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We introduce a family of local models of dynamics based on “word problems” from computer science
and group theory, for which we can place rigorous lower bounds on relaxation timescales. These models
can be regarded either as random circuit or local Hamiltonian dynamics and include many familiar
examples of constrained dynamics as special cases. The configuration space of these models splits into
dynamically disconnected sectors, and for initial states to relax, they must “work out” the other states in the
sector to which they belong. When this problem has a high time complexity, relaxation is slow. In some of
the cases we study, this problem also has high space complexity. When the space complexity is larger than
the system size, an unconventional type of jamming transition can occur, whereby a system of a fixed size is
not ergodic but can be made ergodic by appending a large reservoir of sites in a trivial product state. This
finding manifests itself in a new type of Hilbert space fragmentation that we call fragile fragmentation. We
present explicit examples where slow relaxation and jamming strongly modify the hydrodynamics of
conserved densities. In one example, density modulations of wave vector q exhibit almost no relaxation
until times O( expð1=qÞ), at which point they abruptly collapse. We also comment on extensions of our
results to higher dimensions.
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I. INTRODUCTION

A common paradigm in quantum dynamics is that
isolated quantum systems usually thermalize if one waits
long enough [1–5]. Indeed, assuming that interactions are
spatially local, quantum systems tend to approach a form of
local equilibrium on a timescale that is independent of
system size, with the late-time dynamics governed by the
hydrodynamic relaxation of a small number of conserved
densities. The main possible exception to this rule is the
many-body localized phase in strongly disordered systems
[6,7] or in systems that effectively self-generate strong
disorder [8–10]. The structures that can be rigorously
shown to arrest thermalization in translation-invariant
quantum systems—such as integrability [11], quantum
scars [12–20], dynamical constraints [21–30], etc.—are

usually fine-tuned in some sense. However, they are still of
experimental relevance since many realistic systems are
near the fine-tuned points where these phenomena occur
[31–36]. Systems near these points have long relaxation
timescales and approximate conservation laws that are
essentially exact on the timescale of realistic experiments
on noisy quantum hardware and cold atom systems.
Although the algebraic structure of integrable systems
and systems with many-body scars has been well studied,
a general understanding of the extent to which local Hilbert
space constraints can arrest thermalization is still under
development.
In this work, we introduce an alternative viewpoint for

understanding thermalization in a large class of one-
dimensional models with local Hilbert space constraints.
We begin by developing a general framework for character-
izing models with constrained dynamics in terms of semi-
groups, algebraic structures that resemble groups but need
not have inverses or an identity. This approach reproduces
examples of constrained models known in the literature but
also provides us with new examples with unusual proper-
ties. In particular, it enables us to leverage ideas from the
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field of geometric group theory to construct (a) models
with both exponentially long relaxation times and sharp
thermalization transitions and (b) models where thermal-
ization never occurs due to an unusual type of ergodic-
ity breaking we call “Hilbert-space jamming” or “fragile
fragmentation.”
The relation between constrained one-dimensional spin

chains and semigroups can be summarized as follows (see
Sec. II for a more formal discussion). Most examples of
constrained systems in the literature—and all of the
examples considered in this work—have constraints that
can be formulated in a local product state basis. In these
systems, the constraints place certain rules on the processes
that the dynamics is allowed to implement, and it is these
rules that endow the dynamics with the structure of a
semigroup. This identification works by viewing each basis
state of the on-site Hilbert space, in the computational
basis, as a generator of a semigroup. Since any element of
the semigroup can be written as a product of generators, a
many-body computational-basis product state is naturally
associated with an element of the semigroup, obtained by
taking the product of generators from left to right along the
chain. We call each computational-basis state a word, with
each word being a presentation of a certain element in the
semigroup. In this picture, the constraints are encoded by
requiring that the dynamics preserve the semigroup element
associated with each product state. In Sec. II, we show that
all local dynamical constraints can be formulated in
this way.
Of course, not all words represent distinct semigroup

elements. For example, in the case where the semigroup is a
group G with identity element e and elements g1;g2, three
distinct words of length 4 representing the same group
element are eeee, g1g−1

1 g−1
2 g2, and g1g2g−1

2 g−1
1 . Each

distinct semigroup element is thus an equivalence class of
words under the application of equivalence relations like
gig−1

i ¼ ee. The most general local dynamics that pre-
serves semigroup elements is precisely one that locally
implements these equivalence relations.
The equivalence classes so defined produce multiple

sectors of the Hilbert space (“Krylov sectors” or “frag-
ments”) that the dynamical rules are unable to connect,
breaking ergodicity and leading to Hilbert space fragmen-
tation (HSF) [21–23]. Within a given fragment, thermal-
ization of an initial basis state is a process by which the
dynamics of the system “works out” which words represent
the same semigroup element as the initial state. Crucially,
when the problem of determining which words represent a
given element is computationally hard, thermalization
within each fragment is slow.
This general perspective is powerful because it maps the

problem of thermalization in these models onto a well-
known algorithmic problem, the word problem for semi-
groups (a perspective also adopted by Hastings and
Freedman in Ref. [37] to provide examples of dynamics

exhibiting “topological obstructions” that provide a sepa-
ration between the performances of QMC and quantum
annealing). The word problem is the problem referenced
above, namely, that of deciding whether two words
represent the same semigroup element. This identification
allows us to lift examples of computationally hard word
problems from the mathematical literature to construct
models with anomalously slow dynamics. In these models,
the dynamics connects the basis states within each fragment
in a manner that is much sparser than in generic systems
(see Fig. 1 for an illustration), and it is this phenomenon
that leads to long thermalization times.
The first part of this work focuses on models where the

word problem takes an exponentially long time to solve.
We place particular focus on the “Baumslag-Solitar model,”
a spin-2 model with three-site interactions for which the
relaxation time of a large class of initial states under any
type of local dynamics (Hamiltonan, random unitary, etc.)
is provably exponentially long in the system size. This
model has a conserved charge, and this exponentially long
timescale shows up as an exponentially slow hydrodynamic
relaxation of density gradients. Not only is the relaxation
timescale anomalous, but so is the functional form: A state
with density gradients relaxes “gradually, then suddenly,”
with an initially prepared density wave experiencing almost
no relaxation for exponentially long times but then under-
going a sudden collapse at a sharply defined timescale.
Despite this extremely slow hydrodynamics, the states
involved are not dynamically frozen: Each configuration
is rapidly locally fluctuating, and generic local autocorre-
lation functions decay rapidly.

FIG. 1. Schematic illustration of the difference between the
Hilbert space connectivity of generic dynamics and semigroup
dynamics, with each yellow dot representing a computational-
basis product state in a single connected sector of the dynamics.
In a 1D system of length L, typical dynamics (left) requires at
most OðLÞ steps of the dynamics (applications of a Hamiltonian
or layers of a unitary circuit) to move between any two basis
states. In semigroup dynamics (right), the number of steps needed
scales as the Dehn function DehnðLÞ of the semigroup in
question, which measures the word problem’s temporal complex-
ity. When DehnðLÞ is large, the basis states in each sector are
connected very sparsely, leading to long thermalization times.
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In the second part of this work, we focus on word
problems that have high spatial complexity: In other words,
solving them requires not just many steps but also a large
amount of additional space for scratch work. In other
words, in these problems, deciding whether two words of
length L are equivalent requires a derivation involving
intermediate words much longer than L.
In the corresponding dynamical systems, one has (for

any fixed L) pairs of basis states jai; jbi such that (i) jai is
not connected to jbi by the dynamics of a chain of length L,
but (ii) jai ⊗ jci is connected to jbi ⊗ jci by the dynamics
of a longer chain, with jci a fixed ancillary product state.
This phenomenon can be viewed in two complementary
ways: as a “fragile” form of Hilbert space fragmentation
[38] as an unusual type of jamming that has no counterpart
in known examples of jammed systems. Using construc-
tions similar to the group model discussed above, we can
construct examples where the amount of additional spatial
resources grows extremely rapidly with L, not just expo-

nentially but also as ee
L
; ee

eL

, and so on.
This paper is organized as follows. In Sec. II, we introduce

word problems for semigroups and groups, and relate them to
fragmentation. In Sec. III, we use the complexity of theword
problem to derive bounds on thermalization times, and in
Sec. IV, we explore an explicit example of a high-complexity
groupword problem that yields dynamicswith exponentially
slow relaxation. We present numerical evidence and ana-
lytical estimates for the anomalously slow hydrodynamics of
this model. In Sec. V, we introduce and analyze a family of
group models with fragile fragmentation. Sections VI and
VII, respectively, present examples based on semigroups and
generalize our one-dimensional examples to two-dimen-
sional loop models. Finally, we conclude with a discussion
of future directions in Sec. VIII.

II. SEMIGROUP DYNAMICS
AND CONSTRAINED 1D SYSTEMS

In this section, we introduce the general framework used
to construct the models described above. We will refer to
this framework as semigroup dynamics, which encom-
passes a general class of constrained dynamical systems
whose constraints can be derived from the presentation of
the underlying group or semigroup (to be defined below).
These types of constraints are particularly appealing from a
theoretical point of view: It turns out that we can rigorously
characterize many properties—thermalization times, frag-
mentation, and so on—using tools from the field of
geometric group theory. Broadly speaking, geometric
group theory is concerned with characterizing the complex-
ity and geometry of discrete groups (see Ref. [40] for an
accessible introduction), ideas that will be made precise in
the following.
As a starting point, we describe the necessary math-

ematical background needed to motivate group dynamics.

This discussion will center around the word problem, a
century-old problem lying at the heart of results regarding
the geometry and complexity of groups. We then see how
algorithms solving the word problem can naturally be
encoded into the dynamics of 1D spin chains, whose
thermalization dynamics is controlled by the word prob-
lem’s complexity. Finally, we see how the structure of the
word problem leads to Hilbert space fragmentation and
discuss the properties of the group that control the severity
of the fragmentation.
Throughout this paper, we mostly study constrained

dynamics on 1D spin chains whose on-site Hilbert space is
finite dimensional. [41] We only consider systems whose
time evolution has constraints that can be specified in a
local tensor product basis (referred to throughout as the
computational basis), either directly or after the application
of finite-depth local unitary circuits. In the latter case, we
assume the unitary transformation has been done, to avoid
loss of generality.
We let S denote the set of computational-basis state

labels for the on-site Hilbert space, with individual basis
states being written as letters in typewriter font (jai; jbi,
etc.):

Hloc ¼ spanfjai∶a∈ Sg: ð1Þ

Strings of letters are used as shorthand for tensor products,
so, e.g., jwordi ¼ jwi ⊗ joi ⊗ jri ⊗ jdi. A ket with a
single roman letter denotes a product state of arbitrary
length, e.g., jwi ¼ jwordi.

A. Dynamical constraints and semigroups

We write DynðtÞ to denote time evolution for time t
under the dynamics in question, which may be performed
using a set of unitary gates, a (possibly space- or time-
dependent) Hamiltonian, or a bistochastic Markov chain.
Having a dynamical constraint means that not all computa-
tional-basis product states jwi; jw0i can be connected under
the dynamics. We use φðjwiÞ to denote the dynamical
sector of the state jwi, defined as the set of all computa-
tional-basis product states that jwi can evolve to; thus,

hwjDynðtÞjw0i ∝ δφðjwiÞ;φðjw0iÞ ∀ t: ð2Þ

The tensor product of computational-basis states—that
is, the stacking of one system onto the end of another—
defines a binary operation on the dynamical sector labels,
which we write as ⊙:

φðjwi ⊗ jw0iÞ ¼ φðjwiÞ ⊙ φðjw0iÞ: ð3Þ

Since the tensor product is associative, so is⊙. Thus, the set
of dynamical sectors is equipped with an associative binary
operation, thereby endowing it with the structure of a
semigroup, a generalization of a group that need not have
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inverses or an identity element. [42] Since all jwi are
formed as tensor products of the single-site basis states jai,
the φðjaiÞ—which we will write simply as a to save
space—constitutes a generating set for this semigroup. The
dynamical sector of a state jwi ¼ ja1i ⊗ � � � ⊗ jaLi is then
determined simply by multiplying ai along the length of the
chain [43]:

φðjwiÞ ¼ a1 ⊙ � � � ⊙ aL: ð4Þ

Following usual group theory notation, we denote a
semigroup with generating set S as

G ¼ semihSjRi; ð5Þ

where R denotes a set of relations imposed on the product
states that can be formed from elements of the on-site
computational-basis states S. When writing presentations
of groups we omit the inverse generators and the identity
from S, and we likewise omit trivial relations like aa−1 ¼
e;ae ¼ ea from R. For the remainder of the paper,
presentations of semigroups that are not groups will always
be denoted by semihSjRi, while presentations of groups
will be denoted simply by hSjRi.
The relations in R are determined by φ, namely, by which

product states are related to one another under Dyn.
Consider any two states jwi, jw0i such that φðjwiÞ ¼
φðjw0iÞ define the same element of G. Since we are
interested in dynamics that are geometrically local, it must
be possible to relate jwi to jw0i using a series of local
updates to jwi. Thus, the set Rmust be expressible in terms
of a set of equivalence relations that each involve only an
Oð1Þ number of the elements of S—implying, in particular,
that jRjmust be finite. A semigroup where both S and R are
finite is said to be finitely presented, and all of the
semigroups we consider are of this type.
Given a semigroup G, we use the notation DynG to

represent a general local dynamical process acting on
H ¼ H⊗L

loc which satisfies the constraint (2) and hence
preserves the dynamical sectors of all computational-basis
states. The locality of the dynamics means that DynG must
be composed of elementary blocks (unitary gates or
Hamiltonian terms) of constant length, which, when acting
on computational-basis product states, implement the
relations contained in R. Writing the relations in R as rl ¼
rr with rl=r ¼ al=r;1 � � �al=r;n, the locality of DynG is
determined by the maximal length of the rl=r, which we
denote as lR:

lR ¼ max
rl=r ∈R

jrl=rj: ð6Þ

Here, lR will always be Oð1Þ (and when G is a group, one
can show that there always exists a finite presentation of G
such that lR ≤ 3; see Appendix A for the proof).

To be more explicit, first consider the case where DynG
corresponds to time evolution under a (geometrically) local
HamiltonianH. The semigroup constraint and locality ofH
show that hw0jHjwi can be nonzero only if the words w, w0
differ by the local application of a relation in R.
Consequently, H assumes the general form

H ¼
X
i

X
r∈R

ðλi;rjrlihrrji þ H:c:Þ; ð7Þ

where jrl=rii ¼ jal=r;1ii ⊗ � � � ⊗ jal=r;niiþn and λi;r are
arbitrary complex numbers. Note that the above
Hamiltonian is only well defined if jrlj ¼ jrrj for all
relations r. In cases where this does not hold, we will
rectify this problem by adding a trivial character e to the
on-site Hilbert space—with e defined to commute with all
of the other generators a—which allows us to then “pad”
the relations r in a way that ensures that jrlj ¼ jrrj.

As a simple example, consider the group Z2 ¼
hx;yjxy ¼ yxi, which, as we will see later, in some sense
has trivial dynamics. Since the full generating set S ¼
fx;x−1;y;y−1;eg of this presentation has dimension
jSj ¼ 5, a Hamiltonian HZ2 with Z2-constrained dynamics
thus acts most naturally on a spin-2 chain. The single
nontrivial relation xy ¼ yx has length lR ¼ 2, and thus
HZ2 can be taken to be 2-local, assuming a form like

HZ2 ¼
X
i

X
a∈ S

ðλ1;ijaa−1iheeji;iþ1 þ λ2;ija−1aiheeji;iþ1

þ λ3;ijaeiheaj þ H:c:Þ
þ
X
i

ðλ4;ijxyihyxj þ H:c:Þ þ � � � ; ð8Þ

which describes two species of conserved particles,
each of which defines a Uð1Þ conserved charge na ¼P

i jaihaj − ja−1iha−1j, where a ¼ x;y. The explicit
examples we consider in this work will not be more
complicated than HZ2 in terms of their degree of locality
or the dimension of Hloc, but their dynamical properties
will be much richer.
The construction of group-constrained random unitary

dynamics is similar to the Hamiltonian case. For random
unitary dynamics, DynG is constructed using lR-site
unitary gates U whose matrix elements hw0jUjwi are
nonzero only if the length-lR words w, w0 satisfy
φðjwiÞ ¼ φðjw0iÞ. Such unitaries admit the decomposition

U¼ ⨁
g∈GlR

Ug; GlR ¼fgj∃jwi∶φðjwiÞ¼g;jwj≤lRg; ð9Þ

where GlR denotes the set of elements of G expressible as
products of precisely lR generators. A particularly natural
realization of DynG is when each Ug is drawn from an
appropriate-dimensional Haar ensemble, although we do
not need to specify to this case.
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Existing examples of constrained 1D dynamics in the
literature—from multipole conserving systems to models
based on cellular automata and other constrained classical
systems [21–28]—are all described by DynG for an
appropriate semigroup G and an appropriate kind of
dynamics (random unitary, Hamiltonian, etc.) [44]. One
of the main messages of this paper is that in addition to
providing an organizing framework for discussing 1D
constrained dynamics, approaching matters from this point
of view enables a large arsenal of mathematical tools from
the field of geometric group theory to be brought to bear,
leading to general bounds on thermalization times, precise
characterizations of ergodicity breaking, and explicit exam-
ples of models with extremely slow dynamics.

B. Word problem

We now formulate the semigroup word problem, a
concept key for determining the thermalization behavior
of models with semigroup dynamics. We refer to a
computational-basis product state—defined by a string of
generators in S, e.g., w ¼ a1 � � �aL—as a word. In what
follows, we will often slightly abuse notation by letting the
symbol w stand for both an abstract string a1 � � �aL of
generators in S and the associated computational-basis
product state ja1 � � �aLi.
Words are naturally grouped into equivalence classes

labeled by elements ofG. LettingWðSÞ denote the set of all
words, we define these equivalence classes as

Kg ≜ fw∈WðSÞjφðjwiÞ ¼ gg: ð10Þ

Any twowords belonging to the same equivalence class can
be deformed into one another by applying a sequence of
relations in R. For any two w;w0 ∈Kg, we define a
derivation from w to w0, written as Dðw ⇝ w0Þ, as the
sequence of words appearing in this deformation:

Dðw ⇝ w0Þ ¼ w → u1 → u2 → � � � → un → w0; ð11Þ

where each arrow → indicates applying a single relation
from R.
In Sec. III, we will see that the way in which DynG

thermalizes is determined by the complexity of the word
problem for G, a fundamental problem in the fields of
abstract algebra and computability theory. The word
problem is defined by the following question:

Word problem: Given two words w, w0, does
φðjwiÞ ¼ φðjw0iÞ? In other words, is there a
derivation Dðw ⇝ w0Þ?

A key result is that even in the case where both jSj and
jRj are small, answering this question can be very difficult
(even undecidably so; see Appendix C). For semigroups or
groups that do not have an undecidable word problem, a

key problem is to determine the time and space complexity
of algorithms that solve it. In what follows, we will
introduce two functions characterizing the word problem’s
complexity: the Dehn function, which governs its time
complexity, and the expansion length, which governs its
space complexity.

1. Time complexity

Our operational definition of the time complexity of the
word problem is the minimum length of a derivation
linking w to w0, as illustrated in Fig. 2(a). [45] We denote
this by Dehnðw1; w2Þ:

Dehnðw1; w2Þ ≜ min
D

jDðw ⇝ w0Þj: ð12Þ

Note that Dehnðw; w0Þ measures the nondeterministic time
complexity of the word problem since it is the maximum
runtime of an algorithm that maps w to w0 by blindly
applying all possible relations in R to w in parallel, and it
halts the first time w0 appears in the resulting superposition
of words. Time evolution under DynG can be naturally
regarded as a way of simulating this process, a connection
enabling the derivation of the bounds found in Sec. III.
For any word w, we define the length jwj of w as the

number of generators appearing in w. To denote the subset
of length-L words in Kg, we write

Kg;L ≜ fw∈Kgjjwj ¼ Lg ð13Þ

as the set of length-L words in Kg (or equivalently,
following our practice of letting w stand for both a word
and a computational-basis product state, as the collection of
product states associated with such words). The (worst-
case) time complexity across all words in Kg;L defines the
function

DehngðLÞ ≜ max
jwi;jw0i∈Kg;L

Dehnðw;w0Þ: ð14Þ

We are particularly interested in how DehngðLÞ scales
asymptotically with L. In Appendix B, we show that this
scaling is the same for any two finite presentations of the
same semigroup: Thus, we may meaningfully speak about
the Dehn function of a semigroup rather than a particular
presentation thereof. This presentation independence
imparts some degree of the robustness to the dynamical
properties that we will derive.
For the case where G is a group (rather than just a

semigroup), a fair amount more can be said. All groups
have a distinguished identity element e, and in Appendix B,
we show that [46]

DehneðLÞ≳ DehngðLÞ ∀ g∈G: ð15Þ
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We furthermore show that, as long as jKg;Lj scales
exponentially in L, then DehneðLÞ ∼ DehngðLÞ. For
groups, we thus define

DehnðLÞ ≜ DehneðLÞ ð16Þ

as a simpler characterization of the word problem’s time
complexity. The calculation of DehneðLÞ also simplifies
further for groups, as we may fix jw0i ¼ jeLi in Eq. (14)
without changing the asymptotic scaling of DehnðLÞ.
Thus, for groups, we mostly focus on computing

DehnðLÞ ¼ max
jwi∈Ke;L

Dehnðw;eLÞ ðG a groupÞ: ð17Þ

Even for groups where jSj; jRj are both Oð1Þ, DehnðLÞ
can scale in many different ways. To start, it is easy to
verify that DehnðLÞ ∼ L for all finite groups and that

G Abelian ⇒ DehnðLÞ≲ L2; ð18Þ

with DehnðLÞ ∼ L2 only when G is infinite. Indeed, for all
such groups, such as the G ¼ Z2 example above, DehnðLÞ
is bounded from above by the time it takes to transport the
conserved charges na ≜ P

iðjaihaji − ja−1iha−1jiÞ across
the system, which is about L2. For our purposes, we regard
any G with DehnðLÞ≲ L2 as uninteresting, as for these
groups DynG thermalizes on timescales generically no
slower than for conventional systems with conserved
Uð1Þ charges.

