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We introduce a family of local models of dynamics based on “word problems” from computer science
and group theory, for which we can place rigorous lower bounds on relaxation timescales. These models
can be regarded either as random circuit or local Hamiltonian dynamics and include many familiar
examples of constrained dynamics as special cases. The configuration space of these models splits into
dynamically disconnected sectors, and for initial states to relax, they must “work out” the other states in the
sector to which they belong. When this problem has a high time complexity, relaxation is slow. In some of
the cases we study, this problem also has high space complexity. When the space complexity is larger than
the system size, an unconventional type of jamming transition can occur, whereby a system of a fixed size is
not ergodic but can be made ergodic by appending a large reservoir of sites in a trivial product state. This
finding manifests itself in a new type of Hilbert space fragmentation that we call fragile fragmentation. We
present explicit examples where slow relaxation and jamming strongly modify the hydrodynamics of
conserved densities. In one example, density modulations of wave vector ¢ exhibit almost no relaxation
until times O(exp(1/g)), at which point they abruptly collapse. We also comment on extensions of our

results to higher dimensions.
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I. INTRODUCTION

A common paradigm in quantum dynamics is that
isolated quantum systems usually thermalize if one waits
long enough [1-5]. Indeed, assuming that interactions are
spatially local, quantum systems tend to approach a form of
local equilibrium on a timescale that is independent of
system size, with the late-time dynamics governed by the
hydrodynamic relaxation of a small number of conserved
densities. The main possible exception to this rule is the
many-body localized phase in strongly disordered systems
[6,7] or in systems that effectively self-generate strong
disorder [8—10]. The structures that can be rigorously
shown to arrest thermalization in translation-invariant
quantum systems—such as integrability [11], quantum
scars [12-20], dynamical constraints [21-30], etc.—are
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usually fine-tuned in some sense. However, they are still of
experimental relevance since many realistic systems are
near the fine-tuned points where these phenomena occur
[31-36]. Systems near these points have long relaxation
timescales and approximate conservation laws that are
essentially exact on the timescale of realistic experiments
on noisy quantum hardware and cold atom systems.
Although the algebraic structure of integrable systems
and systems with many-body scars has been well studied,
a general understanding of the extent to which local Hilbert
space constraints can arrest thermalization is still under
development.

In this work, we introduce an alternative viewpoint for
understanding thermalization in a large class of one-
dimensional models with local Hilbert space constraints.
We begin by developing a general framework for character-
izing models with constrained dynamics in terms of semi-
groups, algebraic structures that resemble groups but need
not have inverses or an identity. This approach reproduces
examples of constrained models known in the literature but
also provides us with new examples with unusual proper-
ties. In particular, it enables us to leverage ideas from the
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field of geometric group theory to construct (a) models
with both exponentially long relaxation times and sharp
thermalization transitions and (b) models where thermal-
ization never occurs due to an unusual type of ergodic-
ity breaking we call “Hilbert-space jamming” or “fragile
fragmentation.”

The relation between constrained one-dimensional spin
chains and semigroups can be summarized as follows (see
Sec. II for a more formal discussion). Most examples of
constrained systems in the literature—and all of the
examples considered in this work—have constraints that
can be formulated in a local product state basis. In these
systems, the constraints place certain rules on the processes
that the dynamics is allowed to implement, and it is these
rules that endow the dynamics with the structure of a
semigroup. This identification works by viewing each basis
state of the on-site Hilbert space, in the computational
basis, as a generator of a semigroup. Since any element of
the semigroup can be written as a product of generators, a
many-body computational-basis product state is naturally
associated with an element of the semigroup, obtained by
taking the product of generators from left to right along the
chain. We call each computational-basis state a word, with
each word being a presentation of a certain element in the
semigroup. In this picture, the constraints are encoded by
requiring that the dynamics preserve the semigroup element
associated with each product state. In Sec. II, we show that
all local dynamical constraints can be formulated in
this way.

Of course, not all words represent distinct semigroup
elements. For example, in the case where the semigroup is a
group G with identity element e and elements g, g, three
distinct words of length 4 representing the same group
element are eeee, g,97'95'9s, and g,9,95'g7!. Each
distinct semigroup element is thus an equivalence class of
words under the application of equivalence relations like
g,g7! = ee. The most general local dynamics that pre-
serves semigroup elements is precisely one that locally
implements these equivalence relations.

