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Abstract. In this paper we study set convergence aspects for Banach spaces of vector-valued mea-
sures with divergences (represented by measures or by functions) and applications. We consider a
form of normal trace characterization to establish subspaces of measures that directionally vanish in
parts of the boundary, and present examples constructed with binary trees. Subsequently we study
convex sets with total variation bounds and their convergence properties together with applications
to the stability of optimization problems.
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1. Introduction

The purpose of the paper is severalfold and closely tied with applications. In particular, two
major aspects are considered; initially we focus on (i) The description and study of subspaces of the
space of Borel measures over a subset ⌦ ⇢ RM with (measure and functional) divergences that can
be characterized as directionally vanishing in parts of the boundary @⌦. Secondly, we approach
(ii) The study of set convergence aspects of sets of measures whose total variations are bounded by
non-negative measures and their application to stability of optimization problems.

The need to represent directional boundary conditions on certain classes of Borel measures arises
in the Fenchel dualization of non-dissipative gradient constraints problems; see [3]. The latter class
of problems allows to model the growth of sandpiles and granular material flow in a deterministic
fashion. In this setting, the region where measures should vanish directionally at the boundary
corresponds to the region where material is not allowed to escape the domain.
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Optimization problems over spaces of measures and with total variation constraints are relatively
scarce in the literature. Notable exceptions can be found in [10], where applications to shape
optimization with total variation norm constraints are considered, and in [9], where minimizers
to constant total variation norm problems with convex energies are characterized by means of
suitable PDEs.

Concerning vector fields with generalized divergences, the seminal work and several extensions
were developed by Chen and Frid [11, 12, 13]. The authors establish properties of the functional
spaces, the Gauss-Green theorem in this setting, and the study of trace type results. Their original
motivation is the study of hyperbolic conservation laws. Generalizations of the trace results and
the integration by parts theorems were established by Šilhavý [22] where best possible cases are
determined for the normal trace results.

Although the study of set convergence goes back to Painlevé, see the Painlevé-Kuratowski set
limits in [14], the appropriate concept for the study of perturbations of constrained optimization
problems and variational inequalities in reflexive Banach spaces was developed by Mosco [18, 17].
The main object of study of our work is the following set K(↵; X) defined as

K(↵; X) := {µ 2 X : |µ|  ↵},

where the expression |µ|  ↵ stands for the total variation of µ (see Section 2 for details) dominated
by a non-negative Borel measure ↵, and X is a subspace of the Banach space of Borel measures
endowed with the total variation norm. In particular, we focus on properties of the map ↵ 7!

K(↵; X).
The paper is organized as follows. Initially, we present a formal motivation for the class of

spaces that we will study in Section 1.1. In Section 2 we provide the notation and conventions used
throughout the entire paper, in particular we consider the three di↵erent topologies on the space
of Borel measures that we require in our approach, the strong, narrow, and weak topologies. In
Section 3, we establish the spaces of vector measures with divergences that are either represented
by measures or functions in some Lebesgue spaces, and present a known trace characterization.
Subsequently, in Section 3.1 and Section 3.2 we introduce the subspaces with generalized normal-
traces (understood as the generalization of evaluations at the boundary of normal components to
the boundary) vanishing on subsets of the boundary, and the construction of measures by means
of binary trees. Order properties and equivalent characterizations thereof needed for the definition
of the convex sets of interest are given in Section 4, and the set convergence results are given in
Section 4.1 and Section 4.2.

1.1. Formal motivation. The Prigozhin mathematical model [6, 7, 19, 20] of cohensionless and
granular material growth over a certain flat surface given by ⌦ can be formulated as an evolving
in time gradient constrained problem without dissipative operators. For boundary conditions, one
considers a region of the boundary � where material is not allowed to leave the domain and @⌦ \�
where material is allowed to leave freely. The semi-discretization of the model and the formal
determination of the Fenchel dual problem in each time step leads to trying to identify a Borel
measure µ in the following class of minimization problems:

min
µ

1

2

ˆ
⌦

��div µ(x) � f(x)
��2 dx +

ˆ
⌦
�(x) d|µ|(x)

over the set of Borel measures on ⌦

subject to (s.t.) µ · n~ = 0 on � (in some sense) and |µ|  ↵,

where f 2 L2(⌦), � 2 C(⌦)+; see [3]. As stated before, the expression |µ|  ↵ stands for the total
variation of µ dominated by some measure ↵ that is non-negative. The measure ↵ may arise as a
structural constraint, that is, it may be related to a finite element mesh, and hence determined by a
linear combination of Dirac deltas (element nodes), Lebesgue one -dimensional measures (element
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edges), and functions (element areas). While initially the entire formulation of the problem is
formal, we show in Theorem 5.1 that the problem can be posed rigorously and admits solutions.
In addition, Theorem 5.2 shows that the problem is stable with respect to perturbations of ↵ with
respect to the total variation norm.

2. Notation and Preliminaries

Let ⌦ be an open subset of RM with M 2 N, and B(⌦) be the Borel �-algebra on ⌦. We call
elements of B(⌦) Borel sets. Let M(⌦) and M(⌦)N denote the set of all real-valued and RN -valued
measures with N 2 N, respectively, on B(⌦). An element � 2 B(⌦) is positive if for every B 2 B(⌦),
we have �(B) � 0. We use M+(⌦) to denote the set of all positive measures on B(⌦). The total

variation of a measure µ 2 M(⌦)N is the uniquely defined measure |µ| 2 M+(⌦) that satisfies

|µ|(B) = sup

8
<

:

1X

i=1

|µ(Bi)| : B =
1[

i=1

Bi

9
=

; for all B 2 B(⌦),

see [4]. Recall that M(⌦)N is a Banach space when endowed with the norm

kµkM(⌦)N := |µ|(⌦). (2.1)

Further, by duality of the set of continuous functions with compact support Cc(⌦) and M(⌦) ( see
Section 2.4 in [4]) we observe that

|µ|(⌦) = sup{hµ,�i : � 2 Cc(⌦)N : |�(x)|  1 for all x 2 ⌦}, (2.2)

where the pairing in (2.2) between µ and � is given by

hµ,�i =

ˆ
⌦
� · dµ :=

NX

i=1

ˆ
⌦
�i dµi,

with � = {�i}Ni=1 and µ = {µi}
N

i=1. Note that in the definition of (2.2), one could substitute the
space Cc(⌦) for C0(⌦) without changing the value of the supremum where C0(⌦) is the space of
continuous functions vanishing at the boundary @⌦ and equipped with the usual � 7! supx2⌦ |�(x)|
norm.

If a sequence {µn} in M(⌦)N converges to µ 2 M(⌦)N in norm, that is

kµn � µkM(⌦)N ! 0

as n ! 1, we say that {µn} converges strongly to µ and we denote this by

µn ! µ.

In addition to the topology induced by the norm µ 7! |µ|(⌦), two other topologies on M(⌦)N are
of interest: the narrow and the weak topologies.

Definition 2.1 (Narrow and Weak Convergence in M(⌦)N ). Let {µn} be a sequence of

measures in M(⌦)N with µ 2 M(⌦)N . If for all � 2 Cb(⌦)N , where Cb(⌦) is the set of bounded

continuous functions on ⌦, we observeˆ
⌦
� · dµn !

ˆ
⌦
� · dµ

as n ! 1, we say that {µn} converges narrowly to µ and write

µn

nw
��! µ.

Further, we say that {µn} converges weakly to µ ifˆ
⌦
� · dµn !

ˆ
⌦
� · dµ
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for all � 2 Cc(⌦)N as n ! 1, in which case we write

µn * µ.

Our terminology is the one used in [4]. To avoid confusion, note that our definition of narrow
convergence is called weak convergence by Bogachev [8], and other authors.

3. Spaces of Vector Measures with Divergences

In this section, we consider a subset of vector valued measures in M(⌦)N with ⌦ ⇢ RN that
admit a weak divergence that is defined as a measure in M(⌦) or that can be identified as a function
in Lp(⌦). The reader is referred to work of Chen and Frid [11, 13, 12] and Šilhavý [22] for the
seminal work on vector fields with generalized divergences and extensions. These subspaces are of
particular interest, as they allow for a definition of a normal trace integral at the boundary @⌦ of
⌦; provided @⌦ exists, note that we have only assumed that ⌦ is an open set. Furthermore, the
latter is fundamental in defining measures with zero normal traces. Consider the following initial
definition.

Definition 3.1. We define DM(⌦) as the set of all µ 2 M(⌦)N for which there exists a measure

� 2 M(⌦) such that ˆ
⌦
r� · dµ = �

ˆ
⌦
� d� 8� 2 C1

c (⌦). (3.1)

We define � to be the divergence of µ and denote

div µ := �.

The subset DM(⌦) of M(⌦)N is then a linear space and can be defined as

DM(⌦) := {µ 2 M(⌦)N : div µ 2 M(⌦)}, (3.2)

which is a Banach space when endowed with the norm

kµkDM(⌦) := kµkM(⌦)N + kdiv µkM(⌦).

If µ 2 DM(⌦) and divµ is absolutely continuous with respect to the Lebesgue measure, then we
state µ 2 M1(⌦; div). In general, for 1  p  +1, we define Mp(⌦; div) as the set of all µ 2 M(⌦)N

for which there exists h 2 Lp(⌦) such thatˆ
⌦
r� · dµ = �

ˆ
⌦
�h dx 8� 2 C1

c (⌦), (3.3)

where “dx” denotes integration with respect to the Lebesgue measure and h := div µ. In this
setting, we have

Mp(⌦; div) := {µ 2 M(⌦)N : div µ 2 Lp(⌦)}, (3.4)

which is likewise a Banach space when endowed with the norm

kµkMp(⌦;div) := kµkM(⌦)N + kdiv µkLp(⌦).

Hence we refer to Mp(⌦; div) as the space of vector measures with (weak) divergences in Lp(⌦).
Further, the closed subspace of measures µ 2 Mp(⌦; div) such that divµ is identically zero is denoted
by M(⌦; div 0).

We can relate the previously defined DM(⌦) and Mp(⌦; div) with the classical Sobolev space
H1(⌦; div) defined as

H1(⌦; div) := {v 2 L2(⌦)N : div v 2 L2(⌦)};

that is, a vector field v in L2(⌦)N belongs to H1(⌦; div) if its weak divergence is in L2(⌦). With
the usual identifications, we have H1(⌦; div) ⇢ DM(⌦) and H1(⌦; div) ⇢ Mp(⌦; div) for 1  p  2.
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Due to Chen and Frid [11, 13, 12] and Šilhavý [22], we observe a form of trace characterization
for DM(⌦). We denote by LipB(⇤) the space of Lipschitz maps z : ⇤ ! R for ⇤ ⇢ Rk and endow
it with the norm

kzkLipB(⇤) := Lip(z) + sup
x2⇤

|z(x)|,

where Lip(z) is the Lipschitz constant of z on ⇤. It follows that for each µ 2 DM(⌦) there exists
a linear functional Nµ : LipB(RM ) |

@⌦ ! R such that for all v 2 LipB(RM ) we have

Nµ(v|@⌦) =

ˆ
⌦

dhhrv, µii +

ˆ
⌦

v d div µ, (3.5)

where hhrv, µii is a scalar measure on ⌦ that is absolutely continuous with respect to µ. In the
case that v 2 C1 is bounded and with bounded derivative, dhhrv, µii in (3.5) can be replaced by
rv · dµ. Further,

|Nµ(g)|  kµkDM(⌦)kgkLipB(@⌦),

for all g 2 LipB(@⌦).
Based on the previous, we define N as

N(v, µ) =

ˆ
⌦
rv · dµ +

ˆ
⌦

v d div µ,

for µ 2 DM(⌦) and v 2 C1
b
(⌦), the space of bounded functions in C1(⌦) whose partial derivatives

are all bounded as well. A few words are in order concerning N(v, µ): Note that since µ 2 DM(⌦)
then µ and div µ are Borel measures, and since v 2 C1

b
(⌦) then v and rv are bounded and

continuous over ⌦, so that N(v, µ) is well-defined. In addition, in what follows we also consider

C1
b
(⌦) := C1

b
(⌦) \ C(⌦),

that is, C1
b
(⌦) is the subspace of C1

b
(⌦) of functions that can be extended continuously to ⌦. The

latter is used for the definition of a notion of boundary condition for measures in DM(⌦).
Provided that ⌦ is su�ciently smooth, and µ and v are su�ciently regular functions, we observe

N(v, µ) =

ˆ
@⌦

v µ · n~ dH
N�1,

where n~ is the outer unit normal vector at @⌦. We refer to the map N(·, µ) as the normal trace of µ
on @⌦. More specifically, if we assume that ⌦ has a Lipschitz boundary, then the map w 7! w|@⌦ ·n~
is extended by continuity from C1(⌦) to a map from H1(⌦; div) to H�1/2(@⌦). In the latter case,
N(v, w) = hw · n~ , vi

H�1/2,H1/2 for all w 2 H1(⌦; div) and all v 2 C1(⌦).