A simple example of a group with an “interesting” Dehn
function is the discrete Heisenberg group H3, which has the
group presentation

H3 ¼ hx;y;zjxy ¼ yxz;xz ¼ zx;yz ¼ zyi ð19Þ

and possesses a Dehn function scaling as DehnðLÞ ∼ L3

[47]. In Sec. IV, we give an example of a simple group where
DehnðLÞ ∼ 2L and, in Sec. V, one with DehnðLÞ ∼ 22

L
;

examples of semigroups with similarly slow dynamics are
given in Sec. VI. Going beyond these examples,
Refs. [48,49] remarkably show that for any constant α,
almost any function with growth L2 ≤ fðLÞ < Lα is the
Dehn function of some finitely presented semigroup, includ-
ing, for example, “unreasonable-looking” functions such as
L7π; L2 logL, and Le logðLÞlogðLÞ log logL.
In addition to the worst-case complexity of the word

problem, we also consider its average-case complexity
(both for groups and semigroups), a quantity that has
received much less attention in the math literature (the only
exception we are aware of is Ref. [50]). To this end, we
define the typical Dehn function DehngðLÞ as the number
of steps needed to map a certain constant fraction of words
in Kg;L to one another:

DehngðLÞ ≜ supft∶Prw;w0 ∈Kg;L
½Dehnðw;w0Þ ≥ t� ≥ 1=2g:

ð20Þ

Establishing rigorous results about Dehn is unfortunately
much more difficult than for Dehn, and the landscape of

(a) (b) (c)

FIG. 2. Semigroup dynamics and the word problem. (a) In the word problem, we are given a length-L word jwi and a series of
rewriting rules that let us make local updates to the characters of the word. The word problem for jwi is the task of deciding whether or
not a sequence of allowed updates can be found that transforms jwi into a particular reference word, here chosen to be jeLi. The Dehn
function DehnðwÞmeasures the time complexity of the word problem, namely, the minimal number of updates needed to connect jwi to
jeLi. (b) In some situations, jwi can only be transformed into jeLi by increasing the amount of available space, done here by appending
jee � � �i onto the original word. The minimal amount of extra space needed defines the expansion length ELðwÞ, which captures the
spatial complexity of the word problem. (c) For a semigroup G ¼ hSjRi defined by generators a∈ S and relations between the
generators ri ∈R, our construction defines a dynamics DynG that acts on a 1D chain with an on-site Hilbert spaceHloc ¼ fjai∶a∈ Sg.
The dynamics implemented by DynG is restricted to local updates that preserve the semigroup element obtained by multiplying the
generators along the length of the chain; the allowed updates are consequently fixed by the relations in R (with the figure drawn using the
relations r1∶ ab ¼ cd, r2∶ ef ¼ gh, etc.).
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typical Dehn functions is comparatively less well explored.
For the examples we focus on in this paper, however, a
combination of physical arguments and numerics will
nevertheless suffice to understand the rough asymptotic
scaling of DehngðLÞ.

2. Space complexity

Another complexity measure is the (nondeterministic)
space complexity of the word problem. [51] The space
complexity is nontrivial in cases where, during the course
of being deformed into w0, a word w must expand to a
length L0 > L. More formally, we define the expansion
length [52] of a derivation Dðw ⇝ w0Þ ¼ w → u1 → � � � →
un → w0 as themaximal length of the intermediatewords ui:

EL(Dðw ⇝ w0Þ) ≜ max
ui ∈Dðw⇝w0Þ

juij: ð21Þ

The relative expansion length ELðw;w0Þ between two
words is then defined as the minimal expansion length
of a derivation connecting them:

ELðw;w0Þ ≜ min
Dðw⇝w0Þ

EL(Dðw ⇝ w0Þ); ð22Þ

as illustrated in Fig. 2(b). The expansion length of a Kg;L

sector is likewise

ELgðLÞ ≜ max
w;w0 ∈Kg;L

ELðw;w0Þ: ð23Þ

Similarly, with the Dehn function, we show in Appendix B
that when G is a group, ELgðLÞ≲ ELeðLÞ for all g, so for
groups, we may use

ELðLÞ ≜ ELeðLÞ ðG a groupÞ ð24Þ

as a simple metric of the space complexity.
In Appendix B, we show that ELðLÞ≲ L for all Abelian

groups and that all finite groups have ELðLÞ ≤ Lþ C for
some constantC; such scalings are “uninteresting” from the
perspective of space complexity. Just as with the Dehn
function though, there exist simple semigroups for which
ELðLÞ grows extremely fast with L, the consequences of
which will be explored in Sec. V.

C. Semigroup dynamics and Hilbert space
fragmentation

The existence of multiple Kg;L sectors means that DynG
is not ergodic as long asG is not a presentation of the trivial
semigroup. The simplest case is when G is an Abelian
group. In this case, the Kg;L can be associated with the
symmetry sectors of a global symmetry. This case is true
simply because the sector that a given product state lives in
can be determined by computing the expectation value of

the operators ng ¼ P
iðjgihgji − jg−1ihg−1ji�Þ for each

generator g. Thus, DynG for Abelian G is already very
well understood, given the plethora of work on thermal-
ization in the presence of global symmetries.
WhenG is not an Abelian group, global symmetries may

still be present, but there inevitably exist other nonlocal
conserved quantities that distinguish different dynamical
sectors. Indeed, in Appendix D, we prove that the dynami-
cal sectors of such models are never described by
global symmetries alone. Since DynG always has nonlocal
conserved quantities if G is not an Abelian group, the
lack of ergodicity due to these quantities leads to HSF
[19,21–23,53], a phenomenon whereby the dynamics of
initial states becomes trapped in disconnected subspaces of
H—in our notation, simply the Kg;L—whose existence
cannot be attributed to the presence of global symmetries
alone.
The original works on HSF [21,22] focused mainly on

fragmentation in spin systems with conserved dipole
moments. While these systems fall within our semigroup
framework, [54] we instead find it more instructive to
review the pair-flip model introduced in Ref. [55]. The pair-
flip model is described by a spin-s Hamiltonian of the
following form:

HPF ¼
X
i

Xs
a;b¼−s

λab;iðjaaihbbji;iþ1 þ H:c:Þ: ð25Þ

For generic choices of λab;i, the model is nonintegrable.
Note that the product states jwi where w ¼ a1 � � �aL are
annihilated by HPF if ai ≠ aiþ1 for all i. These product
states alone provide ð2sþ 1Þð2sÞL−1 dynamically discon-
nected dimension-1 sectors not attributable to any local
symmetry, meaning that HPF exhibits HSF.
The dynamics generated by HPF is in fact a special case

of our construction applied to the group

Z�ð2sþ1Þ
2 ¼ hg1;…;g2sþ1jg2

i ¼ ei; ð26Þ

where � denotes the free product. Note that HPF can be
obtained from our general construction by considering a
modified on-site Hilbert spaceH0 ¼spanfjgi;jg−1i∶g∈Sg,
which contains no e generator. The relation g2

i ¼ e can be
rewritten without e as g2

i ¼ g2
j for all i, j, and a general

local Hamiltonian acting on ðH0Þ⊗L that obeys the Z�ð2sþ1Þ
2

may accordingly be written as

H ¼
X
i

X
g;h∈ S

ðλgg;ijggihhhji;iþ1 þ H:c:Þ; ð27Þ

which matches the Hamiltonian in Eq. (25). Unfortunately,

the Dehn function of Z�ð2sþ1Þ
2 is easily seen to scale as
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DehnðLÞ ∼ L2 and thus does not provide a complexity
scaling that is unusual enough to warrant further study.
Having discussed the concept of HSF, let us further

understand the structure and size of disconnected sectors
under the dynamics DynG. The number of such discon-
nected sectors is at least as large as the number of
subspaces, each labeled by Kg;L for some g∈G. Thus,
the number of such subspaces—which we denote as
NKðLÞ—depends on the number of semigroup elements
expressible as words of length less than or equal to L. In
particular, we define the geodesic length jgj of an element
g∈G as the length of the shortest word representing g:

jgj ¼ min
w∈Kg

jwj: ð28Þ

A word w with φðjwiÞ ¼ g satisfying jwj ¼ jgj is called a
geodesic word. Then,

NKðLÞ ¼ jfgjjgj ≤ Lgj: ð29Þ

Semigroups with more elements “close” to the identity thus
have dynamics with a larger number of Hilbert space
fragments. As an example, one may readily verify that in
the pair-flip model, NKðLÞ ∼ ð2sÞL grows exponentially as
long as s > 1=2.
For many models with group constraints, including the

pair-flip model, NKðLÞ exactly determines the number of
Hilbert space fragments. However, for some semigroups,
NKðLÞ is not the full story, with each Kg;L further fragment-
ing into subspaces in a way controlled by the expansion-
length function defined in Eq. (23). Understanding this
phenomenon is the subject of Sec. V.
In the study of HSF, a distinction is often made between

“strong” and “weak” HSF. This distinction was originally
discussed in the context of Hamiltonian dynamics [21],
where it was defined by violations of strong and weak ETH,
respectively. Since we focus our discussion at a level where
the nature of DynG may or may not involve eigenstates, we
instead adopt a slightly different definition in terms of the
size of the largest Kg;L sector, which we denote as Kmax;L

(in Appendix B, we prove that, for groups, the largest sector
is in fact always the one associated with the identity,
Kmax;L ¼ Ke;L). We say that the dynamics is
(1) weakly fragmented if jKmax;Lj=jHj → Oð1Þ as

L → ∞, and
(2) strongly fragmented if jKmax;Lj=jHj → 0 as L → ∞.

We find it useful to subdivide the strongly fragmented
case into additional classes according to how quickly
jKmax;Lj=jHj vanishes as L → ∞. We say that the frag-
mentation in the case of strong HSF is
(1) polynomially strong if jKmax;Lj=jHj∼1=polyðLÞ,

and
(2) exponentially strong if jKmax;Lj=jHj ∼ expð−LÞ.

Note that the above definitions are made without
reference to any global symmetry sectors. Thus, if global
symmetries happen to be present, the quantum numbers
associated with them will constitute part of the elements g
labeling the different dynamical sectors, and the above
definition of strong or weak HSF will simply single out the
largest, regardless of its symmetry quantum number(s).
When symmetries are present, one could also quantify the
degree of fragmentation by first fixing a quantum number,
changing KmaxðLÞ to be the largest sector having that
quantum number, and replacing jHj by the dimension of
the chosen symmetry sector. However, since generic DynG
dynamics need not have any global symmetries, and since
the result of the above procedure can depend sensitively on
the chosen quantum number [56–58], we focus only on the
above (simpler) definition, which maximizes over all
symmetry sectors.
Our models provide a way of addressing two questions

raised in Ref. [21]. The first question was whether or not
1D models exist with 0 < jKmax;Lj=jHj < 1 in the thermo-
dynamic limit (known examples with weak fragmentation
all have jKmax;Lj=jHj → 1 in the thermodynamic limit).
Our construction answers this question in the affirmative,
with examples provided by DynG for any finite non-
Abelian G (e.g., G ¼ S3).
The second question concerns the existence of models

where jKmax;Lj=jHj vanishes more slowly than exponen-
tially as L → ∞ after specifying to a fixed symmetry sector
(in fact, an affirmative answer to this question was already
provided by the spin-1 Motzkin chain introduced in
Ref. [59], where jKmax;Lj=jHj ∼ L−3=2 [60]). Our models
provide (many) more examples of this phenomenon, as one
need only let G be a group with L2 ≲ DehnðLÞ≲ L∞, a
simple example being the discrete Heisenberg group
H3 [61]. One may further ask whether there are strongly
fragmented systems where jKmax;Lj=jHj decays at a rate in
between 1=polyðLÞ and expð−LÞ. The answer to this
question is again affirmative, with one such example being
the focus of Sec. IV.

III. SLOW THERMALIZATION AND THE TIME
COMPLEXITY OF THE WORD PROBLEM

From the discussion of the previous section, it is natural
to expect that systems with DynG dynamics will have
thermalization times controlled by the time complexity of
the word problem, as diagnosed by the Dehn functions
DehngðLÞ defined in Eq. (14). In this section, we make this
relationship precise by using the functions DehngðLÞ to
place lower bounds on various thermalization timescales. In
the case of random unitary or classical stochastic dynamics,
DehngðLÞ will be used to bound relaxation and mixing
times; for Hamiltonian dynamics, it will appear in bounds
for hitting times.
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A common feature these timescales have is that they
quantify when DynG is able to spread initial product states
across Hilbert space. This feature cannot usually be probed
by looking at correlation functions of local operators,
which would be the preferred method for thinking about
thermalization. While the bounds derived in this section do
not mandate that the relaxation of local operators also be
controlled by DehngðLÞ, in Sec. IV we will explore an
explicit example in which they are. Until then, we focus
on the more “global” diagnostics of relaxation and hit-
ting times.
We note in passing that it is impossible to use

DehngðLÞ—or any other quantity—to place upper bounds
on thermalization timescales without making any addi-
tional assumptions about the details of DynG (as without
additional assumptions, we could always choose DynG to
be the evolution with a many-body localized Hamiltonian,
and the relevant timescales would all diverge). Even in
the case where DynG is an appropriately constrained
form of random unitary evolution, upper bounding the
relaxation timescales requires techniques beyond those
employed below and constitutes an interesting direction
for future work.

A. Circuit dynamics

We first discuss the case where DynG is generated by a
G-constrained random unitary circuit, which can be
mapped to the case where DynG is a classical Markov
process. We assume that DynG is expressed as a brickwork
circuit whose gates act on lR sites, with lR the maximum
size of a relation in R. Note that DynGðtÞ will be used to
denote t∈N time steps of this dynamics, with each time
step consisting of lR staggered layers of gates.
Let us first look at how operators evolve under DynGðtÞ.

We use overbars to denote averages over circuit realiza-
tions, so acting on an operator O with one layer of the
brickwork (corresponding to a time of t ¼ 1=lR) gives

Oðt ¼ l−1
R Þ ¼ Dyn†Gðl−1

R ÞODynGðl−1
R Þ

¼ E
fUj;g;Uj0 ;g0 g

⨁
j

⨁
g∈GlR

U†
j;gO⨁

j0
⨁

g0 ∈GlR

Ug0;j0 ;

ð30Þ

where each Uj;g acts on a length-lR block of sites and GlR ,
as before, denotes the set of group elements expressible as
words of length less than or equal to lR. Assuming the Uj;g

are drawn uniformly from the jKg;lR j-dimensional Haar
ensemble, [62] performing the average gives

Oðt ¼ l−1
R Þ ¼ ⨁

j

� X
g∈GlR

Tr½OjΠKg;lR
�

jKg;lR j
ΠKg;lR

�
; ð31Þ

where we have defined

ΠKg;lR
≜ X

w∈Kg;lR

jwihwj ð32Þ

as the projector onto the space of length-lR words w with
φðjwiÞ ¼ g, as well as—without loss of generality—taken
O to factorize as O ¼ ⊗jOj.
Thus, after a single step of the dynamics, all operators

completely dephase and become diagonal in the computa-
tional basis, and operators violating the dynamical con-
straint evaluate to zero under Haar averaging. We may thus
focus on diagonal operators without loss of generality,
which we indicate using vector notation as jOðtÞi. With this
notation, Eq. (31) becomes

jOðt ¼ l−1
R Þi ¼ M1jOi ð33Þ

with the matrix

M1 ¼
� X

g∈GlR

Π̃Kg;lR

�
⊗L=lR

; ð34Þ

where

Π̃Kg;lR
≜ 1

jKg;lR j
X

w;w0 ∈Kg;lR

jwihw0j ð35Þ

projects onto the uniform superposition of states within
Kg;lR .
Different layers of the brickwork likewise define matri-

cesMi, with i ¼ 1;…;lR, where i denotes the staggering.
Defining

M ≜ YlR

i¼1

Mi; ð36Þ

diagonal operators evolve as

jOðtÞi ¼ MtjOi: ð37Þ

Here,M is a symmetric [64] doubly stochastic matrix, with
the smallest eigenvalue of 0 and the largest eigenvalue of 1.
Because of the group constraint,M does not have a unique
steady state, following from the fact that the Markovian
dynamics is reducible as

M ¼ ⨁
g∈GL

Mg: ð38Þ

However, each Mg defines a irreducible aperiodic Markov
chain, whose unique steady state is the uniform distribution

jπgi ≜ ð1=jKg;LjÞ
P

w∈Kg;L
jwi. Infinite-temperature cir-

cuit-averaged correlation functions are determined by the
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mixing time and spectral gap of the Mg, which we now
relate to the Dehn function.
First, consider the mixing time of Mg, which we may

view as a characterization of the thermalization timescale
within Kg;L:

tmixðgÞ ≜ minft∶ max
jwi∈Kg;L

jjMt
gjwi − jπgijj1 ≤ 1=2g: ð39Þ

A basic result [65] about tmixðgÞ is that it is lower bounded
by half the diameter of the state space that Mg acts on
simply because, in order to mix, the system must, at the
minimum, be able to traverse across most of state space.
Thus, we have the bound

tmixðgÞ ≥
DehngðLÞ

2
: ð40Þ

However, this bound is, in fact, too loose. Intuitively, to
saturate the bound, DynGðtÞ would need to immediately
find the optimal path between any two nodes in configu-
ration space. Since M generates a random walk on state
space, the dynamics will instead diffusively explore state
space in a less efficient manner. On general grounds, one
might therefore expect a bound on tmixðgÞ that is the square
of the rhs above. This guess, in fact, turns out to be
essentially correct, with

tmixðgÞ ≥
Dehn2gðLÞ
16 ln jKg;Lj

; ð41Þ

which follows from Prop. 13.7 of Ref. [66] after using the
fact that the equilibrium distribution of Mg is always
uniform on Kg by virtue of Mg being doubly stochastic.
Since jKg;Lj is at most exponential in L, we thus have

tmixðgÞ ≥ Cg
Dehn2gðLÞ

L
ð42Þ

for some g-dependent Oð1Þ constant Cg. We generically
expect the random walk generated by M to be the fastest
mixing local Markov process; hence, we expect it to
saturate the above bound on tmixðgÞ, a prediction that we
will confirm numerically for the example in Sec. IV.
Correlation functions for operators computed in states in

Kg;L are controlled by the relaxation time trel of Mg,
defined by the inverse gap of Mg:

trelðgÞ ≜ 1

1 − λ2
; ð43Þ

where λ2 is the second-largest eigenvalue of Mg. This
quantity admits a similar bound to tmixðgÞ, as one can see
that [65]

trelðgÞ ≥
tmixðgÞ

lnð2jKg;LjÞ
; ð44Þ

and hence

trelðgÞ ≥ C0
g
Dehn2gðLÞ

L2
; ð45Þ

with C0
g another Oð1Þ constant. Thus, DehngðLÞ places

lower bounds on both mixing and the decay of correlation
functions. Note that the operators whose correlators decay
as trelðgÞ need not be local; indeed, the obvious ones to
consider are projectors like jwihwj. In Sec. IV, we will,
however, explore an example that possesses local operators
that relax according to Eq. (45).
Note that the mixing and relaxation times are worst-case

measures of the thermalization time. We can additionally
define a “typical” mixing time tmixðgÞ as

tmixðgÞ ≜ minft∶PrjwiðjjMt
gjwi − jπgijj1 ≤ 1=2Þ ≥ 1=2g;

ð46Þ

where Prjwi indicates the probability over words uniformly
drawn from Kg;L. By following similar logic as above, one
can derive similar bounds on tmixðgÞ in terms of the typical
Dehn function.

B. Hamiltonian dynamics

We have thus far discussed mixing times of the Markov
chains that arise from random unitary dynamics. However,
purely Hamiltonian dynamics does not mimic that of a
Markov chain, and being reversible, it possesses no direct
analogues of mixing and relaxation times. Nevertheless, the
Dehn function can still be used to place bounds on the
timescales taken for time evolution to spread wave func-
tions across Hilbert space. To be more quantitative, we
focus on the hitting time thitðgÞ of DynG, which we define
as the minimum time needed for product states in Kg;L to
“reach” all other product states in Kg;L. Since hw0je−iHtjwi
will generically be nonzero for all jwi; jw0i∈Kg;L as soon
as t > 0, we need a slightly different definition of thitðgÞ as
compared with the Markov chain case.
To define thitðgÞ more precisely, we first define the

hitting amplitude between two computational-basis product
states jwi; jw0i∈Kg;L as

hww0 ðt; gÞ ≜ jhw0jDynGðtÞjwij2: ð47Þ

Note that hw;·ðt; gÞ is a probability distribution on Kg;L,
with

P
w0 ∈Kg;L

hww0 ðt; gÞ ¼ 1 for all jwi∈Kg;L. We define
thitðg; w; w0Þ between two words w and w0 as the minimum
time for which hww0 ðt; gÞ reaches a fixed fraction of its
infinite-time average hww0 ðgÞ, defined by
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hww0 ðgÞ ≜ lim
T→∞

1

T

Z
T

0

dthww0 ðt; gÞ: ð48Þ

The hitting time is the maximum over all pairs of words
jwi; jw0i∈Kg;L of thitðg; w; w0Þ, which is written as

thitðgÞ ≜ max
jwi;jw0i∈Kg;L

min

�
t∶hww0 ðt; gÞ > 1

2
hww0 ðgÞ

�
: ð49Þ

To bound thitðgÞ, we first evaluate the hitting amplitude
as

hww0 ðt; gÞ ¼ jhw0je−iHtjwij2

¼
����
X∞
k¼0

tk

k!
hw0jð−iHÞkjwi

����
2

: ð50Þ

We know that the minimum k such that hw0jHkjwi ≠ 0 is
given by Dehngðw;w0Þ, which, for brevity, we denote by
dww0 in the following. The first dww0 terms in the above sum
will thus vanish; thus, truncating the above Taylor series at
the leading nonzero term, we apply the remainder theorem
to find

hww0 ðt; gÞ ≤
�
tdww0 jhw0jHdww0 jwij

dww0 !

�
2

: ð51Þ

To diagnose the hitting time, we need to compare hww0 ðt; gÞ
with its long-time average hww0 ðgÞ by relating the above
matrix element jhw0jHdww0 jwij2 to hww0 ðgÞ as follows.
Writing fjEig for H’s eigenbasis, we find

jhwjHdww0 jw0ij2 ¼
����
X
E

hwjEihEjw0iEdww0

����
2

≤
�X

E

jhwjEj2jhEjw0j2
��X

E

jEj2dww0
�
;

ð52Þ

where the second line follows from the Cauchy-Schwarz
inequality. The first factor in parentheses is simply hww0 ðgÞ,
which can be readily verified:

hww0 ðgÞ ≜ lim
T→∞

1

T

Z
T

0

hww0 ðt; gÞdt

¼ lim
T→∞

1

T

X
E;E0

hwjEihEjw0ihw0jE0ihE0jwi

×
Z

T

0

e−iðE−E0Þtdt; ð53Þ

which, assuming that the spectrum of HjKg;L
is nondegen-

erate (which we assume to be the case throughout this
paper), gives

hww0 ðgÞ ¼
X
E

jhwjEij2jhEjw0ij2: ð54Þ

Inserting this into Eq. (52), we obtain

jhwjHdww0 jw0ij2 ≤ jHjhww0 ðgÞ × jjHjj2dww0∞ : ð55Þ

Since H is local, jjHjj∞ ¼ λL for some Oð1Þ constant λ.
We may thus write Eq. (51) as

hww0 ðt; gÞ ≤
�ðλLtÞdww0

dww0 !

�
2

jHjhww0 ðgÞ: ð56Þ

As long as dww0 ¼ ΩðLÞ, hww0 ðt; gÞ is much smaller than
its equilibrium value when t ¼ Ωðdww0=LÞ. Indeed, from
Stirling’s approximation, we have

hww0 ðηdww0=L; gÞ ≤ ðληeÞ2dww0
2πdww0

jHjhww0 ðgÞ; ð57Þ

which can always be made exponentially small in L by
choosing η appropriately if dww0 ¼ ΩðLÞ. We conclude that

thitðgÞ ≥
DehngðLÞ

L
; ð58Þ

which is essentially the same bound as our naive result (40)
for trelðgÞ in the case of random circuit evolution. It would
be interesting to see if this bound could be improved to the
square of the rhs, as in Eq. (45).
Finally, we note that just as with the mixing time, a

typical hitting time may also be defined as

thitðgÞ ≜ supft∶Prw;w0 ∈Kg;L
ðthit;ww0 ≥ tÞ ≥ 1=2g: ð59Þ

Arguments similar to the above then show that thitðgÞ
admits a similar bound in terms of DehngðLÞ.