The equivalence classes so defined produce multiple
sectors of the Hilbert space (“Krylov sectors” or “frag-
ments”) that the dynamical rules are unable to connect,
breaking ergodicity and leading to Hilbert space fragmen-
tation (HSF) [21-23]. Within a given fragment, thermal-
ization of an initial basis state is a process by which the
dynamics of the system “works out” which words represent
the same semigroup element as the initial state. Crucially,
when the problem of determining which words represent a
given element is computationally hard, thermalization
within each fragment is slow.

This general perspective is powerful because it maps the
problem of thermalization in these models onto a well-
known algorithmic problem, the word problem for semi-
groups (a perspective also adopted by Hastings and
Freedman in Ref. [37] to provide examples of dynamics

exhibiting “topological obstructions” that provide a sepa-
ration between the performances of QMC and quantum
annealing). The word problem is the problem referenced
above, namely, that of deciding whether two words
represent the same semigroup element. This identification
allows us to lift examples of computationally hard word
problems from the mathematical literature to construct
models with anomalously slow dynamics. In these models,
the dynamics connects the basis states within each fragment
in a manner that is much sparser than in generic systems
(see Fig. 1 for an illustration), and it is this phenomenon
that leads to long thermalization times.

The first part of this work focuses on models where the
word problem takes an exponentially long time to solve.
We place particular focus on the “Baumslag-Solitar model,”
a spin-2 model with three-site interactions for which the
relaxation time of a large class of initial states under any
type of local dynamics (Hamiltonan, random unitary, etc.)
is provably exponentially long in the system size. This
model has a conserved charge, and this exponentially long
timescale shows up as an exponentially slow hydrodynamic
relaxation of density gradients. Not only is the relaxation
timescale anomalous, but so is the functional form: A state
with density gradients relaxes “gradually, then suddenly,”
with an initially prepared density wave experiencing almost
no relaxation for exponentially long times but then under-
going a sudden collapse at a sharply defined timescale.
Despite this extremely slow hydrodynamics, the states
involved are not dynamically frozen: Each configuration
is rapidly locally fluctuating, and generic local autocorre-
lation functions decay rapidly.

Typical dynamics Group dynamics

Diam ~ L Diam ~ Dehn(L)

FIG. 1. Schematic illustration of the difference between the
Hilbert space connectivity of generic dynamics and semigroup
dynamics, with each yellow dot representing a computational-
basis product state in a single connected sector of the dynamics.
In a 1D system of length L, typical dynamics (left) requires at
most O(L) steps of the dynamics (applications of a Hamiltonian
or layers of a unitary circuit) to move between any two basis
states. In semigroup dynamics (right), the number of steps needed
scales as the Dehn function Dehn(L) of the semigroup in
question, which measures the word problem’s temporal complex-
ity. When Dehn(L) is large, the basis states in each sector are
connected very sparsely, leading to long thermalization times.
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In the second part of this work, we focus on word
problems that have high spatial complexity: In other words,
solving them requires not just many steps but also a large
amount of additional space for scratch work. In other
words, in these problems, deciding whether two words of
length L are equivalent requires a derivation involving
intermediate words much longer than L.

In the corresponding dynamical systems, one has (for
any fixed L) pairs of basis states |a), |b) such that (i) |a) is
not connected to |») by the dynamics of a chain of length L,
but (i) |a) ® |c) is connected to |h) ® |c) by the dynamics
of a longer chain, with |c) a fixed ancillary product state.
This phenomenon can be viewed in two complementary
ways: as a “fragile” form of Hilbert space fragmentation
[38] as an unusual type of jamming that has no counterpart
in known examples of jammed systems. Using construc-
tions similar to the group model discussed above, we can
construct examples where the amount of additional spatial
resources grows extremely rapidly with L, not just expo-

nentially but also as e“", eeeL, and so on.

This paper is organized as follows. In Sec. I, we introduce
word problems for semigroups and groups, and relate them to
fragmentation. In Sec. III, we use the complexity of the word
problem to derive bounds on thermalization times, and in
Sec. IV, we explore an explicit example of a high-complexity
group word problem that yields dynamics with exponentially
slow relaxation. We present numerical evidence and ana-
lytical estimates for the anomalously slow hydrodynamics of
this model. In Sec. V, we introduce and analyze a family of
group models with fragile fragmentation. Sections VI and
VII, respectively, present examples based on semigroups and
generalize our one-dimensional examples to two-dimen-
sional loop models. Finally, we conclude with a discussion
of future directions in Sec. VIII.

