CONVERGENCE ASPECTS FOR SETS OF MEASURES WITH
DIVERGENCES AND BOUNDARY CONDITIONS
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ABSTRACT. In this paper we study set convergence aspects for Banach spaces of vector-valued mea-
sures with divergences (represented by measures or by functions) and applications. We consider a
form of normal trace characterization to establish subspaces of measures that directionally vanish in
parts of the boundary, and present examples constructed with binary trees. Subsequently we study
convex sets with total variation bounds and their convergence properties together with applications
to the stability of optimization problems.
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1. INTRODUCTION

The purpose of the paper is severalfold and closely tied with applications. In particular, two
major aspects are considered; initially we focus on (i) The description and study of subspaces of the
space of Borel measures over a subset  C RM with (measure and functional) divergences that can
be characterized as directionally vanishing in parts of the boundary 9€). Secondly, we approach
(ii) The study of set convergence aspects of sets of measures whose total variations are bounded by
non-negative measures and their application to stability of optimization problems.

The need to represent directional boundary conditions on certain classes of Borel measures arises
in the Fenchel dualization of non-dissipative gradient constraints problems; see [3]. The latter class
of problems allows to model the growth of sandpiles and granular material flow in a deterministic
fashion. In this setting, the region where measures should vanish directionally at the boundary
corresponds to the region where material is not allowed to escape the domain.
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Optimization problems over spaces of measures and with total variation constraints are relatively
scarce in the literature. Notable exceptions can be found in [10], where applications to shape
optimization with total variation norm constraints are considered, and in [9], where minimizers
to constant total variation norm problems with convex energies are characterized by means of
suitable PDEs.

Concerning vector fields with generalized divergences, the seminal work and several extensions
were developed by Chen and Frid [11, 12, 13]. The authors establish properties of the functional
spaces, the Gauss-Green theorem in this setting, and the study of trace type results. Their original
motivation is the study of hyperbolic conservation laws. Generalizations of the trace results and
the integration by parts theorems were established by Silhavy [22] where best possible cases are
determined for the normal trace results.

Although the study of set convergence goes back to Painlevé, see the Painlevé-Kuratowski set
limits in [14], the appropriate concept for the study of perturbations of constrained optimization
problems and variational inequalities in reflexive Banach spaces was developed by Mosco [18, 17].
The main object of study of our work is the following set K(a; X) defined as

K(a; X) :={pe€ X :|u[ < a},

where the expression |u| < « stands for the total variation of p (see Section 2 for details) dominated
by a non-negative Borel measure o, and X is a subspace of the Banach space of Borel measures
endowed with the total variation norm. In particular, we focus on properties of the map a —
K(o; X).

The paper is organized as follows. Initially, we present a formal motivation for the class of
spaces that we will study in Section 1.1. In Section 2 we provide the notation and conventions used
throughout the entire paper, in particular we consider the three different topologies on the space
of Borel measures that we require in our approach, the strong, narrow, and weak topologies. In
Section 3, we establish the spaces of vector measures with divergences that are either represented
by measures or functions in some Lebesgue spaces, and present a known trace characterization.
Subsequently, in Section 3.1 and Section 3.2 we introduce the subspaces with generalized normal-
traces (understood as the generalization of evaluations at the boundary of normal components to
the boundary) vanishing on subsets of the boundary, and the construction of measures by means
of binary trees. Order properties and equivalent characterizations thereof needed for the definition
of the convex sets of interest are given in Section 4, and the set convergence results are given in
Section 4.1 and Section 4.2.

1.1. Formal motivation. The Prigozhin mathematical model [6, 7, 19, 20] of cohensionless and
granular material growth over a certain flat surface given by Q can be formulated as an evolving
in time gradient constrained problem without dissipative operators. For boundary conditions, one
considers a region of the boundary I where material is not allowed to leave the domain and 99\ T’
where material is allowed to leave freely. The semi-discretization of the model and the formal
determination of the Fenchel dual problem in each time step leads to trying to identify a Borel
measure p in the following class of minimization problems:

. 1 . 2
min 5 [ Jdive) - @) dot | 5o dnl(a)
I 2 Q Q
over the set of Borel measures on {2
subject to (s.t.) p-7=0onT (in some sense) and |u| < a,
where f € L?(Q2), 3 € C(Q)*; see [3]. As stated before, the expression |u| < « stands for the total
variation of u dominated by some measure « that is non-negative. The measure o may arise as a

structural constraint, that is, it may be related to a finite element mesh, and hence determined by a
linear combination of Dirac deltas (element nodes), Lebesgue one -dimensional measures (element



SETS OF MEASURES WITH DIVERGENCES AND BOUNDARY CONDITIONS 3

edges), and functions (element areas). While initially the entire formulation of the problem is
formal, we show in Theorem 5.1 that the problem can be posed rigorously and admits solutions.
In addition, Theorem 5.2 shows that the problem is stable with respect to perturbations of « with
respect to the total variation norm.

2. NOTATION AND PRELIMINARIES

Let Q be an open subset of RM with M € N, and B(2) be the Borel o-algebra on . We call
elements of B(2) Borel sets. Let M(£2) and M(Q2)" denote the set of all real-valued and R -valued
measures with N € N, respectively, on B(£2). An element o € B(f) is positive if for every B € B(2),
we have o(B) > 0. We use M (Q) to denote the set of all positive measures on B(Q2). The total
variation of a measure y € M(Q)" is the uniquely defined measure |;| € M*(Q) that satisfies

ul(B) =sup{ > |u(Bi)|: B=|JB;p forall BeB{Q),
=1 =1

see [4]. Recall that M(Q)" is a Banach space when endowed with the norm

llhagoyy = 1l (€). (2.1)

Further, by duality of the set of continuous functions with compact support C.(£2) and M(€2) ( see
Section 2.4 in [4]) we observe that

12/ (Q) = sup{ (i, ¢) : ¢ € Co(QN : |p(x)| < 1 for all z € O}, (2.2)
where the pairing in (2.2) between p and ¢ is given by

<Ma¢>=/g¢'duizg/ﬂ¢idum

with ¢ = {¢;}Y, and p = {u;},. Note that in the definition of (2.2), one could substitute the
space C.(Q) for Cy(2) without changing the value of the supremum where Cy(2) is the space of
continuous functions vanishing at the boundary 9€ and equipped with the usual ¢ — sup,cq |¢(x)]
norm.
If a sequence {u,} in M(Q)" converges to p € M(Q2)" in norm, that is
[tn — pllviyy — 0
as n — oo, we say that {u,} converges strongly to p and we denote this by
)
In addition to the topology induced by the norm g+ [u|(£2), two other topologies on M(€)" are
of interest: the narrow and the weak topologies.