IV. BAUMSLAG-SOLITAR
GROUP: EXPONENTIALLY
SLOW HYDRODYNAMICS

The previous two sections have focused on developing
parts of the general theory of semigroup dynamics. In this
section, we take an in-depth look at a particular example
that exhibits anomalously long relaxation times.
Our example will come from a family of groups whose

Dehn functions scale exponentially with L, yielding word
problems with large time complexity. [67] When
DehnðLÞ ∼ expðLÞ, the hitting and mixing times discussed
in the previous section are exponentially long. It is perhaps
already rather surprising that a translation-invariant local
Markov process or unitary circuit can have mixing times
that are this long, but our example is most interesting for
another reason: It also possesses a global symmetry whose
conserved charge takesDehnðLÞ time to relax. This feature
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allows the slow time complexity of the word problem to be
manifested in the expectation values of simple local
operators, rather than being hidden in hitting times between
different product states.
Our example comes from a family of groups known in

the math literature as the Baumslag-Solitar groups [68],
which are parametrized by two integers n;m∈N. Each
group BSðn;mÞ in this family is generated by two elements
a and b obeying a single nontrivial relation, with the group
presentation

BSðn;mÞ ¼ ha;bjbamb−1 ¼ ani: ð60Þ

Models with DynBSðn;mÞ dynamics are thus most naturally
realized in spin-2 systems with maxðn;mÞ-local dynamics
and on-site Hilbert space

Hloc ¼ spanfjai; ja−1i; jbi; jb−1i; jeig: ð61Þ

The simplest Baumslag-Solitar group that is interesting for
our purposes is BSð1; 2Þ, and the rest of our discussion will
focus on this case. For convenience, in what follows, we
will write BSð1; 2Þ simply as BS.
The nontrivial relation in BS reads

ab ¼ ba2; ð62Þ

so a generators duplicate when moved to the right of b
generators. By taking inverses, the a generators are also
seen to duplicate when moved to the left of b−1 generators:

b−1a ¼ a2b−1: ð63Þ

This duplication property means that an OðnÞ number of b
and b−1 generators can be used to grow an a generator by
an amount of order Oð2nÞ, as

b−nabn ¼ a2n : ð64Þ

We will see momentarily how this exponential growth can
be linked to the Dehn function of BS, which also scales
exponentially.
Another key property of Eq. (62) is that it preserves the

number of b’s. Thus, models with DynG dynamics possess
a Uð1Þ symmetry generated by the nb, defined as

nb ≜ X
i

nb;i ≜
X
i

ðjbihbji − jb−1ihb−1jiÞ: ð65Þ

It is this conserved quantity that will display the exponen-
tially slow hydrodynamics advertised above.

A. Geometric perspective on group complexity

To understand how dynamics in DynBS works, we find it
helpful to introduce a geometric way of thinking about the

group word problem. [69] Given a general discrete group
G, we let CGG denote the Cayley graph of G. Recall that
CGG is a graph with vertices labeled by elements of G and
edges labeled by generators of G and their inverses, with
two vertices h;k being connected by an edge g iff h ¼ gk.
As simple examples, CGZN

for ZN ¼ hgjgN ¼ ei is a
length-N closed cycle; CGZ2 for Z2 ¼ hx;yjxy ¼ yxi is a
2D square lattice; and CGZ�Z for the free group Z � Z ¼
hx;yji is a Bethe lattice with coordination number 4 [70].
It is useful to realize that from any Cayley graph CGG,

we can always construct a related 2-complex by associating
oriented faces (or 2-cells) to each of CGG ’s elementary
closed loops; the 2-cells have the property that the product
of generators around their boundary is a relation in R. For
the above-mentioned examples, ZN would have one
N-sided face, Z2 would have a face for each plaquette
of the square lattice (with the generators around the
plaquette boundaries reading xyx−1y−1), and the free
product Z � Z would have no faces at all (due to its lack
of nontrivial relations). The 2-complex thus constructed is
known as the Cayley 2-complex of G, and we abuse
notation by also referring to it as CGG.
Any group word w∈WðGÞ naturally defines an oriented

path in CGG obtained by starting at an (arbitrarily chosen)
origin of CGG and moving along edges based on the
characters in w. The end point of this path on the Cayley
graph is thus the group element φðjwiÞ. Additionally,
applying local relations in R to w deforms this path while
keeping its end points fixed. This process gives a geometric
interpretation of the subspaces Kg;L:

Kg;L ¼ fPjP ¼ length-L path from origin to g in CGGg:
ð66Þ

In particular, the (largest) subspace Ke;L is identified with
the set of all length-L closed loops in CGG. The number
NKðLÞ of Krylov sectors is the number of vertices of CGG
located a distance of less than or equal to L from the origin.
Having provided a relationship between Krylov sub-

spaces and the Cayley 2-complex, what is the geometric
interpretation of the Dehn function? Based on the defi-
nition (17), we can restrict our attention to deformations
Dðw ⇝ eLÞ for w∈Ke;L, which are simply homotopies
that shrink the loop defined by w down to a point. The loop
passes across one cell at each step, and the number of steps
inDðw ⇝ eLÞ is the area enclosed by the surface swept out
by the homotopy. In particular, the Dehn function of w is

Dehnðw;eLÞ ¼ min
S∶∂S¼w

areaðSÞ; ð67Þ

where the minimum is over surfaces inCGG with boundary
w; we thus refer to

areaðwÞ ≜ Dehnðw;eLÞ ð68Þ
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as the area of w. The Dehn function of the group is then the
largest area of a word in Ke;L:

DehnðLÞ ¼ max
loops w of length L

Dehnðw;eLÞ: ð69Þ

This perspective is important as it gives the algorithmic
definition of DehnðLÞ a geometric meaning. The large-
scale geometry of CGG thus directly affects the complexity
of the word problem and, consequently, the thermalization
dynamics of DynG.

B. Geometry of BS and the fragmentation of DynBS

The simple examples (discrete groups, Abelian groups,
and free groups) discussed above are all geometrically
uninteresting, but theBS group is a notable exception. Note
that CGBS has the structure of an infinite branching tree of
hyperbolically tiled planes; it is illustrated in Fig. 3. To
understand how this happens, recall that b−nabn ¼ a2n .
Thus, for all n, b−nabna−2n forms a closed loop in CGBS.
This closed loop gives rise to a tiling of the hyperbolic
plane, as shown in Fig. 3(a). Letting multiplication by a
correspond to the motion along the x̂ direction and
multiplication by b to the motion along ŷ, the hyperbolic
structure comes from the fact that moving by 2n sites along

the x̂ direction of the Cayley graph can either be accom-
plished by a direct path (multiplication by a2n ) or a path
that requires exponentially fewer steps, which first traverses
n steps along the ŷ direction before moving along x̂
(multiplication by b−nabn).
The full geometry of CGBS is more complicated than a

single hyperbolic plane, however. As shown in Fig. 3(a),
this can be seen from the fact that the word bab cannot be
embedded into the hyperbolic plane. Instead, this word
must “branch out” into a new sheet, which also forms a
hyperbolic plane. Figure 3(b) illustrates the consequences
of this process for the Cayley graph, whose full structure
consists of an infinite number of hyperbolic planes glued
together in the fashion of a binary tree (formally, the
presentation complex of BS is homeomorphic to R × T3,
where T3 is a 3-regular tree).
The locally hyperbolic structure of CGBS means that the

number of vertices within a distance L of the origin—and
hence the number of Krylov sectors NKðLÞ—grows expo-
nentially with L. In Appendix E, we argue that the base of
the exponent is very nearly

ffiffiffi
3

p
:

NKðLÞ ≈
ffiffiffi
3

p
L: ð70Þ

(a) (b)

FIG. 3. Group geometry of BSð1; 2Þ. The Cayley graph of BSð1; 2Þ is constructed from an infinite number of two-dimensional sheets
glued together in a treelike fashion. (a) Single sheet of the Cayley graph, which resembles a hyberbolic plane. Orange arrows denote
multiplication by a and purple arrows multiplication by b, with the boundary of each plaquette being the defining relation
aba−1a−1b−1 ¼ e. The diagonal purple lines denote edges that connect to different sheets; all diagonal edges connected to vertices at
the same “height” connect to the same sheet. (b) How different sheets are glued together to form the full Cayley graph. The shaded
yellow region denotes how a section of a single sheet is embedded in the full Cayley graph. The bold dashed path denotes the path traced
out by a “large” word wlargeðnÞ ¼ ab−na−1bna−1b−nabn, which is homotopic to the identity (φðjwlargeiÞ ¼ e) and possesses an area
scaling exponentially with its length. In the figure, n ¼ 3, and the path on the Cayley graph is ordered by points 1 to 8, according to the 8
different components of wlarge (read from right to left). Thus, the point 2 corresponds to the word b3, the point 5 corresponds to
a−1b−3ab3, and so on.
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Interestingly, despite having exponentially many Hilbert
space fragments, it is known that the largest sector Ke;L

occupies a fraction of the full Hilbert space H that
decreases subexponentially with L:

jKej
jHj ∼ e−αL

1=3
; ð71Þ

where the numerical results in Fig. 4—obtained by sam-
pling random words and postselecting on membership in
Ke;L—indicate that α ≈ 1.84. Models with DynBS dynam-
ics provide an example (indeed, the first that we are aware
of) of a strongly fragmented model where the largest sector
occupies neither an exponentially nor polynomially small
fraction of Hilbert space.

C. Dehn function

We finally have the necessary tools to explain why the
Dehn function of BS grows exponentially with L. Define
the word

wlargeðnÞ ≜ ab−na−1bna−1b−nabn; ð72Þ

which is of length jwlargeðnÞj ¼ 4nþ 4, belongs to Ke;L,
and is shown for n ¼ 3 in Fig. 3 as the thick dashed line in
panel (b). As a path, this word can be broken into two legs.
The first leg moves to the vertex labeled by a2n by first
going “up” the hyperbolic plane of a given sheet, traversing
one step along x̂, and then coming back “down.” The
second leg moves back to the origin but does so by passing
along a different sheet of the tree. From Fig. 3, it is clear
that the area of the minimal surface bounding wlargeðnÞ is
exponentially large; more precisely, it is

area(wlargeðnÞ) ¼ 2
Xn−1
i¼0

2i ¼ 2nþ1 − 2; ð73Þ

which scales exponentially with n. This construction thus
shows that DehnðLÞ ¼ Ωð2LÞ [71]. This bound is in fact
tight (see Appendix E), so

DehnðLÞ ¼ Θð2LÞ: ð74Þ

From the results of Sec. III, this finding implies that DynG
has exponentially long mixing, relaxation, and hitting
times.
A more sophisticated treatment needs to be given in

order to understand the scaling of the typical Dehn function
DehnðLÞ. To our knowledge, this question has not been
answered in the math literature. While we will not provide a
completely rigorous proof of DehnðLÞ’s scaling, a combi-
nation of physical arguments and numerics—which we
relegate in their entirety to Appendix E—indicates that

DehnðLÞ ∼ 2
ffiffiffi
L

p
: ð75Þ

The rough intuition behind this result is that a typical
closed-loop path in Ke;L will roughly execute a random
walk along the tree part of CGBS, reaching a “depth” offfiffiffiffi
L

p
; from this point, it is then able to enclose an area

exponential in this depth. Giving a rigorous proof of
Eq. (75) could be an interesting direction for future
research.

D. Exponentially slow hydrodynamics

An observation about the word wlargeðnÞ is that it
contains a density wave of bs, with the profile of nb;i
looking like two periods of a square wave as a function of i.
Utilizing the fact that areaðwlargeðnÞÞ ∼ 2n, one sees that this
density wave takes an exponentially long time to relax, with
a thermalization time tthðnÞ ∼ ½area(wlargeðnÞ)�2 ¼ Ωð22nÞ
[where the square of the area comes from the square in
Eq. (45)]. Furthermore, almost any word with an nb density
wave will admit a similar bound on tth. Indeed, consider
words wlargeðn; LÞ obtained by extending wlargeðnÞ to length
L > 4nþ 4 by inserting L − ð4nþ 4Þ random characters
at random points of wlargeðnÞ (we will assume, for sim-
plicity, that in fact wlargeðn; LÞ∈Ke;L, but this assumption
is not crucial). The only way for area(wlargeðn; LÞ) to be
significantly smaller than area(wlargeðnÞ) is if the added
characters cancel out almost the entirety of the b density
wave or cancel a large number of a’s located near the peaks
and troughs of the density wave. For a random choice of
wlargeðn; LÞ, these situations are exponentially unlikely to
occur, and we expect

area(wlargeðn; LÞ) ¼ Ωð2nÞ ð76Þ

FIG. 4. Probability pe for a randomly chosen word to lie in the
identity sector, determined according to the procedure described
in Appendix E. The dashed line is a fit to pe ∝ e−αL

1=3
with

α ≈ 1.84.
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with probability 1 in the large-n limit. The long relaxation
time of the density wave is attributed to the long mixing
time of BS because of its large Dehn function (see Sec. III).
This feature is remarkable because probing the large-scale
complexity of BS only requires studying the dynamics of
local operators, namely, those that overlap with nb. We
henceforth will denote the relaxation and mixing times
by tth.
Of course, since 2n is the smallest possible time needed

to map wlargeðnÞ to e4nþ4, it gives only a lower bound on tth.
In the case where DynBSðtÞ is generated by a classical
Markov process or random unitary circuit dynamics,
DynGðtÞ effectively leads to words executing a random
walk on the configuration space of loops. Due to the
diffusive nature of this randomwalk, we expect that the true
thermalization time instead scales as the square of its lower
bound, namely,

tth(wlargeðnÞ) ¼ Oð22nÞ; ð77Þ

an estimate that we will confirm shortly in Sec. IV E.
To examine the relaxation in more detail, consider a state

jwA;qi that contains a nb density wave of momentum q and
amplitude A but that is otherwise random. In other words,
the expectation value of nb;i in jwA;qi is (switching to
schematic continuum notation)

nbðxÞ ¼ A sinðqxÞ; ð78Þ

and jwA;qi is chosen randomly from the set of all states in
Ke;L that have this expectation value (with the restriction to
Ke;L done purely for notational simplicity).
The “depth” nA that wA;q proceeds into CGBS is equal to

the contrast of the density wave, which we define as the
integral of the b density over a quarter period of the density
wave:

nA ≜
Z

π=2q

0

nbðxÞ ¼
A
q
: ð79Þ

We thus expect the density wave defined by jwA;qi to have a
thermalization timescale of

tth ¼ Oð22nAÞ ¼ Oð22A=qÞ: ð80Þ

Note that this exponential timescale is not visible in the
standard linear-response limit, in which one takes A → 0
before taking q → 0: The two limits lead to qualitatively
different relaxation. In the standard linear-response limit,
fluctuations at scale q will decorrelate on a typical
relaxation timescale of about 2

ffiffiffi
L

p
.

Beyond tth, we would also like to know how the
amplitude A—or, equivalently, the contrast nA—behaves
as a function of time. To estimate this, consider first how
wlargeðnÞ relaxes. By the geometric considerations of

Sec. IV B, the shortest homotopy reducing wlargeðnÞ to
the identity word must first map wlargeðnÞ → wlargeðn − 1Þ,
then wlargeðn − 1Þ → wlargeðn − 2Þ, and so on; see Fig. 9 for
an illustration. The self-similarity of this process means that
the time needed to map wlargeðmÞ → wlargeðm − 1Þ, namely,
tth(wlargeðm − 1Þ), is equal to the combined time needed to
perform all of the maps wlargeðkÞ → wlargeðk − 1Þ, with
k < m. Applying this observation to the density wave
under consideration and using Eq. (77), we estimate

nA(q; tthð1 − 2−kÞ) ≈ nAðq; 0Þ − k ð81Þ

for k ≤ nAð0Þ. Writing k on the rhs in terms of the time
t ¼ tthð1 − 2−kÞ, these arguments suggest that the density
relaxes as

nbðq; tÞ ≈ Θðtth − tÞ(nb;0 þ log2ð1 − t=tth þ 2−nb;0t=tthÞ);
ð82Þ

where tth ¼ C22A=q, with C an Oð1Þ constant, nb;0 is
shorthand for nbðq; 0Þ, and the 2−nbðq;0Þt=tth inside the
logarithm ensures that nbðq; tthÞ ¼ 0.
An interesting consequence of Eq. (82) is that the

relaxation of the density wave happens “all at once” in
the large-contrast limit (e.g., small q at fixed A), meaning
that the density profile remains almost completely
unchanged until a time very close to tth, at which point
the density wave is abruptly destroyed. Indeed, we define
the collapse timescale

tcolðεÞ ≜ minft∶nAðq; tÞ < ð1 − εÞnAðq; 0Þg ð83Þ

as the time at which the collapse of the density wave
becomes noticeable within a precision controlled by the
constant 0 < ε < 1. Then, the form (82) implies that

lim
ε→0

lim
A=q→∞

tcolðεÞ
tth

¼ 1; ð84Þ

suggesting that the collapse is instantaneous in the large-
contrast limit.
These arguments show that density waves collapse

abruptly but do not tell us about the statistical distribution
of collapse times obtained when considering an ensemble
of realizations of the dynamics (specific disorder realiza-
tions of random unitary circuits, specific choices of
Hamiltonian, etc.). In systems that relax suddenly, the
width σtth of this distribution can be either parametrically
smaller (in system size) than the mean collapse time tth, or it
can scale as ΩðtthÞ. The former case occurs in Markov
chains displaying a “cutoff” (see, e.g., Refs. [72,73]),
which can occur when the chain describes random
motion on a highly connected graph, or when it describes
relaxation in a metastable system [where relaxation is
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caused by rare events that yield a Poissonian scaling
σtth ∼

ffiffiffiffiffi
tth

p ¼ oðtthÞ]. The latter case is typical in systems
which relax diffusively, with an unbiased random walk on
Zd being a typical example. From the geometric consid-
erations of this section, it is perhaps not clear which
scenario should apply a priori. However, the numerics
of the following section tentatively point to the latter
scenario, with the distribution of thermalization times
roughly obeying σtth ∼ tth. Giving a more precise charac-
terization of this scaling would be interesting to explore in
future work.

E. Numerics

We now present the results of numerical simulations that
let us take a more detailed look into the relaxation of nb and
confirm the predictions made in the previous subsection.

1. Stochastic circuits

Our simulations all treat DynBS as time evolution under
BS-constrained random unitary circuits. Because off-
diagonal operators are rendered diagonal after a single
step of random unitary dynamics [as was shown in
Eq. (31)], without loss of generality, we can focus on
the evolution of diagonal operators. In Sec. III, we showed
that the product states associated with diagonal operators
evolve in time according to the stochastic matrix M
derived in Eq. (34). Explicitly, since the maximal size of
an elementary relation in BS is lR ¼ 3 (e.g., abe ¼ baa),
M is most naturally constructed using three brickwork
layers of three-site gates:

M ≜ M1M2M3; Ma ≜ ⊗
bL=3c−1

i¼0þa
M3iþa; ð85Þ

where, as in Eq. (34), the matrices Mi induce equal-weight
transitions among all dynamically equivalent three-letter
words:

Mi ≜
X

g1;…;g6 ∈ S∪S−1∪feg
δg1g2g3;g4g5g6

×
1

jKg1g2g3
ð3Þj jg1;g2;g3ihg4;g5;g6ji;iþ1;iþ2; ð86Þ

where the 1=jKg1g2g3
ð3Þj factor ensures that Mi is stochas-

tic—in fact, doubly so on account of MT
i ¼ Mi. The

steady-state distribution jπgi of M within Kg;L is accord-
ingly given by the uniform distribution on Kg;L:

jπgi ≜ 1

jKg;Lj
X

w∈Kg;L

jwi: ð87Þ

In practice, we do not actually diagonalize M but rather
use the matrix elements of M to randomly sample updates

that may be applied to a computational-basis state jwi, with
the system thus remaining in a product state at all times. A
single time step in our simulations corresponds to a single
brickwork layer of M, i.e., to the application of a single
relation at each three-site block. Since bL=3c relations can
be applied at each time step, in these units, it is
DehnðLÞ=L—rather than DehnðLÞ—that lower bounds
the mixing and relaxation times of M.

2. Slow relaxation

We start by exploring how long it takes the state
jwlargeðn; LÞi to relax underM’s dynamics, where as above
wlargeðn; LÞ is obtained from jwlargeðnÞi by padding it with
L − ð4nþ 4Þ identity characters inserted at random posi-
tions. This process is accomplished by initializing the
system in jwlargeðn; LÞi and tracking the local nb;i density
over time. We focus, in particular, on the moving average of
the nb density and the fluctuations thereof, defined as

hnb;iiðtÞ ≜ 1

T

XtþT

t0¼t

nb;iðt0Þ;

hnbi2ðtÞ ≜ 1

L

XL
i¼1

hnb;ii2; ð88Þ

where nb;iðtÞ ¼ δgiðtÞ;b − δgiðtÞ;b−1 is the b charge on site i at
time step t [with giðtÞ the ith entry of the state at time t) and
T is a time window that is small relative to the thermal-
ization timescales of interest but large enough to suppress
short-time statistical fluctuations nb;iðtÞ (here, h·i denotes
averaging over this time window, while ·̄ denotes averag-
ing over space). The equilibrium distribution jπgi ∝P

w∈Kg;L
jwi for g ¼ e satisfies hπejnb;ijπei ≈ 0 for all i

(see Appendix E), so for initial states jwi∈Ke;L, any
nonzero value of hnb;iiðtÞ indicates a lack of equilibration
(for g ≠ e, the average hπgjnb;ijπgi can be nonzero and
must first be computed in order to diagnose equilibration).
The evolution of hnb;iiðtÞ for a single realization of the

dynamics initialized in jwlargeðn; LÞi is shown in Fig. 5(a)
for n ¼ L=10 and L ¼ 120. From this evolution, we can
clearly see the sudden collapse phenomena predicted above
in Eq. (84): The nb density wave hardly decays at all until
very close to tth ∼ 5 × 106, at which point hnn;iiðtÞ rapidly
becomes very close to zero. This finding is quantified in
Fig. 5(b), which plots the spatially averaged nb fluctuations

hnbi2 for the same realization. A relatively good fit (dashed
line) is obtained using the square of the “sudden collapse”
function defined in Eq. (82).
We now investigate how the thermalization time of

jwlargeðn; LÞi scales with n, continuing to fix n=L ¼ 10

so as to keep both n, L extensive. Operationally, we define
the thermalization time as the first time when the magnitude
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of fluctuations in nb drops below a fixed fraction of their
initial value:

tth ≜ minft∶hnbi2ðtÞ <
1

10
hnbi2ð0Þg: ð89Þ

Figure 5(c) shows the scaling of tth with L, which is
observed to admit an excellent fit to the predicted scaling of
around 22n. As shown in Fig. 6, the distribution of
thermalization times across different runs is additionally
observed to be rather broad, with a standard deviation that
scales approximately in the same way as tth.
While this result confirms that the density wave present

in jwlargeðn; LÞi relaxes on a timescale of tth ∼ 22n, it does

not show that all states with b density waves of amplitude A
and wavelength q relax on times of order 22A=q. In fact, this
cannot be true, and fast-relaxing density waves always
exist. Indeed, consider the word wsmallðn; LÞ obtained from
wlargeðn; LÞ by replacing all as and a−1s with es. The Dehn
time of this word is merely Dehn(wsmallðn; LÞ) ∼ n2 since
there are no as present to slow down the dynamics of the bs
(any aa−1 pairs created in between the segments of the
density waves have a net zero number of as and are thus
ineffectual at providing a slowdown). Thus, the relaxation
time of an initial state jwi carrying an nb density wave
cannot be predicted from knowledge of the conserved
density alone—one must also have some knowledge about
the distribution of as in jwi.
However, we expect that tth ∼ 22A=q for generic states

containing an amplitude-A, wavelength-q density wave.
Indeed, as argued above near Eq. (76), this is simply
because as long as the value of the a-charge

P
iðjaihaji −

ja−1iha−1jiÞ is nonzero in the regions between the seg-
ments of the density wave—which will almost always be
true for a random density-wave state in the thermodynamic
limit—the as trapped “inside” the density wave will take an
exponentially long time to escape. Note that this remark
applies to a generic density-wave state jwi, regardless of
whether or not jwi∈Ke;L.
In Fig. 7, we numerically investigate the relaxation of

generic density waves by considering initial states that host
density waves of momentum q ¼ 4π=3L and amplitude
A ¼ nq (with n fixed at n ¼ L=10) but that are otherwise
random. Compared with jwlargeðn; LÞi, these random den-
sity waves (which generically lie in different Kg;L sectors)
exhibit a much broader range of thermalization times;
some thermalize very quickly, while some never thermalize

�

(a) (b) (c)

FIG. 5. Stochastic circuit time evolution of observables associated with the b charge for the system initialized in a state
jwlargeðn ¼ L=10; LÞi, which is a large-area word wlargeðn ¼ L=10Þ with identities inserted at random places. (a) Time evolution
of the spatial profile of b charge, hnb;ii, where averaging is performed over a time window of T ¼ 105 brickwork layers. (b) Time

evolution of observable hnbi2 from Eq. (88). Thermalization occurs at time tth, when this observable drops to zero, which corresponds to
the b-charge density wave collapsing to a flat profile. The run corresponding to panel (a) is shown in gray, while the blue curve
corresponds to an average over several independent runs, with the red shade showing the standard deviation. Time for each run has been
rescaled by the respective thermalization time. The analytic formula from Eq. (82) is shown by the dashed green line (rescaled by the
value at t ¼ 0). (c) Thermalization time scaling exponentially with the system size L if the density of b’s in the initial word is kept
fixed, n ¼ L=10.

