),

where uµ is the unique solution to (Pµ,v).
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The operator (��)s(·) : X (⌦, w) ! X (⌦, w)0 is well-defined as we see
next, and it can be seen as the Lagrange multiplier associated to the harmonic
extension problem.

Proposition 1 For each v 2 X (⌦, w), there exists a unique � = �(v) 2
X (⌦, w)0 such that

h�,Tr⌦  iX 0,X = (S(v), )
L

1,2
0,L(C,w), 8 2 L

1,2
0,L(C, w).

Proof Initially, note that S(v) is the solution to (Pv). For convenience, we
write the constraint in (Pv) as G(u) = 0, where G : L

1,2
0,L(C, w) ! X (⌦, w) is

defined by G(u) = Tr⌦ u � v. Since the operator Tr⌦ is linear and bounded,
G is also, and hence G

0(u)h = Tr⌦ h. Thus, G0(u) : L
1,2
0,L(C, w) ! X (⌦, w)

is linear, bounded, and surjective. Therefore, there exists a unique Lagrange
multiplier � 2 X (⌦, w)0 such that

J
0(S(v)) = � �G0(S(v)) , 8 2 L

1,2
0,L(C, w),

which proves the statement.

Remark 3 It follows that (��)s(·) : X (⌦, w) ! X (⌦, w)0 is a bounded linear
operator given that S is linear and bounded.

We are now able to determine existence of solutions to the Poisson problem
with spatially variant Laplacian.

Theorem 2 Let h 2 X (⌦, w)0 be given. The equation

(��)s(·)v = h, (4.9)

admits a unique solution in X (⌦, w) that is given by v = Tr⌦ u
⇤, where u

⇤

solves

minimize J (u) over L
1,2
0,L(C, w), (4.10)

and J is defined as

J (u) :=
1

2
kuk2

L
1,2
0,L(C,w)

� hh,Tr⌦ uiX 0,X .

Proof Since Tr⌦ is linear and bounded, we have that

u 7! hh,Tr⌦ uiX 0,X

is a linear functional over L
1,2
0,L(C, w). Then, there exists a solution to the

problem (4.10) and the solution is unique due to strict convexity of J .
Note that via necessary and su�cient conditions of optimality for (4.10),

the unique solution u
⇤ satisfies:

(u⇤
, )

L
1,2
0,L(C,w) = hh,Tr⌦  iX 0,X , 8 2 L

1,2
0,L(C, w), (4.11)
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and then u
⇤ is identical to its harmonic extension, i.e., u⇤ = S(Tr⌦ u

⇤). To see
the latter, we consider  2 C

1
c
(C) \L

1,2
0,L(C, w) in (4.11) and observe that by

density
(u⇤

, )
L

1,2
0,L(C,w) = 0, 8 2 L

1,2
0 (C, w), (4.12)

where we have used the fact that the functions in C
1
c
(C) vanish on ⌦ ⇥ {0}.

Moreover, we also (trivially) have Tr⌦ S(Tr⌦ u
⇤) = Tr⌦ u

⇤ so that u⇤ satisfies
first order optimality conditions for (Pv) for v = Tr⌦ u

⇤. Hence, by convexity
(uniqueness) u⇤ = S(Tr⌦ u

⇤). Also, by definition of the operator (��)s(·) and
(4.11), we have

h(��)s(·)Tr⌦ u
⇤
,Tr⌦  iX 0,X = (S(Tr⌦ u

⇤), )
L

1,2
0 (C,w) = hh,Tr⌦  iX 0,X ,

(4.13)
for all  2 L

1,2
0,L(C, w) and hence Tr⌦ u

⇤ solves (4.9).
To prove uniqueness of the solution, consider a solution v to (4.9) with

h = 0 and notice that

(S(v), )
L

1,2
0 (C,w) = 0, 8 2 L

1,2
0,L(C, w).

Then, S(v) satisfies first order optimality conditions for

minimize
1

2
kuk2

L
1,2
0 (C,w)

over L
1,2
0,L(C, w),

whose unique minimizer is the zero function. Then, by convexity, S(v) = 0, so
that v = Tr⌦ S(v) and hence v = 0.

Remark 4 (Truncated cylinder C⌧ ) It is worth mentioning that exactly the
same construction with C replaced by the truncated cylinder C⌧ , ⌧ > 0, leads
to a definition of (��)s(·) by means of an extension problem on C⌧ , as well as to
the existence and uniqueness of solution to the associated Poisson problem. We
care about C⌧ because it makes the problem tractable from an implementation
point of view [2,20].

A few words are in order concerning Theorem 2; although it provides a
solvability result for the elliptic problem, it does not establish existence of
solutions based on maps defined on ⌦. That is, we would like to address the
question: Under what conditions on h : ⌦ ! R, does the equation (��)s(·)v =
h admit a solution? This question is answered in Section 7 and it is intimately
related to the following trace results.

5 Trace theorems

In this section we identify a trace operator that properly relates values of maps
on a Sobolev space in C to their values at ⌦. For this matter, in addition to
(H1) and (H2), we assume that the measurable function s(·) satisfies:
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(H3) The set of points on which s(·) is zero has measure zero, i.e., |A0| = 0
where

A0 := {x 2 ⌦ : s(x) = 0}.

We define H
1,p
0,L (C, w) to be the closure in W

1,p(C, w) of the infinitely dif-

ferentiable functions in W
1,p(C, w) with compact support in C⌦ , that is,

H
1,p
0,L (C, w) = C1

c
(C⌦) \W 1,p(C, w)

W
1,p(C,w)

,

where C
1
c
(C⌦) is given in (4.1). Then, formally speaking, H

1,p
0,L (C, w) is the

set of functions in W
1,p(C, w) that vanish on @LC. We now prove the regularity

of restrictions of functions in H
1,p
0,L (C, w) on the ⌦ boundary.

Theorem 3 (Trace theorem) Provided that (H1), (H2), and (H3) hold
true, there exists a unique bounded linear operator

tr⌦ : H
1,p
0,L (C, w) ! L

p(⌦, w̃),

that satisfies tr⌦u = u( · , 0) for all u 2 H
1,p
0,L (C, w)\C1

c
(C⌦), where the weight

w̃ : ⌦ ! R is defined as

w̃(x) = Gs(x)(p� 2 + 2s(x))p.

The same statement is true if we replace H
1,p
0,L (C, w) by the space H

1,p
0,L (C⌧

, w),
for every ⌧ > 0.

Proof For the sake of brevity, we define �(·) := 1� 2s(·) so that

w̃(x) = Gs(x)(p� 1� �(x))p.

Let u 2 H
1,p
0,L (C, w) \ C

1
c
(C⌦) and (x, y) 2 C̄ be such that s(x) 6= 0 and

Gs(x) 6= 0. Initially, we write

u(x, 0) = u(x, y)�
Z 1

0
yDN+1u(x, ty) dt, (5.1)

where DN+1u is the partial derivative of u with respect to the (N + 1) coor-
dinate.