Definition 2.1 (NARROW AND WEAK CONVERGENCE IN M(Q)M). Let {un} be a sequence of
measures in M(Q)N with u € M(Q)N. If for all ¢ € Co(Q)N, where Cyp(Q) is the set of bounded
continuous functions on ), we observe

/Qqé-duﬁ/ngdu

as n — 0o, we say that {u,} converges narrowly to p and write
nw
Ly, — [

Further, we say that {p,} converges weakly to p if

/S2¢-dun—>/ﬂ¢-du
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for all € Co(Q)N as n — oo, in which case we write
M — M-

Our terminology is the one used in [4]. To avoid confusion, note that our definition of narrow
convergence is called weak convergence by Bogachev [8], and other authors.

3. SPACES OF VECTOR MEASURES WITH DIVERGENCES

In this section, we consider a subset of vector valued measures in M(Q)" with @ c RV that
admit a weak divergence that is defined as a measure in M(Q2) or that can be identified as a function
in LP(Q). The reader is referred to work of Chen and Frid [11, 13, 12] and Silhavy [22] for the
seminal work on vector fields with generalized divergences and extensions. These subspaces are of
particular interest, as they allow for a definition of a normal trace integral at the boundary 92 of
Q; provided 0f2 exists, note that we have only assumed that §2 is an open set. Furthermore, the
latter is fundamental in defining measures with zero normal traces. Consider the following initial
definition.

Definition 3.1. We define DM(R) as the set of all p € M(Q)N for which there exists a measure
o € M(Q) such that

/ Vo-du= —/qbda Vo € C (). (3.1)
We define o to be the divergegce of u and der?ote
div p == o.
The subset DM(2) of M(Q2)" is then a linear space and can be defined as
DM(Q) := {u € M(Q)Y : divp € M(Q)}, (3.2)

which is a Banach space when endowed with the norm

[1ellpaee) = lelviyy + (ldiv pllae)-

If © € DM(Q2) and divu is absolutely continuous with respect to the Lebesgue measure, then we
state u € M'(£2;div). In general, for 1 < p < +o0, we define MP(2; div) as the set of all u € M(Q)V
for which there exists h € LP(Q2) such that

/ngb-du: —/ shdzr Vo e Co(Q), (3.3)
Q Q
where “dz” denotes integration with respect to the Lebesgue measure and h := div . In this
setting, we have

MP(; div) := {u € M(Q)N : divy € LP(Q)}, (3.4)

which is likewise a Banach space when endowed with the norm

12l nr(iaiv) = lellveyn + Idiv ul e ().

Hence we refer to MP(£2;div) as the space of vector measures with (weak) divergences in LP().
Further, the closed subspace of measures pn € MP(Q); div) such that divyu is identically zero is denoted
by M(€2;div 0).

We can relate the previously defined DM(2) and MP(;div) with the classical Sobolev space
H'(Q;div) defined as

HY(Q;div) := {v e L2 Q)" : divv € L*(Q)};

that is, a vector field v in L2(Q)" belongs to H'(£;div) if its weak divergence is in L?(£2). With
the usual identifications, we have H'(2;div) € DM(Q2) and H'(Q;div) C MP(£;div) for 1 < p < 2.
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Due to Chen and Frid [11, 13, 12] and Silhavy [22], we observe a form of trace characterization
for DM(£2). We denote by LipP(A) the space of Lipschitz maps z : A — R for A C R* and endow
it with the norm

12l|Lip5 (a) = Lip(2) + sup[z(z)],
zEA

where Lip(z) is the Lipschitz constant of z on A. It follows that for each p € DM(QQ) there exists
a linear functional AV, : Lip? (RM) |, — R such that for all v € Lip? (R™) we have

Nilolon) = [ (7o) + [ o ddiv g (3.5)

where ((Vv, p)) is a scalar measure on € that is absolutely continuous with respect to p. In the
case that v € C! is bounded and with bounded derivative, d{(Vv, 1)) in (3.5) can be replaced by
Vv - du. Further,

N < lelipme) 19l Lips a0y

for all g € Lip?(99Q).
Based on the previous, we define N as

N(v,,u):/QVv-du+/Qv d div p,

for 1 € DM(Q) and v € CL(€), the space of bounded functions in C'(£2) whose partial derivatives
are all bounded as well. A few words are in order concerning N(v, ): Note that since p € DM(2)
then p and divy are Borel measures, and since v € C}(Q) then v and Vo are bounded and
continuous over €, so that N(v, u) is well-defined. In addition, in what follows we also consider

CH@) = CLQ) N @),

that is, C;(Q) is the subspace of C} () of functions that can be extended continuously to 2. The
latter is used for the definition of a notion of boundary condition for measures in DM(£2).
Provided that € is sufficiently smooth, and p and v are sufficiently regular functions, we observe

N(v,u):/émvu-ﬁdHN_l,

where 77 is the outer unit normal vector at 9€2. We refer to the map N(-, u) as the normal trace of p
on 09). More specifically, if we assume that € has a Lipschitz boundary, then the map w — wlgq - 7
is extended by continuity from C°(Q) to a map from H'(Q;div) to H~1/2(9Q). In the latter case,
N(v,w) = (w - 7, v) g-1/2 g2 for all w € H'(Q;div) and all v € C}(Q).

3.1. Boundary conditions on DM(2) and MP(2; div). The map N allows us to define subspaces
of DM(€2) and MP(2; div) (defined in (3.2) and (3.4), respectively) of vector measures whose normal
traces vanish (in the sense described by N) on a part I' of the boundary 90 (if it exists) as we see
in what follows. In this vein, consider the following:

Definition 3.2. Let I' C 90 be non-empty, and define
DM () = {u € DM(Q) : N(¢, 1) = 0 for all ¢ € CL(Q) such that Slaer = 0},
and analogously we define MP.(Q;div) for 1 < p < 400 as
MP(Q;div) = {u € MP(Q;div) : N(¢, ) =0 for all ¢ € Cx(Q) such that gb|m =0}.

IfT =0, we define Mj(€; div) := MP(Q; div) and DMy(Q) := DM(Q).
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Note that due to a version of Whitney’s extension result (see [15, Theorem 2.29]) there are
always non-trivial ¢ functions in C* with arbitrary & € N and such that they vanish exactly in
the closure of 9Q \ T'. It follows that DM () and MP(Q;div) are linear subspaces of DM(Q)
and MP(Q;div), respectively. In addition, if p, — p in DM(Q), that is u, — p € M(Q)" and
div pin, — div g € M(2), and ¢ € C(2), then

/ng-d,un—l—/gbddivun—)/chﬁ-du—i—/gbddiv,u,
Q Q Q Q

so DMp(Q) is closed with respect to the DM(£2) norm. Analogously, MZ%(Q;div) is closed in
MP(Q;div).