FIG. 6. Distribution of thermalization times tth of the density
wave defined by jwlargeðn; LÞi with n ¼ L=10, shown for differ-
ent system sizes with 300 circuit realizations. A rather broad
distribution is observed.
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over our chosen simulation time window [Fig. 7(a)].
Nevertheless, we still observe the average thermalization
timescale to scale exponentially with n [Fig. 7(b)]. The
large sample-to-sample fluctuations of tth make it difficult
to reliably extract the exact scaling behavior, but the above
reasoning suggests that tth continues to scale as 22n for
typical initial states.

V. FRAGILE FRAGMENTATION AND THE SPACE
COMPLEXITY OF THE WORD PROBLEM

Our discussion in the past few sections has focused on
the way in which the time complexity of the word problem
enters in the thermalization times of DynG. In this section,
we turn to the space complexity of the word problem. As
discussed in Sec. II B, the space complexity of the word
problem is determined by the maximal amount of space
required to map between two words w;w0 ∈Kg;L, as
diagnosed by the expansion-length function ELgðLÞ in
Eq. (23). When the expansion length is large, transitioning
from w to w0 necessarily requires that w first grow to be
much larger than its original size before shrinking down to
w0. When ELgðLÞ > L, the dynamics thus lacks the spatial
resources needed to connect all states that describe the same
group element. In this situation, DynG cannot act ergodi-
cally in Kg;L, and thus Kg;L become further fragmented.
Each fragment now contains words that can be reached
from some reference word w by derivations that do not
involve intermediate words longer than L. We call this
phenomenon fragile fragmentation in analogy to the notion
of fragile topology in band theory [39]: DynG is said to
exhibit fragile fragmentation if there are pairs of words w,
w0 of length L such that DynG on a system of length L does
not connect jwi and jw0i, but DynG on a larger system of
length L0 > L connects the “padded” words jwi ⊗ jeL0−Li
and jw0i ⊗ jeL0−Li [74]. A schematic illustration of this
definition is given in Fig. 8.
A simple example of this phenomenon that exists in

higher dimensions is the jamming transition. In jammed
systems, an ensemble of particles with hard-core repulsive
interactions can exhibit a phase transition from a low-
density mobile phase to a high-density jammed phase. The
analog of fragmentation is the limited configuration space
that particles can explore in the jammed phase. When the
jammed particles are given more space, their density
decreases, and when it drops below a critical value, the
dynamics becomes ergodic. If the extra space is sub-
sequently removed, ergodicity may again be broken, but
the system may find itself in a previously inaccessible
microstate. The models we discuss in this section are more
drastic examples of this phenomenon: Unlike the examples
with hard-core particle models, the models we study exhibit
jamming even in one dimension, where the analog of the
critical jamming density can be polynomially or exponen-
tially small in system size.
To understand when DynG exhibits fragile fragmenta-

tion, we need to compute the expansion length ELðLÞ. [75]
Doing so for a general group can be rather difficult, as
ELðLÞ’s definition involves a rather complicated minimi-
zation problem. However, if we already know the time
complexity of the word problem—i.e., if we know the
scaling of DehnðLÞ—it is possible to place a lower bound
on ELðLÞ [76]. Indeed, suppose a word w∈Ke;L has an

(a)

(b)

FIG. 7. Relaxation of nb under stochastic circuit dynamics for
initial states with random b density waves. The initial states are
chosen to be words of the form w1bnw2b−nw3bnw4b−nw5, where
n ¼ L=10 and the w1;…;5 are random words containing only the

characters fa;a−1;eg. (a) Time evolution of observable hnbi2
from Eq. (88) for several independent runs with random initial
states described above and the time averaging window T ¼ 100.
The time at which the density wave collapses and the final

equilibrium value of hnbi2 are seen to change significantly for
different choices of initial state, with some runs thermalizing
faster than T (low-lying blue lines) and some runs not thermal-
izing within the whole displayed time window of 5000T (high-
lying blue lines). (b) Thermalization times tth of random density

waves, postselected on initial states that exhibit a drop in hnbi2 of
at least 75% during the displayed time window. Here, tth is
determined as the median across all runs (as opposed to the mean)
due to the presence of a long tail in the distribution of tth, the
statistics of which are shown for L ¼ 80 in the inset. Note that tth
determined in this way is seen to scale exponentially or faster
with n.
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expansion length ELðwÞ, implying that jwj is at most
ELðwÞ during any homotopy from w to eL. Then, the
expansion length of any derivation Dðw ⇝ eÞ cannot
exceed the total number of length-ELðwÞ words; if it
did, there would be at least one state that appears multiple
times in Dðw ⇝ eÞ—which implies that such a derivation
cannot be of minimal length. Since the number of length-
ELðwÞ words is ð2jSj þ 1ÞELðwÞ, we thus have DehnðwÞ ≤
ð2jSj þ 1ÞELðwÞ. By maximizing over all possible w∈Ke;L

and taking a logarithm, we obtain the general bound

ELðLÞ ≥ ln (DehnðLÞ)
lnð2jSj þ 1Þ : ð90Þ

This bound is interesting in that it connects the spatial and
temporal complexities of the word problem. It also has the
consequence that, to find examples with additional ergo-
dicity breaking, we need only find a group with a super-
exponential Dehn function, which we will do in Sec. V B.
However, before doing so, we want to understand fragile
fragmentation and the spatial complexity of the word
problem in the simpler case of DynBS dynamics. A general
discussion of fragile fragmentation and its repercussions for
thermalization will be given in Sec. V C.

A. Fragile fragmentation in BS dynamics

We saw in Sec. IV that the word wlargeðnÞ encloses an
area of Oð2nÞ on the BS Cayley graph, leading to a word
problem with exponentially large time complexity. We now
address the space complexity of the word problem for the
BS group. At first glance, it may seem that the spatial
complexity is also exponentially large. Indeed, the action of
the naive homotopy mapping wlargeðnÞ to the trivial word is

to bring the two excursions that wlargeðnÞmakes along the b
axis back “down” onto the a axis. This process would cause
wlargeðnÞ to grow to a length of about 2n over the course of
the homotopy.
However, it turns out that wlargeðnÞ can be deformed in a

way that does not require its size to significantly increase,
via the process illustrated in Fig. 9. As shown in the figure,
instead of collapsing the excursions “down,” we instead
first make the loop “skinnier” by narrowing its extent along
the a axis before bringing the excursions “down” after their
area has become small enough.
It is then clear that the length of wlargeðnÞ does not grow

by too much—at least, not by more than a factor linear in
L—during this homotopy. In Appendix E, we prove that at
large L,

ELðLÞ ∼ ð1þ αÞL; ð91Þ

where α > 0 is an Oð1Þ constant. Importantly, the fact that
α > 0 means that as L approaches 4ðnþ 1Þ from above,
there will be an L� > 4ðnþ 1Þ at which jwlargeðnÞj < L�
[so that wlargeðnÞ can still fit inside of the system], but
EL(wlargeðnÞ) > L�; in this regime, the density wave
defined by wlargeðn; L�Þ cannot relax even at infinite times.
Therefore, there is a transition at a finite density of es in the
initial product state between a jammed regime (where
homotopies are unable to contract) and an ergodic regime,
leading to fragile fragmentation. Since the expansion length
ELðLÞ ∝ L, the severity of this jamming is comparable to
that of conventional jammed systems in higher dimensions.
We can identify L� numerically simply by decreasing L

until jwlargeðn; LÞi ceases to thermalize. The results are
shown in Fig. 10. In this example, the length of the initial

(a) (b) (c)

FIG. 8. (a) Schematic of a jammed system, illustrated by densely packed, repulsively interacting particles. The interactions and high
density prevent the system from rearranging itself with the space available to it. However, if the system size is increased for an
intermediate period of time—allowing the particles to intermittently occupy a larger region of space before returning to their original
volume—all different particle configurations can be reached. The amount by which the system size must be increased for ergodicity to
be restored defines the expansion length EL. (b) Fragile fragmentation, which is the analogue of jamming in our dynamics. For a fixed
system size, the dynamics is nonergodic, but in panel (c), (some degree of) ergodicity is restored when a reservoir of trivial ancillae j0iA
is appended to the system. The analogue of returning to the original system size in the jamming example is played by projecting the
ancillae onto their original state j0iA at the end of the time evolution.
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word (without identities) is jwlargej ¼ 4ðnþ 1Þ ¼ 44.
We observe that thermalization time diverges as L
approaches L� ≲ 50 (for L ¼ 50, we have observed only
a single instance of thermalization at a very long time,
tth ≈ 5 × 108), confirming a nontrivial expansion length.

B. Exponential spatial complexity: Iterated
Baumslag-Solitar group

We now present an example of group dynamics that
exhibits fragile fragmentation with a zero density jamming
transition: the iterated Baumslag-Solitar group [40]. This

group is (loosely speaking) constructed by embedding aBS
group inside of itself. We refer to it as BSð2Þ and define it
via the presentation

BSð2Þ ¼ ha;b;cjab ¼ ba2;bc ¼ cb2i: ð92Þ

Thus, DynBSð2Þ dynamics are most naturally realized in
spin-3 chains with 3-local dynamics, whose local Hilbert
space is obtained from that of the BS model by appending
the two states fjci; jc−1ig. Note that like BS, BSð2Þ has a
single conserved Uð1Þ charge given by the density of c
generators, nc ≜ P

i nc;i ¼
P

iðjcihcji − jc−1ihc−1jiÞ.
Several facts about BSð2Þ (and related generalizations

thereof) are proven in Appendix F. The most important
result is that the Dehn function of BSð2Þ is a super-
exponential function of L:

DehnðLÞ ∼ 22
L
: ð93Þ

This finding can be intuited from the fact that the word
vðnÞ≡ ðc−nb−1cnÞaðc−nbcnÞ is equivalent to a double
exponentially long string of as:

vðnÞ ¼ ðc−nb−1cnÞaðc−nbcnÞ
¼ b−2nab2n

¼ a22
n

; ð94Þ

with the length of the rhs being double exponentially larger
than that of jvðnÞj (and where “¼” in the above denotes
equality as elements of BSð2Þ. By following the same
strategy as in the construction of wlargeðnÞ, we can construct
a word whugeðnÞ∈Ke;L whose area grows double exponen-
tially with its length, namely,

whugeðnÞ ¼ a−1vðnÞ−1avðnÞ: ð95Þ

FIG. 9. How a word wlarge enclosing an exponentially large area can be deformed to the identity word without incurring an exponential
amount of expansion. The deformation proceeds by making the loop defined by wlarge narrower along the a direction before shrinking
the loop in the b direction.

FIG. 10. Thermalization time for stochastic BS dynamics as a
function of L for a system initialized in a product state
jwlargeðn; LÞi with n ¼ 10 (so that the initial states for different
L differ only by the density of es). The thermalization time
diverges at some finite L, which defines the expansion length of
the word wlargeðnÞ. Each thermalization time is obtained by
averaging over several independent runs with the same param-
eters. For L ¼ 50, we observe a single thermalizing run, with
thermalization time tth ≈ 5 × 108 (not shown in the plot). No
thermalization is observed for L < 50. Inset: expansion length of
wlargeðnÞ for different n. For the BS group, EL is a linear function
of n (and, therefore, of L).
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Like with BS, the slow dynamics of BSð2Þ is manifest in the
relaxation of the conserved charge nc, which from the
scaling of DehnðLÞ, we expect to relax with an effective
momentum-dependent diffusion constant that is double
exponentially suppressed with q.
The general bound (90) implies that ELðLÞ≳ 2L. In

Appendix F, we prove that this bound is in fact tight, so

ELðLÞ ∼ 2L: ð96Þ

Thus, unlike BS, there is no way to contract whugeðnÞ to the
identity without it taking up an exponentially larger amount
of space. [77] Therefore, the nc density-wave pattern
present in the state jwhugeðnÞi ⊗ jemi will remain present
even at infinite times unless m≳ 2n, i.e., unless the nc
density wave is exponentially dilute.
Wenowdemonstrate this phenomenon numerically, using

an extension of the analysis presented for BS. A direct
implementation of the bistochastic circuit (86) is numeri-
cally rather expensive when investigating how nc relaxes
due to the requirement of needing simulations to be run for
times double exponential in the characteristic scale of the nc
fluctuations under study. For this reason, we instead con-
sider an irreversiblemodification of Eq. (86).Wemodify the
dynamics so thatcc−1 andc−1c pairs can be annihilated but
not created. Thus, our elementary stochastic gates Mi

contain terms like je;e;eihc;c−1;eji;iþ1;iþ2 but not the
transpose thereof, with the quantity

njcj ≡
X
i

ðjcihcji þ jc−1ihc−1jiÞ ð97Þ

decreasing monotonically with time.
The merit of taking this approach is that the irreversible

setting allows us to extract lower bounds on the relaxation
time of nc for the reversible setting. Our simulations are run
by initializing the system in jwhugeðn; LÞi, a version of
whugeðnÞ padded with L − jwhugeðnÞj e characters at ran-
dom locations, so that jwhugeðn; LÞj ¼ L, and then tracking
the time evolution of njcj. The results are shown in Fig. 11
for different values of n, which are necessarily very small
on account of the double exponential growth of the Dehn
function. In the main panel, we show the relaxation time of
jwhugeð3; LÞi as a function of L, defined by the time at
which no c;c−1 characters remain in the evolved word. The
inset shows ELðnÞ, defined as the minimal value of L for
which relaxation (namely, reaching a state containing no
c;c−1 characters) was observed to occur over 1000 runs of
the dynamics. The extracted ELðnÞ roughly conforms to
our expectation of ELðnÞ ∼ 2αn for an Oð1Þ constant α;
however, the long timescales required to observe thermal-
ization mean that statistical errors are rather large, and with
our current data, we should not expect to obtain a perfectly
exponential scaling.

C. Fragile fragmentation: Generalities

The BSð2Þ example has a conserved density, so its failure
to thermalize manifests itself as the freezing of a conserved
density. In general, however, models exhibiting fragile
fragmentation need not have conserved densities.
Defining fragile fragmentation and finding reliable diag-
nostics for it in the general case are nontrivial tasks, which
we address below. First, we provide a more precise
definition of fragile fragmentation, to distinguish it from
what we call intrinsic fragmentation. Second, we present a
physical “decoupling” algorithm for detecting whether a
system exhibits fragile fragmentation, given access to a
large enough reservoir of ancillae. Third, we comment on
the ways in which fragile fragmentation manifests itself in
the dynamics of a thermalizing system.

1. Defining fragile fragmentation

We begin by precisely defining the notions of intrinsic
and fragile fragmentation in a general context (i.e., without
reference to the word problem). For concreteness, we
specialize to quantum systems evolving under unitary
dynamics, specified by a sequence of evolution operators
UiðAÞ; i∈Zþ, acting on the system plus a collection of
ancillae A, with each ancilla assumed, for simplicity, to
have the same on-site Hilbert space as the system itself. We
assume that Ui forms a uniform family of time evolution
operators that can be defined for any number of ancillae.
Given any initial state jψi of the system, and a fixed
reference state j0iA of the ancillae, we define an ensemble
of states on the system as

�

FIG. 11. Thermalization time as a function of L for irreducible
BSð2Þ dynamics, where cc−1 and c−1c pairs can be annihilated
but not created. The dynamics is initialized in the state
jwhugeðn; LÞi with n ¼ 3, and the system is considered to have
thermalized when no c;c−1 characters remain. Inset: expansion
length of whugeðnÞ for different n, defined as the minimal system
size for which thermalization was observed to occur over 1000
runs of the dynamics. An approximately exponential dependence
on n is observed.
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τAðψÞ≡ fh0jAðUijψi ⊗ j0iAÞg∞i¼1: ð98Þ

In other words, τA is the ensemble of pure states one
obtains by evolving the initial state jψi ⊗ j0iA for an
arbitrary time and postselecting on the ancillae being in the
final state j0iA. Note that, in principle, we could make τA
depend explicitly on the state of the ancillae. However, for
group dynamics, the most natural choice for this state is
j0iA ¼ jeiA, and for semigroups, an analogous state can be
defined by augmenting the local Hilbert space with a
character jei that commutes with all characters. We there-
fore content ourselves with studying fragmentation for this
particular choice of ancilla state. We define the Krylov
sector of jψi extended to A as

Kψ ðAÞ≡ span(τAðψÞ) ⊂ Hsys; ð99Þ

where Hsys is the Hilbert space of the system (without
ancillae). We furthermore define the intrinsic Krylov sector
associated with jψi as the limit

Kin;ψ ¼ lim
jAj→∞

KψðAÞ: ð100Þ

Under a generic thermalizing Hamiltonian or unitary
dynamics, the intrinsic Krylov sector of any jψi will be
the entire Hilbert space, Kin;ψ ¼ Hsys. Intrinsic fragmenta-
tion occurs whenever this is not true, i.e., when there exist
distinct initial states that do not mix under the dynamical
rules even when the system is attached to an infinitely large
bath (undergoing the same dynamics as the system).
When jAj is finite, each intrinsic Krylov sector may

further shatter into many subsectors. This phenomenon (for
jAj larger than the system) is what we have referred to
above as fragile fragmentation. The expansion length
associated with the dynamics is the minimal size of A
below which additional subsectors form.

2. Probing fragile fragmentation

Our definition of fragile fragmentation above makes
reference to postselection on the final state of the ancillae
being j0iA. The probability of postselection succeeding is
clearly exponentially small in jAj. We now present a more
efficient algorithm for (i) identifying whether a given
system exhibits fragile fragmentation and (ii) constructing
the subspace KψðAÞ associated with an initial state jψi
given a maximum expansion length Lþ jAj. This pro-
cedure is more efficient than naively postselecting on the
state of the ancillae in various regimes, which we dis-
cuss below.
The general algorithm proceeds as follows. We start with

the state jψi ⊗ j0iA and evolve it under Dyn acting on the
system plus ancillae for some time tth. After time tth, we
repeat the following steps many times:

(1) Measure the last site of the system plus ancillae in
the computational basis.

(2) If the outcome is e, decouple this site from the rest
of the system. Otherwise, leave the site coupled.

(3) Run the dynamics for a time tretherm on the system
plus remaining ancillae, and go to step 1.

The iteration stops when all ancilla sites have been
decoupled: We know this is always possible since the
initial state was originally decoupled from the ancillae. On
physical grounds, we expect that the probability of getting
outcome 0 in step 1 is Oð1Þ at all times, but for our
purposes, it suffices for it to scale as 1=polyðLþ jAjÞ.
We first discuss how this algorithm can be used to

construct the subspace KψðAÞ. To accomplish this goal, we
set tth to be the maximum possible thermalization time for
the system plus ancillae, i.e., tth ∼ expðLþ jAjÞ. Any
fragmentation that persists after tth will persist to infinite
time for the given spatial resources. One can take the
rethermalization time after a measurement, tretherm, to be
much shorter (i.e., as a low-order polynomial in Lþ jAj),
as the measurement is a single-site perturbation to the
equilibrated state, and it is not expected to take more than
polynomial time to have a significant amplitude to yield
jei. When the procedure terminates, it yields a state jψ 0i
that (by hypothesis) is in KψðAÞ. After many runs, the
ensemble of generated states spans Kψ ðAÞ.
The procedure we described avoids the exponential

overhead of postselection but still incurs the exponential
overhead of mixing. If we want to reconstruct a state with
overlap on all states in Kin;ψ , this overhead cannot be
avoided. Suppose, however, that we are not interested in
full reconstruction of Kin;ψ but just in the simpler task of
showing that adding ancillae and removing them (as above)
partially lifts the fragmentation of the original system.
More generally, suppose that we have constructed KψðA0Þ
and want to know if enlargingA0 toA1 enlarges the sector.
We can run the initial equilibration step to a much shorter
time than the full equilibration time. We stop when we have
compressed back down toA0, and we check if the resulting
state is in KψðA0Þ. [78] Finding a single state that lies
outside Kψ ðA0Þ suffices to establish fragile fragmentation.
Thus, detecting fragile fragmentation can be accomplished
without requiring a large bath or the system to fully
thermalize.
Can this procedure be used to study other properties of

the fragmentation? One additional quantity that can be
computed using this method is the geodesic length of group
elements. Recall that the geodesic length jgj of an element
g∈G is the length of the shortest word that represents g,
namely, jgj ¼ minfjwj∶φðjwiÞ ¼ gg. To compute this
length, we repeat the sequential length-reducing procedure
until the system freezes. Formally speaking, the system will
freeze when hejρendjei ¼ 0 for quantum dynamics (where
ρend is the reduced density matrix of the spin at the end of
the system) or pðeendÞ ¼ 0 for classical dynamics [where
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pð·Þ denotes a marginal distribution for the last site of the
chain]. When freezing occurs, the system size reaches the
minimum length needed to support a word in the Krylov
sector, therefore yielding the geodesic length of the word.