Let � 2 (0, 1). Multiplying (5.1) by w(x, y)1/p and then integrating from 0
to � with respect to y, we find

|u(x, 0)|
Z

�

0
w(x, y)1/pdy  I1 + I2,

where

I1 :=

Z
�

0
|u(x, y)|w(x, y)1/p dy,
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I2 :=

Z 1

0

Z
�

0
y|DN+1u(x, ty)|w(x, y)1/p dy dt.

Notice that
R
�

0 w(x, y)1/pdy = Gs(x)
R
�

0 y
�(x)/pdy and that

Z
�

0
y
�(x)/pdy �

Z
�

0
y
1/p dy =

p

1 + p
�

1+p
p > 0,

since � 2 (0, 1) and �(x)  1. Thus,

|u(x, 0)|Gs(x)
1/p  p+ 1

p�(1+p)/p
(I1 + I2).

Multiplying the last expression by (p� 1� �(x)), we obtain

|u(x, 0)|w̃(x)1/p  p+ 1

p�(1+p)/p
(p� 1� �(x))(I1 + I2). (5.2)

Next, we shall estimate I1 and I2. A direct use of the Hölder’s inequality
yields

I1  �
1/p0

✓Z
�

0
|u(x, y)|pw(x, y) dy

◆1/p

.

We now estimate I2 in several steps. With the change of variables y = zt
�1 in

the inner integral of I2, we obtain

I2 �

Z 1

0

Z
t�

0
|DN+1u(x, z)|w(x, z)1/pt�1��(x)/p dz dt. (5.3)

By adding and substracting (1+ �(x))/pp0 in the exponent of t, we rewrite the
r.h.s. of (5.3) as

�

Z 1

0
t
� 1+�(x)

pp0

Z
t�

0
F (x, z) t

1�pp0+(1�p0)�(x)
pp0 dz dt,

where F (x, z) = |DN+1u(x, z)|w(x, z)1/p. Then, by the Hölder’s inequality, we
observe that

I2 �

✓Z 1

0
t
� 1+�(x)

p dt

◆1/p0  Z 1

0

✓Z
�t

0
F (x, z) t

1�pp0+(1�p0)�(x)
pp0 dz

◆p

dt

!1/p

=�

✓
p

p� 1� �(x)

◆1/p0  Z 1

0

✓Z
�t

0
F (x, z) t

1�pp0+(1�p0)�(x)
pp0 dz

◆p

dt

!1/p

.
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Applying the Hölder’s inequality again but now on the integral with respect
to z, we obtain

I2 �
✓

p

p� 1� �(x)

◆1/p0 ✓Z 1

0
(�t)p/p

0
Z

�t

0
F (x, z)p t

1�pp0+(1�p0)�(x)
p0 dz dt

◆1/p

�

✓
p

p� 1� �(x)

◆1/p0 ✓Z 1

0
(�t)p/p

0
Z

�

0
F (x, z)p t

1�pp0+(1�p0)�(x)
p0 dz dt

◆1/p

=�
1+p/p

0
✓

p

p� 1� �(x)

◆1/p0 ✓Z 1

0
t
� 1+�(x)

p dt

◆1/p✓Z �

0
F (x, z)p dz

◆1/p

.

Finally, the above implies

I2  p�
1+p/p

0

p� 1� �(x)

✓Z
�

0
|DN+1u(x, z)|pw(x, z) dz

◆1/p

.

Using the above estimations for I1 and I2 in (5.2), and observing that
p� 1� �(x)  p, it follows that

|u(x, 0)|w̃(x)1/p  (p+ 1)��2/p

✓Z
�

0
|u(x, y)|pw(x, y) dy

◆1/p

+(p+ 1)�p�1�1/p

✓Z
�

0
|DN+1u(x, z)|pw(x, z) dz

◆1/p

,

from which we obtain

|u(x, 0)|w̃(x)1/p  (p+1)��2/p0
✓Z

�

0
(|u(x, y)|p + |DN+1u(x, y)|p)w(x, y) dy

◆1/p

,

(5.4)
since �p�1�1/p  �

�2/p.
Taking the p power to the inequality (5.4) and then integrating over ⌦

leads to
Z

⌦

|u(x, 0)|pw̃(x) dx  (p+ 1)p��2p/p0
⇣
kukp

Lp(C,w) + krukp
Lp(C,w)

⌘
.

Therefore, u( · , 0) 2 L
p(⌦, w̃) and

ku( · , 0)kLp(⌦,w̃)  C(p,�)kukW 1,p(C,w),

where C(p,�) = (p+1)��2/p0
. Notice that � is an arbitrary, but fixed, number

in (0, 1), so that in this case we can fix C(p,�) to depend only on p. The
operator tr⌦ is the unique bounded linear extension of the mapping u(x, y) 7!
u(x, 0) to H

1,p
0,L (C, w).

Let us finally see that the same trace result holds true when we replace
H

1,p
0,L (C, w) by H

1,p
0,L (C⌧

, w
⌧ ), where ⌧ > 0. If ⌧ � 1, it follows from (5.4) that

|u(x, 0)|w̃(x)1/p  (p+1)��2/p0
✓Z

⌧

0
(|u(x, y)|p + |DN+1u(x, y)|p)w(x, y) dy

◆1/p

,
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from which, exactly as before, we find

ku( · , 0)kLp(⌦,w̃)  C(p,�)kukW 1,p(C⌧ ,w⌧ ). (5.5)

If, on the contrary, 0 < ⌧ < 1, then we select � = ⌧ in (5.4) and obtain (5.5)
in the same way. The trace operator is now obtained as before.

Remark 5 If s(·) = s 2 (0, 1) is constant, then both w̃ and Gs are also con-
stants. Hence, Lp(⌦, w̃) = L

p(⌦) and H
1,p
0,L (C, w) = H

1,p
0,L (C, y1�2s), so it

follows from Theorem 3 that

tr⌦ : H
1,p
0,L (C, y1�2s) ! L

p(⌦).

This is in accordance to the classical case, see [19, Theorem 3.2]. If, addition-
ally, p = 2, then we observe that tr⌦ and the trace operator given in [9] (see
also Section 3) coincide for functions in C

1
c
(C⌦). From this, we find that tr⌦

is just given by the restriction to H
1,2
0,L (C, y1�2s) ⇢ H

1
0,L(C, y1�2s) of the map

in [9]. However, a deeper result is true; see Theorem 8.

In Theorem 3, we have characterized the integrability of functions in the
trace space of H

1,p
0,L (C, w). We aim now to identify the “smoothness” of func-

tions in this trace space. This is a more complicated task since we would like
to determine a space with a spatially variable smoothness associated to the
function s(·).