The simplest example of a measure p in MP(£2;div), and hence also in DM p(£2), is when p given
by N-copies of the N-dimensional Hausdorff measure H". Clearly, u = (H",..., H"V) belongs to
M(Q)N and for  sufficiently regular we have by direct integration by parts that

N
9¢
Vo-d :/g dz =0
/Q ¢ du Q £ Ox;

for every ¢ € C°(Q2), where “dz” denotes integration with respect to the Lebesgue measure, and
we have used that HY is equivalent to the Lebesgue measure on Borel sets in RY. Hence, div = 0
and p € M(Q;div 0) C MP(Q;div), and if I' C 99 is non-empty then it follows that, in general,
p ¢ ME.(; div).

P(a) = ¥(b) »(b)

(i) (i) (i)

FIGURE 1. Possible C piecewise smooth curves determined by v : (a,b) — C and
associated the measure = ¢’ oy ? H! L C from Example 1. In (i), the endpoints
¥ (a), and 1 (b) are located at the boundary 02 of Q so that p € MP(Q; div) for every
p, and this also holds true for (i7) where the endpoints are the same point within Q.
Finally, in (ii¢) the endpoints are different and v (b) is located in €2 so that p as no
divergence represented as a function.

The following example establishes that for some measures determined by piecewise regular curves,
divergences exist and are either zero or the difference of point measures.

Example 1. Let a < b and ¢ : (a,b) — C C Q be a continuously differentiable bijection. Suppose
that ' is never zero and is integrable over (a,b) so that C is a regular rectifiable curve. Assume
that C' is parametrized by arc length, so that ['(t)| =1 for all t € (a,b) and b — a is the length of
the curve C. In addition, we assume that 1 is extended to [a,b] with 1 (a) and 1 (b) on Q so that
the endpoints of C may lie on the boundary 0Q2. For B € B(2), define the set-function

w(B) = . Y o L dH!. (3.6)
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Note that p € M(Q)N and
| () = / dH' = b —a.

For ¢ € Cl( ), by a change of variables of integration:

/ Vo du = / Vo ot dH! = / Vo((t)) - o/ (6L () [ ()] dt.

Since |¢'(t)| =1 for all t € (a,b), the integrand on the right hand side is %(ﬁ(i[}(t)). Hence

/Q V- du = (b)) — d(a)). (3.7)

In fact, it is not hard to see that the above holds true for : (a,b) — C C Q continuous, bijective and
piecewise continuously differentiable with |'(t)| = 1 wherever the derivative exists. The locations
of ¥(a) and 1(b) on Q lead to different scenarios as we next explore.

Suppose that P¥(a), ¥ (b) € 0. It follows that (3.7) is identically zero for all ¢ € C(2). Thus,
divu = 0 and hence p belongs to MP(Q;div) for all p. Further, divy = 0 also in the case that
P(a) = (b) even if the point is not in Q. However, if ¥ (a) or 1(b) are not in O and are not
identical, then p ¢ MP(Q;div) for each p: for, in general, if ¥ (a),1(b) € Q, then from (3.7) and
the definition of divergence

diVM = 51[)((1) - 5111(17)7 (38)
that is, the difference of two Dirac deltas at the points ¥ (a), and ¥ (b).

If ¥(a),v(b) € OQ\T, then (3.7) vanishes for all ¢ € CL(Q) such that gﬁ]m = 0. Hence, in
addition to divp = 0 (note that ¥ (a),(b) € 0Q so the previous paragraph digression applies), we
have that N(¢, ) = 0 which gives p € MP(Q;div). However, if (a) € 0Q\ T and ¢ (b) € 9Q but
P(b) ¢ OQ\T, it is clear that (3.7) fails to vanish for some ¢, in which case N(¢, ) # 0 so that
wé M?(Q; div): By the same argument given in the paragraph after Definition 3.2 there exists a
smooth function ¢ that only vanishes in OQ\ T' so that ¢p(¢(b)) # 0; see [15, Theorem 2.29]

The next example extends the previous one, and shows that for a point-wise weighted Hausdorff
H!' measure restricted to a piecewise regular curve, the divergence contains in general an H!-
weighted term in addition to the difference of Dirac deltas as in (3.8).

Example 2. Consider a < b and ¢ : (a,b) — C C Q defined as in the previous example. Further,
let h : [a,b] = R be continuously differentiable and define

=)oy P HI L C.

Hence, if $ € C1(Q) then similarly with the previous example we observe that

dt
(recall that |Y'(t)] = 1) or equivalently

[0 au= [ (howodsyn ~ [ (hovodsy ~ [ (W ouoan!,
Q Q Q C
It follows that pn € DM(Q) with

divie = h oy oyay — hotpy Loy + W ot H L C.

d b
[ v6 - au= / BUE) £ 00(0) At = HB((E) — ha)o(a) — [ Kot o)ar,

In general, o does not belong to MP(Q;div) for any p, unless h is a constant and ¥ (a) and 1 (b)
belong to O or ¥(a) = (b) (see the argument used in the previous example).
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(i) (i)
FIGURE 2. Examples of supports of measures for Example 2; the width of the curve
corresponds to the magnitude of |h(-)| at each point. In (i), the associated measure
1 possesses a divergence given by the sum of a weighted Dirac delta and a weighted

Hausdorff measure H! on C. In (ii), the measure associated to the graph possesses
a divergence that is a finite sum of weighted Hausdorff measures H!.

3.2. Divergence zero measures associated with binary trees. We consider in this section
measures induced by binary trees and combinations thereof. This geometrical structure allows one
to define measures with zero divergence as infinite series of weighted-#! measures.

3.2.1. Trees with base points in . Let Q C RY be an open set with N > 2, and where 02 is not
empty. Consider the countable collection of non-intersecting open line segments {L;} in Q such
that Ly has an endpoint x8 in Q, the other endpoint ! is shared as endpoint with only other two
segments and so on so that the collection of segments forms a binary tree L (see Figure 3), i.e.,

o0
L= U L;.
=0

Further, we assume that ), |L;| < +o0o, and that the order of the segments is such that L;, and

Lo share an endpoint with Lg, then Ls and L4 share an endpoint with Ly and Ly and Lg share

an endpoint point with Lo, and so on and so forth. Denote the endpoints of the segment L; as x{,

and z%; the 1 subscript denotes a shared endpoint with two segments L; and Ly, such that ¢ < j, k.