3.1. Boundary conditions on DM(⌦) and Mp(⌦; div). The map N allows us to define subspaces
of DM(⌦) and Mp(⌦; div) (defined in (3.2) and (3.4), respectively) of vector measures whose normal
traces vanish (in the sense described by N) on a part � of the boundary @⌦ (if it exists) as we see
in what follows. In this vein, consider the following:

Definition 3.2. Let � ⇢ @⌦ be non-empty, and define

DM�(⌦) = {µ 2 DM(⌦) : N(�, µ) = 0 for all � 2 C1
b
(⌦) such that �|

@⌦\� = 0},

and analogously we define M p

�(⌦; div) for 1  p  +1 as

M p

�(⌦; div) = {µ 2 M p(⌦; div) : N(�, µ) = 0 for all � 2 C1
b
(⌦) such that �|

@⌦\� = 0}.

If � = ;, we define Mp

;(⌦; div) := Mp(⌦; div) and DM;(⌦) := DM(⌦).
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Note that due to a version of Whitney’s extension result (see [15, Theorem 2.29]) there are
always non-trivial � functions in Ck with arbitrary k 2 N and such that they vanish exactly in
the closure of @⌦ \ �. It follows that DM�(⌦) and M p

�(⌦; div) are linear subspaces of DM(⌦)
and Mp(⌦; div), respectively. In addition, if µn ! µ in DM(⌦), that is µn ! µ 2 M(⌦)N and
div µn ! div µ 2 M(⌦), and � 2 C1

b
(⌦), thenˆ

⌦
r� · dµn +

ˆ
⌦
� d div µn !

ˆ
⌦
r� · dµ +

ˆ
⌦
� d div µ,

so DM�(⌦) is closed with respect to the DM(⌦) norm. Analogously, M p

�(⌦; div) is closed in
M p(⌦; div).

The simplest example of a measure µ in M p(⌦; div), and hence also in DM�(⌦), is when µ given
by N -copies of the N -dimensional Hausdor↵ measure H

N . Clearly, µ = (HN , ...,HN ) belongs to
M(⌦)N and for ⌦ su�ciently regular we have by direct integration by parts that

ˆ
⌦
r� · dµ =

ˆ
⌦

NX

n=1

@�

@xi

dx = 0

for every � 2 C1
c (⌦), where “dx” denotes integration with respect to the Lebesgue measure, and

we have used that HN is equivalent to the Lebesgue measure on Borel sets in RN . Hence, div µ = 0
and µ 2 M(⌦; div 0) ⇢ Mp(⌦; div), and if � ⇢ @⌦ is non-empty then it follows that, in general,
µ /2 M p

�(⌦; div).
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<latexit sha1_base64="xBwBuuBzzDIE63br/2LJXtjRYYY=">AAAB9nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPOCvYB7VAyaaaNTTJDkhHL0H9wqwt34tbfEX/GTDsLrR64l8O555KbE8ScaeO6n05haXllda24XtrY3NreKe/utXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxlfZvP1AlWaRvDOTmPoCDyULGcHGSq3ejaBD3C9X3Ko7A/pLvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOi31Ek1jTMZ4SLuWSiyo9tPZtVN0ZJUBCiNlSxo0U39upFhoPRGBdQpsRnpxloknWVM61P+ZuokJL/yUyTgxVJL5i2HCkYlQlgEaMEWJ4RNLMFHMHo3ICCtMjE2qZNPwFv/+l7ROq95ZtXZbq9Qv81yKcACHcAwenEMdrqEBTSBwD0/wDC/Oo/PqvDnvc2vByXf24Recj2/DN5LO</latexit>

⌦
<latexit sha1_base64="1H1W9Bwxbju2btSEEivUpJqfKGg=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkFPVY9OKxgmkLbSib7aZdutmE3Y1SQn+DVz14E6/+HvHPuGlz0NYHMzzevGFnnx9zprRtf1mFtfWNza3idmlnd2//oHx41FZRIgl1ScQj2fWxopwJ6mqmOe3GkuLQ57TjT26zeeeRSsUi8aCnMfVCPBIsYARrI7lVxtj5oFyxa/YcaJU4OalAjtag/N0fRiQJqdCEY6V6jh1rL8VSM8LprNRPFI0xmeAR7RkqcEiVl86PnaEzowxREElTQqO5+nsjxaFS09A3zhDrsVqeZeJF1qQK1H+mXqKDay9lIk40FWTxYpBwpCOURYCGTFKi+dQQTCQzRyMyxhITbYIqmTSc5b+vkna95lzWGveNSvMmz6UIJ3AKVXDgCppwBy1wgQCDZ3iBV+vJerPerY+FtWDlO8fwB9bnD3zkkgs=</latexit>

(iii)
<latexit sha1_base64="OnueVQ3X3fz6cl+jpUV7LcwCbSo=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBEqSJmRoi6LblxWsA9oh5JJM21oJhmSTKEM/QW3unAnbv0f8WfMtLPQ1gP3cjj3XHJzgpgzbVz3y1lb39jc2i7sFHf39g8OS0fHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfJ/N2xOqNJPiyUxj6kd4KFjICDaZVGHsol8qu1V3DrRKvJyUIUejX/ruDSRJIioM4VjrrufGxk+xMoxwOiv2Ek1jTMZ4SLuWChxR7afzW2fo3CoDFEplSxg0V39vpDjSehoF1hlhM9LLs0y8zJrSof7P1E1MeOunTMSJoYIsXgwTjoxEWQJowBQlhk8twUQxezQiI6wwMTanok3DW/77KmldVb3rau2xVq7f5bkU4BTOoAIe3EAdHqABTSAwgmd4gVdn4rw5787Hwrrm5Dsn8AfO5w+zqpGY</latexit>

(ii)
<latexit sha1_base64="we/esencC4vpxp0Slg9T/ragbgk=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBEqSJmRoi6LblxWtA9oh5JJM21oJhmSjFCGfoJbXbgTt36Q+DNm2llo64F7OZx7Lrk5QcyZNq775aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvs3m7SeqNJPi0Uxi6kd4KFjICDZWeqiws36p7FbdGdAy8XJShhyNfum7N5AkiagwhGOtu54bGz/FyjDC6bTYSzSNMRnjIe1aKnBEtZ/OTp2iU6sMUCiVLWHQTP29keJI60kUWGeEzUgvzjLxPGtKh/o/Uzcx4bWfMhEnhgoyfzFMODISZQGgAVOUGD6xBBPF7NGIjLDCxNiYijYNb/Hvy6R1UfUuq7X7Wrl+k+dSgGM4gQp4cAV1uIMGNIHAEJ7hBV6dxHlz3p2PuXXFyXeO4A+czx/q25El</latexit>

(i)

Figure 1. Possible C piecewise smooth curves determined by  : (a, b) ! C and
associated the measure µ =  0

�  �1
H

1 C from Example 1. In (i), the endpoints
 (a), and  (b) are located at the boundary @⌦ of ⌦ so that µ 2 Mp(⌦; div) for every
p, and this also holds true for (ii) where the endpoints are the same point within ⌦.
Finally, in (iii) the endpoints are di↵erent and  (b) is located in ⌦ so that µ as no
divergence represented as a function.

The following example establishes that for some measures determined by piecewise regular curves,
divergences exist and are either zero or the di↵erence of point measures.

Example 1. Let a < b and  : (a, b) ! C ⇢ ⌦ be a continuously di↵erentiable bijection. Suppose

that  0
is never zero and is integrable over (a, b) so that C is a regular rectifiable curve. Assume

that C is parametrized by arc length, so that | 0(t)| = 1 for all t 2 (a, b) and b � a is the length of

the curve C. In addition, we assume that  is extended to [a, b] with  (a) and  (b) on ⌦ so that

the endpoints of C may lie on the boundary @⌦. For B 2 B(⌦), define the set-function

µ(B) =

ˆ
B\C

 0
�  �1 dH1. (3.6)
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Note that µ 2 M(⌦)N and

|µ|(⌦) =

ˆ
C

dH1 = b � a.

For � 2 C1
b
(⌦), by a change of variables of integration:

ˆ
⌦
r� · dµ =

ˆ
C

r� ·  0
�  �1 dH1 =

ˆ
b

a

r�( (t)) ·  0( �1( (t))| 0(t)| dt.

Since | 0(t)| = 1 for all t 2 (a, b), the integrand on the right hand side is
d

dt
�( (t)). Henceˆ

⌦
r� · dµ = �( (b)) � �( (a)). (3.7)

In fact, it is not hard to see that the above holds true for  : (a, b) ! C ⇢ ⌦ continuous, bijective and

piecewise continuously di↵erentiable with | 0(t)| = 1 wherever the derivative exists. The locations

of  (a) and  (b) on ⌦ lead to di↵erent scenarios as we next explore.

Suppose that  (a), (b) 2 @⌦. It follows that (3.7) is identically zero for all � 2 C1
c (⌦). Thus,

divµ = 0 and hence µ belongs to Mp(⌦; div) for all p. Further, divµ = 0 also in the case that

 (a) =  (b) even if the point is not in @⌦. However, if  (a) or  (b) are not in @⌦ and are not

identical, then µ /2 Mp(⌦; div) for each p: for, in general, if  (a), (b) 2 ⌦, then from (3.7) and

the definition of divergence

divµ = � (a) � � (b), (3.8)

that is, the di↵erence of two Dirac deltas at the points  (a), and  (b).
If  (a), (b) 2 @⌦ \ �, then (3.7) vanishes for all � 2 C1

b
(⌦) such that �|

@⌦\� = 0. Hence, in

addition to divµ = 0 (note that  (a), (b) 2 @⌦ so the previous paragraph digression applies), we

have that N(�, µ) = 0 which gives µ 2 M p

�(⌦; div). However, if  (a) 2 @⌦ \ � and  (b) 2 @⌦ but

 (b) /2 @⌦ \ �, it is clear that (3.7) fails to vanish for some �, in which case N(�, µ) 6= 0 so that

µ /2 M p

�(⌦; div): By the same argument given in the paragraph after Definition 3.2 there exists a

smooth function � that only vanishes in @⌦ \ � so that �( (b)) 6= 0; see [15, Theorem 2.29]

The next example extends the previous one, and shows that for a point-wise weighted Hausdor↵
H

1 measure restricted to a piecewise regular curve, the divergence contains in general an H
1-

weighted term in addition to the di↵erence of Dirac deltas as in (3.8).

Example 2. Consider a < b and  : (a, b) ! C ⇢ ⌦ defined as in the previous example. Further,

let h : [a, b] ! R be continuously di↵erentiable and define

µ = (h 0) �  �1
H

1 C.

Hence, if � 2 C1(⌦) then similarly with the previous example we observe that

ˆ
⌦
r� · dµ =

ˆ
b

a

h(t)
d

dt
�( (t)) dt = h(b)�( (b)) � h(a)�( (a)) �

ˆ
b

a

h0(t)�( (t)) dt,

(recall that | 0(t)| = 1) or equivalentlyˆ
⌦
r� · dµ =

ˆ
⌦
(h �  �1)� d� (b) �

ˆ
⌦
(h �  �1)� d� (a) �

ˆ
C

(h0
�  �1)� dH1.

It follows that µ 2 DM(⌦) with

divµ = h �  �1� (a) � h �  �1� (b) + h0
�  �1

H
1 C.