For simplicity, from now on we assume that ⌦ is the N -dimensional unit
square QN = (0, 1)N . The forthcoming analysis requires one final assumption
on the functions s(·) and Gs:

(H4) For almost every x 2 QN , z 2 (0, 1), and i = 1, . . . , N , it holds true that

Z 1

0

⇣
Gs(x)|xi � z|1�2s(x)

⌘1�p
0

dxi < 1,

where x = (x1, . . . , xn).

Assumption (H4) enables us to use a Hardy-type inequality (see Lemma 2
below) for two specially chosen weights, which is a key ingredient to prove the
subsequent improvement of the trace result in Theorem 5.

Example 2 Let ⌦ = Q1, p = 2, and Gs = G(1)
s constant; see (2.1) in Example

1. Suppose that s(·) satisfies:

s(x) � m|x� x0|q if |x� x0|  R, s(x) > µ > 0 if |x� x0| > R,

(5.6)
for some q,R 2 (0, 1), m,µ > 0, and x0 2 (R, 1 � R). Notice that the only
point where s is allowed to be zero is x0. For this particular setting, although
w /2 Ap(C), i.e., w is not a Muckenhoupt weight (see [2]), we find that (H4)

holds true as we see next.
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To simplify the notation below, we write �(·) := 1 � 2s(·). Since �(x)(1 �
p
0) = ��(x) > �1 for all x 6= x0, we have:

Z 1

0
|x� z|��(x) dz =

x
2s(x) + (1� x)2s(x)

2s(x)
, 8x 6= x0.

Then,
Z 1

0

✓Z 1

0
|x� z|��(x) dz

◆
dx 

Z 1

0

1

s(x)
dx.

We now observe that, by (5.6), we have:
Z 1

0

1

s(x)
dx =

Z
x0�R

0

dx

s(x)
+

Z
x0+R

x0�R

dx

s(x)
+

Z 1

x0+R

dx

s(x)

 2

µ
(1� 2R) +

1

m

Z
x0+R

x0�R

|x� x0|�q dx < 1.

Hence,
Z 1

0

✓Z 1

0
|x� z|��(x) dz

◆
dx < 1.

Therefore, by Tonelli’s Theorem, we have that (x, z) 7! |x� z|��(x) belongs to
L
1(Q2), which in turn implies that

Z 1

0
|x� z|��(x) dx < 1,

for almost all z 2 (0, 1), by Fubini’s Theorem.
Minor changes in the above arguments yield the same conclusion for func-

tions s with a finite number of zeros and a local behavior as (5.6) around each
of them.

Next, in Definition 2 we present a Sobolev space of functions where smooth-
ness is spatially dependent and related to s(·). First, we introduce the required
notation.

For i = 1, . . . , N , let 'i, i : QN+1 ! R be given by

'i(x, ⌧) =�i(x, ⌧)
1�p

0

 Z max{xi,⌧}

min{xi,⌧}
�i(x

i

t0 , ⌧)
1�p

0
dt0
!�p

,

 i(x, ⌧) =�i(x, ⌧)
1�p

0

 Z max{xi,⌧}

min{xi,⌧}
�i(x, ⌧

0)1�p
0
d⌧ 0
!�p

,

where
�i(x, ⌧) = Gs(x)|xi � ⌧ |1�2s(x)

,

and the notation x
i

a
for a 2 (0, 1) means that the ith-coordinate of x =

(x1, . . . , xN ) 2 QN is replaced by a, that is:

x
i

a
= (x1, . . . , xi�1, a, xi+1, . . . , xN ).
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Definition 2 The space W
s(·),p(QN , w̃, w1, . . . , wN ) is defined by

W
s(·),p(QN , w̃, w1, . . . , wN ) = {v 2 L

p(QN , w̃) : Ai(v) < 1 for all i = 1, . . . , N} ,
(5.7)

with the norm

kvkWs(·),p(QN ,w̃,w1,...,wN ) =

 
kvkp

Lp(QN ,w̃) +
NX

i=1

Ai(v)

!1/p

, (5.8)

where

Ai(v)=

Z 1

0
. . .

Z 1

0| {z }
(N�1)-fold

✓Z 1

0

Z 1

0
wi(x

i

t
, ⌧)|v(xi

t
)� v(xi

⌧
)|p d⌧ dt

◆
dx1 . . . dxi�1 dxi+1 . . . dxN ,

and
wi = min{'i, i} for i = 1, . . . , N.

In order to address that s(·) controls locally the di↵erential regularity of
elements in W

s(·),p(QN , w̃, w1, . . . , wN ), consider the following. For s 2 (0, 1),
let W s,p(QN ) be the fractional Sobolev space of order s, that is,

W
s,p(QN ) =

⇢
v 2 L

2(QN ) :

Z

QN

Z

QN

|v(x)� v(y)|p

|x� y|N+ps
dx dy < 1

�
,

equipped with the norm

kvkW s,p(QN ) =

✓
kvkp

Lp(QN ) +

Z

QN

Z

QN

|v(x)� v(y)|p

|x� y|N+ps
dx dy

◆1/p

.

If p = 2, we have H
s(QN ) = W

s,2(QN ). Then, note the following lemma that
can be found in [19] (see also [14]).

Lemma 1 Let �1 < " < p� 1. There exists a positive constant c such that

kvkp
W

1� 1+"
p

,p
(QN )

 c

 
kvkp

Lp(QN ) +
NX

i=1

Ai(v)

!
,

for every v 2 L
p(QN ) that satisfies Ai(v) < 1 for all i = 1, . . . , N , where

Ai(v) :=

Z 1

0
. . .

Z 1

0| {z }
(N�1)-fold

✓Z 1

0

Z 1

0

|v(xi

t
)� v(xi

⌧
)|p

|t� ⌧ |p�"
d⌧ dt

◆
dx1 . . . dxi�1 dxi+1 . . . dxN .

We now can show the relation between W
s(·),p(QN , w̃, w1, . . . , wN ) and the

classical Sobolev spaces.

Theorem 4 If s(·) = s 2 (0, 1) constant, then

W
s(·),p(QN , w̃, w1, . . . , wN ) ,! W

1� 2(1�s)
p ,p(QN ).
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Proof Let � := 1� 2s and consider t, ⌧ 2 (0, 1). Since �(1� p
0) > �1, we have:

Z max{t,⌧}

min{t,⌧}
|t0 � ⌧ |�(1�p

0) dt0 =

Z max{t,⌧}

min{t,⌧}
|t� ⌧

0|�(1�p
0) d⌧ 0 =

|t� ⌧ |1+�(1�p
0)

1 + �(1� p0)
.

Then, a direct calculation yields:

'i(x, ⌧) =  i(x, ⌧) =
Gs(1 + �(1� p

0))p

|xi � ⌧ |p��
,

for all (x, ⌧) 2 QN+1 since Gs is constant by assumption (H2). Therefore,

Ai(v)=C(p, s)

Z 1

0
. . .