Finally, we assume that all branches approach the boundary, that is dist(L;, 92) — 0 as i — oc.
Suppose that each L; is parameterized by v; : [0, |L;|]] — €2 given by

[Lil =t t
(1) =

i

X
|Li| !

so that each [¢/| = 1. Further, consider the sequence of vectors {e;} in RY defined as

. xﬁ — x%) /
€; = W = 7/’1"
1~ %o
that is, e; is the vector of the line that contains L; . Let {h;} be the sequence of real numbers
defined as

hi=27F it 2k -1 << okl 9 for k=0,1,2,...
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so that the sequence {h;} has one 1/1 entry, two 1/2 entries, four 1/4 entries, eight 1/8 entries and
soon. For k=0,1,2,..., define ¥ : B(Q) — R as

r(k)—1 k
,u,k = Z Lbi where pu; = hie;H' L L;  with r(k) = Z 20
i=0 i=0

Since each y; takes the form of the vector-valued measure given in (3.6), we have ¥ € M(Q)V.
Further, since |u;| = |L;| and Y, |L;| < 400, we have that u* — p as k — oo to some pu € M(Q)V
such that

oo
,u:Z,u,; where  p; = hie;H' L L; for i=0,1,2,....
i=0

A few words are in order concerning {u*}, note that ;0 is associated with the trunk of the tree,
and that p* for k > 0 contains 2¥ more terms (branches of the tree) than pht,
If k = 0, we apply (3.7) to obtain for ¢ € C}(Q) that

/Q Vo - du® = ¢(a9) — o(a3).

Notice now that for £ € N, repeated application of (3.6) leads to cancellation of all “intermediate”
nodes in the binary tree in the sense that

ok+1_9o

/Q Vo-dut = —p(ad) +27% Y p(ad). (3.9)

i=2k—1

Combining (3.8) with the expression above gives an expression for div u* as the (weighted) family
of point masses:

2k+1_9
divp® = g0 — 27" > b
i=2k—1

Let ¢ € C°(Q2), where supp(¢) C K C 2 and K is compact. Since dist(L;,0Q) — 0 as i — oo,
then there exists a sufficiently large I € N such that ¢|r, = 0 for ¢ > I. In particular, this means
that for 28 — 1 > I, we observe

2k+1_9

> ¢lzi)=0.

i=2k—1

Therefore, for an arbitrary ¢ € C2°(2), we have from (3.9) that

/Q Vo dp = —(a). (3.10)

We conclude that divy = _5908’ If in addition we have that 938 € 09, then divy = 0, so that
p € MP(;div). Interestingly, the inclusion of p in ML (€;div) depends upon the location of T
relative to L. Observe that if ) € 0Q\ T then, (3.10) is identically zero for all ¢ € C}() such
that ¢|m = 0 (and in particular for all ¢ € C2°(2)) so that divy = 0. Hence p € MA(Q; div)
given that N(¢, ) = 0 in this case.
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Lo L
Lg

L
Ls

Ly . Lo
Ly

Lg

Y/
(4) (i)

FIGURE 3. Measures generated by binary trees where the width of the branch cor-

responds to the weight h; of the associated H'-measure. Tree with base point in
29 € Q in (i), and two binary trees sharing the base point in (ii).

3.2.2. Two trees sharing the base point. Consider now two binary trees L and L composed of
segments {L;} and {L}, respectively, as defined in the previous section. Suppose L and L share
the same base point :U8 € (), but otherwise are non-intersecting and the closure of the union of all
segments is in €2, i.e.,

|

LNL={20}, and LULCQ;

see (77) in Figure 3. Let

[e.e] [e.e]
=0 =0

and let p and [t be the measures associated to L and L, respectively, as constructed in Section 3.2.1.
Define the Borel measure ¢ : B(Q) — RY as

g =M= :&’7
and note that for any ¢ € C}(£2), we observe that
| vo-dg = —ola) + o(at) 0. (3.11)

Hence, it is not only the case that div& = 0, but also that N(¢, &) = 0 for those ¢ € C}(£2) so that
¢ € ML(9; div) regardless of the location of T

4. BOUNDED SETS OF MEASURES AND CONVERGENCE

In this section, we consider both some initial results of the natural order in M(2) induced by
the cone Mt () and some convergence results for sequences of convex sets of the type {u € X :
lu| < an}, where {a,} is a sequence in M () and X is one of the spaces of measures of interest:
M(Q)Y, DMr(Q), or MP(Q;div). The latter arise in applications to optimization problems over
subsets of M(Q)" that are bounded with respect to some specific measure.

Definition 4.1. Let u and o be elements of M(Q2). We write pu < o if
o — p belongs to MT(Q).



SETS OF MEASURES WITH DIVERGENCES AND BOUNDARY CONDITIONS 11

Note that 1 < o is equivalent to the requirement that u(B) < o(B) for all B € B(2) or that

/wdug/wda,
Q Q

for all w € C.(R2), or w € Cp(R), such that w(xz) > 0 for all z € §; the latter follows by a
combination of the dominated convergence theorem and the fact that step functions are dense
in C.(2) and Cp(2). We further have the following equivalence among orders for non-negative
measures.

Proposition 4.2. Let u,0 € MT(Q) then the following are equivalent
(a) p<o.
(b) w(O) < a(0) for all open sets O such that O C Q.
(¢) p(K) < o(K) for all compact sets K such that K C €.
(d) For all non-negative w € Cp°(Q2), it holds true that

Jwdis [ wan (4.1)

Proof. The directions (a)=-(b) and (a)=(c) are trivial. The proof for (b)=-(a) and (c¢)=(a) follows
because non-negative elements of M({2) are inner and outer regular: for « € M (Q) and B € B(f2)
we have

a(B) = inf{a(O) : O open & B C O C Q} = sup{a(K) : K compact & K C B}.

Then (b)=-(a) follows by taking the inf over all open sets O in € containing B and (c)=-(a) by
taking the sup over all compact sets K C 2, respectively.

In order to prove that (a)<(d), we only need to prove that to consider Cp°(£2) is equivalent to
considering C,(2) as the test function space in (d). Suppose that (d) holds true and let w € C.(Q2)
be arbitrary. Then via classical mollifier techniques ( see Chapter 2 in [1]), there exists a sequence
{wy} such that w, € C°(2) such that w,, — w uniformly so that

/wndn%/wdn,
Q Q

as n — oo for arbitrary n € M (Q) so it is direct to prove that (d)=-(a). Conversely, suppose (4.1)
holds true for all non-negative functions in C.(Q2) and let w € Cp°(€2) be non-negative and arbitrary.
Note that there exist a sequence of compact sets {K,} such that u(Q\ K,),0(2\ K,,) — 0 as
n — oo. Then, let w, : & — R be such that w,(z) = w(x) for x € K, each w,, has a compact
support K » that contains K,,, and 0 < w, < w . Note that the existence of w,, is guaranteed by
Urysohn’s Lemma. Hence,

/wdu:/wndu—i—/ (w — wy) dp
Q Q NKn
</wnda+/ (w — wy)dp
Q Q\K,

:/wda+/ (wn—w)da+/ (w — wy,) du.
Q O\, O\K,

Since

<2 (21618 Iw(x)l) (o(Q\ Kn) + p(Q2\ Ky)) = 0,

/ (wn—w)da+/ (w —wy)dp
O\K,, ON\Kn

as n — oo, we have proven that (a)=(d). O
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We consider now sets of measures whose total variation is dominated by a non-negative measure.
Specifically, let o € MT(2) be arbitrary, and define the set K(o; X) as