II. SEMIGROUP DYNAMICS
AND CONSTRAINED 1D SYSTEMS

In this section, we introduce the general framework used
to construct the models described above. We will refer to
this framework as semigroup dynamics, which encom-
passes a general class of constrained dynamical systems
whose constraints can be derived from the presentation of
the underlying group or semigroup (to be defined below).
These types of constraints are particularly appealing from a
theoretical point of view: It turns out that we can rigorously
characterize many properties—thermalization times, frag-
mentation, and so on—using tools from the field of
geometric group theory. Broadly speaking, geometric
group theory is concerned with characterizing the complex-
ity and geometry of discrete groups (see Ref. [40] for an
accessible introduction), ideas that will be made precise in
the following.

As a starting point, we describe the necessary math-
ematical background needed to motivate group dynamics.

This discussion will center around the word problem, a
century-old problem lying at the heart of results regarding
the geometry and complexity of groups. We then see how
algorithms solving the word problem can naturally be
encoded into the dynamics of 1D spin chains, whose
thermalization dynamics is controlled by the word prob-
lem’s complexity. Finally, we see how the structure of the
word problem leads to Hilbert space fragmentation and
discuss the properties of the group that control the severity
of the fragmentation.

Throughout this paper, we mostly study constrained
dynamics on 1D spin chains whose on-site Hilbert space is
finite dimensional. [41] We only consider systems whose
time evolution has constraints that can be specified in a
local tensor product basis (referred to throughout as the
computational basis), either directly or after the application
of finite-depth local unitary circuits. In the latter case, we
assume the unitary transformation has been done, to avoid
loss of generality.

We let S denote the set of computational-basis state
labels for the on-site Hilbert space, with individual basis
states being written as letters in typewriter font (|a), |b),
etc.):

Hioe = span{|a):a € S}. (1)

Strings of letters are used as shorthand for tensor products,
s0, e.g., [word) = |w) ® [0) ® |r) ® |d). A ket with a
single roman letter denotes a product state of arbitrary
length, e.g., |w) = |word).

A. Dynamical constraints and semigroups

We write Dyn(7) to denote time evolution for time #
under the dynamics in question, which may be performed
using a set of unitary gates, a (possibly space- or time-
dependent) Hamiltonian, or a bistochastic Markov chain.
Having a dynamical constraint means that not all computa-
tional-basis product states |w), |[w’) can be connected under
the dynamics. We use ¢(|w)) to denote the dynamical
sector of the state |w), defined as the set of all computa-
tional-basis product states that |w) can evolve to; thus,

<W|Dyn(t)|wl> & 5(/7(\w>),(/7(\w’>) Vi (2)

The tensor product of computational-basis states—that
is, the stacking of one system onto the end of another—
defines a binary operation on the dynamical sector labels,
which we write as ©:

p(lw) ® W) = o(|w)) © p(|w)). (3)

Since the tensor product is associative, so is ©. Thus, the set
of dynamical sectors is equipped with an associative binary
operation, thereby endowing it with the structure of a
semigroup, a generalization of a group that need not have
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inverses or an identity element. [42] Since all |w) are
formed as tensor products of the single-site basis states |a),
the ¢(|a))—which we will write simply as a to save
space—constitutes a generating set for this semigroup. The
dynamical sector of a state |[w) = |a;) ® -+ ® |a, ) is then
determined simply by multiplying a; along the length of the
chain [43]:

p(lw) =a; 00 a. 4)

Following usual group theory notation, we denote a
semigroup with generating set S as

G = semi(S|R), (5)

where R denotes a set of relations imposed on the product
states that can be formed from elements of the on-site
computational-basis states S. When writing presentations
of groups we omit the inverse generators and the identity
from S, and we likewise omit trivial relations like aa™!
e,ae = ea from R. For the remainder of the paper,
presentations of semigroups that are not groups will always
be denoted by semi(S|R), while presentations of groups
will be denoted simply by (S|R).

The relations in R are determined by ¢, namely, by which
product states are related to one another under Dyn.
Consider any two states |w), |w') such that ¢(|w)) =
@(|w')) define the same element of G. Since we are
interested in dynamics that are geometrically local, it must
be possible to relate |w) to |w’) using a series of local
updates to |w). Thus, the set R must be expressible in terms
of a set of equivalence relations that each involve only an
O(1) number of the elements of S—implying, in particular,
that |R| must be finite. A semigroup where both S and R are
finite is said to be finitely presented, and all of the
semigroups we consider are of this type.