Z 1

0| {z }
(N�1)-fold

✓Z 1

0

Z 1

0

|v(xi

t
)� v(xi

⌧
)|p

|t� ⌧ |p��
d⌧ dt

◆
dx1 . . . dxi�1 dxi+1 . . . dxN ,

where C(p, s) = Gs(1 + �(1 � p
0))p. In addition, we notice that L1(QN , w̃) =

L
1(QN ) since w̃ is constant. Now the conclusion follows from Lemma 1 with

" = �.

Remark 6 In light of the previous result, a more appropriate notation for

W
s(·),p(QN , w̃, w1, . . . , wN ) would be W

1� 2(1�s(·))
p ,p(QN , w̃, w1, . . . , wN ). We

avoid this for the sake of brevity.

The following lemma is a key tool for the improvement of the result in
Theorem 3. The proof can be found in [21, Sect. 2.6].

Lemma 2 (Weighted Hardy-type inequality) Let ⇢ be a weight function
defined in the interval (a, b). If

Z
b

a

⇢(t)1�p
0
dt < 1,

then

Z
b

a

⇢̂(t)|f(t)|p dt  CH(p)

Z
b

a

⇢(t)|f 0(t)|p dt, 8x 2 (a, b), (5.9)

for all absolutely continuous functions f in (a, b) that satisfy limt!a+ f(t) = 0,
where

⇢̂(t) = ⇢(t)1�p
0
✓Z

t

a

⇢(⇠)1�p
0
d⇠

◆�p

,

and CH(p) = p
p
/(p� 1)p�1.

Now we are in shape to prove the improvement of Theorem 3.
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Theorem 5 (Improved trace theorem) Provided that (H1) to (H4) hold
true, there exists a unique bounded linear operator

trQN : H
1,p
0,L (C, w) ! W

s(·),p(QN , w̃, w1, . . . , wN ),

that satisfies trQNu = u( · , 0) for all u 2 H
1,p
0,L (C, w) \ C

1
c
(CQN ).

The same statement is true if we replace H
1,p
0,L (C, w) by the space H

1,p
0,L (C⌧

, w),
for every ⌧ � 1.

Proof For the sake of simplicity, we give the proof only for N = 1; with the
natural changes, the proof adapts straightforward to the case N � 2.

Let u 2 H
1,p
0,L (C, w) \ C

1
c
(CQ1). Initially, we write:

A1(u( · , 0)) = I1 + I2, (5.10)

where:

I1 :=

Z 1

0

Z
t

0
w1(t, ⌧)|u(t, 0)� u(⌧, 0)|p d⌧ dt,

I2 :=

Z 1

0

Z 1

t

w1(t, ⌧)|u(t, 0)� u(⌧, 0)|p d⌧ dt,

where w1 = min{'1, 1} as in Definition 2. Next, we shall estimate I1 and I2

separately. For this, we introduce the auxiliary function v : Q2 ! R given by

v(t, ⌧) = u(t,max{t, ⌧}�min{t, ⌧}).

We have:

I1 =

Z 1

0

Z
t

0
w1(t, ⌧)|v(t, t)� v(⌧, ⌧)|p d⌧ dt

=

Z 1

0

Z
t

0
w1(t, ⌧)

����
Z

t

⌧

D1v(t
0
, ⌧) dt0 +

Z
t

⌧

D2v(t, ⌧
0) d⌧ 0

����
p

d⌧ dt

 2p�1

Z 1

0

Z
t

0
w1(t, ⌧)

����
Z

t

⌧

D1v(t
0
, ⌧) dt0

����
p

d⌧ dt

+ 2p�1

Z 1

0

Z
t

0
w1(t, ⌧)

����
Z

t

⌧

D2v(t, ⌧
0) d⌧ 0

����
p

d⌧ dt,

where D1v and D2v denote the partial derivative of v with respect to the first
and second coordinates, respectively.

Interchanging the order of integration in the first term of the right hand
side of the above inequality, and introducing the change of variable ⌧̃ = �⌧ in
the second one, we find:

I1  2p�1

Z 1

0

Z 1

⌧

w1(t, ⌧)|f1(t, ⌧)|p dt d⌧ + 2p�1

Z 1

0

Z 0

�t

w1(t,�⌧̃)|f2(t, ⌧̃)|p d⌧̃ dt,

(5.11)
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where:

f1(t, ⌧) =

Z
t

⌧

D1v(t
0
, ⌧) dt0, and f2(t, ⌧̃) =

Z �⌧̃

t

D2v(t, ⌧
0) d⌧ 0.

The function f1( · , ⌧) is absolutely continuous in (⌧, 1) and it satisfies
limt!⌧+ f1(t, ⌧) = 0 for almost all ⌧ 2 (0, 1). Additionally, by definition we
observe that

'1(t, ⌧) = �1(t, ⌧)
1�p

0
✓Z

t

⌧

�1(t
0
, ⌧)1�p

0
dt0
◆�p

, 8 t � ⌧,

for almost all ⌧ 2 (0, 1). Then, by Lemma 2, we have:

Z 1

⌧

'1(t, ⌧)|f1(t, ⌧)|p dt  CH(p)

Z 1

⌧

�1(t, ⌧) |D1v(t, ⌧)|p dt, (5.12)

for almost all ⌧ 2 (0, 1).
Similarly, the function f2(t, · ) is absolutely continuous in (�t, 0) and sat-

isfies lim⌧̃!�t+ f2(t, ⌧̃) = 0 for almost all t 2 (0, 1). Since

 1(t,�⌧̃) =�1(t,�⌧̃)1�p
0

 Z
⌧̃

�t

�1(t,�⌧̃ 0)1�p
0
d⌧̃ 0
!�p

, 8 ⌧̃ � �t,

for almost all t 2 (0, 1), it follows by Lemma 2 that

Z 0

�t

 1(t,�⌧̃)|f2(t, ⌧̃)|p d⌧̃  CH(p)

Z 0

�t

�1(t,�⌧̃) |D2v(t,�⌧̃)|p d⌧̃ , (5.13)

for almost all t 2 (0, 1).
Then, since w1 = min{'1, 1}, the estimation (5.11) in conjunction with

(5.12) and (5.13) yields:

I1 CH(p) 2p�1

Z 1

0

Z 1

⌧

�1(t, ⌧) |D1v(t, ⌧)|p dt d⌧

+ CH(p) 2p�1

Z 1

0

Z 0

�t

�1(t,�⌧̃) |D2v(t,�⌧̃)|p d⌧̃ dt.