3. Fragile fragmentation and thermalization

We now discuss the unexpectedly subtle consequences
of fragile fragmentation for the evolution of generic states
under unitary dynamics that need not be time independent
or have any local conserved densities. To keep our
discussion concrete, we focus on DynG dynamics for some
group G, although the diagnostics we arrive at are much
more general. As we will see, when G is a group (rather
than just a semigroup), fragile fragmentation is particularly
hard to detect locally; when G is instead a semigroup,
simpler diagnostics exist (see Sec. VI for an example).
In a system exhibiting fragile fragmentation, a random

word w of length Lwill contain many substrings s that have
expansion length greater than L; in particular, treating a
specific substring s as subsystem A and B ¼ Ac as a bath of
es, jsiA ⊗ jeiB exhibits fragile fragmentation so long as
jBj ≪ ELðjsjÞ. In reality, the substring is nested in the
system as jwi ¼ jwLswRi, but we still claim that the action
of DynG can never map jwi to jw0i ¼ jwLs0wRi, where s0 is
a word with expansion length asymptotically greater than L
and in a different fragment to s which satisfies
φðsÞ ¼ φðs0Þ. In particular, one might worry that the
presence of the environment words wL=R can “catalyze”
transitions of s, thereby sending jwi to jw0i despite s and s0
living in different fragile sectors.
A simple argument shows that such catalysis cannot

parametrically change the expansion length of a word.
Indeed, suppose that, by contradiction, catalysis can occur.
We can append w−1

L to the left and w−1
R to the right,

increasing the length of the system by less than L. Then, the
sequence

je2jwLjse2jwRji ↔ jw−1
L wLswRw−1

R i
↔ jw−1

L wLs0wRw−1
R i

↔ je2jwLjs0e2jwRi ð101Þ

is allowed by DynG. Therefore, the space complexity of the
transition s ↔ s0 is at most 2L. For groups with asymp-
totically superlinear expansion lengths, this finding is a
contradiction, and thus such a catalysis cannot occur.
To summarize, a random word contains large substrings

that are frozen in some sense: If the initial state can be
written as jwLswRi, time evolution under DynG will never
produce jwLs0wRi. An immediate consequence of this fact
is that the time-evolved reduced density matrix for a region
A has hsjρAðtÞjs0i ¼ 0 at all times if s, s0 are in distinct
fragile fragments. Furthermore, since both s and s0 can be
locally generated, through the transition

je2jsji ↔ jss−1i; ð102Þ

which only requires 2jsj ≪ L of space, we expect, in
general, hsjρAjsi; hs0jρAjs0i to both be nonzero.

In conventional systems that exhibit the jamming tran-
sition, one can easily diagnose the jammed phase by
computing local autocorrelation functions. However, in
contrast, fragile fragmentation is hard to detect in this way
because the frozen substrings can slide around in the
system and locally change their configuration (while
remaining in the same fragile sector). Thus, while one
can write down a conserved quantity describing the frozen
strings, such a quantity will generically be very nonlocal.
Nevertheless, the observation that the dynamics does not
connect pairs of states like swR and s0wR regardless of wR
still allows one to construct a reasonable dynamical probe
of fragile fragmentation. For any two words w, w0 in the
same Krylov sector, consider the two-point correlation
function

Cww0 ðtÞ≡ Tr(WXww0 ðtÞ)
¼ 2 · Re

X
α;β

hwαjDyn†GðtÞjwβihw0βjDynGðtÞjwαi;

ð103Þ

where W ¼ jwihwj and Xww0 ¼ jwihw0j þ H:c: are opera-
tors that can be fully supported in a subsystem of size
maxðjwj; jw0jÞ. Suppose that ELðw;w0Þ is large so that all
derivations between w and w0 require large spatial resour-
ces. Then, if DynG describes circuit dynamics, Cww0 ðtÞ is
zero for small t since if both hwαjDyn†GðtÞjwβi and
hw0βjDynGðtÞjwαi are nonzero, one can transition from
jwβi to jw0βi in time 2t. Thus, Dehnðwβ; w0βÞ is expected
to control when this quantity is nonzero. [79] Furthermore,
for systems where the spacetime bound is saturated (like
iterated BS) or close to being saturated, this timescale is
dictated by ELðw;w0Þ and can be, at most, around
exp (ELðw;w0Þ).
Beyond this timescale, the system is able to undergo a

large-scale rearrangement that connects w and w0 (i.e., w
and w0 will no longer appear to live in disconnected fragile
sectors). By measuring the onset timescale for Cww0 ðtÞ to
become nonzero as a function of jwj; jw0j, one can diagnose
the existence of and place bounds on large expansion
lengths. Alternatively, computing Cw;w0 ðtÞ can be thought
of in the following way: Prepare an initial state ρ0 where a
subregion R is in the pure state jwi, time evolve this state to
get ρ, and measure the expectation value of Xw;w0 in the
reduced density matrix ρR.
The above prescription suggests a heuristic way to

determine the expansion length as follows (we leave
various technical details of this proposal to future work).
Define ΦR to be a dephasing channel acting on region R of
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the system (decomposing the system to the form ABR for
convenience):

ΦR½ρ�≜
X

αA;B;wR;βA;B

ραAwRαB;βAwRβB jαAwRαBihβAwRβBj: ð104Þ

Starting in the state ρ0 described above, one can alternate
between time evolving under DynG and applying ΦR
before measuring the expectation value of Xww0 . Call A
the subsystem in which the state jwi is initially present. If
distðA;RÞ ≫ ELðw;w0Þ, then repeatedly dephasing the
system should not change the value of Cww0 ðtÞ by much.
However, if the dephasing channel is applied within a
distance of ELðw; w0Þ from A, then we would expect a
further suppression of Cww0 ðtÞ, given that the dephasing
eliminates many trajectories mapping w to w0. Finding the
location of R where one crosses over between these two
behaviors would thus provide an estimate of ELðw;w0Þ.
The protocol discussed above is general but somewhat

indirect. As we saw in Sec. V B, in specific examples,
fragile fragmentation can have more direct and dramatic
manifestations. In the next section, we show that when the
group property is violated, fragile fragmentation generally
has easier-to-detect physical consequences: In these cases,
there can sometimes be a transition where, at small
subsystem sizes, reduced density matrices are generically
full rank, while above a threshold size, reduced density
matrices have nontrivial kernels.

VI. SEMIGROUP EXAMPLES

In the explicit examples ofDynG dynamics studied above,
G has been taken to have the structure of a group. However,
the phenomena discussed so far are not limited to models
with a group structure; indeed, all of the general results
obtained in Secs. II and III are valid for any finitely presented
semigroup. For semigroups, however, the geometric per-
spective adopted above in the discussion of DynBS is less
useful. [80] In this section, we introduce two new semigroup
models that do not admit a group structure but that
nevertheless have word problems exhibiting large time
and space complexity, which we establish using combina-
torial rather than geometric arguments. The first example has
large time and small space complexity and shares similarity
with theBSmodel. The second example has both large time
and large space complexity, is qualitatively unique to non-
group-based dynamics, and leads to a more direct charac-
terization of fragile fragmentation than that provided by the
general criterion of Sec. V C 3.

These models are inspired by theMotzkin spin chain and,
more broadly,Motzkin dynamics (seeRefs. [59,81]). For the
readers’ convenience, we briefly summarize Motzkin
dynamics. The local state space includes an identity char-
acter j0i (which plays the role of jei in our group-based
models) as well as left and right parentheses jið; jiÞ. The
dynamics is engineered so that the “nestedness” of the

parentheses remains preserved, where nestedness is defined
by the number of left parentheses located to the left of
matching right parentheses; for example, under the dynam-
ics, the word “()”may evolve to “()(),” “(()),” or “0,” but not
to “)(,” “((,” or “)).” These rules can be summarized formally
by defining the Motzkin semigroup as

Motz ¼ semih0; ð; Þjð0 ¼ 0ð; Þ0 ¼ 0Þ; ðÞ ¼ 00i: ð105Þ
Alternatively, we may define a height field hi that keeps
track of the level of nestedness at site i via

hi ¼
X
j<i

ðjðihjj − jÞihjjÞ: ð106Þ

The dynamics then preserves both hL (the net difference
between the number of left and right parentheses) and
mini hi (which measures the extent of the nestedness).

A. Star-Motzkin model: Slow thermalization

Our first example has a local state space, which we label
by fð; Þ; 0; �g. As usual, all of what follows can be applied
to Hamiltonian, random unitary, or classical stochastic
dynamics. The purpose of the extra character � is to slow
down the dynamics of the parentheses, which is done by
adding to the relations of Motz the relations

( � 0 ¼ � � ð 0�Þ ¼ ) � � 0� ¼ �0: ð107Þ
Thus, when a parenthesis moves past a � character (in a
certain direction), the � character is duplicated. The
combination of these sets of rules results in the dynamics
that we refer to as Dyn�M. One can readily see that Dyn�M
exhibits Hilbert space fragmentation. Indeed, if we ignore
the � character that was added, the Hamiltonian describes
Motzkin dynamics and thus already possesses fragmenta-
tion, which cannot be described solely by a conserved
parenthesis density. The sectors of these dynamics are
labeled by a sequence of closed parentheses followed by a
sequence of open parentheses taking the form Þmðn: This
case corresponds to the total parentheses imbalance in the
configuration. When the � character is added, a label for the
Krylov sectors becomes

Kl;m;n ¼ Þm �l ðn; ð108Þ
where l ¼ 0; 1;…; OðL · 2maxðm;nÞÞ. It is clear that there are
exponentially more sectors with the addition of the �
character, and the structure of fragmentation is thus richer.
At some level, Dyn�M resembles DynBS, as the �

duplicates every time it is moved past a parenthesis, in a
way similar to the duplication of as that occurs as they
move past bs in BS. However, there are two differences.
The first is that � does not have a natural inverse. The
second is that the underlying Motzkin dynamics does not
satisfy properties of a group: If the characters (and) are
identified with a generator and its inverse, then we
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necessarily must also allow the rule ðÞ ↔Þð, which is absent
in Dyn�M. Nevertheless, in Appendix G, we show that the
word problems for these models exhibit the same scaling of
spatial and temporal complexities as in DynBS:
(1) Within the sector Kq;0;0, the expansion length is

linear, ELðw;w0Þ ¼ OðLÞ.
(2) Within the sector Kq;0;0, there exist words w, w0 such

that Dehnðw;w0Þ ¼ OðqÞ.
Since q can grow to be exponentially large in L, this last
fact implies slow dynamics. In fact, one way to study this
slow dynamics is to observe that atypical configurations of
the Uð1Þ charge corresponding to the parentheses take a
very long time to thermalize. Regarding the second result,
we also provide a crisper characterization for the circum-
stances under which it takes a long time to transition
between two words (see Appendix G).

B. Chiral star-Motzkin model: Fragile fragmentation

Wenowpresent an examplewhere the expansion length is
exponentially large, implying fragile fragmentation. In this
example, we simply replace the * character with a “chiral”
version of the character, whichwe denote as⊳. The rules for
these new characters are similar to those of *, except that the
rules are only activated when a ⊳ character is adjacent to).
More specifically, we replace the rules in Eq. (107) as

0⊳Þ ¼ Þ⊳⊳; 0⊳ ¼ ⊳0: ð109Þ

Note that one could also add another chiral character ⊲
that only interacts with) and commutes with ⊳, but the
necessary physics is already illustrated for ⊳.
We first discuss the intrinsic Krylov sectors of the

dynamics. In particular, assuming the system is a large
bath of 0s, then one can show that any configuration can be
reduced to the canonical form:

R  k;l;m;n ¼ Þm⊳lð⊳k1ð⊳k2ð⊳k3 � � � ð⊳kn : ð110Þ

Note that we can have a large number of ⊳ characters
locked between adjacent ‘(’ because ⊳ characters cannot
tunnel past ‘(’ characters. As a result, we label the Krylov
sectors by the four indices ð  k;l; m; nÞ, where dim  k ¼ n.
Chirality of the⊳ character plays a crucial role in the large

space complexity. Define a nest as a collection of paren-
theses in the form (ðð� � �ÞÞ). In particular, ⊳ characters
embedded in a nest can exit the nest but cannot enter an
adjacent one, due to the chirality constraint. As a result, the
transition from ⊳k(ðð� � �ÞÞ) to (ðð� � �ÞÞ)⊳k (which sub-
sequently allows⊳k to enter the nest) is not possible unless
(ðð� � �ÞÞ) is collapsed. Collapsing (ðð� � �ÞÞ) can, however,
require exponentially large space if the nest (ðð� � �ÞÞ)
contains a large number of ⊳ characters. Thus, intuitively,
an exponentially large bath is needed to unfreeze the system.
In Appendix G, we provide a more rigorous argument for

when the expansion length connecting two words w and w0

can be exponentially large, and we also discuss an interest-
ing consequence of the fragile fragmentation in this model,
which does not have an analog in group dynamics. In
particular, we argue that under unitary time evolution ρðtÞ ¼
e−iHtρð0ÞeiHt where ρð0Þ is a product state, the subsystem
density matrix ρAðtÞ ¼ TrAc(ρðtÞ) exhibits a transition in its
rank as jAj is increased. When jAj ≪ logL, ρAðtÞ is of full
rank, and when jAj ≫ logL, ρAðtÞ is no longer of full rank.
Probing this property in a physically reasonable way is
further discussed in Appendix G.

VII. GENERALIZATION TO TWO DIMENSIONS:
GROUP LOOP MODELS

The discussion thus far has been restricted to 1D models
of group dynamics. It is natural to wonder whether or not
higher-dimensional models with similar behavior can be
constructed, especially since the aforementioned phenom-
ena are more prevalent in higher dimensions.
In this section, we discuss one 2D generalization of our

group-based models that, in some sense, is the most faithful
way of embedding the 1D group constraint in a two-dimen-
sional system and that leads to a qualitatively new way of
producing glassy dynamics and jamming in 2D. This process
proceeds by fixing a group G [82] and considering loop
models that possess one flavor of loop for each generator of
G. Along any one-dimensional reference loop, one can
associate a group element corresponding to the product of
all of the generators corresponding to loops that the reference
loop intersects. The dynamics is engineered so that this group
element remains invariant under the dynamics.
This class of models can be viewed as a broad generali-

zation of the construction in Refs. [83,84] (which studied
dynamics) and Ref. [85] (which studied ground-state proper-
ties), and we expect similar robustness of the Hilbert space
fragmentation in these models. For the sake of brevity, we
discuss this construction at a high level—e.g., we largely use
continuum language in order to avoid the notational burden
incurred by an explicit lattice description—and defer a more
comprehensive analysis to future work.
Given a discrete group G and a presentation thereof, the

degrees of freedom in our 2D model are associated with
directed loops labeled by generators of G. In the following,
we describe how to place constraints on the dynamics of
these loops to produce phenomenology similar to that
present in our 1D models.
We start by observing that each directed reference path γ

through space (microscopically, along the lattice) can be
associated with a group word wðγÞ. This word is deter-
mined by the ordered labels of the loops that γ intersects.
Specifically, when proceeding along γ, each time γ inter-
sects a loop labeled by the generator gi, wðγÞ is multiplied
by (i) gi if the local tangent vector  r of γ and the local
tangent vector  l of the loop can have a cross product
 r ×  l parallel to ẑ, and (ii) g−1

i if  r ×  l is antiparallel to ẑ.
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This observation means that isolated closed loops can be
regarded as implementing trivial relations in the words
associated with the paths that pass through them, a fact we
illustrate pictorially as follows.

ð111Þ

Therefore, we associate processes nucleating a loop with a
free expansion (ee → gg−1) and those annihilating a loop
with a free reduction (gg−1 → ee). With more loops, a
more general situation might look like the following:

ð112Þ

We now discuss how to implement relations of the group
in terms of the loops. Suppose the group presentation is
indicated by

G ¼ hg1;g2;…;gnjr1; r2; � � � rmi; ð113Þ

where each of the ri are words to be identified with the
identity in G, and jrij ≤ 3 for all i; this restriction on
the length of the relations follows from the fact that any
group (but not any semigroup) exhibits a finite presentation
satisfying jrij ≤ 3 (see Appendix A for the proof). Writing
ri ¼ gmgngl, this corresponds to an object that we refer to
as a net:

ð114Þ

As another example, if ri ¼ gmg−1
n gl (i.e., one of the

generators is replaced with its inverse), then the net
looks like

ð115Þ

and so on. Any loop configuration corresponding to one
of the above nets can be created or destroyed without
changing φ(wðγÞ) [the group element associated with
wðγÞ] since, for any curve γ that cuts across the net,
creating or destroying the net simply corresponds to
applying the appropriate relation ri at some point in the
word wðγÞ.
The dynamics we consider are generic dynamical proc-

esses that preserve φðwðγÞÞ for all closed curves γ, which
may be viewed as an unusual type of gauge constraint.
Thus, the dynamics will include processes that nucleate and
destroy nets associated with each ri and will also include
processes where lines are moved, stretched and contracted,
and where intersections of lines are moved. It will also
include processes that attach a loop with an intersection
point of other loops, as shown below:

ð116Þ

where an analogous deformation occurs for gk replaced
with g−1

k (in which case, the arrow is reversed). To avoid
problems on the lattice where an unbounded number of
joins can occur (requiring unphysically large degrees), we
only allow for a join if the degree of the intersection point is
below a certain threshold, set by maxi jrij.
The dynamical processes described above are sufficient

to simulate the full group dynamics. For example, suppose
we want to determine whether the processes we wrote down
suffice to simulate gmgn ¼ g−1

l (assuming ri ¼ gmgngl ¼
e is a relation to the group). We can show that this is
indeed the case by applying the following sequence of
relations:

ð117Þ
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where the first relation creates a net, the second relation
corresponds to two joins, the third relation corresponds to
two unjoins, and the last relation corresponds to a free
reduction. A similar derivation shows that cyclic conjugates
of relations (such as g−1

l rigl ¼ g−1
l gmgn ¼ e) can sim-

ilarly be simulated by the rules we have already discussed.
To summarize, our 2D dynamics contains the following

processes:
(1) Processes that deform loops in ways that do not

create or destroy loop crossings.
(2) Processes that nucleate and annihilate closed loops

(performing free reductions and expansions).
(3) Processes that join a free loop with an intersection of

loops [86].
(4) For each relation ri, a process that nucleates or

annihilates an ri net.
The dynamical processes above were formulated for the

case where G is a group, but it is also possible to generalize
to the case when G is merely a semigroup, producing
models reminiscent of the 2D generalizations of the
Motzkin chain studied in Ref. [85]. Obtaining a more
systematic understanding of the temporal and spatial
complexity of the dynamics of these models would con-
stitute an interesting avenue for future work.
One final observation we make is that there is a simple

way to map group loop models to what we call tile models.
Observe that a configuration of loops or nets splits the plane
into a set of disjoint tiles (two adjacent tiles are joined by an
edge that corresponds to a generator of the group). Then, it
is possible to label tiles with an element g∈G such that if
two tiles have labels g and h and share an edge corre-
sponding to generator k, then gk ¼ h. For example, if
G ¼ Z, each tile will be labeled by an integer, and two
adjacent tiles have labels that differ by 1 (which is the
generator of Z). This case corresponds to a mapping to a
height model, which the tile model is a generalization of in
the case of arbitrary G. This mapping may play a role in
understanding the nature of fragmentation in these models,
which we leave to future work.

VIII. DISCUSSION

In this work, we have constructed a number of natural
dynamical systems—with local few-body interactions—in
which relaxation places anomalously expensive demands
on a system’s temporal and/or spatial resources. When the
models have local conserved densities, the hydrodynamics
of these densities is anomalous or frozen; even when
conserved densities are absent, we have presented diag-
nostics for nonergodic behavior.
Our examples were all constructed in the context of

models with intrinsic Hilbert space fragmentation. A
natural question is whether the intrinsic fragmentation is
essential to their physics. In our framework, dynamics
without fragmentation is generated by finite presentations
of the trivial group, which cannot have a superlinear Dehn

function (see Appendix B). Of course, this does not mean
that the dynamics of models without fragmentation cannot
be slow, but it does mean that any mechanism for slow
thermalization must originate from something other than
the Dehn function.
Our results lend themselves to several natural extensions.

Most naturally, the anomalous hydrodynamic relaxation we
saw in the BS model can be extended to other groups with
presentations that manifest a conservation law. Whether
these groups give rise to new classes of hydrodynamic
relaxation is an interesting question for future work (a
family of such examples will be presented in Ref. [87]).
Another interesting direction is to investigate the ground
states of Hamiltonians that implement group dynamics. A
natural class of frustration-free Hamiltonians can be read
off from the transfer matrices of bistochastic Markov
processes [88]; their ground states are equal-weight super-
positions of all the configurations in a sector, and their
spectral gaps can be bounded by the Markov-chain gap.
The tools developed here may be useful for undertaking a
more detailed study of properties of these states.
The family of models we considered is restricted in the

sense that the dynamical constraints can be expressed in the
computational basis, so every computational-basis product
state is in a definite dynamical sector of Hilbert space. More
generally, one can consider constraints associated with a
commuting set of projectors with entangled eigenstates. In
one-dimensional spin chains, such commuting projectors
can be deformed into unentangled projectors by a short-
depth unitary circuit. However, this process just corresponds
to conjugating the Hamiltonians or unitaries we have
explored with short-depth unitary circuits, and it yields
nothing qualitatively new. Obtaining something new in one
dimension thus requires defining constraints using non-
commuting projectors—which occurs in the (quantum-
fragmented) Temperley-Lieb model [23,89,90]—and hence
pursuing this direction requires systematic characterization
of such constraints. In higher dimensions, however, there are
sets of commuting projectors (like those of the toric code)
whose simultaneous eigenstates are inherently long-range
entangled. An interesting task for future work would be to
extend our group-theoretic dynamical systems to these
models and explore the resulting entanglement dynamics.
Finally, it would be interesting to explore the stability of

our results with respect to weak violations of the con-
straints. One way to do this is by breaking the constraints in
an isolated region of space or by bringing a thermal bath in
contact with the system at its boundary. In the case of group
dynamics, doing so destroys fragmentation, making the
dynamics fully ergodic. Furthermore, it leads to all states
being connected by at most OðL2Þ steps of the resulting
dynamics since the OðLÞ elements of a given product
state’s geodesic word need to be moved at most an OðLÞ
distance to the constraint-free region, at which point they
can be changed into the elements of any other geodesic
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word. However, it is still possible for the dynamics in this
case to have long (even exponentially long in L) thermal-
ization times due to bottlenecks in Fock space that arise
from the finite spatial extent of the constraint-free region. A
specific example of this case is presented in Ref. [91].
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APPENDIX A: SEMIGROUP PRESENTATIONS

In this appendix, we review some basic notions about
discrete semigroup presentations and prove a few small
results mentioned in the main text.
Formally, a discrete semigroupG is a set equipped with a

binary associative operation; when G is a group, it addi-
tionally has a distinguished element that acts as the identity,
and each member of the set has a corresponding inverse. It
is common to discuss a semigroup G in terms of a specific
set of generators S and relations R between them, writing

G ¼ semihSjRi ðA1Þ

to signify this relationship (in the main text, when G is a
group, we will simply write G ¼ hSjRi and omit inverse
generators and the identity from S, as well as trivial
relations involving the identity from R). For example,
one might think of the group Z as being defined by a
single generator S ¼ fxg that obeys no nontrivial relations.
However, this viewpoint is too narrow since it is possible
for different choices of S and R to produce the same
semigroup. As an example, consider the groups