In general, µ does not belong to Mp(⌦; div) for any p, unless h is a constant and  (a) and  (b)
belong to @⌦ or  (a) =  (b) (see the argument used in the previous example).
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<latexit sha1_base64="xBwBuuBzzDIE63br/2LJXtjRYYY=">AAAB9nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPOCvYB7VAyaaaNTTJDkhHL0H9wqwt34tbfEX/GTDsLrR64l8O555KbE8ScaeO6n05haXllda24XtrY3NreKe/utXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxlfZvP1AlWaRvDOTmPoCDyULGcHGSq3ejaBD3C9X3Ko7A/pLvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOi31Ek1jTMZ4SLuWSiyo9tPZtVN0ZJUBCiNlSxo0U39upFhoPRGBdQpsRnpxloknWVM61P+ZuokJL/yUyTgxVJL5i2HCkYlQlgEaMEWJ4RNLMFHMHo3ICCtMjE2qZNPwFv/+l7ROq95ZtXZbq9Qv81yKcACHcAwenEMdrqEBTSBwD0/wDC/Oo/PqvDnvc2vByXf24Recj2/DN5LO</latexit>

⌦
<latexit sha1_base64="xBwBuuBzzDIE63br/2LJXtjRYYY=">AAAB9nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPOCvYB7VAyaaaNTTJDkhHL0H9wqwt34tbfEX/GTDsLrR64l8O555KbE8ScaeO6n05haXllda24XtrY3NreKe/utXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxlfZvP1AlWaRvDOTmPoCDyULGcHGSq3ejaBD3C9X3Ko7A/pLvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOi31Ek1jTMZ4SLuWSiyo9tPZtVN0ZJUBCiNlSxo0U39upFhoPRGBdQpsRnpxloknWVM61P+ZuokJL/yUyTgxVJL5i2HCkYlQlgEaMEWJ4RNLMFHMHo3ICCtMjE2qZNPwFv/+l7ROq95ZtXZbq9Qv81yKcACHcAwenEMdrqEBTSBwD0/wDC/Oo/PqvDnvc2vByXf24Recj2/DN5LO</latexit>

⌦
<latexit sha1_base64="we/esencC4vpxp0Slg9T/ragbgk=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBEqSJmRoi6LblxWtA9oh5JJM21oJhmSjFCGfoJbXbgTt36Q+DNm2llo64F7OZx7Lrk5QcyZNq775aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvs3m7SeqNJPi0Uxi6kd4KFjICDZWeqiws36p7FbdGdAy8XJShhyNfum7N5AkiagwhGOtu54bGz/FyjDC6bTYSzSNMRnjIe1aKnBEtZ/OTp2iU6sMUCiVLWHQTP29keJI60kUWGeEzUgvzjLxPGtKh/o/Uzcx4bWfMhEnhgoyfzFMODISZQGgAVOUGD6xBBPF7NGIjLDCxNiYijYNb/Hvy6R1UfUuq7X7Wrl+k+dSgGM4gQp4cAV1uIMGNIHAEJ7hBV6dxHlz3p2PuXXFyXeO4A+czx/q25El</latexit>

(i)
<latexit sha1_base64="OnueVQ3X3fz6cl+jpUV7LcwCbSo=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBEqSJmRoi6LblxWsA9oh5JJM21oJhmSTKEM/QW3unAnbv0f8WfMtLPQ1gP3cjj3XHJzgpgzbVz3y1lb39jc2i7sFHf39g8OS0fHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfJ/N2xOqNJPiyUxj6kd4KFjICDaZVGHsol8qu1V3DrRKvJyUIUejX/ruDSRJIioM4VjrrufGxk+xMoxwOiv2Ek1jTMZ4SLuWChxR7afzW2fo3CoDFEplSxg0V39vpDjSehoF1hlhM9LLs0y8zJrSof7P1E1MeOunTMSJoYIsXgwTjoxEWQJowBQlhk8twUQxezQiI6wwMTanok3DW/77KmldVb3rau2xVq7f5bkU4BTOoAIe3EAdHqABTSAwgmd4gVdn4rw5787Hwrrm5Dsn8AfO5w+zqpGY</latexit>

(ii)

Figure 2. Examples of supports of measures for Example 2; the width of the curve
corresponds to the magnitude of |h(·)| at each point. In (i), the associated measure
µ possesses a divergence given by the sum of a weighted Dirac delta and a weighted
Hausdor↵ measure H

1 on C. In (ii), the measure associated to the graph possesses
a divergence that is a finite sum of weighted Hausdor↵ measures H

1.

3.2. Divergence zero measures associated with binary trees. We consider in this section
measures induced by binary trees and combinations thereof. This geometrical structure allows one
to define measures with zero divergence as infinite series of weighted-H1 measures.

3.2.1. Trees with base points in ⌦. Let ⌦ ⇢ RN be an open set with N � 2, and where @⌦ is not
empty. Consider the countable collection of non-intersecting open line segments {Li} in ⌦ such
that L0 has an endpoint x0

0 in ⌦, the other endpoint x0
1 is shared as endpoint with only other two

segments and so on so that the collection of segments forms a binary tree L (see Figure 3), i.e.,

L =
1[

i=0

Li.

Further, we assume that
P

i
|Li| < +1, and that the order of the segments is such that L1, and

L2 share an endpoint with L0, then L3 and L4 share an endpoint with L1 and L5 and L6 share
an endpoint point with L2, and so on and so forth. Denote the endpoints of the segment Li as xi

0
and xi

1; the 1 subscript denotes a shared endpoint with two segments Lj and Lk such that i < j, k.
Finally, we assume that all branches approach the boundary, that is dist(Li, @⌦) ! 0 as i ! 1.

Suppose that each Li is parameterized by  i : [0, |Li|] ! ⌦ given by

 i(t) =
|Li|� t

|Li|
xi

0 +
t

|Li|
xi

1

so that each | 0
i
| = 1. Further, consider the sequence of vectors {ei} in RN defined as

ei :=
xi

1 � xi

0

|xi

1 � xi

0|
=  0

i,

that is, ei is the vector of the line that contains Li . Let {hi} be the sequence of real numbers
defined as

hi = 2�k if 2k � 1  i  2k+1
� 2, for k = 0, 1, 2, . . .
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so that the sequence {hi} has one 1/1 entry, two 1/2 entries, four 1/4 entries, eight 1/8 entries and
so on. For k = 0, 1, 2, . . ., define µk : B(⌦) ! RN as

µk =

r(k)�1X

i=0

µi where µi = hieiH
1 Li with r(k) =

kX

i=0

2i.

Since each µi takes the form of the vector-valued measure given in (3.6), we have µk
2 M(⌦)N .

Further, since |µi| = |Li| and
P

i
|Li| < +1, we have that µk

! µ as k ! 1 to some µ 2 M(⌦)N

such that

µ =
1X

i=0

µi where µi = hieiH
1 Li for i = 0, 1, 2, . . . .

A few words are in order concerning {µk
}, note that µ0 is associated with the trunk of the tree,

and that µk for k > 0 contains 2k more terms (branches of the tree) than µk�1.
If k = 0, we apply (3.7) to obtain for � 2 C1

b
(⌦) that

ˆ
⌦
r� · dµ0 = �(x0

1) � �(x0
0).

Notice now that for k 2 N, repeated application of (3.6) leads to cancellation of all “intermediate”
nodes in the binary tree in the sense that

ˆ
⌦
r� · dµk = ��(x0

0) + 2�k

2k+1�2X

i=2k�1

�(x1
i ). (3.9)

Combining (3.8) with the expression above gives an expression for div µk as the (weighted) family
of point masses:

divµk = �
x
0
0
� 2�k

2k+1�2X

i=2k�1

�
x
1
i
.

Let � 2 C1
c (⌦), where supp(�) ⇢ K ⇢ ⌦ and K is compact. Since dist(Li, @⌦) ! 0 as i ! 1,

then there exists a su�ciently large I 2 N such that �|Li = 0 for i � I. In particular, this means
that for 2k � 1 � I, we observe

2k+1�2X

i=2k�1

�(x1
i ) = 0.

Therefore, for an arbitrary � 2 C1
c (⌦), we have from (3.9) that

ˆ
⌦
r� · dµ = ��(x0

0). (3.10)

We conclude that div µ = ��
x
0
0
. If in addition we have that x0

0 2 @⌦, then div µ = 0, so that

µ 2 Mp(⌦; div). Interestingly, the inclusion of µ in Mp

�(⌦; div) depends upon the location of �

relative to L. Observe that if x0
0 2 @⌦ \ � then, (3.10) is identically zero for all � 2 C1

b
(⌦) such

that �|
@⌦\� = 0 (and in particular for all � 2 C1

c (⌦)) so that divµ = 0. Hence µ 2 Mp

�(⌦; div)

given that N(�, µ) = 0 in this case.
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<latexit sha1_base64="xBwBuuBzzDIE63br/2LJXtjRYYY=">AAAB9nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPOCvYB7VAyaaaNTTJDkhHL0H9wqwt34tbfEX/GTDsLrR64l8O555KbE8ScaeO6n05haXllda24XtrY3NreKe/utXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxlfZvP1AlWaRvDOTmPoCDyULGcHGSq3ejaBD3C9X3Ko7A/pLvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOi31Ek1jTMZ4SLuWSiyo9tPZtVN0ZJUBCiNlSxo0U39upFhoPRGBdQpsRnpxloknWVM61P+ZuokJL/yUyTgxVJL5i2HCkYlQlgEaMEWJ4RNLMFHMHo3ICCtMjE2qZNPwFv/+l7ROq95ZtXZbq9Qv81yKcACHcAwenEMdrqEBTSBwD0/wDC/Oo/PqvDnvc2vByXf24Recj2/DN5LO</latexit>

⌦

<latexit sha1_base64="xBwBuuBzzDIE63br/2LJXtjRYYY=">AAAB9nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPOCvYB7VAyaaaNTTJDkhHL0H9wqwt34tbfEX/GTDsLrR64l8O555KbE8ScaeO6n05haXllda24XtrY3NreKe/utXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxlfZvP1AlWaRvDOTmPoCDyULGcHGSq3ejaBD3C9X3Ko7A/pLvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOi31Ek1jTMZ4SLuWSiyo9tPZtVN0ZJUBCiNlSxo0U39upFhoPRGBdQpsRnpxloknWVM61P+ZuokJL/yUyTgxVJL5i2HCkYlQlgEaMEWJ4RNLMFHMHo3ICCtMjE2qZNPwFv/+l7ROq95ZtXZbq9Qv81yKcACHcAwenEMdrqEBTSBwD0/wDC/Oo/PqvDnvc2vByXf24Recj2/DN5LO</latexit>

⌦
<latexit sha1_base64="OnueVQ3X3fz6cl+jpUV7LcwCbSo=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBEqSJmRoi6LblxWsA9oh5JJM21oJhmSTKEM/QW3unAnbv0f8WfMtLPQ1gP3cjj3XHJzgpgzbVz3y1lb39jc2i7sFHf39g8OS0fHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfJ/N2xOqNJPiyUxj6kd4KFjICDaZVGHsol8qu1V3DrRKvJyUIUejX/ruDSRJIioM4VjrrufGxk+xMoxwOiv2Ek1jTMZ4SLuWChxR7afzW2fo3CoDFEplSxg0V39vpDjSehoF1hlhM9LLs0y8zJrSof7P1E1MeOunTMSJoYIsXgwTjoxEWQJowBQlhk8twUQxezQiI6wwMTanok3DW/77KmldVb3rau2xVq7f5bkU4BTOoAIe3EAdHqABTSAwgmd4gVdn4rw5787Hwrrm5Dsn8AfO5w+zqpGY</latexit>

(ii)
<latexit sha1_base64="we/esencC4vpxp0Slg9T/ragbgk=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBEqSJmRoi6LblxWtA9oh5JJM21oJhmSjFCGfoJbXbgTt36Q+DNm2llo64F7OZx7Lrk5QcyZNq775aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvs3m7SeqNJPi0Uxi6kd4KFjICDZWeqiws36p7FbdGdAy8XJShhyNfum7N5AkiagwhGOtu54bGz/FyjDC6bTYSzSNMRnjIe1aKnBEtZ/OTp2iU6sMUCiVLWHQTP29keJI60kUWGeEzUgvzjLxPGtKh/o/Uzcx4bWfMhEnhgoyfzFMODISZQGgAVOUGD6xBBPF7NGIjLDCxNiYijYNb/Hvy6R1UfUuq7X7Wrl+k+dSgGM4gQp4cAV1uIMGNIHAEJ7hBV6dxHlz3p2PuXXFyXeO4A+czx/q25El</latexit>

(i)