Given a semigroup G, we use the notation Dyng to
represent a general local dynamical process acting on
H = H%’CL which satisfies the constraint (2) and hence
preserves the dynamical sectors of all computational-basis
states. The locality of the dynamics means that Dyn, must
be composed of elementary blocks (unitary gates or
Hamiltonian terms) of constant length, which, when acting
on computational-basis product states, implement the
relations contained in R. Writing the relations in R as r; =
r, with r;, =ay, - a;,, the locality of Dyng is
determined by the maximal length of the r;/,, which we
denote as Zp:

£r = max|ry,. (6)

r,/,ER

Here, £ will always be O(1) (and when G is a group, one
can show that there always exists a finite presentation of G
such that £ < 3; see Appendix A for the proof).

To be more explicit, first consider the case where Dyn
corresponds to time evolution under a (geometrically) local
Hamiltonian H. The semigroup constraint and locality of H
show that (w'|H|w) can be nonzero only if the words w, w
differ by the local application of a relation in R.
Consequently, H assumes the general form

H:ZZ(ﬂi,r|rl><rr‘i+H-C-)v (7)

i reRr

where [ry;,); = |ay1); ® -+ ® |ayrn)iy, and 4;, are
arbitrary complex numbers. Note that the above
Hamiltonian is only well defined if |r)| = |r,| for all
relations r. In cases where this does not hold, we will
rectify this problem by adding a trivial character e to the
on-site Hilbert space—with e defined to commute with all
of the other generators a—which allows us to then “pad”
the relations r in a way that ensures that |r;| = |r,]|.

As a simple example, consider the group Z° =
(%, y|xy = yx), which, as we will see later, in some sense
has trivial dynamics. Since the full generating set S =
{x,x7!,yv,y7!,e} of this presentation has dimension
|S| = 5, a Hamiltonian H ,» with Z>-constrained dynamics
thus acts most naturally on a spin-2 chain. The single
nontrivial relation xy = yx has length £z = 2, and thus
H > can be taken to be 2-local, assuming a form like

Hp =Y (A laa")(eel s + Aoda'a) (el

i a€es

+ A3 ;]ae){eal + H.c.)
+ D (aalxy) (vx| + He) + . (8)

which describes two species of conserved particles,
each of which defines a U(1) conserved charge n, =
Shilay(al = a7t (a7!|, where a =x,y. The explicit
examples we consider in this work will not be more
complicated than H, in terms of their degree of locality
or the dimension of H,., but their dynamical properties
will be much richer.

The construction of group-constrained random unitary
dynamics is similar to the Hamiltonian case. For random
unitary dynamics, Dyng; is constructed using £g-site
unitary gates U whose matrix elements (w'|U|w) are
nonzero only if the length-£r words w, w' satisfy
@(lw)) = @(|w')). Such unitaries admit the decomposition

U= @ U, Gg={gl3w):0(lw))=g,Iw|<tr}, (9)

9€Gyy

where G, denotes the set of elements of G expressible as
products of precisely £ generators. A particularly natural
realization of Dyng is when each U, is drawn from an
appropriate-dimensional Haar ensemble, although we do
not need to specify to this case.
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Existing examples of constrained 1D dynamics in the
literature—from multipole conserving systems to models
based on cellular automata and other constrained classical
systems [21-28]—are all described by Dyngs for an
appropriate semigroup G and an appropriate kind of
dynamics (random unitary, Hamiltonian, etc.) [44]. One
of the main messages of this paper is that in addition to
providing an organizing framework for discussing 1D
constrained dynamics, approaching matters from this point
of view enables a large arsenal of mathematical tools from
the field of geometric group theory to be brought to bear,
leading to general bounds on thermalization times, precise
characterizations of ergodicity breaking, and explicit exam-
ples of models with extremely slow dynamics.

B. Word problem

We now formulate the semigroup word problem, a
concept key for determining the thermalization behavior
of models with semigroup dynamics. We refer to a
computational-basis product state—defined by a string of
generators in S, e.g., w = a; ---a;—as a word. In what
follows, we will often slightly abuse notation by letting the
symbol w stand for both an abstract string a;---a; of
generators in S and the associated computational-basis
product state |a; ---a;).

Words are naturally grouped into equivalence classes
labeled by elements of G. Letting W(S) denote the set of all
words, we define these equivalence classes as

K, £ {weW(S)lp(Iw)) = g}. (10)

Any two words belonging to the same equivalence class can
be deformed into one another by applying a sequence of
relations in R. For any two w,w' €K g Wwe define a
derivation from w to w', written as D(w ~ w'), as the
sequence of words appearing in this deformation:

Dwww)=w-ou —su - - ->u,->w, (11)
where each arrow — indicates applying a single relation
from R.