Interchanging the order of integration in the first term of the r.h.s., and making
the change of variable ⌧ = �⌧̃ in the second one, we obtain:

I1 CH(p) 2p�1

Z 1

0

Z
t

0
�1(t, ⌧) ( |D1v(t, ⌧)|p + |D2v(t, ⌧)|p ) d⌧ dt. (5.14)

Since the function v is given by v(t, ⌧) = u(t, t� ⌧) for t > ⌧ , we have:

D1v(t, ⌧) =D1u(t, t� ⌧) +D2u(t, t� ⌧),

D2v(t, ⌧) = �D2u(t, t� ⌧).
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Then,

|D1v(t, ⌧)|p + |D2v(t, ⌧)|p  ( |D1u(t, t� ⌧)|+ |D2u(t, t� ⌧)| )p + |D2u(t, t� ⌧)|p

 (2p�1 + 1) ( |D1u(t, t� ⌧)|p + |D2u(t, t� ⌧)|p )
 2p/2(2p�1 + 1)|ru(t, t� ⌧)|p.

Using this estimation in (5.14) and then making the change of variable y = t�⌧
in the inner integral, we find:

I1 CH(p) 2p�12p/2(2p�1 + 1)

Z 1

0

Z
t

0
�1(t, ⌧)|ru(t, t� ⌧)|p d⌧ dt

=CH(p) 2p�12p/2(2p�1 + 1)

Z 1

0

Z
t

0
�1(t, t� y)|ru(t, y)|p dy dt.

Hence,

I1 CH(p) 2p�12p/2(2p�1 + 1)

Z 1

0

Z 1

0
w(t, y)|ru(t, y)|p dy dt. (5.15)

To estimate I2, we first write:

I2 =

Z 1

0

Z 1

t

w1(t, ⌧)|v(t, t)� v(⌧, ⌧)|p d⌧ dt

=

Z 1

0

Z
⌧

0
w1(t, ⌧)|v(t, t)� v(⌧, ⌧)|p dt d⌧,

and notice that, in general, I2 6= I1 since w1(t, ⌧) 6= w1(⌧, t) for s(·) not
constant. However, similarly as we obtained (5.15), we identify the same bound
for I2:

I2 CH(p) 2p�12p/2(2p�1 + 1)

Z 1

0

Z 1

0
w(t, y)|ru(t, y)|p dy dt. (5.16)

Using (5.15) and (5.16) in (5.10), we obtain:

A1(u( · , 0)) CH(p) 2p 2p/2(2p�1 + 1)krukp
Lp(C,w),

hence,

A1(u( · , 0)) CH(p) 2p 2p/2(2p�1 + 1)kukp
W 1,p(C,w).

In addition, we know by the Theorem 3 that:

ku( · , 0)kp
Lp(Q1,w̃)  (1 + p)p��2p/p0

kukp
W 1,p(C,w),

where � is some arbitrary, but fixed, number in (0, 1).
Therefore, u( · , 0) 2 W

s(·),p(Q1, w̃, w1) and

ku( · , 0)kWs(·),p(Q1,w̃,w1)  C(p,�)kukW 1,p(C,w),
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where C(p,�) = (CH(p) 2p 2p/2(2p�1 + 1) + (1 + p)p��2p/p0
)1/p.

The operator trQ1 is the unique bounded linear extension of the map u 7!
u( · , 0) to H

1,p
0,L (C, w).

The proof when H
1,p
0,L (C, w) is replaced by H

1,p
0,L (C⌧

, w) where ⌧ � 1 is
identical.

Remark 7 (Surjectivity of trace operator) Although the previous result repre-
sents an improvement on the ⌦-trace characterization for functions in
H

1,p
0,L (C, w), nothing can be said about the surjectivity of the trace operator

tr⌦ : H
1,p
0,L (C, w) ! W

s(·),p(QN , w, w1, . . . , wN ),

for s(·) non-constant.

Remark 8 If s(·) = s 2 (0, 1) is constant, then it follows by Theorem 4 that

W
s,2(QN , w̃, w1, . . . , wN ) ,! W

1� 2(1�s)
p ,p(QN ). Hence, the trace result in The-

orem 3 is again in accordance to the classical case, see [19, Theorem 2.8] (see
also Remark 5). Moreover, if p = 2 and s 2 (0, 1/2), we observe that

W
s,2(QN , w̃, w1, . . . , wN ) ,! H, (5.17)

since H
s(QN ) = H

s

0(QN ) = H, so in this case we further partially recover the
trace result in [9, Lemma 2.2] given that H

1,p
0,L (C, y1�2s) ⇢ H

1
0,L(C, y1�2s).

6 Cases where the Poincaré inequality holds

We address now in this section cases and conditions on s(·) not constant that
are su�cient for the Poincaré inequality to hold true. Two results are given,
one in the entire cylinder and one in the truncated cylinder; see Theorem 6
and Theorem 7 respectively. From now on until the end of the section, we

assume that Gs = G(1)
s constant, see (2.1) in Example 1; and s(·) is given by

s(·) =
MX

i=1

si1⌦i(·), (6.1)

where si 2 (0, 1) for i = 1, . . . ,M and {⌦i : i = 1, . . . ,M} is a finite collection

of non-empty open subsets of ⌦ that satisfies
S

M

i=1 ⌦̄i = ⌦̄. In other words, we
assume that s(·) is a step function in ⌦ with range contained in the interval
(0, 1). Our first example is given by the next theorem which basically states
that the Poincaré inequality holds provided that all pieces ⌦i of the partition
of ⌦ touch the boundary @⌦. The proof is quite direct, thanks to the existence
of a Poincaré inequality for functions in C

1(⌦i) that vanish on a subset of
non-zero measure of @⌦i.
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Theorem 6 Assume that Gs = G(1)
s constant and s(·) is given by (6.1). If

|@⌦i \ @⌦| > 0, 8 i = 1, . . . ,M, (6.2)

then there exists a positive constant CP (p,⌦1, . . . ,⌦M ) that satisfies

kukLp(C,w)  CP (p,⌦1, . . . ,⌦M )krukLp(C,w), (6.3)

for all u 2 H
1,p
0,L (C, w).

Proof Let u 2 C
1
c
(C⌦)\W

1,p(C, w) and i 2 {1, . . . ,M}. For every y > 0, the
function u( · , y) belongs to C

1(⌦i) and vanishes on a portion with non-zero
measure of @⌦i, by (6.2). Then, by the Poincaré inequality, we have

Z

⌦i

|u(x, y)|p dx  ci

Z

⌦i

|rxu(x, y)|p dx, (6.4)

where ci is a positive constant that depends only on ⌦i and p, and rxu is
the gradient of u with respect to the first N coordinates. Multiplying (6.4) by
y
1�2si , then integrating for y 2 (0,1), and finally adding up for i = 1, . . . ,M ,

we obtain
Z

C
y
1�2s(x)|u(x, y)|p dX  c

Z

C
y
1�2s(x)|rxu(x, y)|p dX,

where c = c1+ . . .+ cM . Since |rxu|p  |ru|p in C and Gs is constant, we get
Z

C
w(x, y)|u(x, y)|p dX  c

Z

C
w(x, y)|ru(x, y)|p dX,

for all u 2 C
1
c
(C⌦) \W

1,p(C, w). Now (6.3) follows by density.