K(a; X):={peX:|u <a}, (4.2)

where X is one of the spaces of measures of interest M(2)™, DMp(92), or ME(€2;div). Note that
K(o; X) is (in all cases) convex, closed, and non-empty since 0 € K(a; X). The main focus of the
rest of the paper is to study properties of the map

a— K(a; X),

that are useful for the study of stability of optimization problems and other applications where
sets are changing with respect to other variables within the problem.
We consider two different kinds of results, a forward and a backward kind: Consider a sequence
{an} in MT(Q) converging to some a* € MT(£2) in some sense, then
i. Suppose the sequence {u,} is such that p, € K(a,; X) for n € N. Is there a subsequence
of {un} converging with respect to some topology to p* € K(a*; X)?
ii. Suppose that i € K(a*; X) is arbitrary. Is there a sequence {fi,,} such that fi,, € K(ay,; X)
for n € N and such that it converges with respect to some topology to ji?

Such form of set convergence (when topologies are chosen properly) is called Mosco convergence
[18, 17] and they can be also described by means of the more classical Painlevé-Kuratowski set
limits [14]. See the monograph [5] for an historical account on the notions of set convergence, and
[16] for relation to Gamma convergence. In general, the construction of the sequence {f, }, called
recovery sequence in ii is a more complicated task than the one in i.

Using the notation of (4.2), for rest of the paper we use

K(a) := K(a; M(Q)Y) and K (a; div) := K(o; MR (€ div)) (4.3)

to describe subsets of M(Q)Y and ME(€2;div) with total variation bounded by a € MT(Q). As
usual, if T' = (), then we write K?(a; div)

4.1. Forward results. The following lemma establishes that weak convergence of the sequence
{an} of upper bounds is stable in the sense that any sequence {u,} such that u, € K(«a,) admits
a convergent subsequence with limit point in K(«) and where « is the weak limit of {c,}.

Lemma 4.3. Suppose that {a,} is a sequence in MT(Q) such that a,, — « in M(Q) for some
o, and let {ju,} be a sequence in M(Q)N such that u, € K(ay) for n € N. Then there erists a
subsequence of {1, } weakly convergent to some pu € K(a) in M(Q)V.

Proof. Since a;, — a in M(f2), there exists an M > 0 such that |, [|a) = an(2) < M for all
n € N by the uniform boundedness principle. Since u, € K(ay) for n € N, then |u,|(©2) < M for
all n € N as well. Thus, {s,} and {|u,|} are bounded in M(Q)" and M(f), respectively. Hence,
there exist subsequences {ii; } and {|un,|} such that

Py — and \fin,; | — o, (4.4)

for some € M(Q)Y and some o € M*(Q) by [4, Proposition 4.2.2]. Further, by [4, Corollary
4.2.1] we have

<o (4.5)

/fd‘MNj’S/fdanjv
Q Q

Since pn; € K(an;), we have
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for all f € C.(2) such that f > 0. Given that a,; — a and |pp,| — o in M(2) and from (4.5), we
have by taking the limit as j — oo that

/Qfd\uﬁ/gfdaﬁ/gfda.

Finally, since f € C.(Q) with f > 0 is arbitrary, |u| < a, i.e., u € K(a) by Proposition 4.2. O

The following results show that improving the convergence of {a, } leads to improved convergence
for some subsequence {y,} such that p, € K(ay,) for all n € N.

Theorem 4.4. Suppose that {a,} is a sequence in MT(Q) such that a, — « in M(Q) for some a.
Then, every sequence {p,} in

H = | | K(an),

n=1
admits a subsequence that converges in the narrow topology on M(Q)N to some p € M(Q)N. Further,
w belongs either to K(oy) for some i € N or to the narrow closure of UfLO:j K(ay,) for each j € N.

Proof. Given that « € MT (), « is inner regular (see [4, Proposition 4.2.1]) so that for € > 0 there
exists a compact set A C Q2 such that

a(Q\A) = () — a(A,) < %

Since a,, — a in M(2), for the € > 0 chosen above there exists an N, € N such that

|a—an|(Q)<% for n > N..
Consider {ay,asz,...,ay,}, then there exist compact sets {AL, A2 ... AN} and subsets of Q
such that .
an(Q\A?)<§ n=12...,Ne
Define then

A~

A ::Aeu(AiuAfU---UA?’E),

so that A, C Q is compact and further

together with
an(\ Ae) <
In addition, for n > N, we observe
an(Q\ A = (an — @)(Q\ A + a(Q\ A
< Ja — agl(@\ A0 + a(@\ A)
< Ja — an|(Q) + a2\ Al)
< €,

€
2

so that
an(@\A) < e, (4.6)
for all n € N.
Note that measures in H are uniformly bounded in the norm of M(Q)" because {a,(Q)} is

bounded. Then, if 1 € H there exists an n € N for which |u| < ay,. Thus
sup{|u(Q\Ae) :p € H} <,
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and then by Prokohorov’s theorem [8, Theorem 8.6.2. and Theorem 8.6.7.] for every sequence
{un} in H there exists a subsequence (not relabelled) such that p, — u. In order to prove that
p € H, note that if {y,} in H then, |u,| < gy, where k& : N — N is some function. If k is a
bounded function, then we can extract a subsequence {ak(n)} that is constant and equal to some
ay- for a fixed k* € N, and hence extract a subsequence of {y,} that satisfies || < ag+. Then, by
Lemma 4.3 we can extract a further subsequence weakly convergent to p* such that |pu*| < ag«, but
since fi, —— p, then p* = p and p € H, and hence p € K (o) for some i € N. On the other hand,
if k is an unbounded function then there is some subsequence ay;,y — « for which | “"ji’ < Qi)
and p € H"" by the same preceding argument and the use of Lemma 4.3. The same digression
can be used to show that p belongs to the narrow closure of ;2 j K(ay,) for each j € N. g

The previous result leads to the following corollary to be used in the study of perturbations of
optimization problems.

Corollary 4.5. Suppose that {a,} is a sequence in MT(Q) such that o, — o in M(Q) for some a.
Let {u,} be a sequence in M(Q)N such that u, € K(ay,) for n € N. Then, there exists u € K(a)
for which p, — 1 along a subsequence.

Proof. Since a;,, — a in M(Q2) and p,, € K(a,) for each n € N, it follows from Lemma 4.3 that
pn — v in M(Q)"V along a subsequence of {yu,} with in v € K(a). Since the sequence {u,} is in
U K(ay,), and since {a,, } is in M (Q) converging strongly to v € M(2), it follows from Theorem
4.4 that a further subsequence of {u,} converges narrowly to some p. Since narrow convergence
implies weak convergence, it follows that pu = v. O

An analogous corollary holds for both MP(Q; div) and M (€; div) provided the sequence {divj, }
is uniformly bounded a priori.