<latexit sha1_base64="0+E7eLssu8h09FsnNIS6E84OO58=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPCRUX7gHYomTTThiaZIckIZegnuNWFO3HrB4k/Y6adhbYeuJfDueeSmxPEnGnjul9OYWV1bX2juFna2t7Z3SvvH7R0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY32bz9RJVmkXw0k5j6Ag8lCxnBxkoPd323X664VXcGtEy8nFQgR6Nf/u4NIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj209mpU3RilQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiWdZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalk0/AW/75MWudV76Jau69V6td5LkU4gmM4BQ8uoQ630IAmEBjCM7zAq5M4b8678zG3Fpx85xD+wPn8AR5VkUY=</latexit>

L0

<latexit sha1_base64="0+E7eLssu8h09FsnNIS6E84OO58=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPCRUX7gHYomTTThiaZIckIZegnuNWFO3HrB4k/Y6adhbYeuJfDueeSmxPEnGnjul9OYWV1bX2juFna2t7Z3SvvH7R0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY32bz9RJVmkXw0k5j6Ag8lCxnBxkoPd323X664VXcGtEy8nFQgR6Nf/u4NIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj209mpU3RilQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiWdZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalk0/AW/75MWudV76Jau69V6td5LkU4gmM4BQ8uoQ630IAmEBjCM7zAq5M4b8678zG3Fpx85xD+wPn8AR5VkUY=</latexit>

L0

<latexit sha1_base64="SAeJNVzk+pRqXDPs8ULM+JdoGF8=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPCRUX7gHYomTTThiaZIckIZegnuNWFO3HrB4k/Y6adhbYeuJfDueeSmxPEnGnjul9OYWV1bX2juFna2t7Z3SvvH7R0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY32bz9RJVmkXw0k5j6Ag8lCxnBxkoPd32vX664VXcGtEy8nFQgR6Nf/u4NIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj209mpU3RilQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiWdZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalk0/AW/75MWudV76Jau69V6td5LkU4gmM4BQ8uoQ630IAmEBjCM7zAq5M4b8678zG3Fpx85xD+wPn8AR/ikUc=</latexit>

L1

<latexit sha1_base64="SAeJNVzk+pRqXDPs8ULM+JdoGF8=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZdOPCRUX7gHYomTTThiaZIckIZegnuNWFO3HrB4k/Y6adhbYeuJfDueeSmxPEnGnjul9OYWV1bX2juFna2t7Z3SvvH7R0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY32bz9RJVmkXw0k5j6Ag8lCxnBxkoPd32vX664VXcGtEy8nFQgR6Nf/u4NIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj209mpU3RilQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiWdZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalk0/AW/75MWudV76Jau69V6td5LkU4gmM4BQ8uoQ630IAmEBjCM7zAq5M4b8678zG3Fpx85xD+wPn8AR/ikUc=</latexit>

L1

<latexit sha1_base64="vsmBbpWwg7lc9+r9ijBBI19rm/E=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0W3bhwUdE+oB1KJs20oUlmSDJCGfoJbnXhTtz6QeLPmGlnoa0H7uVw7rnk5gQxZ9q47pezsrq2vrFZ2Cpu7+zu7ZcODls6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+ObbN5+okqzSD6aSUx9gYeShYxgY6WHu361Xyq7FXcGtEy8nJQhR6Nf+u4NIpIIKg3hWOuu58bGT7EyjHA6LfYSTWNMxnhIu5ZKLKj209mpU3RqlQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiedZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalo0/AW/75MWtWKd1Gp3dfK9es8lwIcwwmcgQeXUIdbaEATCAzhGV7g1UmcN+fd+ZhbV5x85wj+wPn8ASFvkUg=</latexit>

L2

<latexit sha1_base64="vsmBbpWwg7lc9+r9ijBBI19rm/E=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0W3bhwUdE+oB1KJs20oUlmSDJCGfoJbnXhTtz6QeLPmGlnoa0H7uVw7rnk5gQxZ9q47pezsrq2vrFZ2Cpu7+zu7ZcODls6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+ObbN5+okqzSD6aSUx9gYeShYxgY6WHu361Xyq7FXcGtEy8nJQhR6Nf+u4NIpIIKg3hWOuu58bGT7EyjHA6LfYSTWNMxnhIu5ZKLKj209mpU3RqlQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiedZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalo0/AW/75MWtWKd1Gp3dfK9es8lwIcwwmcgQeXUIdbaEATCAzhGV7g1UmcN+fd+ZhbV5x85wj+wPn8ASFvkUg=</latexit>

L2

<latexit sha1_base64="zwvvLE4E/NQ9sHf4N209agRNuHg=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJnRoi6Lbly4qGgf0A4lk2ba0EwyJBmhDP0Et7pwJ279IPFnzLSz0NYD93I491xyc4KYM21c98tZWl5ZXVsvbBQ3t7Z3dkt7+00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHSTzVtPVGkmxaMZx9SP8ECwkBFsrPRw1zvvlcpuxZ0CLRIvJ2XIUe+Vvrt9SZKICkM41rrjubHxU6wMI5xOit1E0xiTER7QjqUCR1T76fTUCTq2Sh+FUtkSBk3V3xspjrQeR4F1RtgM9fwsE0+zpnSo/zN1EhNe+SkTcWKoILMXw4QjI1EWAOozRYnhY0swUcwejcgQK0yMjalo0/Dm/75ImmcV76JSva+Wa9d5LgU4hCM4AQ8uoQa3UIcGEBjAM7zAq5M4b8678zGzLjn5zgH8gfP5AyL8kUk=</latexit>

L3

<latexit sha1_base64="C51Q9JyWnFn96AhvHCxoAP476/Y=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgQkoiRV0W3bhwUdE+oA1lMp20QyeTMA+hhH6CW124E7d+kPgzTtostPXAvRzOPZe5c4KEM6Vd98sprKyurW8UN0tb2zu7e+X9g5aKjSS0SWIey06AFeVM0KZmmtNOIimOAk7bwfgmm7efqFQsFo96klA/wkPBQkawttLDXb/WL1fcqjsDWiZeTiqQo9Evf/cGMTERFZpwrFTXcxPtp1hqRjidlnpG0QSTMR7SrqUCR1T56ezUKTqxygCFsbQlNJqpvzdSHCk1iQLrjLAeqcVZJp5lTapQ/WfqGh1e+SkTidFUkPmLoeFIxygLAA2YpETziSWYSGaPRmSEJSbaxlSyaXiLf18mrfOqd1Gt3dcq9es8lyIcwTGcggeXUIdbaEATCAzhGV7g1THOm/PufMytBSffOYQ/cD5/ACSJkUo=</latexit>

L4

<latexit sha1_base64="G1eWBKSQkYuhTIiQJNeDuK/hvR4=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJmR+lgW3bhwUdE+oB1KJs20oZlkSDJCGfoJbnXhTtz6QeLPmGlnoa0H7uVw7rnk5gQxZ9q47peztLyyurZe2Chubm3v7Jb29ptaJorQBpFcqnaANeVM0IZhhtN2rCiOAk5bwegmm7eeqNJMikczjqkf4YFgISPYWOnhrnfeK5XdijsFWiReTsqQo94rfXf7kiQRFYZwrHXHc2Pjp1gZRjidFLuJpjEmIzygHUsFjqj20+mpE3RslT4KpbIlDJqqvzdSHGk9jgLrjLAZ6vlZJp5mTelQ/2fqJCa88lMm4sRQQWYvhglHRqIsANRnihLDx5Zgopg9GpEhVpgYG1PRpuHN/32RNM8q3kWlel8t167zXApwCEdwAh5cQg1uoQ4NIDCAZ3iBVydx3px352NmXXLynQP4A+fzByYWkUs=</latexit>

L5

<latexit sha1_base64="LIWiBQRpOxiu1kZeozWOuxHn+eM=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJmRUl0W3bhwUdE+oB1KJs20oUlmSDJCGfoJbnXhTtz6QeLPmGlnoa0H7uVw7rnk5gQxZ9q47pezsrq2vrFZ2Cpu7+zu7ZcODls6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+ObbN5+okqzSD6aSUx9gYeShYxgY6WHu36tXyq7FXcGtEy8nJQhR6Nf+u4NIpIIKg3hWOuu58bGT7EyjHA6LfYSTWNMxnhIu5ZKLKj209mpU3RqlQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiedZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalo0/AW/75MWhcVr1ap3lfL9es8lwIcwwmcgQeXUIdbaEATCAzhGV7g1UmcN+fd+ZhbV5x85wj+wPn8ASejkUw=</latexit>

L6

<latexit sha1_base64="zwvvLE4E/NQ9sHf4N209agRNuHg=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJnRoi6Lbly4qGgf0A4lk2ba0EwyJBmhDP0Et7pwJ279IPFnzLSz0NYD93I491xyc4KYM21c98tZWl5ZXVsvbBQ3t7Z3dkt7+00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHSTzVtPVGkmxaMZx9SP8ECwkBFsrPRw1zvvlcpuxZ0CLRIvJ2XIUe+Vvrt9SZKICkM41rrjubHxU6wMI5xOit1E0xiTER7QjqUCR1T76fTUCTq2Sh+FUtkSBk3V3xspjrQeR4F1RtgM9fwsE0+zpnSo/zN1EhNe+SkTcWKoILMXw4QjI1EWAOozRYnhY0swUcwejcgQK0yMjalo0/Dm/75ImmcV76JSva+Wa9d5LgU4hCM4AQ8uoQa3UIcGEBjAM7zAq5M4b8678zGzLjn5zgH8gfP5AyL8kUk=</latexit>

L3

<latexit sha1_base64="C51Q9JyWnFn96AhvHCxoAP476/Y=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgQkoiRV0W3bhwUdE+oA1lMp20QyeTMA+hhH6CW124E7d+kPgzTtostPXAvRzOPZe5c4KEM6Vd98sprKyurW8UN0tb2zu7e+X9g5aKjSS0SWIey06AFeVM0KZmmtNOIimOAk7bwfgmm7efqFQsFo96klA/wkPBQkawttLDXb/WL1fcqjsDWiZeTiqQo9Evf/cGMTERFZpwrFTXcxPtp1hqRjidlnpG0QSTMR7SrqUCR1T56ezUKTqxygCFsbQlNJqpvzdSHCk1iQLrjLAeqcVZJp5lTapQ/WfqGh1e+SkTidFUkPmLoeFIxygLAA2YpETziSWYSGaPRmSEJSbaxlSyaXiLf18mrfOqd1Gt3dcq9es8lyIcwTGcggeXUIdbaEATCAzhGV7g1THOm/PufMytBSffOYQ/cD5/ACSJkUo=</latexit>

L4

<latexit sha1_base64="G1eWBKSQkYuhTIiQJNeDuK/hvR4=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJmR+lgW3bhwUdE+oB1KJs20oZlkSDJCGfoJbnXhTtz6QeLPmGlnoa0H7uVw7rnk5gQxZ9q47peztLyyurZe2Chubm3v7Jb29ptaJorQBpFcqnaANeVM0IZhhtN2rCiOAk5bwegmm7eeqNJMikczjqkf4YFgISPYWOnhrnfeK5XdijsFWiReTsqQo94rfXf7kiQRFYZwrHXHc2Pjp1gZRjidFLuJpjEmIzygHUsFjqj20+mpE3RslT4KpbIlDJqqvzdSHGk9jgLrjLAZ6vlZJp5mTelQ/2fqJCa88lMm4sRQQWYvhglHRqIsANRnihLDx5Zgopg9GpEhVpgYG1PRpuHN/32RNM8q3kWlel8t167zXApwCEdwAh5cQg1uoQ4NIDCAZ3iBVydx3px352NmXXLynQP4A+fzByYWkUs=</latexit>

L5

<latexit sha1_base64="LIWiBQRpOxiu1kZeozWOuxHn+eM=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFcSJmRUl0W3bhwUdE+oB1KJs20oUlmSDJCGfoJbnXhTtz6QeLPmGlnoa0H7uVw7rnk5gQxZ9q47pezsrq2vrFZ2Cpu7+zu7ZcODls6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+ObbN5+okqzSD6aSUx9gYeShYxgY6WHu36tXyq7FXcGtEy8nJQhR6Nf+u4NIpIIKg3hWOuu58bGT7EyjHA6LfYSTWNMxnhIu5ZKLKj209mpU3RqlQEKI2VLGjRTf2+kWGg9EYF1CmxGenGWiedZUzrU/5m6iQmv/JTJODFUkvmLYcKRiVAWABowRYnhE0swUcwejcgIK0yMjalo0/AW/75MWhcVr1ap3lfL9es8lwIcwwmcgQeXUIdbaEATCAzhGV7g1UmcN+fd+ZhbV5x85wj+wPn8ASejkUw=</latexit>