G1 ¼ hxji;
G2 ¼ hx;yjxm ¼ yn;xy ¼ yxi; ðA2Þ

where m, n are relatively prime. These two groups are
isomorphic, G1 ≅ G2 ≅ Z, with the isomorphism associat-
ing an element xayb with the integer amþ bn; note that

this finding is true despite the fact that G1 and G2 have a
different number of generators and relations.
A given semigroup, in general, admits an infinite number

of different presentations, but below, we will prove that the
group-theoretic functions defined in the main text—the
Dehn function, expansion length, and so on—have asymp-
totic scaling behaviors that are presentation independent.
We can exploit this fact to choose presentations satisfy-

ing some particular desired property. For example, we may
be concerned with choosing a model of dynamics where the
Hamiltonian or unitary gates are as local as possible. Since
the locality of the dynamics is limited by the maximum size
of the relations in R, we would thus like to minimize the
size of the relations. To this end, we have the following
proposition:
Proposition 1. Every finitely generated group has a

presentation hSjRi where all relations ri ∈R have length
jrij ≤ 3.
Proof. Consider the Cayley 2-complex CGG of a finitely

presentable groupG (see Sec. IV for a brief discussion of its
definition) obtained from a finite presentation P. While the
exact structure of CGG depends on P, CGG can always be
subdivided to obtain a simplicial complex where each 2-
cell has three edges. Since each 2-cell in the complex
corresponds to a relation, jrij ≤ 3 for all ri ∈R in the
subdivided complex, thereby defining a presentation P0
whose relations all have length less than or equal to 3. Since
P is finite, this subdivision is completed after only a finite
number of steps, and P0 is consequently also finite. ▪
Note that while the Cayley 2-complex of a semigroup

can also be subdivided, the lack of translation invariance in
a semigroup’s Cayley complex means that the resulting
subdivision may yield a presentation with infinitely many
generators (an illustrative example is to compare the
semigroup N × N with the group Z × Z).
As mentioned above, the group-theoretic properties we

are interested in from the point of view of group dynamics
is largely insensitive to the choice of presentation. For
example, recall the growth function NKðLÞ ≜ jfg; jgj ≤
Lgj defined in Eq. (29) of the main text, which measures
the number of dynamical sectors as a function of system
size. The scaling of NKðLÞ with L is independent of the
choice of presentation, allowing us to meaningfully talk
about the growth function of a semigroup, rather than of a
presentation:
Proposition 2. Let NK;P denote the growth function for a

particular presentation P ¼ semihSjRi of G. Then,

NK;P ∼ NK;P0 ðA3Þ

for all finite presentations P, P0 of G.
Proof. Let P¼semiha1;…;ajSjjRi and P0 ¼semiha01;…;

a0jS0jjR0i. Then, since both P, P0 present G, each a0i can be

expressed as a product of a finite number of ai. Let nPP0

denote the maximal number of generators of P that appear
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when writing the a0i in terms of these generators. Let jgjP
also denote the geodesic distance of g∈G with respect to
the presentation P. Then, jgjP0 ≤ nPP0 jgjP. Thus,

NK;S0 ðLÞ ≤ NK;SðnPP0LÞ: ðA4Þ

We may also perform a similar rewriting of generators of P
in terms of those of P0. After running the same argument,
we find that there exist Oð1Þ constants nPP0 ; nP0P such that

NK;P0 ðL=nP0PÞ ≤ NK;PðLÞ ≤ NK;P0 ðnPP0LÞ; ðA5Þ

and hence NK;P ∼ NK;P0 . ▪
Similar reasoning can be applied to show that the Dehn

function and expansion length (see Sec. II or the following
appendix for definitions) of a semigroup are presentation
independent:
Proposition 3. Let DehnPðLÞ and ELPðLÞ be the Dehn

function and expansion length of a semigroup with a finite
presentation P ¼ hSjRi. Then, if P, P0 are any two such
finite presentations,

DehnPðLÞ ∼ DehnP0 ðLÞ;
ELPðLÞ ∼ ELP0 ðLÞ: ðA6Þ

APPENDIX B: A PRIMER IN GEOMETRIC
GROUP THEORY

In this appendix, we state and prove some useful facts
about the geometry and complexity of finitely presentable
discrete groups. Many of the statements derived below are
well-known results in the math literature, and we have tried
to provide citations to the original works when appropriate.
A particularly accessible review of background material
relevant to the discussion to follow can be found in
Ref. [40]; a more advanced reference is Ref. [92]. As a
small notational convenience, in the following, the notation
w ∼ g will be used as shorthand to denote that the word w
evaluates to g; in the main text, this was written as
φðjwiÞ ¼ g:

w ∼ g ↔ φðjwiÞ ¼ g: ðB1Þ

We are mostly interested in infinite groups since finite
ones have trivial large-scale geometry (in a sense soon to be
made precise). Finitely presentable infinite semigroups are,
of course, very easily constructed; indeed, it is easily
verified that any group presentation where the number
of generators exceeds the number of nontrivial relations
[93] will generate an infinite group. Free groups (on n > 1
generators) and Abelian groups, in some sense, define
opposite extremes since the free group has a Cayley graph
that is embeddable in the hyperbolic space Hn, while
Abelian groups have Cayley graphs that are embeddable
in Rn. Most of the interesting cases for us correspond to

when an intermediate amount of “Abelian-ness” is intro-
duced to the non-Abelian free group.

1. Time complexity: The Dehn function

The definition of the Dehn function (14) in the main text
relates only to the (worst-case) complexity of deforming a
given word w∈Ke into the identity word [recall that Kg;L is
the set of length-L words that represent the element g,
namely, Kg ¼ fwjjwj ¼ L; gðwÞ ¼ gg]. In the main text,
we claimed that focusing on the complexity of words in
Ke—as opposed to Kg for g ≠ e—was done without loss of
generality. We now prove that studying the complexity of
the word problem in Kg≠e indeed does not produce any-
thing that is not already captured by DehnðLÞ:
Proposition 4. For a given element g of geodesic distance

jgj ≤ L, define the g-sector Dehn function as

DehngðLÞ ≜ max
w;w0 ∈Kg;L

Dehnðw;w0Þ; ðB2Þ

whereDehnðw;w0Þ is the minimum number of applications
of relations needed to transform w into w0. Then,

DehngðLÞ ∼ DehneðLÞ ≜ DehnðLÞ ðB3Þ

for all g.
Proof. For two words w1;2 in the same Kg sector, any

deformation (a.k.a. based homotopy) of w1 to w2 gives a
deformation between the length-2L word w1w−1

2 ∈Keð2LÞ
and e. Thus, the minimal number of steps needed to relate
w1 to w2 cannot be asymptotically smaller than the minimal
number of steps needed to deform wðw0Þ−1 to e. This
finding implies

Dehnðwðw0Þ−1;eÞ≲ Dehnðw;w0Þ; ðB4Þ
where ≲ denotes the equivalence of additional contribu-
tions linear in L. [94] Thus, DehnðLÞ≲ DehngðLÞ.
Conversely, since we can deform e to w−1

1 w2 ∼ e in
time around Dehnðw1w−1

2 Þ, w1 can be deformed into
w1ðw−1

1 w2Þ ¼ w2 in time less than or around DehnðLÞ.
Thus, we also have Dehnðw;w0Þ≲ Dehnðw1w−1

2 Þ, so up to
factors of order L, we have

Dehnðw1w−1
2 Þ ∼ Dehnðw;w0Þ ⇒ DehngðLÞ ∼ DehnðLÞ:

ðB5Þ
▪

The above argument means that—if the amount of space
available to us is not restricted—all sectors asymptotically
have the same worst-case complexity. However, if we
require that all words involved have length less than or
equal to L, Proposition 4 is modified to read

DehngðLÞ≲ DehnðLÞ: ðB6Þ
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In this case, all sectors Kg;L for which the geodesic length
[95] of g satisfies jgj=L < 1 in the L → ∞ limit will still
have DehngðLÞ ∼ DehnðLÞ. On the other hand, sectors
where jgj=L ¼ 1 as L → ∞ will not have enough “free
space” for the above argument to work and will thus have
DehngðLÞ < DehnðLÞ [in the case where fragile fragmen-
tation occurs (see Sec. V), this case remains true provided
we define Dehnðw;w0Þ ¼ 0 if w1, w2 are in different
subsectors of Kg;L]. Sectors where jgj=L ¼ 1 as L → ∞
are, however, necessarily exponentially smaller than those
with jgj=L < 1 (see Proposition 10), and hence, a random
state will be in a sector with DehngðLÞ ∼ DehnðLÞ with
high probability.
We now provide examples of simple groups and their

Dehn functions and discuss which sorts of groups we can
expect to have large Dehn functions. A basic result is that
only infinite non-Abelian groups can have interesting Dehn
functions due to the following easily verified statements:
Fact 1. All finite groups have DehnðLÞ≲ CL for some

(presentation-dependent) constant C related to the diameter
of the group’s Cayley graph [96].
Fact 2. DehnðLÞ≲ L2 for any Abelian group [97].
Groups that are too non-Abelian also have quadratic

Dehn functions:
Proposition 5. Free groups have DehnðLÞ ∼ L2.
Proof. This finding follows from the fact that the Cayley

graphs of free groups are trees, and thus any word w∈Ke is
a (potentially backtracking) path on the tree that contains
no nontrivial loops. Such paths can be contracted to the
trivial path by applying OðLÞ relations xx−1 ¼ ee and
OðL2Þ relations xe ¼ ex [98]. ▪
To look for interesting Dehn functions, we thus need

infinite groups with a moderate amount of Abelian-ness,
which (roughly speaking) possess nontrivial loops at all
length scales. One can start by finding examples of groups
whereDehnðLÞ scales as a higher-order polynomial. It was
shown in Ref. [47] that these turn out to be virtually
nilpotent groups. The simplest example is as follows:
Example 1. The discrete Heisenberg group

H3 ¼ hx; y; zj½x; y�z−1; ½x; z�; ½y; z�i ðB7Þ

has DehnðLÞ ∼ L3 [47].
The group BSð1; 2Þ [99] studied in detail in the main text

is the simplest group known to us with an exponential
Dehn function, whose properties we discuss in detail in
Appendix E.

2. Space complexity: The expansion length

As discussed in the main text, the space complexity of
the word problem is given by the maximal size of words
that one must encounter when reducing a w∈Ke to the
identity, as measured by the expansion length ELðwÞ, a
quantity originally introduced by Gromov in Ref. [100].

If ELðwÞ > jwj, then wmust expand by a nontrivial amount
while being reduced to the identity.
As we did with the area, we may use the expansion

length to define a distance metric between any two words
w1;2 that represent the same group element. Instead of using
ELðw1w−1

2 Þ (which we do not do because the homotopy
relating w1 to w2 needs to be properly based), we define the
relative expansion length ELðw;w0Þ between two words
w1 ∼ w2 by replacing e by w2 in the above definition:

ELðw; w0Þ ≜ min
fΔw1→w2

g
max

t
jΔw1→w2

ðtÞj; ðB8Þ

where Δw1→w2
ðtÞ are all paths in the Cayley graph with end

points fixed at e and gðw1Þ ¼ gðw2Þ. When the homotopy is
trivial, i.e., when w1 ¼ w2, the relative expansion length
vanishes.
The expansion length of a group can be defined as the

worst-case spatial complexity of words inKe, as seen in our
definition of the Dehn function:

ELðLÞ ≜ max
w∈Ke;L

ELðwÞ: ðB9Þ

A comprehensive survey of geometric properties of EL can
be found in Ref. [101].

Similar to the Dehn function, the asymptotic scaling of
ELðLÞ is independent of the choice of (finite) presentation.
Also like the Dehn function, considering expansion in other
Kg sectors does not yield anything new. Just as with
Proposition 4, one can similarly show the following:
Proposition 6. For a given g of geodesic distance jgj ≤ L,

define the expansion lengths

ELgðLÞ ≜ max
w1;w2 ∈Kg;L

ELðw;w0Þ: ðB10Þ

Then,

ELgðLÞ ∼ ELeðLÞ ≜ ELðLÞ ðB11Þ

for all g.
Most groups we are familiar with have ELðLÞ ≲ L. For

example, it is easy to see that all Abelian groups have
ELðLÞ≲ CL for some constant C. One can also show the
following:
Proposition 7.All finite groups have ELðLÞ < Lþ C for

some constant C.
Proof. The proof proceeds according to the same one that

would be used in demonstrating the correctness of Example
1. Let w∈Ke be a length-L closed loop in the Cayley graph
of a finite group, and let N be the number of vertices in the
Cayley graph. Then, since N is finite, we may write

w ¼
Y
j

wj; wj ∼ e; jwjj ≤ N; ∀ j; ðB12Þ
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since a path in the Cayley graph can only reach at most N
different vertices before returning to its starting point. Let
M ¼ ELðNÞ. If we appendM identity characters to the end
of w, we can use them to turn any one of the wj into e
without increasing the length of the appended word. Since
we can follow this procedure for all of the wj, we thus have
ELðLÞ ¼ LþM as claimed. ▪
Furthermore, we will see later that, despite having

exponential time complexity [DehnðLÞ ∼ 2L], BSð1; 2Þ
only has linear spatial complexity [ELðLÞ ∼ L]. This
finding is part of a more general result that asychronously
combable groups [which BSð1; 2Þ is an example of] have
ELðLÞ≲ L [102].
However, it is relatively straightforward to construct

examples where ELðLÞ grows faster than linearly. This
process is done simply by finding groups with Dehn
functions that scale as DehnðLÞ ¼ ωð2LÞ due to the
“spacetime” bound mentioned in the main text:
Proposition 8. (Ref. [76]) For a finitely presentable

group generated by ng generators,

DehnðLÞ≲ ð2ng þ 1ÞELðLÞ: ðB13Þ

This formula can be rewritten as ELðLÞ≳
log2ngþ1 DehnðLÞ, which grows superlinearly if DehnðLÞ
grows superexponentially.
Proof. For w∈Ke with expansion length ELðwÞ, the

number of words that w can possibly visit as it is reduced to
the identity is jfai; a−1i ; egjELðwÞ ¼ ð2ng þ 1ÞELðwÞ. Since
the shortest reduction of w to e cannot visit a given word w0
more than once, the number of steps in the reduction is
(often very loosely) upper bounded by ð2ng þ 1ÞELðwÞ. ▪

3. Growth rates of groups

A simple measure of a group’s geometry is how fast the
group grows, namely, how the number of elements within a
distance L of the origin of the Cayley graph grows as L is
increased. To this end, let BðLÞ denote the radius-L ball
centered at the origin of the Cayley graph, namely,

BðLÞ ≜ fgjjgj ≤ Lg; ðB14Þ

and define the growth function (or group volume) as
NKðLÞ ≜ jBðLÞj. Physically, NKðLÞ places a lower bound
on the number of Krylov sectors that models with DynG
dynamics fragment into [NKðLÞ equaling the number of
sectors in the absence of fragile fragmentation].
A basic property of a group is the asymptotic scaling of

NK with L. It is straightforward to show thatNK ∼Oð1Þ for
finite groups and NK ∼ polyðLÞ for Abelian groups. Free
groups provide the simplest examples where NK ∼ expðLÞ,
which is the maximum possible growth rate [103].
We now ask what implications group expansion has for

the time and space complexity measures introduced above.

It turns out that exponential growth is needed in order to
have DehnðLÞ > polyðLÞ:
Proposition 9. If a finitely presented groupG possesses a

superpolynomial Dehn function, then G has exponential
growth.
Proof. The contrapositive of this proposition follows

from Gromov’s theorem that all finitely generated groups
with polynomial growth are virtually nilpotent (namely,
have a nilpotent subgroup of finite index) [105]. Since
virtually nilpotent groups have the same Dehn functions as
nilpotent ones, we may combine Gromov’s theorem with
the fact that all nilpotent groups have DehnðLÞ ∼ Ld for
some d [47] to arrive at the result. ▪
Note that the converse to Proposition 9 is obviously

false, as free groups on more than one generator provide
examples of groups with exponential growth but with
polynomial [in fact, DehnðLÞ ∼ L] Dehn functions.
We would also like to find the sizes of the different

sectors Kg. One result along these lines is that the sector
sizes must get small as jgj gets large:
Proposition 10. Define

D ≜ X
gjjgj≤L

jKg;Lj ¼ ð2ng þ 1ÞL ðB15Þ

as the total number of words of length L. Then, the size of
Kg;L is upper bounded as

jKg;Lj
D

≤ C exp
�
−c

jgj2
L

�
ðB16Þ

for some g, L-independent constants C, c.
In the context of groups (like BS) with exponential

growth, this finding reveals that almost all Krylov sectors
are exponentially smaller than the largest ones.
Proof. The proof follows from connecting the counting

of walks in Kg;L with the heat kernel on the Cayley graph.
Consider the symmetric simple lazy walk on the Cayley
graph, and let pLðg; hÞ be the probability that a length-L
walk starting at h ends at g. Then,

pLðg; hÞ ¼
1

2ng þ 1

�
pL−1ðg; hÞ þ

X
k∈ ∂g

pðk; hÞ
�

¼ pL−1ðg; hÞ þ
1

2ng þ 1

X
k∈ ∂g

(pðk; hÞ − pðg; hÞ);

ðB17Þ

where the sum over k runs over the neighbors of g in the
Cayley graph. By translation invariance of the Cayley
graph, we can fix h ¼ e without loss of generality and
simply write pLðgÞ for pLðg; eÞ.
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The previous equation can be written more succinctly as

δLp ¼ Δp; ðB18Þ

where Δ is the normalized graph Laplacian and δL denotes
the discrete derivative along the “time” direction deter-
mined by L. Thus, the different sizes of the Kg;L are
determined by using the heat equation to evolve a delta
function concentrated on e for a total time of L. The claim
we are trying to prove then follows from estimates of the
discrete heat kernel Greens function developed in the graph
theory literature; see, e.g., Ref. [106] for a review. ▪

Various other facts follow from the observation that
pLðxÞ obeys the heat equation. For example, it implies that
pLðxÞ obeys strong maximum and minimum principles,
which guarantees that all local maxima and minima of
pLðxÞ occur on the boundaries of its domain of definition. It
also means that since in groups of exponential growth
almost all group elements in BðLÞ have geodesic distance
close to L, almost all sectors Kg;L will contain a number of
elements exponentially smaller than D.

In addition to the above asymptotic bound, we can also
prove that Ke is always the largest sector:
Proposition 11. For allL and all g; jgj ≤ L, we have [107]

jKe;Lj ≥ jKg;Lj: ðB19Þ

Proof.We aim to show that pLðe; eÞ ≥ pLðe; gÞ for all g,
L. For simplicity of notation, let L∈ 2N. Then, using
pLðg; hÞ ¼ pLðgk; hkÞ for all g, h, k on account of trans-
lation invariance of the Cayley graph, we have

pLðe; eÞ ¼
X
g

pL=2ðe; gÞ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
h

pL=2ðe; hÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h0
pL=2ðg; h0Þ2

r

≥
X
h

pL=2ðe; hÞpL=2ðh; gÞ

¼ pLðe; gÞ; ðB20Þ

where, in the third line, we used the Cauchy-Schwarz
inequality. ▪
It is also possible to make statements about the absolute

size of Ke. In particular, jKej admits different bounds
depending on the growth rate of the group:
Proposition 12. (Ref. [108]) For a group with growth

function NKðLÞ scaling as a polynomial of L,

Ld1 ≲ VðLÞ≲ Ld2

⇒ ðL logLÞ−d2=2 ≲ jKej
D

≲ L−d1=2: ðB21Þ

For a group with exponential growth,

jKej
D

≲ e−L
1=3
: ðB22Þ

In the main text, we saw numerically that this bound is
saturated for BS (see Fig. 4). Thus, DynBS is as close to
being weakly fragmented as a group dynamics model with
exponentially slow relaxation can be.
We can also connect the above bound with a previous

result to derive the following:
Corollary 1. Groups with superpolynomial Dehn func-

tions have exponentially many group sectors for words of a
fixed length, and they have an identity sector Ke that
contains a fraction of all length-L words that scales at most
as e−L

1=3
.

Proof. This follows by combining Proposition 12 with
Proposition 9. ▪

APPENDIX C: SEMIGROUP DYNAMICS
AND UNDECIDABILITY

While not relevant to the examples studied in the main
text, it is amusing to note that the word problem for
semigroups is not just computationally hard but can even be
undecidable. For example, a foundational result in comput-
ability theory is the undecidability of the semigroup word
problem, as first proven by Markov [109]. This result
implies the existence of finitely presented semigroups for
which Dehnðw;w0Þ grows faster than any recursive func-
tion. For such groups, one can never be sure whether or not
two words jwi; jw0i are in the same Kg, showing that
establishing the number of dynamical sectors is impossible,
in general.
Remarkably, rather simple examples of semigroups with

undecidable word problems are known, with the required
jHlocj being as low as five. An explicit example from
Ref. [110] serves as an illustration of how simple the
examples can be: The semigroup in question has a five-
element generating set S ¼ fv;w;x;y;zg, and the seven
relations

R ¼ fvx ¼ xv;vy ¼ yv;wx ¼ xw;wy ¼ yw;

xz ¼ zxv;yz ¼ zyw;x2v ¼ x2vzg: ðC1Þ

The word problem is also undecidable when one specifies
further to the setting of a finitely presented group
[111,112]. Going further still, the Adyan-Rabin theorem
[113,114] states that nearly all “reasonable” properties of
finitely presented groups—their Dehn times, whether or not
they are finite or Abelian, even whether or not they are a
presentation of the trivial group—are undecidable.
As a corollary, the existence of Hilbert space fragmen-

tation itself is therefore undecidable: Even if ergodicity
seems to be broken for all system sizes below L, for some
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group presentations one can, in general, never be sure that it
will not be restored at system size Lþ 1. This result
complements recent work on the undecidability of physical
problems relating to local Hamiltonians, e.g., the determi-
nation of spectral gaps, ground-state phase diagrams, and
so on [115–118].