Corollary 4.6. Suppose that {a,} is a sequence in MT(Q) that strongly converges to o € M1 ()
and that {pn} is a sequence with p, € K& (ay;div) with 1 < p < oco. Then, provided that

suppen |divin| o) < oo holds true, there exists a p* € K{(a;div) such that 2w in
M(Q)N and divy, — divu* in LP(Q) as n — oo (along a subsequence) .

Proof. Since p, is in K(ay,), it follows from Corollary 4.5 that p, narrowly converges to some u* €
K(«) along a subsequence. We are left to prove that p* is in M{.(Q; div). Since [|div pn| zr(q) < 00,
there is a further subsequence such that

div p, — h (4.7)
in LP(Q) for some h € LP(§2) as n — oo. For ¢ € C2°(2) and by (3.1) we observe
/ V¢ -du* = lim / Vé-du, = — lim / ¢ div p, dx = —/ h ¢dx (4.8)

where the left hand side limit is implied by the narrow convergence {u,} to p* and the limit on
the right hand side is due to (4.7); thus divy* = h and p* € MP(; div).
For T' # 0, we have that u, € MZ(Q;div) and hence

N(qb,,un):/QV(b-d,un—i—/qu div g, dx =0

for all ¢ € C}(2) such that ¢|W = 0. Since V¢ € Cyp(Q) it follows by the same argument in
(4.8) that

N(¢, u*) =0,
due to p, —> p*; thus p* € MR(Q; div). a
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Remark 4.7. The previous holds true for the case p = oo if the weak convergence is replaced by
weak-* convergence for {divi,}.

Remark 4.8. It should be noted that the narrow convergence in the conclusion of Theorem 4.4
and Corollary 4.5 is the best possible to be expected. Consider for example Q = (0,27), « be the
Lebesgue measure, and let p, = sin(nz) a so that |pu,| < o Further, p, — 0 and i, — 0, however
iy, does not converge to zero strongly, as |u,|(2) = 4.

4.2. Backward results. The previous Corollary 4.5 shows that a sequence of measures u, €
K(ay,) converges (along a subsequence) narrowly to a measure p € K(a) provided that « is the
strong limit of the sequence {ay,}. In fact, the following converse result can be obtained under
the same assumptions: For a given u € K(«) we can find a “recovery” sequence u, € K(a,) that
converges in norm to . We show this in Theorem 4.10, which follows after the next classical lemma
for the total variation of mutually singular measures.

Recall the following standard definitions: Given two measures u € M(Q)"Y, and o € M*(9), we
say that p is absolutely continuous with respect to the measure «, and we denoted it as yu < a, if
for every Borel set B such that a(B) = 0 then u(B) = 0. Further, we say that the measure p is
singular with respect to «, denoted as p L «, if there exists a Borel set B such that a(B) = 0 and
i is concentrated on B, i.e., u(C) = 0 for all Borel sets such that BN C = (. The support of u,
denoted as supp p, is the smallest closed set C' C Q such that |u[(©2\ C) = 0 and it can be proven
that equivalently:

suppp = {x € Q:Vr >0, |u|/(B,(z)) > 0},
where B,(z) ={y € Q: |z —y| <r}.

The set of (equivalence classes of) functions f : © — R¥ such that

/\f|da<+oo,
Q

is denoted as LY(Q,a)N. If for f = {f;}¥, and p = {w},, we have that f; € L(Q, ;) for
i=1,...,N, then we write that f € L'(Q, p).

We start with the result of the Lebesgue decomposition and Radon-Nikodym theorem (also
called the Radon-Nikodym decomposition or the Lebesgue-Radon-Nikodym decomposition), see [4,
Theorem 4.2.1] and [21], in our vector-valued setting.

Lemma 4.9. Let € M(Q)Y and a € MT(Q). Then, there exists F € L'(Q, )V and p* € M(Q)N
such that

u(B) = | Pdatp(B),
B
for each Borel set B C Q with p° L o, and for which

Hl(B) = /B Flda + |°|(B).

Proof. The fact that |u| = |Fa| + |1°] is a corollary to the Lebesgue decomposition, which exists
by assumption [4, Theorem 4.2.1]. Finally, since F' € L'(Q,a)" and « is positive, a standard result
gives |Fa| = |F|a and proves the claim [2, Proposition 1.23]. O

The function F' above is commonly written as g—g and called the Radon-Nikodym derivative, and
it is unique up to a set of a-measure zero. The a-integrability of F' is a consequence of the fact
that |u|(92) < 4o0.

The following result represents the initial construction of the recovery sequence in the case M(Q)"
and associated to o — K(«). The construction of the recovery sequence is done by means of scaling
via the Radon-Nikodym derivative % (where a2 is the absolutely continuous part of the Lebesgue
decomposition with respect to «) as we see next.
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Theorem 4.10. Suppose that {a,,} is a sequence in M1 (Q) such that o, — « in M(Q) for some a,
and that i € K (o) is arbitrary. Then, there exists a sequence {j,} in M(Q)N such that p, € K(ay,)
forn € N and p, — p in M(Q)V.

Proof. Any ;i € K(«) satisfies || < aso that 4 < . Then, by the Radon-Nikodym decomposition
we have y = Fa or equivalently

u(B) = [ Faa.

for any Borel set B and where F : Q — R" is such that F' € L'(Q,a)". Given that |u| = |F|a by
[2, Proposition 1.23] and |u| < «, it follows that [F| <1 .

Since o, € MT(Q) for all n € N, then again by the Radon-Nikodym decomposition we observe
that

o = gnov + Ay,
where g,, :  — R is such that g, € L'(Q;a)" and of L o with oy € M (Q). Since a(Q) = [, 1da,
we also have

(ap, —a)(Q2) = / gn — Lda+ a; ().
Q
It follows from Lemma 4.9 that

o = alhey = [ low = 11da-+a3(2) > [ g, = 1ldo, (49)

given that a;, > 0. Since |a, — a|(§2) — 0 by assumption, then ||g, — 1| 11(q,a) —+ 0 as well. Define
the sequence {F,} in L*(Q; )" as

F, = gnF,
Further, define for each n € N the measure y,, € M(Q)" as p, = Fy,a, that is for every Borel set
B we have

n(B) :/ F, da.
B
Note that since g, > 0 and |F| < 1 then
ln|=|Fpla=|F|gna < gna < an,
that is u, € K(ay). Finally, since |F| < 1, we obtain that

lim sup || pr, — MIM(Q)Nzlimsup/ |F, — F|da
Q

n—oo n—oo

= limsup/ |F||gn — 1| de
Q

n—o0

< limsup Hgn - l”Ll(Q’a) =0,
n—oo
which shows that p, — @ in norm and concludes the result. 0

For the sake of simplicity, we consider the following notation. Let u € M(Q)Y, ¢ € M+ (Q) and

let © = p®* 4+ p® be the associated Lebesgue decomposition where y* < ¢ and p® L 0. We denote
by F¥ : Q — RY the function in L.(Q)" such that

u(B) = / F"do,
B

for any Borel set B in . The existence of F} is guaranteed by the Radon-Nikodym Theorem. If
o = LN, the N-dimensional Lebesgue measure, we omit the subscript “£V” and write F* := Fg N -

In the following lemma, we show that if © € DM(2) then the measure defined by v = gu
where g is p-integrable, smooth and with p-integrable gradient is also in DM(Q). If additionally,
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€ MP(€2;div), then in order to conclude that v € MP(Q;div) additional structural assumptions
are required not only on g but also on u as we see next.