L6

<latexit sha1_base64="3uLWNvBa/9K5LY7dM0eQuXkfddQ=">AAAB/XicbVDLSsNAFJ34rPVVdelmsAgupCRS1GXRjQsXFewD2lAmk5t26GQSZyZCCcHPcKsLd+LWbxF/xkmbhbYeuJfDuecyd44Xc6a0bX9ZS8srq2vrpY3y5tb2zm5lb7+tokRSaNGIR7LrEQWcCWhppjl0Ywkk9Dh0vPF1Pu88glQsEvd6EoMbkqFgAaNEG8nta8Z9SG+zQWpng0rVrtlT4EXiFKSKCjQHle++H9EkBKEpJ0r1HDvWbkqkZpRDVu4nCmJCx2QIPUMFCUG56fToDB8bxcdBJE0Jjafq742UhEpNQs84Q6JHan6Wi6d5kypQ/5l6iQ4u3ZSJONEg6OzFIOFYRziPAvtMAtV8YgihkpmjMR0RSag2gZVNGs783xdJ+6zmnNfqd/Vq46rIpYQO0RE6QQ66QA10g5qohSh6QM/oBb1aT9ab9W59zKxLVrFzgP7A+vwBdQqWCA==</latexit>

L̃0
<latexit sha1_base64="++mFs6jLyQ+WH3s5ZzUzWj3jfM4=">AAAB/XicbVDLSsNAFJ34rPVVdelmsAgupCRS1GXRjQsXFewD2lAmk5t26GQSZyZCCcHPcKsLd+LWbxF/xkmbhbYeuJfDuecyd44Xc6a0bX9ZS8srq2vrpY3y5tb2zm5lb7+tokRSaNGIR7LrEQWcCWhppjl0Ywkk9Dh0vPF1Pu88glQsEvd6EoMbkqFgAaNEG8nta8Z9SG+zQepkg0rVrtlT4EXiFKSKCjQHle++H9EkBKEpJ0r1HDvWbkqkZpRDVu4nCmJCx2QIPUMFCUG56fToDB8bxcdBJE0Jjafq742UhEpNQs84Q6JHan6Wi6d5kypQ/5l6iQ4u3ZSJONEg6OzFIOFYRziPAvtMAtV8YgihkpmjMR0RSag2gZVNGs783xdJ+6zmnNfqd/Vq46rIpYQO0RE6QQ66QA10g5qohSh6QM/oBb1aT9ab9W59zKxLVrFzgP7A+vwBdpiWCQ==</latexit>

L̃1

<latexit sha1_base64="53WH+U5rOe1UreWa4pOhHBA5Smc=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0VwISUpRV0W3bhwUcE+oA1lMp20QyeTOHMjlBD8DLe6cCdu/RbxZ5y0WWjrgXs5nHsuc+d4keAabPvLKqysrq1vFDdLW9s7u3vl/YO2DmNFWYuGIlRdj2gmuGQt4CBYN1KMBJ5gHW9ync07j0xpHsp7mEbMDchIcp9TAkZy+8DFkCW36SCppYNyxa7aM+Bl4uSkgnI0B+Xv/jCkccAkUEG07jl2BG5CFHAqWFrqx5pFhE7IiPUMlSRg2k1mR6f4xChD7IfKlAQ8U39vJCTQehp4xhkQGOvFWSaeZU1pX/9n6sXgX7oJl1EMTNL5i34sMIQ4iwIPuWIUxNQQQhU3R2M6JopQMIGVTBrO4t+XSbtWdc6r9bt6pXGV51JER+gYnSIHXaAGukFN1EIUPaBn9IJerSfrzXq3PubWgpXvHKI/sD5/AHgmlgo=</latexit>

L̃2

<latexit sha1_base64="LEDno+eswo6czhdfMEfspI54DDo=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0VwISXRoi6Lbly4qGAf0IYymU7aoZNJnLkRSgh+hltduBO3fov4M07aLLT1wL0czj2XuXO8SHANtv1lFZaWV1bXiuuljc2t7Z3y7l5Lh7GirElDEaqORzQTXLImcBCsEylGAk+wtje+zubtR6Y0D+U9TCLmBmQouc8pASO5PeBiwJLbtJ+cpf1yxa7aU+BF4uSkgnI0+uXv3iCkccAkUEG07jp2BG5CFHAqWFrqxZpFhI7JkHUNlSRg2k2mR6f4yCgD7IfKlAQ8VX9vJCTQehJ4xhkQGOn5WSaeZE1pX/9n6sbgX7oJl1EMTNLZi34sMIQ4iwIPuGIUxMQQQhU3R2M6IopQMIGVTBrO/N8XSeu06pxXa3e1Sv0qz6WIDtAhOkYOukB1dIMaqIkoekDP6AW9Wk/Wm/VufcysBSvf2Ud/YH3+AHm0lgs=</latexit>

L̃3

<latexit sha1_base64="mKw2NE9s4uXlQ1HHvU4WIa24nUw=">AAAB/XicbVDLSsNAFL3xWeur6tLNYBFcSEmkqMuiGxcuKtgHtKFMJpN26GQSZyZCCcHPcKsLd+LWbxF/xkmbhbYeuJfDuecyd44Xc6a0bX9ZS8srq2vrpY3y5tb2zm5lb7+tokQS2iIRj2TXw4pyJmhLM81pN5YUhx6nHW98nc87j1QqFol7PYmpG+KhYAEjWBvJ7WvGfZreZoO0ng0qVbtmT4EWiVOQKhRoDirffT8iSUiFJhwr1XPsWLsplpoRTrNyP1E0xmSMh7RnqMAhVW46PTpDx0bxURBJU0Kjqfp7I8WhUpPQM84Q65Gan+Xiad6kCtR/pl6ig0s3ZSJONBVk9mKQcKQjlEeBfCYp0XxiCCaSmaMRGWGJiTaBlU0azvzfF0n7rOac1+p39WrjqsilBIdwBCfgwAU04Aaa0AICD/AML/BqPVlv1rv1MbMuWcXOAfyB9fkDe0KWDA==</latexit>

L̃4

<latexit sha1_base64="szaHdlM6AkSkZ7RI5DqMG+zCmNA=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0VwISWR+lgW3bhwUcE+oA1lMp20QyeTOHMjlBD8DLe6cCdu/RbxZ5y0WWjrgXs5nHsuc+d4keAabPvLKiwtr6yuFddLG5tb2zvl3b2WDmNFWZOGIlQdj2gmuGRN4CBYJ1KMBJ5gbW98nc3bj0xpHsp7mETMDchQcp9TAkZye8DFgCW3aT85S/vlil21p8CLxMlJBeVo9MvfvUFI44BJoIJo3XXsCNyEKOBUsLTUizWLCB2TIesaKknAtJtMj07xkVEG2A+VKQl4qv7eSEig9STwjDMgMNLzs0w8yZrSvv7P1I3Bv3QTLqMYmKSzF/1YYAhxFgUecMUoiIkhhCpujsZ0RBShYAIrmTSc+b8vktZp1Tmv1u5qlfpVnksRHaBDdIwcdIHq6AY1UBNR9ICe0Qt6tZ6sN+vd+phZC1a+s4/+wPr8AXzQlg0=</latexit>

L̃5

<latexit sha1_base64="7ZvZFPoLMKRcpmnA5uZQgKhhnTc=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0VwISWRUl0W3bhwUcE+oA1lMr1ph04mcWYilBD8DLe6cCdu/RbxZ5y0WWjrgXs5nHsuc+d4EWdK2/aXVVhZXVvfKG6WtrZ3dvfK+wdtFcaSQouGPJRdjyjgTEBLM82hG0kggceh402us3nnEaRiobjX0wjcgIwE8xkl2khuXzM+hOQ2HST1dFCu2FV7BrxMnJxUUI7moPzdH4Y0DkBoyolSPceOtJsQqRnlkJb6sYKI0AkZQc9QQQJQbjI7OsUnRhliP5SmhMYz9fdGQgKlpoFnnAHRY7U4y8SzrEnlq/9MvVj7l27CRBRrEHT+oh9zrEOcRYGHTALVfGoIoZKZozEdE0moNoGVTBrO4t+XSfu86tSrtbtapXGV51JER+gYnSIHXaAGukFN1EIUPaBn9IJerSfrzXq3PubWgpXvHKI/sD5/AH5elg4=</latexit>

L̃6

<latexit sha1_base64="hhwdKTzdn2Zfw/gayGkmHTh4q0A=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmLiwZDWEPRI9OIREwskUMl22cKG7bbZ3aqk4Td41YM349XfY/wzbqEHBV8yk5c3b7Kzz485U9q2v6zCyura+kZxs7S1vbO7V94/aKkokYS6JOKR7PhYUc4EdTXTnHZiSXHoc9r2x9fZvP1ApWKRuNOTmHohHgoWMIK1kdynvn1v98sVu2rPgJaJk5MK5Gj2y9+9QUSSkApNOFaq69ix9lIsNSOcTku9RNEYkzEe0q6hAodUeens2Ck6McoABZE0JTSaqb83UhwqNQl94wyxHqnFWSaeZU2qQP1n6iY6uPRSJuJEU0HmLwYJRzpCWQRowCQlmk8MwUQyczQiIywx0SaokknDWfz7MmmdV516tXZbqzSu8lyKcATHcAoOXEADbqAJLhBg8Awv8Go9Wm/Wu/UxtxasfOcQ/sD6/AGLfpIU</latexit>

x0
0

<latexit sha1_base64="hhwdKTzdn2Zfw/gayGkmHTh4q0A=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmLiwZDWEPRI9OIREwskUMl22cKG7bbZ3aqk4Td41YM349XfY/wzbqEHBV8yk5c3b7Kzz485U9q2v6zCyura+kZxs7S1vbO7V94/aKkokYS6JOKR7PhYUc4EdTXTnHZiSXHoc9r2x9fZvP1ApWKRuNOTmHohHgoWMIK1kdynvn1v98sVu2rPgJaJk5MK5Gj2y9+9QUSSkApNOFaq69ix9lIsNSOcTku9RNEYkzEe0q6hAodUeens2Ck6McoABZE0JTSaqb83UhwqNQl94wyxHqnFWSaeZU2qQP1n6iY6uPRSJuJEU0HmLwYJRzpCWQRowCQlmk8MwUQyczQiIywx0SaokknDWfz7MmmdV516tXZbqzSu8lyKcATHcAoOXEADbqAJLhBg8Awv8Go9Wm/Wu/UxtxasfOcQ/sD6/AGLfpIU</latexit>

x0
0

Figure 3. Measures generated by binary trees where the width of the branch cor-
responds to the weight hi of the associated H

1-measure. Tree with base point in
x0
0 2 ⌦ in (i), and two binary trees sharing the base point in (ii).

3.2.2. Two trees sharing the base point. Consider now two binary trees L and L̃ composed of
segments {Li} and {L̃i}, respectively, as defined in the previous section. Suppose L and L̃ share
the same base point x0

0 2 ⌦, but otherwise are non-intersecting and the closure of the union of all
segments is in ⌦, i.e.,

L \ L̃ = {x0
0}, and L [ L̃ ⇢ ⌦;

see (ii) in Figure 3. Let

W =

0

@
1[

i=0

Li

1

A
[
0

@
1[

i=0

L̃i

1

A ,

and let µ and µ̃ be the measures associated to L and L̃, respectively, as constructed in Section 3.2.1.
Define the Borel measure ⇠ : B(⌦) ! RN as

⇠ = µ � µ̃,

and note that for any � 2 C1
b
(⌦), we observe thatˆ

⌦
r� · d⇠ = ��(x0

0) + �(x0
0) = 0. (3.11)

Hence, it is not only the case that div ⇠ = 0, but also that N(�, ⇠) = 0 for those � 2 C1
b
(⌦) so that

⇠ 2 Mp

�(⌦; div) regardless of the location of �.