APPENDIX D: NO COMPLETE SYMMETRY
LABELS FOR NON-ABELIAN G

In this appendix, we will prove that the Krylov sectors of
DynG cannot be associated with the quantum numbers of
any global symmetry if G is non-Abelian (as is the case for
all of the examples of interest). In fact. we will prove a more
general result. To state the result, we will define a locality-
preserving unitary as any unitary operator U such that, for
all local operators O, the conjugated operator

OU ≜ U†OU ðD1Þ

is also local. The generators of any global symmetry are
locality-preserving unitaries, but we will not need to
assume that U commutes with DynG.
We will prove the following result:
Proposition 1. When G is non-Abelian, the Krylov

sectors of DynG cannot be fully distinguished by the
eigenvalues of any set of locality-preserving unitaries.
Proof. We argue by contradiction. Assume that there

exists a set of unitaries Ua whose expectation values in a
given computational-basis product state jwi allow one to
determine the group element φðjwiÞ associated with w
(and, therefore, the Kg;L that jwi belongs to). Consider the
states

jwghi ¼ jelgemheni; ðD2Þ

with l, m, n all proportional to the system size L. We can
write

jwghi ¼ Og;lOh;lþmþ1jelþmþnþ2i; ðD3Þ

whereOg;i ¼ jgiheji þ H:c: Our goal is to show that jwghi
cannot be an eigenstate of any of the fUag if gh ≠ hg.
Denoting jelþmþnþ2i as jei for simplicity and defining

jwgh;ai ¼ Og;lOh;lþmþ1Uajelþmþnþ2i, we have

hwgh;ajUajwghi
¼ hejU†

aOg;lþ1Oh;lþmþ2UaOg;lþ1Oh;lþmþ2jei
¼ hejOUa

g;lþ1O
Ua
h;lþmþ2Og;lþ1Oh;lþmþ2jei: ðD4Þ

Since we have assumed m to be extensive and Ua to be
locality preserving, we always have mþ 1 > 2suppðOUa

g;iÞ
in the thermodynamic limit, so the above expectation value
splits as

hwgh;ajUajwghi ¼ hejOUa
g;lþ1Og;lþ1jei

× hejOUa
h;lþmþ2Oh;lþmþ2jei: ðD5Þ

In particular, in the translation-invariant case where
hejOUa

g;lþ1Og;lþ1jei is independent of l, we have

hwgh;ajUajwghi ¼ hwhg;ajUajwhgi: ðD6Þ

Taking g;h to be any two generators such that gh ≠ hg
as group elements, the above then shows that states in
differentKg;L cannot be distinguished by eigenvalues of the
fUag, provided that (i) the above assumption about trans-
lation invariance can be removed and (ii) jwghi is not
orthogonal to jwgh;ai for all choices of l, m, and all choices
of g;h such that gh ≠ hg. We deal with condition (i) by
noting that when the Ua are not translation invariant (as is
the case for, e.g., modulated symmetries), we may exploit
the fact that the sectors to which jwghi and jwhgi belong are
independent of l, m, and hence l, m can be varied without
changing the eigenvalues of the respective states under
fUag. For condition (ii), we need only note that

hwgh;ajwghi ¼ hejU†
aO2

g;lO
2
h;lþmþ1jei

¼ hejU†
aðjeihejl þ jgihgjlÞ

× ðjeihejlþmþ1 þ jhihhjlþmþ1Þjei
¼ hejU†

ajei; ðD7Þ

which is always nonzero by the unitarity of Ua. ▪

APPENDIX E: GEOMETRY AND COMPLEXITY
OF BAUMSLAG-SOLITAR GROUPS

In this section, we state and prove some facts about the
group geometry of the Baumslag-Solitar group BSð1; 2Þ
and some of its simple generalizations. The original work in
which these groups were defined is Ref. [99]. We always
work with the presentation

BSð1; 2Þ ¼ ha;bjab ¼ baai: ðE1Þ

Any discussion below can in fact be modified only slightly
in order to work for the groups BSð1;qÞ¼ha;bjab¼baqi;
however, for concreteness, we specify to q ¼ 2 throughout,
and as in the main text, we write BS for BSð1; 2Þ. A useful
fact about our chosen presentation for BS is that it admits
the matrix representation [40]

a ¼
�
1 1

0 1

�
; b ¼

�
1=2 0

0 1

�
; ðE2Þ

which allows the word problem to be solved in linear
time and is helpful in numerical studies of BS’s group
geometry [119].
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Our notation carries over from the previous section on
general aspects of group geometry. We also introduce the
notation nbðwÞ to denote the net number of bs that appear in
a word w, namely,

nbðwÞ ≜
Xjwj
i¼1

ðδwi;b − δwi;b−1Þ: ðE3Þ

1. Worst-case complexity

We start by analyzing the worst-case time and space
complexity of words in BS by computing the Dehn and
expansion-length functions.
To orient ourselves, it is helpful to recall that the Cayley

graph of BS is homeomorphic to the product of the real line
with a 3-regular tree [for BSð1; qÞ, it is a (qþ 1) tree], with
the depth of a given word w along the tree being controlled
by the relative number of bs and b−1s that w contains (see
Fig. 3 of the main text). We refer to this tree as the b tree
and use terminology whereby multiplying by b (b−1)
moves one “up” (“down”) on the sheet of the b tree, while
multiplying by a (a−1) moves one “right” (“left”) within the
sheet (along the a axis). Because of the hierarchical nature
of the graph, multiplying by b—namely, moving deeper
into the b tree—moves one to “larger scales” while
multiplying by b−1 does the opposite.

Because of the tree structure, it is clear that the group
volume

NKðLÞ ∼ λL ðE4Þ

grows exponentially with L for some constant λ > 1. A
naive guess for the value of λ is as follows. First, we realize
that the exponential growth comes from the tree structure
and that motion by one node on this tree is always possible
through the use of at most two group generators (since to
perform an arbitrary move on the tree, one must multiply by
either b, b−1, or ab). Since the number of points at depths
d ≤ L of a 3-regular tree goes like 3L, we estimate
NKðLÞ ∼ 3L=2, giving λ ≈

ffiffiffi
3

p
. This estimate is actually

extremely close to the numerically computed scaling, as we
show in Fig. 12.

a. Dehn function

We now turn to computing the Dehn function and
expansion length of BS. The Dehn function must be large
since it is easy to construct words withDehnðwÞ ∼ 2jwj [71]:

Proposition 13. Define wn ≜ b−nabn so that wn ∼ a2
n

[120]. Then, the word

wbig ¼ wnaw−1
n a−1 ðE5Þ

has area

DehnðwbigÞ ¼ 2nþ1 − 2 ∼ 2jwbigj: ðE6Þ

A visual illustration of this statement is given in Fig. 3.
The proof, which is a condensed version of the original
proof in Ref. [71], is as follows:
Proof. To determine DehnðwbigÞ, we need to find the

minimal number of relations needed to turn wbig into the
identity word. Geometrically, this value corresponds [121]
to the number of 2-cells in the Cayley complex CGBS
that form a minimal spanning surface Swbig

with wbig as its
boundary. Note that the loop defined by wbig is entirely
contained within two sheets of CGBS. It is furthermore
clear that, if we only consider bounding surfaces Swbig

contained within these two sheets, the minimal bounding
surface has area

2
Xn
k¼0

2k ¼ 2nþ1 − 2: ðE7Þ

Therefore, we need only show that this area cannot be
reduced by considering surfaces that extend into other
sheets. However, this case is clearly true, as a 2-cell of Swbig

that lives on any other sheet will necessarily make an
unwanted contribution to ∂Swbig

. More formally, we can
recognize that, being homeomorphic to the product of R
with a 3-tree, the Cayley 2-complex is contractible, and
thus the Sbig found above is the unique bounding surface. ▪
Note that by considering a homotopy that shrinks wbig

down to the identity by first making the loop narrower
along the a axis before shrinking it along the b axis, the
length of the word does not parametrically increase. This
explanation is intuitive for the following fact:
Fact 3. [Ref. [102]] BS has linear expansion length

ELðLÞ ∼ L.

FIG. 12. Number NKðLÞ of Krylov sectors, equal to the number
of distinct BS group elements whose geodesic length is less than
or equal to L.
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The previous proposition immediately implies the exist-
ence of exponentially many (in L) elements of Ke;L with an
exponentially large (also in L) area. The Dehn function thus
grows at least as DehnðLÞ≳ 2L. We now show that this
bound is in fact tight. The existing proof of this fact in the
mathematical literature appears to be to note that BS is an
“asychronously automatic” group [122] and that any such
group has DehnðLÞ≲ 2L [123]. In the following, we give a
more elementary proof:
Proposition 14. BS has an exponential Dehn function:

DehnðLÞ ∼ 2L: ðE8Þ

Proof. The construction above tells us thatDehnðLÞ≳2L.
A matching upper bound can be proven using an algorithm
that converts an input word to a particular standard form.
We prove this case by simply moving all occurrences of

b in w to the left and all occurrences of b−1 to the right,
duplicating a and a−1s along the way as needed and
(optionally, for our present purposes) eliminating bb−1

pairs as they are encountered.
It is clear that at most an exponential in L number of

additional as are generated during this process of shuffling
thebs andb−1s around (as usual, thismeans exponential up to
a polynomial factor, here linear inL), so the resulting word is

w0 ¼ bkwab−l; ðE9Þ
wherewa is a word containing only e, a;a−1 andwith length
jwaj≲ 2L. Sincew ∼ e, we know that k ¼ l and thatwa ∼ e.
Thus, an additional 2L relations suffice to reducewa to e and
hencew0 to e; thus, 2L is also an upper bound onDehnðLÞ.▪
In Fact 12, we saw that BS has linear expansion length,

meaning that there exists constants C,D such that ELðwÞ ≤
CLþD for all w∈Ke;L. The argument in Ref. [102],
however, does not tell us whether C ¼ 1 or C > 1, which is
needed for determining whether or not BS exhibits fragile
fragmentation. The following proposition answers this
question in the affirmative:
Proposition 15. There exist constants α, D with α > 0

such that

ELðLÞ ≥ ð1þ αÞLþD: ðE10Þ

Proof. It is enough to show that ELðwÞ ≥ ð1þ αÞLþD
for a particular length-L word w, which we choose to be
wbig in Eq. (E5) with n such that L ¼ 4ðnþ 1Þ. By the
contractibility of the Cayley 2-complex CGBS, for all
0 ≤ m ≤ 2n, any homotopy from wbig to the identity must
pass through the vertex am of CGBS. Therefore,

ELðwbigÞ ≥ max
0≤m≤2n

2jamj; ðE11Þ

where jamj is the geodesic distance (not word length)
of am.

We now argue that there exists an 2n−1 < m < 2n, an
α > 0, and a constant c1 such that jamj > ð2þ 2αÞnþ c1.
By the contractibility of CGBS, any geodesic of am will be
contained within a single sheet. Furthermore, since m is
exponentially large in n in the worst case, the geodesic
should reach a height of at least n − c2 on the sheet, where
c2 is a sufficiently largeOð1Þ constant. If the geodesic does
not reach such a height, then it must make a much larger
number of steps in the a direction resulting in a larger
perimeter. Letting njbj (njaj) be the number of b;b−1

(a;a−1) characters that appear in the geodesic, we see that
njbj ≥ 2ðn − c2Þ, so α ≥ 0.
To compute the perimeter, we have to determine the

number of steps the smallest length word makes in the a
direction in order to reach am. Since at its highest point
njbj=2 steps down along the b direction are needed, we can
intersperse any of thesenjbj=2 > n − c2 steps with at least
one step along the a direction. Note that if two consecutive
steps along thea direction are taken, these can be pulled past
the previous b step to form a single a step, thereby reducing
the total length of the loop. Therefore, the minimal length
loop has b steps interspersed with at most a single a step.
Since there are exponentially many (in n) choices ofm, and
since each am has a unique geodesic α ¼ 0.49. ▪
While this demonstrates that words in Ke;L must expand

by an amount proportional to L before being mapped to the
identity word, this statement is only meaningful in the
large-L limit, and in practice, ELðLÞ=L can be very close to
1 for modest choices of L (as was seen in the numerics of
Sec. IV E).

2. Average-case complexity

Wenow examine the average-case complexity ofwords in
BS (or more precisely, the complexity of typical words in
BS). Unfortunately, only a few results of average-case Dehn
functions are known (one example for nilpotent groups is
Ref. [50]), and average-case complexity has not been
studied for groups with superpolynomial Dehn functions.
We emphasize that our analysis is heuristic, relying on
several reasonable claims backed up by numerics in some
places. Letting DehnðLÞ denote the Dehn function of a
typical word in Ke;L, we make the following claim:
Claim 1.With probability 1 − ϵ, a randomly chosen word

in Ke;L for BS has a Dehn function

DehnðLÞ≳ 2fðϵÞ
ffiffiffi
L

p
; ðE12Þ

for fðϵÞ → 0 as ϵ → 0.
Proving this claim—which we believe is within reach—

constitutes an interesting direction for future research.

a. Distribution of geodesic lengths for random words

Note that DehnðLÞmeasures the typical area of words in
Ke;L. The difficulty in computing DehnðLÞ lies in the fact
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that it is hard to sample words from Ke;L due to the
constraint that such words form closed loops in the Cayley
2-complex CGBS. A much easier task is to determine the
geometry of typical length-L paths in CGBS, regardless of
whether these paths form closed loops. Understanding this
easier problem will allow us to build intuition for comput-
ing the scaling of DehnðLÞ.
The precise question we address is the following: Given

a random length-L word w, what is the geodesic distance
jgðwÞj of w? We can efficiently obtain an answer numeri-
cally by randomly sampling words w and approximately
computing their geodesic distances. In order for this
procedure to be efficient, it is helpful to realize that any
word may always be brought into the following canoni-
cal form:
Proposition 16. (Ref. [124]) Any word can always be

mapped to a unique standard form

wknl ¼ bkanb−l; k; n; l∈Z; n; l ≥ 0; ðE13Þ
where n can be even only if at least one of k, l is zero [125].
Proof. This finding follows from the arguments around

Eq. (E9) or the use of the matrix representation (E2). ▪
Since k, n, l are unique, the wknl serve as a set of

canonical representatives for each g. To obtain the geodesic
of an arbitrary word, we first reduce it to this form and then
make use of the following:
Proposition 17. (Ref. [124]) The geodesic distance of a

word w is determined by the exponents k, n, l appearing in
its canonical form wknl as

1

2
ðkþ lþ log2 jnjÞ ≤ jgðwknlÞj

≤ 4ðkþ lþ log2 jnj þ 1Þ ðE14Þ
when n ≠ 0, and jgðwknlÞj ¼ jk − lj if n ¼ 0.

All that remains is to find a way of determining k, n, l
given an arbitrary word w. For this, we use the matrix
representation (E2), in which wknl becomes

wknl ¼
�
2l−k n2−k

0 1

�
: ðE15Þ

Therefore, to find k, n, l for an input stringw, we proceed as
follows. We first find the matrix corresponding to w by
explicit matrix multiplication, yielding a result of the form
ðA
0
B
1
Þ. We see immediately that

log2 A ¼ nbðwÞ ¼ k − l; ðE16Þ
the number of bs contained in wminus the number of b−1s.
Then, we note the following:

(i) If B∈Z, either k ¼ 0 or l ¼ 0. Which one of these
scenarios holds depends on sgnðnbÞ: If nb < 0, then
k ¼ 0; l ¼ −nb and n ¼ B, while if nb > 0, then
l ¼ 0; k ¼ nb and n ¼ 2nbB.

(ii) If B ∉ Z, then k > 0, and k is determined by the
number of significant figures after the decimal point
when B is represented in binary, [126] after which
both l and n are determined.

Numerically implementing the above procedure for
several values of L gives the histogram shown in
Fig. 13, where, for simplicity, we plot an estimate of
jgðwÞj as kþ lþ log2ðjnj þ 1Þ, which has the same asymp-
totic scaling as the true value of the geodesic. Thus, we
see that the probability of obtaining jgðwÞj ¼ 0 (namely,
w∈Ke) is suppressed [we have already seen that
Prðw∈KeÞ ∼ e−L

1=3
] and that the typical geodesic distance

goes as jgðwÞj ∼ ffiffiffiffi
L

p
.

Since we are sampling random words, nbðwÞ ¼ k − l
will converge to a Gaussian of width

ffiffiffiffi
L

p
; thus, a typical

word will reach a depth of
ffiffiffiffi
L

p
on the b-tree part of the

Cayley graph. We also expect the kþ l contribution to the
geodesic estimate (E14) to scale as

ffiffiffiffi
L

p
; indeed, this

expectation can be numerically verified to be the case.
The fact that a random word typically has jgðwÞj ∼ ffiffiffiffi

L
p

then means that the log jnj contribution to the geodesic
estimate scales as log jnj ≲ ffiffiffiffi

L
p

. Thus, words that traverse
exponentially far along the a axis of the Cayley graph
(namely, those with log jnj ∼ L) are rare, meaning that we
should not expect the Dehn time of typical words to be
close to the worst-case result. To determine whether
log jnj < ffiffiffiffi

L
p

or log jnj ∼ ffiffiffiffi
L

p
, we simply make a histogram

of ðlog jnjÞ= ffiffiffiffi
L

p
, with the result shown in Fig. 14. We see

that the log jnj part makes an Oð1Þ contribution to the
expected geodesic distance, and we learn the following:
Observation 1. A typical randomly chosen word travels

to a depth of about
ffiffiffiffi
L

p
along the b tree of CGBS and

reaches a distance of about 2
ffiffiffi
L

p
along the a axis.

FIG. 13. Histogram of the geodesic length estimate jgðwÞj ¼
kþ lþ log2ðjnj þ 1Þ of randomly chosen length-L words in BS.
The scaling collapse indicates that typical words have a geodesic
length scaling as

ffiffiffiffi
L

p
.
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Before moving on, we note as an aside that a randomly
chosenword inKe;L is numerically observed to be essentially
homogeneous as far as the conserved nb density is con-
cerned, meaning that ð1=jKe;LjÞ

P
w∈Ke;L

hwjnb;ijwi ≈ 0 for
all i (although, as far as we can tell, there is no symmetry that
enforces this expectation value to vanish identically). This
case is demonstrated in Fig. 15, and it is important for
numerically determining thermalization times in the manner
of Sec. IV E.

b. Dehn times of typical words

The rough intuition leading to Claim 1 is as follows. Let
L∈ 2N for simplicity, and consider a random word w ¼
wLwR in Ke;L, with jwLj ¼ jwRj ¼ L=2. Then, to the extent
that wL;R behave like random length-L=2 words, the
midpoint of the loop defined by w will be at a distance
of about 2

ffiffiffi
L

p
along the a axis from the origin, as follows

from Observation 1. Thus, we may expect that the area of w

also scales as 2
ffiffiffi
L

p
. The only exception is if wR is very close

to w−1
L , which implies that w subtends little area, but we will

argue that such an event is unlikely.
We begin with an argument about certain types of words

that we will argue are likely to occur as subwords of typical
elements in Ke;L:
Claim 2. Consider a length-L word w chosen randomly,

subject to the following constraints. First, nbðwÞ ¼ 0.
Second, the returning walk induced on Z by restricting
to the b; b−1 characters of w is constrained to Z≥0 (i.e., it is
a Dyck walk), meaning that the cumulative sums nbðxÞ ¼P

x
j¼1ðδwi;b − δ½wi�j;bÞ are positive for all x.
Let SDyckðwÞ be the set of all length-L words w0 ∼ w

obeying the above constraint. For w0 drawn randomly
from SDyckðwÞ, w and w0 satisfy dðw;w0Þ ∼ 2

ffiffiffi
L

p
with high

probability.
Argument: The Dyck walk property means that all

w0 ∈ SDyckðwÞ are reducible to anw for some nw, with nw
shared by all words in SDyckðwÞ. This case can be seen by
an inspection of the Cayley graph or by recalling the
canonical form (E13) [the walks corresponding to a group
element are read right to left, so bkanb−l ∈ SDyckðwÞ only
if l ¼ k ¼ 0].
Since w was chosen randomly from the set of words

obeying the Dyck walk condition, the b walk defined by w
is exponentially likely to reach a height ofOð ffiffiffiffi

L
p Þ, namely,

to have maxx nbðxÞ ∼
ffiffiffiffi
L

p
. A random w fulfilling this

condition can be seen to be exponentially likely to reduce
to a word anw of length nw ∼ 2

ffiffiffi
L

p
, as can be seen by, e.g.,

following the procedure that brings w into canonical
form (E13).
Suppose now that nw scales as 2

ffiffiffi
L

p
, and consider a

random element w0 ∈ SDyckðwÞ. We claim that the distance
between w and w0 is exponentially likely to scale as
dðw;w0Þ ∼ 2

ffiffiffi
L

p
because w, w0 are exponentially likely to

travel on different sheets of the Cayley graph for nearly all
of the length of their walks. More precisely, consider the
projection of w, w0 onto the b tree, and define the branch
point Brðw;w0Þ as the largest depth of a vertex in the tree
visited by both w and w0. We claim that Brðw;w0Þ is
exponentially likely to be Oð1Þ, so w, w0 indeed travel on
separate sheets for nearly the entirety of their trajectories.
To demonstrate this case more carefully, consider how

returning random walks on CGBS behave when projected
onto the b tree. When the walk on the tree moves to larger
scales of CGBS, we will refer to it as moving “upwards,”
and when it moves to smaller scales, we will say that it
moves “downwards.” At a given vertex in CGBS, moving
upwards while staying on the same sheet can be done by
moving directly upwards, or by moving to the left or right
by an even number of steps and then moving up. Moving
upwards onto a different sheet, on the other hand, is done
by moving left or right by an odd number of steps before

FIG. 14. Histogram of the distance jnj that a randomly-chosen
length-L word proceeds along the a axis of BS’s Cayley graph.
The scaling collapse indicates that typical words have jnj ∼ 2

ffiffiffi
L

p
.

FIG. 15. The hwjnb;ijwi averaged over 105 random words w of
length L ¼ 100 in the identity sector Ke;L of BS.
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moving up. Finally, moving downwards (on the same
sheet) can be done by moving an arbitrary amount either
left or right, and then moving downwards. Thus, the
probability of moving downwards is equal to the proba-
bility of moving upwards, despite the fact that moving
upwards can be done on either of the two sheets. More
precisely, let p↖; p↗, and p↓ be the probabilities of
moving up on the same sheet, up on a different sheet,
and down, respectively. Then,

p↖ ¼ 4

5

1

4

X
k∈Z

X∞
l¼jkj

�
2l

lþ jkj
�
ð1=4Þ2l ¼ 1

3
;

p↗ ¼ 1

2
− p↖ ¼ 1

6
;

p↓ ¼ 1

2
: ðE17Þ

The fact that p↓ ¼ 1=2 means that, as far as motion in the
tree is concerned, the walk will not move ballistically
upwards or downwards, but it will instead move diffusively.
Using the above transition probabilities, the expected
behavior of Brðw;w0Þ can be calculated analytically using
generating functions. The details are rather messy, however,
and since we regard the claim of Brðw;w0Þ as being
intuitively rather clear, we will be content with a numerical
demonstration of this result, which we provide in Fig. 16.
Now, we return to our discussion of the distance between

w andw0. As just argued, Brðw;w0Þ is exponentially likely to
be Oð1Þ. The contractibility of CGBS means that the
minimal bounding surface linking w to w0 must consist of
all cells bounded byw and thea axis that lie at a depth greater
thanBrðw;w0Þ, togetherwith the analogous set of cells forw0
[a similar argument arose in the proof of Proposition 13,

where we effectively had Brðw; w0Þ ¼ 0]. Since each of
these contributions to the bounding surface consists of
around 2

ffiffiffi
L

p
cells, we indeed have dðw;w0Þ ∼ 2

ffiffiffi
L

p
. □

We are now in a position to argue for the correctness of
Claim 1. While Dyck walks do not constitute a constant
fraction of all returning walks, [127] the basic idea is to
realize that a generic word in Ke is likely to contain at least
two subwords of size around

ffiffiffiffi
L

p
obeying the Dyck

property, allowing an application of the above argument.
First, when sampling a random word in Ke, we can first

sample uniformly from all 5L=2 wordswL of length L=2 and
then sample from all words wR of length L=2 such that
wLwR ∼ e. Since wL is chosen randomly, we expect that,
with unit probability in the L → ∞ limit, the walk defined
by wL reaches a distance of order around 2

ffiffiffi
L

p
along the a

axis of the Cayley graph (this was numerically demon-
strated to be the case in Fig. 14). Since jwLj ∼ L, reaching
this distance is only possible if wL contains an excursion
along a particular sheet of the b tree which reaches a
maximal depth of about

ffiffiffiffi
L

p
. Therefore, wL must contain at

least one subword wL;D that performs a Dyck walk of
height around

ffiffiffiffi
L

p
.

Given wL, we now consider sampling wordswR such that
wLwR ∼ e. Since wR must also traverse a distance of around
2

ffiffiffi
L

p
along the a axis, it must contain a subword wR;D that

performs a Dyck walk of height around
ffiffiffiffi
L

p
. By the

contractibility of the Cayley 2-complex, the areas that
wL;D and wR;D define with respect to the a axis can cancel
out only if the excursions that wL;D and wR;D perform occur
along the same sheets of the b tree for a fraction of their
respective walks exponentially close to 1. The chance for
this to occur is, however, exponentially small in the depth
of the walk (since the number of such walks on the b tree
grows exponentially in their length), which goes as

ffiffiffiffi
L

p
.