Lemma 4.11. Let g : Q — R be bounded, g € C1(Q), and also Vg € L*(Q, u) for some p € M(Q)V
Define the set function v as

v(B) = /B gdg,

for any Borel set B C . Hence,
(i) if u € DM(Q), then v € DM(Q) and its divergence div v is given by

divy(B):/ g ddiv;H—/ Vg - du,
B B

for any Borel set B C ).

(ii) In addition, suppose p € MP(Q;div) for 1 < p < 400, and Vg - F* € LP(Q2). Then,
v € MP(Q;div) provided that Vg vanishes in the support of the measure that is singular
to the Lebesque measure in the Lebesque decomposition of u, that is, Vg = 0 in supp u°
where = FFLN + 1 is the Lebesque decomposition of p with respect to the N -dimensional
Lebesgue measure LN . The divergence of v in this case is given by

divv = gdivu+ Vg - F*.
Furthermore, if O is not empty, and we assume that g € CL(Q), then (i) and (ii) hold true
exchanging DM(Q) by DMp(Q2), and MP(Q; div) by MP(Q;div), for a non-empty T' C 9.

Proof. Note initially that since g is continuous and bounded, we have that v is in M(Q)". Next,
concerning the definition of DM (), note that the test function ¢ in (3.1) within Definition 3.1 can
be exchanged from C°(2) to C1(Q2). Let u € DM(Q) and let ¢ € CL(Q) be arbitrary. Further, let
{én} be a sequence in C°(€2) for which there exists a compact set K for which supp(¢,) C K for
all n, and such that ¢, — ¢ and V¢, — V¢ converge uniformly; the existence of {¢,} follows by
standard mollification techniques. Since p € DM(Q) then

/ Ve - dp = — / b ddivp.

Also, given that V¢, — V¢ and ¢, — ¢ uniformly, and ¢y, Ve, € C.(Q) by taking the limit

above we obtain
/ch)-du:—/qb ddivp.
Q Q

Finally, since ¢ € C}(Q) was arbitrary, we can consider test functions in this space.
Let ¢ € C1(Q) be arbitrary, then since g € C*(Q2), we observe that gV¢é = V(g¢) —¢Vg. Further,
since Vg € LY(Q, i), then Vg € L*(Q, 1) and hence

[ o-av= [ ovo-du= [ Vig)-an— [ 6.

Given that g¢ € C}(Q) and u € DM(2), we have

/V(]ﬁ-dy— —/ ¢gddivu—/¢Vg-du,
Q Q Q
which proves (i).

In order to prove (ii), consider the Lebesgue decomposition of y with respect to the N-dimensional
Lebesgue measure £V, i.e., p = FFLYN + p*. Since Vg = 0 in supp p° then

/ oVg - -du = / ¢oVg - FFdzx.
Q Q
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Hence, if € MP(2;div), then
/ V¢ -dv = —/ ¢(gdivu+ Vg - F*)dzx.
Q Q

If in addition, g is bounded and Vg - F* € LP(Q2), then v € MP(Q;div), and (ii) is proven.
Let g € C}() and ¢ € CL(Q) be such that ¢(z) = 0 for all z € 92\ T'. It follows that g¢ also
vanishes on 9\ I". If € DMrp(€2), then

| (o) du =~ [ sgadivp,

so that
N(¢,v) = / ¢ddivu+/ V¢ -dv =0.
Q Q
Then, v € DMp(Q) given that ¢ € CL(Q) with ¢(x) = 0 for all z € 9Q \ ' was arbitrary. Further,

if 4 € MP(Q;div) and the assumptions of (ii) hold true, then v € MP(€; div).
g

Remark 4.12. It should be noted that g € C;(ﬁ) and Vg = 0 in suppu® where p = FFLN + 18 is
sufficient for all the assumptions concerning g in the previous theorem to hold true.

The technical lemma that we introduced above allows us to prove the existence of “recovery
sequences” for both DMp(Q2) and MP(€2;div). Specifically, for a sequence {a,}, and o in MT(Q),
the Lebesgue decomposition (with respect to «) leads to a,, = af + o and hence (almost) all
conditions can be determined by regularity and convergence properties of the Radon-Nikodym

. . da® . .
derivative {73} as we show next in the main result of the paper.

Theorem 4.13. Suppose that {ay,} is a sequence in MT () with o € MT(Q) as well. Assume that
for the Lebesgue decomposition for o, with respect to o, given by

Q= gnov + ay,
we observe that o — 0 in M() as n — oo. Further, for alln € N, g, € C*(Q), gn is bounded,
Vgn € LY (Q, ), and
sup |gn — 1| — 0,
zeQ
as n — oo.
(i) If
/ |Vgn|da — 0,
Q
as n — oo, then, for u € Ko(a) arbitrary, where
Ko(a) = {0 € DM(Q) : o] < a},

there exists a sequence {u,} in DM(Q) such that p, € Ko(ay) for n € N and p, — p in
DM(Q) as n — oo.
(ii) Suppose that, for each n € N, Vg, vanishes on supp o, the support of the measure o® where

a=FLY +aof
is the Radon-Nikodym decomposition of a. Let p € KP(a;div) be arbitrary where
K?(a;div) = {o € MP(Q;div) : |o| < a},
for 1 < p < 400, and suppose that
[1Vgal Ell o ey — 0.

Then, there exists a sequence {uy} in MP(L;div) such that p, € KP(ay,;div) for n € N and
tn, — pin MP(Q;div) as n — oo.
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(iil) If 9K is not empty, and in (i) and (ii) we assume in addition that g, € CL(Q), then their
respective results hold true when exchanging DM(Q) by DMrp(Q) in the definition of Ko, and
MP(Q; div) by MP(Q;div), i.e., by exchanging KP(ap; div) by K} (ay; div).