4. Bounded sets of measures and convergence

In this section, we consider both some initial results of the natural order in M(⌦) induced by
the cone M+(⌦) and some convergence results for sequences of convex sets of the type {µ 2 X :
|µ|  ↵n}, where {↵n} is a sequence in M+(⌦) and X is one of the spaces of measures of interest:
M(⌦)N , DM�(⌦), or Mp

�(⌦; div). The latter arise in applications to optimization problems over
subsets of M(⌦)N that are bounded with respect to some specific measure.

Definition 4.1. Let µ and � be elements of M(⌦). We write µ  � if

� � µ belongs to M+(⌦).
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Note that µ  � is equivalent to the requirement that µ(B)  �(B) for all B 2 B(⌦) or thatˆ
⌦

w dµ 

ˆ
⌦

w d�,

for all w 2 Cc(⌦), or w 2 C0(⌦), such that w(x) � 0 for all x 2 ⌦; the latter follows by a
combination of the dominated convergence theorem and the fact that step functions are dense
in Cc(⌦) and C0(⌦). We further have the following equivalence among orders for non-negative
measures.

Proposition 4.2. Let µ,� 2 M+(⌦) then the following are equivalent

(a) µ  �.
(b) µ(O)  �(O) for all open sets O such that O ⇢ ⌦.

(c) µ(K)  �(K) for all compact sets K such that K ⇢ ⌦.

(d) For all non-negative w 2 C1
b

(⌦), it holds true thatˆ
⌦

w dµ 

ˆ
⌦

w d�. (4.1)

Proof. The directions (a))(b) and (a))(c) are trivial. The proof for (b))(a) and (c))(a) follows
because non-negative elements of M(⌦) are inner and outer regular: for ↵ 2 M+(⌦) and B 2 B(⌦)
we have

↵(B) = inf{↵(O) : O open & B ⇢ O ⇢ ⌦} = sup{↵(K) : K compact & K ⇢ B}.

Then (b))(a) follows by taking the inf over all open sets O in ⌦ containing B and (c))(a) by
taking the sup over all compact sets K ⇢ ⌦, respectively.

In order to prove that (a),(d), we only need to prove that to consider C1
b

(⌦) is equivalent to
considering Cc(⌦) as the test function space in (d). Suppose that (d) holds true and let w 2 Cc(⌦)
be arbitrary. Then via classical mollifier techniques ( see Chapter 2 in [1]), there exists a sequence
{wn} such that wn 2 C1

c (⌦) such that wn ! w uniformly so thatˆ
⌦

wn d⌘ !

ˆ
⌦

w d⌘,

as n ! 1 for arbitrary ⌘ 2 M+(⌦) so it is direct to prove that (d))(a). Conversely, suppose (4.1)
holds true for all non-negative functions in Cc(⌦) and let w 2 C1

b
(⌦) be non-negative and arbitrary.

Note that there exist a sequence of compact sets {Kn} such that µ(⌦ \ Kn),�(⌦ \ Kn) ! 0 as
n ! 1. Then, let wn : ⌦ ! R be such that wn(x) = w(x) for x 2 Kn, each wn has a compact
support K̃n that contains Kn, and 0  wn  w . Note that the existence of wn is guaranteed by
Urysohn’s Lemma. Hence,ˆ

⌦
w dµ =

ˆ
⌦

wn dµ +

ˆ
⌦\Kn

(w � wn) dµ



ˆ
⌦

wn d� +

ˆ
⌦\Kn

(w � wn) dµ

=

ˆ
⌦

w d� +

ˆ
⌦\Kn

(wn � w) d� +

ˆ
⌦\Kn

(w � wn) dµ.

Since
�����

ˆ
⌦\Kn

(wn � w) d� +

ˆ
⌦\Kn

(w � wn) dµ

�����  2

 
sup
x2⌦

|w(x)|

!
(�(⌦ \ Kn) + µ(⌦ \ Kn)) ! 0,

as n ! 1, we have proven that (a))(d). ⇤
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We consider now sets of measures whose total variation is dominated by a non-negative measure.
Specifically, let ↵ 2 M+(⌦) be arbitrary, and define the set K(↵; X) as

K(↵; X) := {µ 2 X : |µ|  ↵}, (4.2)

where X is one of the spaces of measures of interest M(⌦)N , DM�(⌦), or Mp

�(⌦; div). Note that
K(↵; X) is (in all cases) convex, closed, and non-empty since 0 2 K(↵; X). The main focus of the
rest of the paper is to study properties of the map

↵ 7! K(↵; X),

that are useful for the study of stability of optimization problems and other applications where
sets are changing with respect to other variables within the problem.

We consider two di↵erent kinds of results, a forward and a backward kind: Consider a sequence
{↵n} in M+(⌦) converging to some ↵⇤

2 M+(⌦) in some sense, then

i. Suppose the sequence {µn} is such that µn 2 K(↵n; X) for n 2 N. Is there a subsequence
of {µn} converging with respect to some topology to µ⇤

2 K(↵⇤; X)?
ii. Suppose that µ̃ 2 K(↵⇤; X) is arbitrary. Is there a sequence {µ̃n} such that µ̃n 2 K(↵n; X)

for n 2 N and such that it converges with respect to some topology to µ̃?

Such form of set convergence (when topologies are chosen properly) is called Mosco convergence

[18, 17] and they can be also described by means of the more classical Painlevé-Kuratowski set
limits [14]. See the monograph [5] for an historical account on the notions of set convergence, and
[16] for relation to Gamma convergence. In general, the construction of the sequence {µ̃n}, called
recovery sequence in ii is a more complicated task than the one in i.

Using the notation of (4.2), for rest of the paper we use

K(↵) := K
�
↵; M(⌦)N

�
and Kp

�(↵; div) := K
�
↵; Mp

�(⌦; div)
�

(4.3)

to describe subsets of M(⌦)N and Mp

�(⌦; div) with total variation bounded by ↵ 2 M+(⌦). As
usual, if � = ;, then we write Kp(↵; div)

4.1. Forward results. The following lemma establishes that weak convergence of the sequence
{↵n} of upper bounds is stable in the sense that any sequence {µn} such that µn 2 K(↵n) admits
a convergent subsequence with limit point in K(↵) and where ↵ is the weak limit of {↵n}.

Lemma 4.3. Suppose that {↵n} is a sequence in M+(⌦) such that ↵n * ↵ in M(⌦) for some

↵, and let {µn} be a sequence in M(⌦)N such that µn 2 K(↵n) for n 2 N. Then there exists a

subsequence of {µn} weakly convergent to some µ 2 K(↵) in M(⌦)N .

Proof. Since ↵n * ↵ in M(⌦), there exists an M > 0 such that k↵nkM(⌦) = ↵n(⌦)  M for all
n 2 N by the uniform boundedness principle. Since µn 2 K(↵n) for n 2 N, then |µn|(⌦)  M for
all n 2 N as well. Thus, {µn} and {|µn|} are bounded in M(⌦)N and M(⌦), respectively. Hence,
there exist subsequences {µnj} and {|µnj |} such that

µnj * µ and |µnj |* �, (4.4)

for some µ 2 M(⌦)N and some � 2 M+(⌦) by [4, Proposition 4.2.2]. Further, by [4, Corollary
4.2.1] we have

|µ|  �. (4.5)

Since µnj 2 K(↵nj ), we have ˆ
⌦

f d|µnj | 

ˆ
⌦

f d↵nj ,
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for all f 2 Cc(⌦) such that f � 0. Given that ↵nj * ↵ and |µnj |* � in M(⌦) and from (4.5), we
have by taking the limit as j ! 1 thatˆ

⌦
f d|µ| 

ˆ
⌦

f d� 

ˆ
⌦

f d↵.

Finally, since f 2 Cc(⌦) with f � 0 is arbitrary, |µ|  ↵, i.e., µ 2 K(↵) by Proposition 4.2. ⇤
The following results show that improving the convergence of {↵n} leads to improved convergence

for some subsequence {µn} such that µn 2 K(↵n) for all n 2 N.

Theorem 4.4. Suppose that {↵n} is a sequence in M+(⌦) such that ↵n ! ↵ in M(⌦) for some ↵.
Then, every sequence {µn} in

H =
1[

n=1

K(↵n),

admits a subsequence that converges in the narrow topology on M(⌦)N to some µ 2 M(⌦)N . Further,

µ belongs either to K(↵i) for some i 2 N or to the narrow closure of
S1

n=j
K(↵n) for each j 2 N.

Proof. Given that ↵ 2 M+(⌦), ↵ is inner regular (see [4, Proposition 4.2.1]) so that for ✏ > 0 there
exists a compact set ⇤✏ ⇢ ⌦ such that

↵(⌦ \ ⇤✏) = ↵(⌦) � ↵(⇤✏) <
✏

2
.

Since ↵n ! ↵ in M(⌦), for the ✏ > 0 chosen above there exists an N✏ 2 N such that

|↵� ↵n|(⌦) <
✏

2
for n > N✏.

Consider {↵1,↵2, . . . ,↵N✏}, then there exist compact sets {⇤1
✏ , ⇤

2
✏ , . . . , ⇤

N✏
✏ } and subsets of ⌦

such that
↵n(⌦ \ ⇤n

✏ ) <
✏

2
n = 1, 2, . . . , N✏.

Define then
⇤̂✏ := ⇤✏ [

⇣
⇤1
✏ [ ⇤2

✏ [ · · · [ ⇤N✏
✏

⌘
,

so that ⇤̂✏ ⇢ ⌦ is compact and further

↵(⌦ \ ⇤̂✏) <
✏

2
together with

↵n(⌦ \ ⇤̂✏) <
✏

2
n = 1, 2, . . . , N✏.

In addition, for n > N✏ we observe

↵n(⌦ \ ⇤̂✏) = (↵n � ↵)(⌦ \ ⇤̂✏) + ↵(⌦ \ ⇤̂✏)

 |↵� ↵n|(⌦ \ ⇤̂✏) + ↵(⌦ \ ⇤̂✏)

 |↵� ↵n|(⌦) + ↵(⌦ \ ⇤̂✏)

< ✏,

so that
↵n(⌦ \ ⇤̂✏) < ✏, (4.6)

for all n 2 N.
Note that measures in H are uniformly bounded in the norm of M(⌦)N because {↵n(⌦)} is

bounded. Then, if µ 2 H there exists an n 2 N for which |µ|  ↵n. Thus

sup{|µ|(⌦ \ ⇤̂✏) : µ 2 H}  ✏,
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and then by Prokohorov’s theorem [8, Theorem 8.6.2. and Theorem 8.6.7.] for every sequence
{µn} in H there exists a subsequence (not relabelled) such that µn

nw
��! µ. In order to prove that

µ 2 H, note that if {µn} in H then, |µn|  ↵k(n), where k : N ! N is some function. If k is a
bounded function, then we can extract a subsequence {↵k(n)} that is constant and equal to some
↵k⇤ for a fixed k⇤

2 N, and hence extract a subsequence of {µn} that satisfies |µn|  ↵k⇤ . Then, by
Lemma 4.3 we can extract a further subsequence weakly convergent to µ⇤ such that |µ⇤

|  ↵k⇤ , but
since µn

nw
��! µ, then µ⇤ = µ and µ 2 H, and hence µ 2 K(↵i) for some i 2 N. On the other hand,

if k is an unbounded function then there is some subsequence ↵k(ji) ! ↵ for which |µnji
|  ↵k(ji)

and µ 2 H
nw

by the same preceding argument and the use of Lemma 4.3. The same digression
can be used to show that µ belongs to the narrow closure of

S1
n=j

K(↵n) for each j 2 N. ⇤

The previous result leads to the following corollary to be used in the study of perturbations of
optimization problems.

Corollary 4.5. Suppose that {↵n} is a sequence in M+(⌦) such that ↵n ! ↵ in M(⌦) for some ↵.
Let {µn} be a sequence in M(⌦)N such that µn 2 K(↵n) for n 2 N. Then, there exists µ 2 K(↵)
for which µn

nw
��! µ along a subsequence.

Proof. Since ↵n ! ↵ in M(⌦) and µn 2 K(↵n) for each n 2 N, it follows from Lemma 4.3 that
µn * ⌫ in M(⌦)N along a subsequence of {µn} with in ⌫ 2 K(↵). Since the sequence {µn} is in
[
1
n=1K(↵n), and since {↵n} is in M+(⌦) converging strongly to ↵ 2 M(⌦), it follows from Theorem

4.4 that a further subsequence of {µn} converges narrowly to some µ. Since narrow convergence
implies weak convergence, it follows that µ = ⌫. ⇤

An analogous corollary holds for both Mp(⌦; div) and Mp

�(⌦; div) provided the sequence {divµn}

is uniformly bounded a priori.