Therefore, the areas contributed by wL;D and wR;D are
exponentially unlikely to cancel, and thus the area of w ¼
wLwR will scale as 2

ffiffiffi
L

p
with probability approaching 1

as L → ∞.
We end our argument for Claim 1 by providing a degree

of evidence from numerics which supports the conclusions
of the above arguments. We consider the distance that
randomly chosen words in Ke;L travel from the origin.
More precisely, for each randomly chosen w∈Ke;L, we
subdivide w into two equal-length halves as w ¼ wLwR and
then compute the typical amount that wL extends along the
a axis of CGBS. Sampling uniformly from Ke;L is accom-
plished by sampling random words and then postselecting
on them being in Ke;L, which, for large L, is numerically
costly on account of the postselection succeeding with
probability around e−αL

1=3
. This case limits our numerics to

relatively modest system sizes, for which finite-size effects
are rather strong. Nevertheless, the results in Fig. 17 show
that typical words in Ke;L have wL, which indeed extends a

FIG. 16. Probability for two returning random walks w, w0 on
the 3-tree—with transition probabilities as in Eq. (E17)—to have
a given branch point Brðw;w0Þ, confirming that Brðw;w0Þ ¼
Oð1Þ with constant probability.
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distance of around 2
ffiffiffi
L

p
along the a axis of CGBS. As

argued above, this finding implies the correctness of Claim
1 (as the only way for this to be false is if wL, wR almost
always traverse the same path of the b tree, which we have
already demonstrated is exponentially unlikely to be the
case). □

Finally, we note that by following similar logic as in the
proof of Proposition 4, the same scaling as in Claim 1 can
be argued to occur for randomly chosen words and not just
those in Ke. More precisely, from Claim 1, we expect that if
w is a random length-L word and w0 is subsequently
randomly chosen from KgðwÞðLÞ, then dðw;w0Þ ∼ 2

ffiffiffi
L

p
with

constant probability.

APPENDIX F: ITERATED
BAUMSLAG-SOLITAR GROUPS

In this appendix, we discuss a construction for modify-
ing the Baumslag-Solitar group BSðn;mÞ in a way that lets
us achieve Dehn functions scaling superexponentially in L.
From the bound (B13), this immediately allows us to
construct examples of models with nontrivial fragility
lengths.
Variants of BSðn;mÞ can be constructed whose Dehn

functions grow as fast as DehnðLÞ ∼ expblog2 Lcð1Þ [68], an
extremely quickly growing function of L. However, we will
content ourselves with studying the simplest variants, for
which the Dehn function scales double exponentially,
DehnðLÞ ∼ 22

L
. A family of groups BSð2Þðn;m; o; pÞ with

this scaling are defined in their simplest presentations by
three generators, a;b;c, where a;b satisfy the relations of
BSðn;mÞ and b;c satisfy those of BSðo; pÞ:

BSð2Þðn;m; o; pÞ
¼ ha;b;cjamb ¼ ban;boc ¼ cbpi: ðF1Þ

We focus on the case n ¼ o ¼ 1; m ¼ p ¼ 2, which is the
simplest nontrivial example. For notational brevity, we
write BSð2Þð1; 2; 1; 2Þ simply as BSð2Þ.
The Cayley graph of BSð2Þ consists of an infinite

hierarchy of BS Cayley graphs. Multiplying by c increases
the “scale” of the BS graph generated by a;b, while
multiplying by c−1 decreases the scale. Basic facts about
the geometry of CGBSð2Þ such as its growth rate and the size
of the identity sector are relatively difficult to address
numerically, partly because, unlike BS, BSð2Þ does not
admit a simple linear representation, making the evaluation
gðwÞ for arbitrary words w rather involved [128].
It is perhaps intuitively reasonable that BSð2Þ should

have a superexponential Dehn function since the c char-
acters can be used to create exponential expansion of the b
characters, which in turn can create superexponential
expansion of the a characters. The following result fine-
tunes this intuition:
Proposition 18. BSð2Þ has Dehn function

DehnðLÞ ∼ 22
L
: ðF2Þ

This result appears to be well known and was stated in
Ref. [40] without an explicit proof, which we provide
below for completeness. The key result we need to
complete the proof is known as Britton’s lemma [129],
[130] which is stated as follows:
Lemma 1. Let G be a group with presentation S.

Furthermore, let G contain two isomorphic subgroups
H;K ⊂ G, with ϕ∶H → K the isomorphism between them.
Define the group

Gϕ ≡ hS; tjt−1Ht ¼ ϕðHÞi: ðF3Þ

Now, any word w on fS; tg� can be written in the form

w¼g0tε1g1tε2g2 � � �tεn−1gn−1tεngn; gi∈Gεi¼�1: ðF4Þ

Britton’s lemma states that if w ∼ e represents the identity
in Gϕ, then there must be some i such that either
(1) n ¼ 0 and g0 ¼ e,
(2) εi ¼ −1; εiþ1 ¼ 1, and gi ∈H, or
(3) εi ¼ 1; εiþ1 ¼ −1, and gi ∈K.
Thus, we can simplify any word w ∼ e representing the

identity in Gϕ. Case 1 above is trivial. In case 2, we can
replace the occurrence of t−1ht with ϕðhÞ, while in case 3,
we may replace tkt−1 with ϕ−1ðkÞ. After this reduction, we
are left with a new word w0 that still represents e, and we
can apply the lemma again. This process guarantees that we
will always be able to apply a successive series of
reductions to eliminate all ts from and w ∼ e in fS; tg�

FIG. 17. Statistical properties of words in Ke;L. For w chosen
randomly from Ke;L (with L even), we write w ¼ wLwR with
jwLj ¼ jwRj ¼ L=2 and then bring wL into canonical form as
wL ¼ bkLanLb−lL . Left panel: histograms of logðjnLj þ 1Þ= ffiffiffiffi

L
p

.
We see that typical words in Ke;L reach a distance of around 2

ffiffiffi
L

p

along the a axis of the Cayley graph at their midpoints. Right
panel: histograms of nb;L ¼ kL − lL, showing that typical words
in Ke;L travel a depth of around

ffiffiffiffi
L

p
into the b tree at their

midpoints.
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to obtain a word wG ∈ fSg�; wG ∼ e. The application to
BSð1; 2Þ is clear, where we take G ¼ Z, H ¼ G, and
K ¼ 2Z.

We now return to a proof of the Dehn function scaling:
Proof.We first construct a lower bound. Define the word

wn ¼ c−nbcn so that wn ∼ b2n . Then, we feed this word
into the construction of the large-area word wbig for BS, by
defining w0

n ¼ wnaw−1
n . Next, we claim that the word

whuge ¼ ðw0
nÞ−1aw0

na−1 ðF5Þ

has area

DehnðwhugeÞ ∼ 22
n
; ðF6Þ

which is double exponential in jwhugej. This finding follows
from an argument similar to the one we gave for the area of
wbig in BS. The treelike structures of the sheets of the BS
Cayley graph give treelike structures both for words
built from b;c and those built from a;b. Letting
w̃huge ¼ b−2nab2n , we find

DehnðwhugeÞ ¼ Dehnðw̃hugeaw̃−1
hugea

−1Þ þOð2nÞ: ðF7Þ

However, using the results from our study of BS, we know
that Dehnðw̃hugeaw̃−1

hugea
−1Þ ∼ 22

n
. Thus, DehnðLÞ ≥ 22

L

asymptotically.
We now need to provide a matching upper bound, which

we can do by combining Britton’s lemma with our earlier
result about BS. Note that BSð2Þ can be obtained from BS
using just the type of extension that appears in Britton’s
lemma, where G ¼ BS; H ¼ hbi; K ¼ hb2i. Then, we
know that if we are given w ∼ e, jwj ¼ L in BSð2Þ, we
can obtain a word w0 ∼ e in BS after at most OðLÞ
applications of c−1bc ¼ b2. The maximum amount that
jwj can grow under these substitutions is Oð2LÞ. Thus, an
upper bound on DehnðLÞ in BSð2Þ can be obtained by an
upper bound onDehnð2LÞ in BS. Using our previous result
on the latter, we conclude that

DehnðLÞ≲ 22
L
; ðF8Þ

and thus when combined with the lower bound, we also
have that DehnðLÞ≲ 22

L
.

Note that BSð2Þ also provides an example with a super-
linear expansion length:
Corollary 2. BSð2Þ has exponential expansion length,

ELðLÞ ∼ 2L: ðF9Þ

Proof. From the general bound (B13) and our above
result about the Dehn function of BSð2Þ, we know that
ELðLÞ ≥ 2L. The upper bound follows from the above

application of Britton’s lemma and the fact that the
expansion length of BS is only OðLÞ. ▪
It is easy to generalize the above example to construct

groups with even-faster-growing space and time complexity:
Corollary 3. Define the group BSðlÞ through the

presentation [40]

BSðlÞ ¼ ha0;…;aljai−1ai ¼ aia2
i−1; i ¼ 1;…; ni: ðF10Þ

This group has the Dehn function and expansion length

DehnðLÞ ∼ expðlÞðLÞ; ELðLÞ ∼ expðl−1ÞðLÞ: ðF11Þ

APPENDIX G: DETAILED ANALYSIS
OF NONGROUP EXAMPLES

In this appendix, we provide some detailed analysis
studying both the time and space complexity of the non-
group examples presented in the main text.

1. Star-Motzkin model

Recall the Star-Motzkin model from Sec. VI A. There are
two sources of fragmentation: The first originates from the
parentheses, and the second from the interaction of the
parentheses with the � character.
In the following analysis, we rely on the fact that we can

write down a nonlocal conserved quantity under the
dynamics that necessarily reflects the interaction between
the Motzkin degrees of freedom with the � degrees of
freedom. This nonlocal conserved quantity is

Q ¼
X
i

2

P
j<i

nð;j−nÞ;jn�;i; ðG1Þ

where nc;i ¼ jcihcji. The interpretation of this operator
can be understood pictorially. A configuration of paren-
theses (ignoring the * character) can be mapped onto a
height configuration. The height hi is written as hi ¼P

j<i nð;j − nÞ;j. Bringing a * character at height hi down to
height hj < hi by a sequence of local updates creates 2hi−hj

such * characters at height hj. The charge operator simply
counts the total number of * characters if all * characters
are brought down to zero height. In the situation where the

height becomes negative, we can rescale 2

P
j<i

n̂ð;j−n̂Þ;j to

2

P
j<i

n̂ð;j−n̂Þ;j−h̄, where h̄ is the value of the lowest height.
The interpretation of the exponential charge is then
equivalent to the previously introduced definition if h̄ is
redefined to be at zero height.
We now proceed to understanding how to label Krylov

sectors of the dynamics. For simplicity, we start with
analyzing the Krylov sector KQ corresponding to the
balanced sector for the parentheses, with total value Q
for the nonlocal conserved quantity. We expect this model
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to exhibit fragile fragmentation with a linear expansion
length (much like DynBS), and as such, we discuss
connectivity of configurations assuming they are appended
to a reservoir of 0 characters of length αL.
We claim that the dynamics is ergodic within the Krylov

sector KQ so long as α ¼ Oð1Þ is sufficiently large. The
proof follows from finding a path between any two states in
KQ given the desired size of the reservoir of OðLÞ. For this
purpose, we construct a reference state R, which we show
can be reached from all states given the provided space:

R ¼ (ð� � � ð�m1Þ � � � �mk−2Þ �mk−1 )�mk; ðG2Þ

where the configuration (ð� � � ð�m1Þ � � � �mk−2Þ �mk−1 )�mk

holds all of the nonlocal conserved quantity, and
mi ∈ f0; 1g are the numbers appearing in the binary
representation of Q:

Q ¼
Xk
i¼1

mi2
k−i: ðG3Þ

Without any * characters (Q ¼ 0), the dynamics is entirely
ergodic within K0. Therefore, the goal is to show that when
Q ≠ 0, all of the *s can be isolated to a reference
configuration R on one side of the system.
To this end, given a configuration C, we first isolate

OðlogQÞ number of 0 characters on one side of the system
and use these to create a nest (ð� � � ðÞ � � �Þ) of parentheses.
Next, we construct an algorithm for localizing the entirety
of the nonlocal conserved quantity into the nest, thereby
reducing C to the reference configuration R. Consider the �
character nearest to the nest. Labeling the nest by “q” (the
current amount of the conserved quantity inside of it), this
character is positioned as such:

qððð� � � ð� � � � ; ðG4Þ

where the number of open parentheses is p. Next, we move
the � character via the following sequence:

ð� � � ððð�→ ð� � � ðð� � ð→ ð� � � ð� � ð�ð→ ð� � � � �ð�ð�ð→ � � � :
ðG5Þ

Repeating, we obtain the canonical form

� � ð�ð� � � � � ð�ð� � � : ðG6Þ

The nest may then absorb the two � characters adjacent to
it, forming q0ð�ð� � � � � ð�ð� � �, where q0 ¼ qþ 1. The next
step is to collapse any paired parentheses: In other words, ()
is sent to 00. For instance, this kind of collapse will occur
for the configuration

qððð� � � ð�Þ � � � ðG7Þ

since the canonical form is q0ð�ð� � � � � ð�ðÞ � � � →
q0ð�ð� � � � � ð� � � �.
After absorbing one unit of the conserved quantity in the

nest and performing the collapse process, we iterate these
two steps. By construction, this algorithm will eventually
localize the conserved quantity in the nest, forming the
reference configuration R. So long as the reservoir is large
enough, it is possible to transition from any configuration
C∈K to R, therefore proving ergodicity.
This result indicates that the dynamics is ergodic within

the K sector [up to a mild form of fragile fragmentation
that exists due to ELðLÞ > L]. It also indicates that the
dynamics may be slow since transporting the nonlocal
conserved quantity out of a region appears to take a very
large number of steps. Thus, the relaxation times of Dyn�M
mimic that of DynBS. To formalize this finding, we define
the notion of an h restriction of C. First, we perform a
preprocessing step where we eliminate as many () pairs as
possible in C. The new configuration C̃ is what we call a
clean version of C. An h restriction of C̃, which we denote
by ShðC̃Þ is formed by first drawing a reference line at a
height h (note that the height profile of the parentheses is
shifted, so the minimum height is at 0). Here, ShðC̃Þ
denotes a set of contiguous configurations above height
h—an example is denoted in Fig. 18. We also label the
total nonlocal conserved quantity in a contiguous configu-
ration c by qc ¼

P
i∈ c ni;�2hi. Though this quantity should

not be associated with a “charge” corresponding to a
symmetry, in an abuse of notation, we henceforth call it
a charge.
Suppose two contiguous configurations c and c0 have

charges qc and q0c. If we want to transport an amount of
charge Δq between these two configurations, how much
time will it take? Note that because c and c0 are supported

FIG. 18. Illustration of the process used to define h restrictions.
We first clean the configuration, as shown in the upper panel.
Then, we draw a line at height h and consider all contiguous
regions above this line, which are shaded in red in the bottom
panel. We label the nonlocal charge in each of these regions by qi.
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above height h, charge must be pumped in or out of them at
increments of 2h. Therefore, the amount of time required is
at least OðΔq=2hÞ. Since the value of the charge supported
in c or c0 can be exponentially large, transporting some
fraction of the charge in c to c0 can take an exponentially
long time so long as h is not too large.
With this in mind, we can discuss how long it takes to

transition between two configurations. Denote the h
restriction of C to be ShðC̃Þ and that of C0 to be ShðC̃0Þ.
Label the charges of the h restriction of C to be (in
decreasing order) q1 ≥ q2 ≥ � � � ;≥ qnC and for C0 to be
q01 ≥ q02 ≥ � � � ;≥ q0nC0 . Here, nC denotes the number of
contiguous regions in the h restriction of C. If nC ≠ nC0 ,
then some number of contiguous regions need to be
created. [131] In this case, assuming that nC ≥ nC0 without
loss of generality, we construct the two vectors

 q ¼ hq1; q2;…; qnCi;
 q0 ¼ hq01; q02;…; q0nC0 ; 0;…; 0i; ðG8Þ

where the number of 0s in  q0 is nC − nC0 , indicating a
number of yet-to-be created contiguous configurations. The
number of charge that needs to be transferred in and out of
these contiguous configurations is at least Δq ¼ k  q −  q0k1.
The amount of time required for this process is therefore

thit ≥ 2−hk  q −  q0k1: ðG9Þ

As a result of this bound, there is a simple method for
checking whether the time needed to proceed between two
configurations is very long. Given two configurations C
and C0, we first construct clean versions and successively
raise the value of h until their h-restricted charge vectors are
significantly different in 1-norms. At this point, so long as h
is not too large, we know that it will take a long time to
traverse between these configurations.
Note that the hitting times strongly depend on the total

value of Q. In particular, we have the obvious bound
Q ≤ L · 2maxi hi . For a randomly chosen height profile,
maxi hi ¼ Oð ffiffiffiffi

L
p Þ; thus, we expect Q ∼ expð ffiffiffiffi

L
p Þ. As a

result, we may expect that, for generic sectors, the hitting
time could scale around expð ffiffiffiffi

L
p Þ, the same scaling as the

one argued for in the typical Dehn function of the
Baumslag-Solitar group [see Eq. (75) and Appendix E 2].

2. Chiral star-Motzkin

We now provide a more in-depth analysis of the chiral
star-Motzkin model discussed in Sec. VI B. Note that, like
in the star-Motzkin dynamics, the chiral star-Motzkin
dynamics features a nonlocal conserved quantity:

QR ¼
X
i

2

P
j<i

nð;j−nÞ;jn⊳;i: ðG10Þ

To understand why large spatial resources are needed, we
first consider the following warm-up example. Suppose we
have the configuration

C ¼ (ð� � � ð⊳Þ � � �Þ⊳Þðð� � � ð⊳Þ � � �Þ) ðG11Þ

and we want to convert it to the configuration

C0 ¼ (ð� � � ð⊳Þ � � �ÞÞðð� � � ð⊳Þ � � �Þ⊳): ðG12Þ

In essence, we want to move a single unit of charge from
one of the nests to the other one. We can move the⊳ out of
the first nest, yielding

(ð� � � ð⊳Þ � � �ÞÞ⊳⊳ðð� � � ð⊳Þ � � �Þ); ðG13Þ

but unlike in the star-Motzkin model, we cannot move it
into the other cluster. The only way to proceed is to collapse
the entire cluster, giving

( � � � ð⊳Þ � � �Þ⊳2hþ2ð� � � ðÞ � � �Þ → ð� � � ð⊳Þ � � � )⊳2hþ2;

ðG14Þ

where h is the height of the nest that was collapsed. Next,
we may reinsert an empty nest of parentheses forming

( � � � ð⊳Þ � � �Þð� � � ðÞ � � � )⊳2hþ2; ðG15Þ

which, when 2h of the ⊳ s are used to populate the center
of the right nest with an ⊳, gives C0.
Let us more rigorously discuss when a large amount of

spatial resources is needed. We work in an intrinsic Krylov
sector with fully matched parentheses (m ¼ n ¼ 0) and
with a fixed value of the nonlocal conserved quantity
QR ¼ Q. Consider an h restriction of configurations C and
C0. Label the charges of the contiguous regions (in
decreasing order) for C and C0 with  q and  q0; this notation
was introduced in the discussion of the star-Motzkin model.
We need to transfer an amount of charge to convert between
charge configurations  q and  q0; we define

Δqmax ¼ max
i
jqi − q0ij: ðG16Þ

This value is (a lower bound on) the maximum amount of
charge that has to be transferred out of a single contiguous
region. Some of this charge can be deposited below height
h. However, the maximum amount of charge below height
h is L2h. Therefore, if Δqmax − L2h is large, then this
remaining amount of charge must be transferred to a
different contiguous region. As there are at most L
contiguous regions, at some point in time during the charge
transfer process, an amount of charge has to be inserted in a
contiguous region of charge at least Δqmax=L − 2h. This
process requires an amount of spaceOðΔqmax2

−h=LÞ since,
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at minimum, the entire region needs to be collapsed down
to height h before inserting the charge. Therefore, if
Δqmax ¼ ϵQ, then this space can be very large. This bound
is, in fact, extremely loose but sufficient for our purpose of
showing large space complexity.
Therefore, as in the quasifragmented example, given two

configurations C and C0, one first constructs clean versions
of these configurations and then selects a height h such that
the h restriction of C and C0 has large Δqmax. If this is the
case, the space complexity scales linearly in Δqmax2

−h up
to polynomial factors in L.

3. Nongroups and thermalization

Since we could also construct group-based examples
with large time and space complexities, it is an interesting
question to ask whether there are qualitatively new features
that nongroup-based constraints provide to the dynamics.
We answer this question by examining the structure

of reduced density matrices of subsystems under the
dynamics. Recall that under group dynamics DynG,
reduced density matrices of subsystems, defined as ρA ¼
TrAcðDyn†Gρ0DynGÞ, have nonzero values along their
diagonals. To explain why, consider a decomposition of
the system S ¼ AAc. Start with an initial product state

jψ0i ¼ juiA ⊗ jviAc ; ðG17Þ

and suppose v has m zeros (and can be converted under the
dynamics to some canonical form 0mv0). Under the
dynamics, we can perform a sequence of transitions that
converts juiA ⊗ j0mv0iAc to j0jAjiA ⊗ j0m−jAjuv0iAc and,
subsequently,

j0jAjiA ⊗ j0m−jAjuv0iAc → jwiA ⊗ jw−10m−jAj−jwjuv0iAc :

ðG18Þ

If the number of zeros in the initial state is large enough,
then any word w can be produced in A, therefore implying
that all diagonal elements of ρA will be nonzero. Note that
this crucially relies on the existence of inverses, hence the
reason why it is special to a group structure.
However, this property no longer applies for dynamics

that are not based on groups. Instead, we argue that for
certain nongroup examples, it is not possible to attain all
words u in subsystem A. To see this case, let us consider the
chiral star-Motzkin model from the previous subsection.
Consider the initial word in the subsystem to be

u ¼ (ðð� � � ð⊳Þ � � �ÞÞ) ðG19Þ

and the entire initial state jui ⊗ jvi to be in KQ for some
large value of Q. Let us assume that v is generic enough
that a constant fraction of it is filled with “0” characters. We
define

n�;A ¼
X
i∈A

j�ih�ji ðG20Þ

and track the probability distribution pðn�;AÞ over time,
with

pðn; tÞ ¼ hψðtÞjPnjψðtÞi; ðG21Þ

where Pn projects onto configurations with n�;A ¼ n. Let
us first suppose that jAj ≪ logL. Then, we contend that
pðn; tÞ > 0 for all 0 ≤ n ≤ jAj. This case can be simply
shown as follows: In order to allow for 0 ≤ n ≤ jAj, we
need to be able to annihilate all of the parentheses in A.
Since this process can be completed in roughly 2jAj=2 space
and jAj ≪ logL, configurations with all possibly densities
n�;Aj can be reached.
However, when jAj ≫ logL, it is no longer the case

that all configurations with densities 0 ≤ n�;A ≤ jAj are
achievable. To see this result, consider sectors with
Q ≫ expðjAjÞ. Note that in order to have configurations
with n�;A ¼ jAj=2þ q, we need to annihilate at least q pairs
of parentheses in A. If we set the height of the h restriction
to be h ¼ jAj=2 − q and set Q ≫ expðjAjÞ, there will be at
least two contiguous regions. To transport an amount of
charge 2q from the contiguous region in A to a contiguous
region outside A requires at least 2q=polyðLÞ space. If
q ≫ logL, then this process is not possible. Therefore,
we find that for subsystems of size ≫ logL, no configu-
rations with charge n�;A ¼ jAj=2þ q are reachable with
q ≫ logL. This finding implies an unusual property that
the reduced density matrix ρA will not have full rank unless
the size of the subsystem is smaller than logL. In this
example, the consequences are easily observable since the
value of n�;A is a local operator.
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