Next we prove that the truncated domain allows a much more amenable
result than the one in the complete cylinder C. In particular, we prove that
(6.1) is a su�cient condition for the Poincaré inequality to hold; the result is
given in next Theorem 7. The proof requires the following auxiliary lemma,
see [13, Theorem 5.2] for its proof.

Lemma 3 (Classical Hardy inequality) Let " > p � 1 and let f be a
di↵erentiable function almost everywhere in (0,1) that satisfies limt!1 f(t) =
0. If Z 1

0
t
"|f 0(t)|p dt < 1,

then Z 1

0
t
"�p|f(t)|p dt  CH(p, ")

Z 1

0
t
"|f 0(t)|p dt < 1,

where CH(p, ") = p
p
/("� p+ 1)p.

We are now in a position to present the final result in this section.
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Theorem 7 Assume that Gs = G(1)
s constant and s(·) is given by (6.1). For

every ⌧ > 0 there exists a positive constant CP (⌧, p,⌦1, . . . ,⌦M ) that satisfies

kukLp(C⌧ ,w)  CP (⌧, p,⌦1, . . . ,⌦M )krukLp(C⌧ ,w), (6.5)

for all u 2 H
1,p
0,L (C⌧

, w).

Proof Let ⌧ > 0 and u 2 C
1
c
(C⌧

⌦
) \W

1,p(C⌧
, w). Initially, we write:

Z

C⌧

y
1�2s(x)|u(x, y)|p dX =

MX

i=1

Ii, (6.6)

where

Ii :=

Z
⌧

0
y
1�2si

Z

⌦i

|u(x, y)|p dx dy.

We denote by c a positive constant that may depend only on p and the
partition {⌦i : i = 1, . . . ,M}, whose numerical value may be di↵erent from
one line to another.

Let i 2 {1, . . . ,M}. We define

ūi(y) =
1

|⌦i|

Z

⌦i

u(x, y) dx,

and observe that

Ii  c (Ii1 + Ii2), (6.7)

where

Ii1 :=

Z
⌧

0
y
1�2si

Z

⌦i

|u(x, y)� ūi(y)|p dx dy,

Ii2 :=

Z
⌧

0
y
1�2si

Z

⌦i

|ūi(y)|p dx dy = |⌦i|
Z

⌧

0
y
1�2si |ūi(y)|p dy.

For each fixed y 2 (0, ⌧), the function u( · , y) belongs to C
1(⌦i). Thus,

by the Poincaré-Wirtinger’s inequality, we obtain:
Z

⌦i

|u(x, y)� ūi(y)|p dx  c

Z

⌦i

|rxu(x, y)|p dx.

From this, similarly as in the proof of Theorem 6, we find:

Ii1  c

Z
⌧

0

Z

⌦i

y
1�2si |ru(x, y)|p dx dy. (6.8)

Let ūext be the extension by zero of ū to [0,1). Notice that ūext is di↵er-
entiable almost everywhere in (0,1) since u(x, · ) 2 C

1([0, ⌧ ]) for all x 2 ⌦i,
and, trivially, ūext satisfies limy!1 ūext(y) = 0. Also, observe that
Z 1

0
y
1+p�2si |ū0

ext
(y)|p dy =

Z
⌧

0
y
1+p�2si |ū0(y)|p dy  c

Z
⌧

0
y
1+p�2si dy < 1,
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since 1 + p� 2si > �1 and ū
0 is bounded in [0, ⌧ ].

Then, by the classical Hardy inequality in Lemma 3 with " = 1 + p� 2si,
we have:

Ii2 = |⌦i|
Z 1

0
y
"�p|ūext(y)|p dy  c |⌦i|

Z 1

0
y
"|ū0

ext
(y)|p dy. (6.9)

We now observe that:
Z 1

0
y
"|ū0

ext
(y)|p dy =

1

|⌦i|p

Z
⌧

0
y
"

����
Z

⌦i

DN+1u(x, y) dx

����
p

dy

 1

|⌦i|p

Z
⌧

0
y
"

✓Z

⌦i

|ru(x, y)| dx
◆p

dy,

where DN+1u is the partial derivative of u with respect to the (N + 1) coor-
dinate. Then, by the Hölder’s inequality on the inner integral, we have:

Z 1

0
y
"|ū0

ext
(y)|p dy  1

|⌦i|

Z
⌧

0
y
"

Z

⌦i

|ru(x, y)|p dx dy.

With this estimation in (6.9), we find:

Ii2  c ⌧
p

Z
⌧

0

Z

⌦i

y
1�2si |ru(x, y)|p dx dy. (6.10)

Finally, using (6.8) and (6.10) in (6.7), we obtain:

Ii  c ⌧
p

Z
⌧

0

Z

⌦i

y
1�2si |ru(x, y)|p dx dy,

and hence, by (6.6) and since Gs is constant, we have:
Z

C⌧

w(x, y)|u(x, y)|p dX  c ⌧
p

Z

C⌧

w(x, y)|ru(x, y)|p dX,

for all u 2 C
1
c
(C⌧

⌦
) \W

1,p(C⌧
, w). Then we obtain (6.5) by density.

7 Second definition and solution to (��)s(·)v = h

We are now in a position to give a new definition for the operator (��)s(·),
and to solve the associated Poisson problem for right hand sides defined on
⌦. The arguments below are very similar to those developed in Section 4 but
now we assume some extra conditions on the function s(·) and the domain ⌦,
which enable a better characterization of the domain of (��)s(·). We present
the ideas for the semi-infinite cylinder C, but the same arguments are valid for
a truncated one C⌧ .
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From now on, we assume that the functions s(·) and Gs satisfy hypotheses
(H1), (H2), and (H3). Further, we assume that the Poincaré inequality holds
true, that is there exists C > 0 such that

kukL2(C,w)  CkrukL2(C,w), 8u 2 H
1,p
0,L (C, w).

For example, this is satisfied under the assumptions of Theorem 6 (see Theorem
7 for the case of a truncated cylinder). In particular, this implies that

H
1,2
0,L (C, w) = L

1,2
0,L(C, w),

algebraically and topologically. We endow the space H
1,2
0,L (C, w) with the norm

kvk
H

1,p
0,L (C,w) := krvkL2(C,w). Under the hypotheses assumed, we have estab-

lished in Theorem 3 an ⌦-trace operator

tr⌦ : H
1,2
0,L (C, w) ! L

2(⌦, w̃), (7.1)

and proved it is bounded, linear, and such that tr⌦u = u( · , 0) for all u 2
W

1,p(C, w) \ C
1
c
(C⌦). Note that this operator is not, however, surjective.