Corollary 4.6. Suppose that {↵n} is a sequence in M+(⌦) that strongly converges to ↵ 2 M+(⌦)
and that {µn} is a sequence with µn 2 Kp

�(↵n; div) with 1 < p < 1. Then, provided that

supn2N kdivµnkLp(⌦) < 1 holds true, there exists a µ⇤
2 Kp

�(↵; div) such that µn

nw
�! µ⇤

in

M(⌦)N and divµn * divµ⇤
in Lp(⌦) as n ! 1 (along a subsequence) .

Proof. Since µn is in K(↵n), it follows from Corollary 4.5 that µn narrowly converges to some µ⇤
2

K(↵) along a subsequence. We are left to prove that µ⇤ is in Mp

�(⌦; div). Since kdiv µnkLp(⌦) < 1,
there is a further subsequence such that

div µn * h (4.7)

in Lp(⌦) for some h 2 Lp(⌦) as n ! 1. For � 2 C1
c (⌦) and by (3.1) we observeˆ

⌦
r� · dµ⇤ = lim

n!1

ˆ
⌦
r� · dµn = � lim

n!1

ˆ
⌦
� div µn dx = �

ˆ
⌦

h � dx (4.8)

where the left hand side limit is implied by the narrow convergence {µn} to µ⇤ and the limit on
the right hand side is due to (4.7); thus divµ⇤ = h and µ⇤

2 Mp(⌦; div).
For � 6= ;, we have that µn 2 Mp

�(⌦; div) and hence

N(�, µn) =

ˆ
⌦
r� · dµn +

ˆ
⌦
� div µn dx = 0

for all � 2 C1
b
(⌦) such that �|⌦\� = 0. Since r� 2 Cb(⌦)N it follows by the same argument in

(4.8) that

N(�, µ⇤) = 0,

due to µn

nw
�! µ⇤; thus µ⇤

2 Mp

�(⌦; div). ⇤
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Remark 4.7. The previous holds true for the case p = 1 if the weak convergence is replaced by

weak-* convergence for {divµn}.

Remark 4.8. It should be noted that the narrow convergence in the conclusion of Theorem 4.4

and Corollary 4.5 is the best possible to be expected. Consider for example ⌦ = (0, 2⇡), ↵ be the

Lebesgue measure, and let µn = sin(nx)↵ so that |µn|  ↵. Further, µn * 0 and µn

nw
��! 0, however

µn does not converge to zero strongly, as |µn|(⌦) = 4.

4.2. Backward results. The previous Corollary 4.5 shows that a sequence of measures µn 2

K(↵n) converges (along a subsequence) narrowly to a measure µ 2 K(↵) provided that ↵ is the
strong limit of the sequence {↵n}. In fact, the following converse result can be obtained under
the same assumptions: For a given µ 2 K(↵) we can find a “recovery” sequence µn 2 K(↵n) that
converges in norm to µ. We show this in Theorem 4.10, which follows after the next classical lemma
for the total variation of mutually singular measures.

Recall the following standard definitions: Given two measures µ 2 M(⌦)N , and ↵ 2 M+(⌦), we
say that µ is absolutely continuous with respect to the measure ↵, and we denoted it as µ ⌧ ↵, if
for every Borel set B such that ↵(B) = 0 then µ(B) = 0. Further, we say that the measure µ is
singular with respect to ↵, denoted as µ ? ↵, if there exists a Borel set B such that ↵(B) = 0 and
µ is concentrated on B, i.e., µ(C) = 0 for all Borel sets such that B \ C = ;. The support of µ,
denoted as supp µ, is the smallest closed set C ⇢ ⌦ such that |µ|(⌦ \ C) = 0 and it can be proven
that equivalently:

supp µ = {x 2 ⌦ : 8r > 0, |µ|(Br(x)) > 0},

where Br(x) = {y 2 ⌦ : |x � y| < r}.
The set of (equivalence classes of) functions f : ⌦ ! RN such thatˆ

⌦
|f | d↵ < +1,

is denoted as L1(⌦,↵)N . If for f = {fi}Ni=1 and µ = {µi}
N

i=1, we have that fi 2 L1(⌦, µi) for
i = 1, . . . , N , then we write that f 2 L1(⌦, µ).

We start with the result of the Lebesgue decomposition and Radon-Nikodym theorem (also
called the Radon-Nikodym decomposition or the Lebesgue-Radon-Nikodym decomposition), see [4,
Theorem 4.2.1] and [21], in our vector-valued setting.

Lemma 4.9. Let µ 2 M(⌦)N and ↵ 2 M+(⌦). Then, there exists F 2 L1(⌦,↵)N and µs
2 M(⌦)N

such that

µ(B) =

ˆ
B

F d↵+ µs(B),

for each Borel set B ⇢ ⌦ with µs
? ↵, and for which

|µ|(B) =

ˆ
B

|F | d↵+ |µs
|(B).

Proof. The fact that |µ| = |F↵| + |µs
| is a corollary to the Lebesgue decomposition, which exists

by assumption [4, Theorem 4.2.1]. Finally, since F 2 L1(⌦,↵)N and ↵ is positive, a standard result
gives |F↵| = |F |↵ and proves the claim [2, Proposition 1.23]. ⇤

The function F above is commonly written as dµ
d↵ and called the Radon-Nikodym derivative, and

it is unique up to a set of ↵-measure zero. The ↵-integrability of F is a consequence of the fact
that |µ|(⌦) < +1.

The following result represents the initial construction of the recovery sequence in the case M(⌦)N

and associated to ↵ 7! K(↵). The construction of the recovery sequence is done by means of scaling

via the Radon-Nikodym derivative d↵a
n

d↵ (where ↵a
n is the absolutely continuous part of the Lebesgue

decomposition with respect to ↵) as we see next.
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Theorem 4.10. Suppose that {↵n} is a sequence in M+(⌦) such that ↵n ! ↵ in M(⌦) for some ↵,
and that µ 2 K(↵) is arbitrary. Then, there exists a sequence {µn} in M(⌦)N such that µn 2 K(↵n)
for n 2 N and µn ! µ in M(⌦)N .

Proof. Any µ 2 K(↵) satisfies |µ|  ↵ so that µ ⌧ ↵. Then, by the Radon-Nikodym decomposition
we have µ = F↵ or equivalently

µ(B) =

ˆ
B

F d↵,

for any Borel set B and where F : ⌦ ! RN is such that F 2 L1(⌦,↵)N . Given that |µ| = |F |↵ by
[2, Proposition 1.23] and |µ|  ↵, it follows that |F |  1 .

Since ↵n 2 M+(⌦) for all n 2 N, then again by the Radon-Nikodym decomposition we observe
that

↵n = gn↵+ ↵s

n,

where gn : ⌦ ! R is such that gn 2 L1(⌦;↵)+ and ↵s
n ? ↵ with ↵s

n 2 M+(⌦). Since ↵(⌦) =
´
⌦ 1 d↵,

we also have

(↵n � ↵)(⌦) =

ˆ
⌦

gn � 1 d↵+ ↵s

n(⌦).

It follows from Lemma 4.9 that

k↵n � ↵kM(⌦) =

ˆ
⌦
|gn � 1| d↵+ ↵s

n(⌦) �

ˆ
⌦
|gn � 1| d↵, (4.9)

given that ↵s
n � 0. Since |↵n � ↵|(⌦) ! 0 by assumption, then kgn � 1kL1(⌦,↵) ! 0 as well. Define

the sequence {Fn} in L1(⌦;↵)N as
Fn = gnF,

Further, define for each n 2 N the measure µn 2 M(⌦)N as µn = Fn↵, that is for every Borel set
B we have

µn(B) =

ˆ
B

Fn d↵.

Note that since gn � 0 and |F |  1 then

|µn|=|Fn|↵=|F |gn↵  gn↵  ↵n,

that is µn 2 K(↵n). Finally, since |F |  1, we obtain that

lim sup
n!1

kµn � µkM(⌦)N= lim sup
n!1

ˆ
⌦
|Fn � F | d↵

= lim sup
n!1

ˆ
⌦
|F ||gn � 1| d↵

 lim sup
n!1

kgn � 1kL1(⌦,↵) = 0,

which shows that µn ! µ in norm and concludes the result. ⇤
For the sake of simplicity, we consider the following notation. Let µ 2 M(⌦)N , � 2 M+(⌦) and

let µ = µa + µs be the associated Lebesgue decomposition where µa
⌧ � and µs

? �. We denote
by Fµ

� : ⌦ ! RN the function in L1
�(⌦)N such that

µa(B) =

ˆ
B

Fµ

� d�,

for any Borel set B in ⌦. The existence of Fµ
� is guaranteed by the Radon-Nikodym Theorem. If

� = L
N , the N -dimensional Lebesgue measure, we omit the subscript “LN” and write Fµ := Fµ

LN .
In the following lemma, we show that if µ 2 DM(⌦) then the measure defined by ⌫ = gµ

where g is µ-integrable, smooth and with µ-integrable gradient is also in DM(⌦). If additionally,
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µ 2 Mp(⌦; div), then in order to conclude that ⌫ 2 Mp(⌦; div) additional structural assumptions
are required not only on g but also on µ as we see next.

Lemma 4.11. Let g : ⌦ ! R be bounded, g 2 C1(⌦), and also rg 2 L1(⌦, µ) for some µ 2 M(⌦)N .

Define the set function ⌫ as

⌫(B) =

ˆ
B

g dµ,

for any Borel set B ⇢ ⌦. Hence,

(i) if µ 2 DM(⌦), then ⌫ 2 DM(⌦) and its divergence div ⌫ is given by

div ⌫(B) =

ˆ
B

g ddiv µ +

ˆ
B

rg · dµ,

for any Borel set B ⇢ ⌦.

(ii) In addition, suppose µ 2 Mp(⌦; div) for 1  p  +1, and rg · Fµ
2 Lp(⌦). Then,

⌫ 2 Mp(⌦; div) provided that rg vanishes in the support of the measure that is singular

to the Lebesgue measure in the Lebesgue decomposition of µ, that is, rg = 0 in supp µs

where µ = Fµ
L
N +µs

is the Lebesgue decomposition of µ with respect to the N -dimensional

Lebesgue measure L
N
. The divergence of ⌫ in this case is given by

div ⌫ = g div µ + rg · Fµ.

Furthermore, if @⌦ is not empty, and we assume that g 2 C1
b
(⌦), then (i) and (ii) hold true

exchanging DM(⌦) by DM�(⌦), and Mp(⌦; div) by Mp

�(⌦; div), for a non-empty � ⇢ @⌦.

Proof. Note initially that since g is continuous and bounded, we have that ⌫ is in M(⌦)N . Next,
concerning the definition of DM(⌦), note that the test function � in (3.1) within Definition 3.1 can
be exchanged from C1

c (⌦) to C1
c (⌦). Let µ 2 DM(⌦) and let � 2 C1

c (⌦) be arbitrary. Further, let
{�n} be a sequence in C1

c (⌦) for which there exists a compact set K for which supp(�n) ⇢ K for
all n, and such that �n ! � and r�n ! r� converge uniformly; the existence of {�n} follows by
standard mollification techniques. Since µ 2 DM(⌦) thenˆ

⌦
r�n · dµ = �

ˆ
⌦
�n ddivµ.

Also, given that r�n ! r� and �n ! � uniformly, and �n,r�n 2 Cc(⌦) by taking the limit
above we obtain ˆ

⌦
r� · dµ = �

ˆ
⌦
� ddivµ.

Finally, since � 2 C1
c (⌦) was arbitrary, we can consider test functions in this space.

Let � 2 C1
c (⌦) be arbitrary, then since g 2 C1(⌦), we observe that gr� = r(g�)��rg. Further,

since rg 2 L1(⌦, µ), then �rg 2 L1(⌦, µ) and henceˆ
⌦
r� · d⌫ =

ˆ
⌦

gr� · dµ =

ˆ
⌦
r(g�) · dµ �

ˆ
⌦
�rg · dµ.