Proof. Given that the Lebesgue and Radon-Nikodym decomposition for a,, with respect to «, and
determined by oy, = gpa + a, satisfies o) — 0 in M(€2), and sup,cq |gn(z) — 1] — 0 as n — oo,
we initially observe that

ap — a  in M(Q),
as n — oo. Hence, the conclusion of Theorem 4.10 holds true; in particular by the construction of
its proof: For arbitrary pu € Ko(a) we define

pn(B) = / gn dpt,
B

where B is a Borel subset of 2. For each n € N, p, is well-defined given that g, is continuous and
bounded, and p < « since |p| < a. It follows that |u,| < ap, ie., p, € Ko(ay) for n € N, and
pn — 1 in M(Q)NV as n — oc.

Further, since g, is in C1(£2), it is bounded, and Vg, € L'(Q, ), and hence in Vg, € L'(Q, u),
by Lemma 4.11 we have that u, € DM(Q) and also

div pp(B) :/ gn, ddiv p +/ Vg - du.
B B

Thus for an arbitrary ¢ € C.(£2) with |p| < 1, we have

[(div g, — div i, @) Ce( ‘/ -1) dleM-l—/ @Vgn-d,u‘
Q

< |div ()] (Sup |gn(2) — 1\) +/ IVgn| da,
z€Q Q

where we have used that |u| < a. By taking the supremum over all ¢ € C.(2) with |¢| < 1, and
subsequently taking the limit as n — oo we observe that

li_}m |div g, — div p|(2) = 0,

or equivalently div p, — div g in M(Q), and hence p,, — p in DM(Q2) as n — oc.
We focus on (ii) next. Since Vg, = 0 in supp «®, the support of the measure o®, then we claim

that
/Vgn-duz/Vgn-F“dx,
B B

for all Borel sets B, where u = FFLYN + p*. Since pu € KP(a; div), then |u| < a which implies that
|F#| < F¢ and I’ <o,

where the first inequality holds pointwise a.e. with respect to the Lebesgue measure and the second
one in measure sense. In particular, the latter implies that u® < o® so that Vg, = 0 in supp ® as
well. Hence, | 5 V@n - dp® = 0 which proves the claim. Further,

[div g, — div pll o) < [[l(gn — 1) div pll o) + [[Vgn - F* || o ()
< (Sug |gn () — 1!) 1div el o) + 1V gnl Fll Lr (0
TEe
where we have used that |Vg, - F*| < |[Vg,|F®. Therefore,

Jim ([ div i — div ]| o) = 0,
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and thus p, — p in MP(Q;div) as n — oo and the result is proven.
Finally, we consider on (iii). Since Lemma 4.11 holds for DMp(f2) and Mr(£2;div) provided
gn € CL(Q), conditions (i) and (ii) of Theorem 4.13 also hold for g,, € C} ().
t

Remark 4.14. It should be noted that sufficient conditions for all instances in the theorem above
for the sequence of functions {gn} are that g, € CL(2) for n € N, g, is constant on a neighborhood
of supp a®, and that

sup |gn(z) — 1| — 0, and sup |Vgn(x)| — 0,
e e
both as n — oo.

5. APPLICATION TO OPTIMIZATION PROBLEMS

In this section we apply the results of the previous one to optimization problems that arise in
applications as described in Section 1.1. Consider the following optimization problem over the
space MP(; div) with total variation constraints:

1
min () = [ fdivp(e) = f@) do+ [ @) dlel@)
s.t. pe MP(Q;div) (P)
<«

for « € MT(Q), f € LP(), 1 < p < oo, and and 8 a non-negative continuous and bounded
function. In cases where we need to study the dependence of the problem with respect to «,

we use the notation P(«). Further note that the problem can be written as min J(u) subject to
p € KP(a; div).

Theorem 5.1. The problem (P) admits solutions.

Proof. We follow the direct method. The functional J is bounded from below and K% (c;div) is
non-empty, so choose an infimizing sequence {u,}5°; with pu, € K?(a; div) for n € N such that

li_)m T (pn) = M =inf T () s.t. pe Ki(a;div).

Since {[|divin |y (o) }ne is bounded due to the structure of J and |u,| < a for every n, it follows

from Corollary 4.6 that there is some p* € K% (a;div) for which p, 2 p* and divy, — divp* in
LP(Q) along a subsequence (not relabelled) as n — co. We claim that

J (") < liminf J(uy,) for p, — u*.

Since i, — p* then we also have that v, — v* where v, := S, with n € N and v* = Su*, that
is

vn(B) = / Bduy,, for neN and v*(B) = / Bdu*,
B B
for any Borel set B C €. Since |vy| = B|un| it follows by Corollary 4.2.1. in [4] that
[ pai) < timint [ Bl
Q n Q

Next, observe that the functional

1
Lp(Q)BUH/‘U—f‘deS
P Ja
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is weakly lower semicontinuous given that it is both continuous and convex. Therefore,
M < J(p*) <liminf J(u,)
n
Since liminf,, J(u,) = M, it follows that p* minimizes 7. O

Now we are in a position to address a stability result associated with solutions to P(a) with
respect to perturbations of a. In particular, the result hinges on both forward and backward
results associated to the convergence of a — K{\(c; div).

Theorem 5.2. Let {a,} be a sequence measures in M (Q) that converges to « € M+ (Q) in norm
and satisfies the conditions of (iii) in Theorem 4.13. For each o, a solution u, to the problem
P(a,) exists for which

o — and div p, — divp® in LP(Q),
along a subsequence (not relabeled) as n — oo for some p* € K{\(o; div) that solves P(w).

Proof. By Theorem 5.1 each problem P(ay,) has a solution p, € K{\(cap;div). It then follows from

Corollary 4.6 that p, — p* and div g, — div g* in LP (Q) along a subsequence for some measure
p* € Ki(o;div).

We now show that p* solves P(«). Let v € K¥.(;div) be arbitrary. Since we assumed that the
sequence {ay, 100 ; satisfies the assumptions required to apply Theorem 4.13, there exists a sequence
{vn}22, with v, € KL (a;div) such that v, — v in MP(Q;div) as n — oo. Exploiting that py, is a
minimizer to P(«a,,), we observe

I (pn) < T (vn)

for all indices n. It then follows from lower semicontinuity of 7 for u, — u* and div i, — div p*
in LP(Q), and the continuity of J for v, — v in M (Q; div) that

J(p*) <liminf J(p,) < liminf J(v,) = lim J (v,) = T (v)

as n — oo. Since v € K} (a;div) was arbitrary, ¢* is a minimizer for (7 and, as a result, solves

P(a). O

6. CONCLUSION

We have developed several set convergence results associated to spaces of measures that include
measures with divergences (functional or measure-valued) and directionally homogeneous boundary
conditions. Further, we have provided the first stability results for optimization problems including
such spaces.
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