Subsequently, consider

W
1,2
0 (C, w) := {u 2 H

1,2
0,L (C, w) : tr⌦u = 0},

which is a closed subspace of H
1,2
0,L (C, w). Hence, a space of abstract traces on

⌦ of functions in H
1,2
0,L (C, w) can be defined as the quotient space

Y (⌦, w) := H
1,2
0,L (C, w)/W 1,2

0 (C, w).

Remark 9 Due to the absence of density results of the type “H = W” for
non-Muckenhoupt weights, we are not in a position to assure that the spaces
X (⌦, w) and Y (⌦, w) are actually the same.

Immediately from here, via the isomorphism theorems, we can argue that
there is an isomorphism

' : Y (⌦, w)
⇠�! tr⌦H

1,2
0,L (C, w). (7.2)

Moreover, one can simply consider ' to be given by [u] 7! tr⌦u. However,
in order to identify Y (⌦, w) with a subset of functions defined on ⌦, we
need further information related with the structure of the function space
tr⌦H

1,2
0,L (C, w).

Analogously as in Section 4, we define

TR⌦ : H
1,2
0,L (C, w) ! Y (⌦, w), (7.3)

as TR⌦ u := [u], and observe that TR⌦ is surjective by definition. In this
setting we identify the abstract ⌦-trace of u 2 H

1,2
0,L (C, w) with the equivalence
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class [u] that contains u. The space Y (⌦, w) is then endowed with the usual
quotient norm

kTR⌦ ukY (⌦,w) = k[u]kY (⌦,w) := inf{ku� zk
H

1,2
0,L (C,w)) : z 2 W

1,2
0 (C, w))}.

As before, we have TR⌦ L
1,2
0,L(C, w) = Y (⌦, w). Note that Y (⌦, w) is a

Hilbert space, given that H
1,2
0,L (C, w) and H

1,2
0 (C, w) are also Hilbert spaces.

Identically as in Theorem 1, we argue the existence of the weighted har-
monic extension operator

S : TR⌦ H
1,2
0,L (C, w) ! H

1,2
0,L (C, w), v 7! S(v) = u.

where u is the solution to

minimize J(u) over H
1,2
0,L (C, w),

subject to TR⌦ u = v,

for

J(u) :=
1

2
kuk2

H
1,2
0,L (C,w)

=
1

2

Z

C
w|ru|2 dX.

The well-posedness of the map S allows us to establish a definition for the
fractional Laplacian with spatially variable order.

Definition 3 Let Y (⌦, w)0 be the dual space of Y (⌦, w). The operator

(��)s(·) : Y (⌦, w) ! Y (⌦, w)0,

is determined as follows: for v 2 Y (⌦, w), then (��)s(·)v 2 Y (⌦, w)0 is
defined by

h(��)s(·)v,TR⌦  iY 0,Y =

Z

C
wrS(v) ·r dX,  2 H

1,2
0,L (C, w).

Since Proposition 1 holds true with the usual changes, the operator is then well-
defined and Theorem 2 is also proven mutatis mutandis: For a h 2 Y (⌦, w)0,
the equation

(��)s(·)v = h in ⌦, (7.4)

admits a unique solution v 2 Y (⌦, w) that is given by v = TR⌦ u, where u

solves

minimize J (u) over H
1,2
0,L (C, w), (7.5)

for

J (u) :=
1

2

Z

C
w |ru|2 dX � hh,Tr⌦ uiY 0,Y .

Although this approach seems equivalent to the one in Section 4, in this
setting we have a more detailed representation of the elements Y (⌦, w). In
fact, within this approach, there exists an injection

I : Y (⌦, w) ! L
2(⌦, w̃), u 7! I([u]) = tr⌦u,
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which is linear and bounded. Linearity follows directly, and boundedness fol-
lows given that for arbitrary z 2 W

1,2
0 (C, w),

kI([u])kL2(⌦,w̃) = ktr⌦ukL2(⌦,w̃) = ktr⌦(u� z)kL2(⌦,w̃)  Cku� zk
H

1,2
0,L (C,w),

where we have used the linearity of tr⌦ and that tr⌦z = 0, and then

kI([u])kL2(⌦,w̃)  C inf
y2W

1,2
0 (C,w)

ku� zk
H

1,2
0,L (C,w) = Ck[u]kY (⌦,w).

In order to see that I is an injection, suppose that I([u]) = 0, then tr⌦u = 0 so
that u 2 W

1,2
0 (C, w), and the class W

1,2
0 (C, w) is the zero element of Y (⌦, w).

This identification allows us to consider I to be the identity, and identify the
continuous embedding

Y (⌦, w) ,! L
2(⌦, w̃).

For a schematic relationship between the trace operators tr⌦ , Tr⌦ , the iso-
morphism ' and the embedding I, see Figure 7. An amenable consequence of
this identification is given in Theorem 9, however in first place we address the
reduction to case where s(·) = s 2 (0, 1), a constant, where we obtain that H
is recovered as the domain of (��)s.

H
1,2
0,L (C, w) tr⌦H

1,2
0,L (C, w)

Y (⌦, w)

(
L2(⌦, w̃), if (H1)-(H3)

W
s(·),2(QN , w̃, w1, . . . , wN ), if (H1)-(H4)

TR⌦

tr⌦

'
'

I

T

Fig. 1 Diagram relating the operators tr⌦ ,TR⌦ , the isomorphism ', and the operator I.

Theorem 8 Let s(·) = s 2 (0, 1) be constant and suppose that functions in
H

1,2
0,L (C, w) satisfy a Poincaré inequality, then

tr⌦H
1,2
0,L (C, w) = H,

and therefore,
Y (⌦, w) ' H.

Proof Given that s(·) = s 2 (0, 1) is constant, we have that G is constant,
and hence H

1,2
0,L (C, w) = H

1,2
0,L (C, y1�2s). Additionally, by Remark 5, we have

that tr⌦H
1,2
0,L (C, y1�2s) ⇢ H. Then, there is only left to prove that for each

v 2 H there exists a sequence {un} in C
1
c
(C⌦)\W

1,2(C, y1�2s) convergent in
the sense of W 1,2(C, y1�2s) to a u 2 H

1,2
0,L (C, y1�2s), and such that tr⌦u = v.

We divide the proof into four steps for the sake of clarity.
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Step 1: Let v 2 H be arbitrary. Since H = H
s

0(⌦) for s 2 (0, 1/2) or
s 2 (1/2, 1), and H = H

s

00(⌦) for s = 1/2, it follows that C1
c
(⌦) is dense in

H. Then, there exists a sequence {vk} in C
1
c
(⌦) such that

vk ! v in H,

as k ! 1. We denote v =
P1

n=1 bn'n and vk =
P1

n=1 b
k

n
'n to their spectral

decomposition where b
k

n
! bn as k ! 1. Further, define u, uk : C ! R by

u(x, y) =
1X

n=1

bn'n(x)gn(y) and uk(x, y) =
1X

n=1

b
k

n
'n(x)gn(y),

where each gn satisfies the Bessel equation:

g
00
n
+

1� 2s

y
g
0
n
� �ngn = 0 in (0,+1),

gn(0) = 1,

gn(+1) = 0.