Given that g� 2 C1
c (⌦) and µ 2 DM(⌦), we haveˆ

⌦
r� · d⌫ = �

ˆ
⌦
�g ddivµ �

ˆ
⌦
�rg · dµ,

which proves (i).
In order to prove (ii), consider the Lebesgue decomposition of µ with respect to the N -dimensional

Lebesgue measure L
N , i.e., µ = Fµ

L
N + µs. Since rg = 0 in supp µs thenˆ

⌦
�rg · dµ =

ˆ
⌦
�rg · Fµdx.
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Hence, if µ 2 Mp(⌦; div), thenˆ
⌦
r� · d⌫ = �

ˆ
⌦
�(g divµ + rg · Fµ)dx.

If in addition, g is bounded and rg · Fµ
2 Lp(⌦), then ⌫ 2 Mp(⌦; div), and (ii) is proven.

Let g 2 C1
b
(⌦) and � 2 C1

b
(⌦) be such that �(x) = 0 for all x 2 @⌦ \ �. It follows that g� also

vanishes on @⌦ \ �. If µ 2 DM�(⌦), thenˆ
⌦
r(g�) · dµ = �

ˆ
⌦
�g ddivµ,

so that

N(�, ⌫) =

ˆ
⌦
� ddiv⌫ +

ˆ
⌦
r� · d⌫ = 0.

Then, ⌫ 2 DM�(⌦) given that � 2 C1
b
(⌦) with �(x) = 0 for all x 2 @⌦ \ � was arbitrary. Further,

if µ 2 Mp

�(⌦; div) and the assumptions of (ii) hold true, then ⌫ 2 Mp

�(⌦; div).
⇤

Remark 4.12. It should be noted that g 2 C1
b
(⌦) and rg = 0 in suppµs

where µ = Fµ
L
N + µs

is

su�cient for all the assumptions concerning g in the previous theorem to hold true.

The technical lemma that we introduced above allows us to prove the existence of “recovery
sequences” for both DM�(⌦) and Mp

�(⌦; div). Specifically, for a sequence {↵n}, and ↵ in M+(⌦),
the Lebesgue decomposition (with respect to ↵) leads to ↵n = ↵a

n + ↵s
n and hence (almost) all

conditions can be determined by regularity and convergence properties of the Radon-Nikodym
derivative {

d↵a
n

d↵ } as we show next in the main result of the paper.

Theorem 4.13. Suppose that {↵n} is a sequence in M+(⌦) with ↵ 2 M+(⌦) as well. Assume that

for the Lebesgue decomposition for ↵n with respect to ↵, given by

↵n = gn↵+ ↵s

n,

we observe that ↵s
n ! 0 in M(⌦) as n ! 1. Further, for all n 2 N, gn 2 C1(⌦), gn is bounded,

rgn 2 L1(⌦,↵), and
sup
x2⌦

|gn � 1| ! 0,

as n ! 1.

(i) If ˆ
⌦
|rgn| d↵! 0,

as n ! 1, then, for µ 2 K0(↵) arbitrary, where

K0(↵) = {� 2 DM(⌦) : |�|  ↵},

there exists a sequence {µn} in DM(⌦) such that µn 2 K0(↵n) for n 2 N and µn ! µ in

DM(⌦) as n ! 1.

(ii) Suppose that, for each n 2 N, rgn vanishes on supp↵s
, the support of the measure ↵s

where

↵ = F↵
L
N + ↵s

is the Radon-Nikodym decomposition of ↵. Let µ 2 Kp(↵; div) be arbitrary where

Kp(↵; div) = {� 2 Mp(⌦; div) : |�|  ↵},

for 1  p  +1, and suppose that

k|rgn|F
↵
kLp(⌦) ! 0.

Then, there exists a sequence {µn} in Mp(⌦; div) such that µn 2 Kp(↵n; div) for n 2 N and

µn ! µ in Mp(⌦; div) as n ! 1.
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(iii) If @⌦ is not empty, and in (i) and (ii) we assume in addition that gn 2 C1
b
(⌦), then their

respective results hold true when exchanging DM(⌦) by DM�(⌦) in the definition of K0, and

Mp(⌦; div) by Mp

�(⌦; div), i.e., by exchanging Kp(↵n; div) by Kp

�(↵n; div).

Proof. Given that the Lebesgue and Radon-Nikodym decomposition for ↵n with respect to ↵, and
determined by ↵n = gn↵ + ↵s

n, satisfies ↵s
n ! 0 in M(⌦), and supx2⌦ |gn(x) � 1| ! 0 as n ! 1,

we initially observe that
↵n ! ↵ in M(⌦),

as n ! 1. Hence, the conclusion of Theorem 4.10 holds true; in particular by the construction of
its proof: For arbitrary µ 2 K0(↵) we define

µn(B) =

ˆ
B

gn dµ,

where B is a Borel subset of ⌦. For each n 2 N, µn is well-defined given that gn is continuous and
bounded, and µ ⌧ ↵ since |µ|  ↵. It follows that |µn|  ↵n, i.e., µn 2 K0(↵n) for n 2 N, and
µn ! µ in M(⌦)N as n ! 1.

Further, since gn is in C1(⌦), it is bounded, and rgn 2 L1(⌦,↵), and hence in rgn 2 L1(⌦, µ),
by Lemma 4.11 we have that µn 2 DM(⌦) and also

div µn(B) =

ˆ
B

gn ddiv µ +

ˆ
B

rgn · dµ.

Thus for an arbitrary ' 2 Cc(⌦) with |'|  1, we have

|hdiv µn � div µ,'iM(⌦),Cc(⌦)| =

����
ˆ
⌦
'(gn � 1) ddiv µ +

ˆ
⌦
'rgn · dµ

����

 |div µ(⌦)|

 
sup
x2⌦

|gn(x) � 1|

!
+

ˆ
⌦
|rgn| d↵,

where we have used that |µ|  ↵. By taking the supremum over all ' 2 Cc(⌦) with |'|  1, and
subsequently taking the limit as n ! 1 we observe that

lim
n!1

|div µn � div µ|(⌦) = 0,

or equivalently div µn ! div µ in M(⌦), and hence µn ! µ in DM(⌦) as n ! 1.
We focus on (ii) next. Since rgn = 0 in supp↵s, the support of the measure ↵s, then we claim

that ˆ
B

rgn · dµ =

ˆ
B

rgn · Fµ dx,

for all Borel sets B, where µ = Fµ
L
N + µs. Since µ 2 Kp(↵; div), then |µ|  ↵ which implies that

|Fµ
|  F↵ and |µs

|  ↵s,

where the first inequality holds pointwise a.e. with respect to the Lebesgue measure and the second
one in measure sense. In particular, the latter implies that µs

⌧ ↵s so that rgn = 0 in supp µs as
well. Hence,

´
B
rgn · dµs = 0 which proves the claim. Further,

kdiv µn � div µkLp(⌦)  k|(gn � 1) div µkLp(⌦) + krgn · Fµ
kLp(⌦)



 
sup
x2⌦

|gn(x) � 1|

!
kdiv µkLp(⌦) + k|rgn|F

↵
kLp(⌦),

where we have used that |rgn · Fµ
|  |rgn|F↵. Therefore,

lim
n!1

kdiv µn � div µkLp(⌦) = 0,
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and thus µn ! µ in Mp(⌦; div) as n ! 1 and the result is proven.
Finally, we consider on (iii). Since Lemma 4.11 holds for DM�(⌦) and M�(⌦; div) provided

gn 2 C1
b
(⌦), conditions (i) and (ii) of Theorem 4.13 also hold for gn 2 C1

b
(⌦).

⇤
Remark 4.14. It should be noted that su�cient conditions for all instances in the theorem above

for the sequence of functions {gn} are that gn 2 C1
b
(⌦) for n 2 N, gn is constant on a neighborhood

of supp↵s
, and that

sup
x2⌦

|gn(x) � 1| ! 0, and sup
x2⌦

|rgn(x)| ! 0,

both as n ! 1.

5. Application to optimization problems

In this section we apply the results of the previous one to optimization problems that arise in
applications as described in Section 1.1. Consider the following optimization problem over the
space Mp

�(⌦; div) with total variation constraints:

min
µ

J (µ) :=
1

p

ˆ
⌦

��div µ(x) � f(x)
��p dx +

ˆ
⌦
�(x) d|µ|(x)

s.t. µ 2 Mp

�(⌦; div)

|µ|  ↵

(P)

for ↵ 2 M+(⌦), f 2 Lp(⌦), 1 < p < 1, and and � a non-negative continuous and bounded
function. In cases where we need to study the dependence of the problem with respect to ↵,
we use the notation P(↵). Further note that the problem can be written as minJ (µ) subject to
µ 2 Kp

�(↵; div).

Theorem 5.1. The problem (P) admits solutions.

Proof. We follow the direct method. The functional J is bounded from below and Kp

�(↵; div) is
non-empty, so choose an infimizing sequence {µn}

1
n=1 with µn 2 Kp

�(↵; div) for n 2 N such that

lim
n!1

J (µn) ! M = inf J (µ) s.t. µ 2 Kp

�(↵; div).

Since {kdivµnkLp(⌦)}
1
n=1 is bounded due to the structure of J and |µn|  ↵ for every n, it follows

from Corollary 4.6 that there is some µ⇤
2 Kp

�(↵; div) for which µn

nw
��! µ⇤ and divµn * divµ⇤ in

Lp(⌦) along a subsequence (not relabelled) as n ! 1. We claim that

J (µ⇤)  lim inf
n

J (µn) for µn * µ⇤.

Since µn

nw
��! µ⇤ then we also have that ⌫n

nw
��! ⌫⇤ where ⌫n := �µn with n 2 N and ⌫⇤ = �µ⇤, that

is

⌫n(B) =

ˆ
B

� dµn, for n 2 N and ⌫⇤(B) =

ˆ
B

� dµ⇤,

for any Borel set B ⇢ ⌦. Since |⌫n| = �|µn| it follows by Corollary 4.2.1. in [4] thatˆ
⌦
� d|µ⇤

|  lim inf
n

ˆ
⌦
� d|µn|.

Next, observe that the functional

Lp(⌦) 3 v 7!
1

p

ˆ
⌦
|v � f |p dx
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is weakly lower semicontinuous given that it is both continuous and convex. Therefore,

M  J (µ⇤)  lim inf
n

J (µn)

Since lim infn J (µn) = M , it follows that µ⇤ minimizes J . ⇤
Now we are in a position to address a stability result associated with solutions to P(↵) with

respect to perturbations of ↵. In particular, the result hinges on both forward and backward
results associated to the convergence of ↵ 7! Kp

�(↵; div).

Theorem 5.2. Let {↵n} be a sequence measures in M+(⌦) that converges to ↵ 2 M+(⌦) in norm

and satisfies the conditions of (iii) in Theorem 4.13. For each ↵n, a solution µn to the problem

P(↵n) exists for which

µn

nw
�! µ⇤

and div µn * div µ⇤
in Lp(⌦),

along a subsequence (not relabeled) as n ! 1 for some µ⇤
2 Kp

�(↵; div) that solves P(↵).

Proof. By Theorem 5.1 each problem P(↵n) has a solution µn 2 Kp

�(↵n; div). It then follows from

Corollary 4.6 that µn

nw
�! µ⇤ and div µn * div µ⇤ in Lp(⌦) along a subsequence for some measure

µ⇤
2 Kp

�(↵; div).
We now show that µ⇤ solves P(↵). Let ⌫ 2 Kp

�(↵; div) be arbitrary. Since we assumed that the
sequence {↵n}

1
n=1 satisfies the assumptions required to apply Theorem 4.13, there exists a sequence

{⌫n}1n=1 with ⌫n 2 Kp

�(↵; div) such that ⌫n ! ⌫ in Mp

�(⌦; div) as n ! 1. Exploiting that µn is a
minimizer to P(↵n), we observe

J (µn)  J (⌫n)

for all indices n. It then follows from lower semicontinuity of J for µn

nw
�! µ⇤ and div µn * div µ⇤

in Lp(⌦), and the continuity of J for ⌫n ! ⌫ in Mp

�(⌦; div) that

J (µ⇤)  lim inf
n

J (µn)  lim inf
n

J (⌫n) = lim
n

J (⌫n) = J (⌫)

as n ! 1. Since ⌫ 2 Kp

�(↵; div) was arbitrary, µ⇤ is a minimizer for J and, as a result, solves
P(↵). ⇤

6. Conclusion

We have developed several set convergence results associated to spaces of measures that include
measures with divergences (functional or measure-valued) and directionally homogeneous boundary
conditions. Further, we have provided the first stability results for optimization problems including
such spaces.
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