By the construction of the proof in [9, Proposition 2.1], we have that u, un 2
W

1,2(C, y1�2s), and

Z 1

0

Z

⌦

y
1�2s|ru(x, y)�ruk(x, y)|2dxdy = cN,s

1X

k=1

(bn�b
k

n
)2�s

n
= cN,skv�vkk2H ,

and thus
uk ! u in W

1,2(C, y1�2s), (7.6)

as k ! 1. Note that since vk has compact support, the support of uk is
uniformly away from @LC.

Step 2: For ⌧ � 1 and 0 < � < 1, we consider a smooth non-increasing
function ⌘⌧ : R+ ! [0, 1] such that:

⌘⌧ (y) = 1 if 0 < y < ⌧ � �, ⌘⌧ (y) = 0 if y > ⌧,

and notice that the function uk,⌧ (x, y) := ⌘⌧ (y)uk(x, y) belongs toW 1,2(C, y1�2s).
By direct calculation we have that

uk,⌧ ! un in W
1,2(C, y1�2s), (7.7)

as ⌧ ! 1.
Step 3: For 0 < "⌧ 1 and ⌧ 0 > ⌧ + ", we consider the shifted cylinder

C⌧
0

"
:= {(x, y � ") : (x, y) 2 C⌧

0
},

and the weighted space W
1,2(C⌧

0

✏
, ⇢), where

⇢(x, y) =

⇢
y
1�2s if 0 < y < ⌧

0 � ",

(�y)1�2s if �" < y < 0.
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Further, let ûk,⌧ 2 W
1,2(C⌧

0

"
, ⇢) defined by reflection as

ûk,⌧ (x, y) =

⇢
uk,⌧ (x, y) if 0 < y < ⌧

0 � ",

uk,⌧ (x,�y) if �" < y  0,

and note that ⇢ 2 A2(C⌧
0

"
), i.e.,

sup
B⇢C⌧0

"

✓
1

|B|

Z

B

⇢ dX

◆✓
1

|B|

Z

B

⇢
�1 dX

◆
< +1,

for all squares B ⇢ C
⌧
0

"
.

Let Lr be the usual mollifier operator, i.e.,

(Lrf)(x) =
1

rN+1

Z

RN+1

!

✓
x� z

r

◆
f(z) dz,

where ! : RN+1 ! [0,+1) belongs to C
1(RN+1), supp! ⇢ B(0, 1), andR

RN+1 ! = 1. Since ⇢ 2 A2(C⌧
0

"
) and since C⌧

0

"
is bounded and with Lipschitz

boundary, it follows that for f 2 W
1,2(C⌧

0

"
, ⇢),

Lrf ! f in W
1,2(D, y

1�2s),

for any D ⇢⇢ C⌧
0

"
; see [12]. Given that the support of uk,⌧ is uniformly away

from @LC, and that uk,⌧ = 0 if ⌧ < y, it follows that

Lrûk,⌧ ! uk,⌧ in W
1,2(C, y1�2s), (7.8)

as r ! 1. Note in addition, that for su�ciently large r > 0, we have

Lrûk,⌧ 2 C
1
c
(C⌦) ⇢ H

1,2
0,L (C, y1�2s).

Step 4: In view of (7.6), (7.7), and (7.8), by appropriately selecting a se-
quence {(ri, ki, ⌧i)}1i=1, we observe

ũi := Lri ûki,⌧i ! u in W
1,2(C, y1�2s),

as i ! 1, so that u 2 H
1,2
0,L (C, y1�2s). In particular,

tr⌦ũi ! v in L
2(⌦),

and v = tr⌦u; the result is then proven.

Next we can establish the well-posedness of the elliptic equation of interest.

Theorem 9 Assume that (H1), (H2), and (H3) hold true, and functions
in H

1,2
0,L (C, w) satisfy the Poincaré inequality. For every h 2 L

2(⌦, w̃), the
equation

(��)s(·)v = h, (7.9)

admits a unique solution v 2 Y (⌦, w) ⇢ L
2(⌦, w̃).
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Proof The conclusion follows from the existence and uniqueness of solution to
the same problem with right hand side in Y (⌦, w) since we identify L

2(⌦, w̃)0 '
L
2(⌦, w̃), so that L2(⌦, w̃) ⇢ Y (⌦, w) by means of I 0 : L2(⌦, w̃) ! Y (⌦, w)0.

The result above can be refined in terms of regularity if in addition we
observe (H4), and consider ⌦ = QN . In this case, the injection I is given as

I : Y (QN , w) ! W
s(·),2(QN , w̃, w1, . . . , wN ),

leading to our last theorem, whose proof is obtained as for Theorem 9.

Theorem 10 In addition to the hypotheses of Theorem 9, consider ⌦ = QN

and assume that (H4) holds true. Then, for every

h 2 W
s(·),2(QN , w̃, w1, . . . , wN )0,

the equation (7.9) admits a unique solution

v 2 Y (⌦, w) ⇢ W
s,2(QN , w̃, w1, . . . , wN ).

The problem in the truncated cylinder C⌧ is treated identically, and The-
orem 9 and Theorem 10 still hold true under the obvious changes.

8 Conclusions and open questions

This paper continues the program initiated in [2] and provides a rigorous
definition of the variable order fractional Laplacian. The proposed theoretical
framework enables solutions to the Poisson equation on bounded Lipschitz
domains ⌦. The techniques introduced in the paper are new and none of the
existing works applies to our setting. However, the existing setting, where s(·)
is a constant, can be recovered from our proofs as a special case.

The following are open questions and topics for future research:

– The study of ��s(·) as regularizer in optimization problems, i.e.,

min
u

J(u) + �R(u) with R(u) = h(��)s(·)u, uiY 0,Y ,

and the optimal selection of s(·) in a bilevel framework.
– The extension to more general settings of the Poincaré inequality type

result presented in Section 6.
– The surjectivity of the new trace operator is still open (cf. Remark 7).
– We have introduced Sobolev spaces with s(·)-dependent weights for the

extension problem and s(·)-dependent di↵erentiability for the space on ⌦.
New approaches need to be established to prove additional regularity of
solutions to (��)s(·)u = h in these Sobolev spaces.

– Extensions to parabolic, semilinear and obstacle type problems are of in-
terest.
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– The authors in [2] proposed a numerical method for the truncated prob-
lem. But the numerical analysis of this problem is completely open. Also,
convergence of the truncated solution to the full solution is of interest as
well.

– Optimal control problems with variable order PDEs as constraints.
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