In Sec. III, we will see that the way in which Dyng
thermalizes is determined by the complexity of the word
problem for G, a fundamental problem in the fields of
abstract algebra and computability theory. The word
problem is defined by the following question:

Word problem: Given two words w, w/, does
@(lw)) = @(w'))? In other words, is there a
derivation D(w w w')?

A key result is that even in the case where both |S| and
|R| are small, answering this question can be very difficult
(even undecidably so; see Appendix C). For semigroups or
groups that do not have an undecidable word problem, a

key problem is to determine the time and space complexity
of algorithms that solve it. In what follows, we will
introduce two functions characterizing the word problem’s
complexity: the Dehn function, which governs its time
complexity, and the expansion length, which governs its
space complexity.

1. Time complexity

Our operational definition of the time complexity of the
word problem is the minimum length of a derivation
linking w to w/, as illustrated in Fig. 2(a). [45] We denote
this by Dehn(wy, w,):

A

Dehn(w;, wa) £ min[D(w = /)| (12)

Note that Dehn(w, w') measures the nondeterministic time
complexity of the word problem since it is the maximum
runtime of an algorithm that maps w to w' by blindly
applying all possible relations in R to w in parallel, and it
halts the first time w’ appears in the resulting superposition
of words. Time evolution under Dyn,; can be naturally
regarded as a way of simulating this process, a connection
enabling the derivation of the bounds found in Sec. III.

For any word w, we define the length |w| of w as the
number of generators appearing in w. To denote the subset
of length-L words in K, we write

K, 2 {wek,||lw =L} (13)

as the set of length-L words in K, (or equivalently,
following our practice of letting w stand for both a word
and a computational-basis product state, as the collection of
product states associated with such words). The (worst-
case) time complexity across all words in K, ; defines the
function

max
)W) €Kyr

Dehn,(L) £ Dehn(w,w').  (14)

We are particularly interested in how Dehn (L) scales
asymptotically with L. In Appendix B, we show that this
scaling is the same for any two finite presentations of the
same semigroup: Thus, we may meaningfully speak about
the Dehn function of a semigroup rather than a particular
presentation thereof. This presentation independence
imparts some degree of the robustness to the dynamical
properties that we will derive.

For the case where G is a group (rather than just a
semigroup), a fair amount more can be said. All groups
have a distinguished identity element e, and in Appendix B,
we show that [46]

Dehn,(L) 2 Dehn,(L) VgeG. (15)
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e/je/je/je/je/je/je/e

leby /e/e/e/e/e/e/e/e Dyng G = semi(SIR)
,,,?,, ple/f/e/f/1/ - [u/f Hioe =1{/a [ aeS)
Ja/pyf/e/l1/b/o/& f
) Dehn(w) "
25 f’//}”;ﬂﬂgg'ﬂ'\o e a/r/g/h/m/g e/e a/b -~ c/d
/”?”\ g EL(w) ' ]
lw) /a/zr/g/b/m/&/0/g/ L e/f -~ &/ 4k

a/r/g/b/m/&/o/&

(a) (b) ()

FIG. 2. Semigroup dynamics and the word problem. (a) In the word problem, we are given a length-L word |w) and a series of
rewriting rules that let us make local updates to the characters of the word. The word problem for |w) is the task of deciding whether or
not a sequence of allowed updates can be found that transforms |w) into a particular reference word, here chosen to be |el). The Dehn
function Dehn(w) measures the time complexity of the word problem, namely, the minimal number of updates needed to connect |w) to
|e). (b) In some situations, |w) can only be transformed into |e’) by increasing the amount of available space, done here by appending
|ee---) onto the original word. The minimal amount of extra space needed defines the expansion length EL(w), which captures the
spatial complexity of the word problem. (c) For a semigroup G = (S|R) defined by generators a €S and relations between the
generators r; € R, our construction defines a dynamics Dyn; that acts on a 1D chain with an on-site Hilbert space H,,. = {|a):a € S}.
The dynamics implemented by Dyng; is restricted to local updates that preserve the semigroup element obtained by multiplying the
generators along the length of the chain; the allowed updates are consequently fixed by the relations in R (with the figure drawn using the

relations r;: ab = cd, r,: ef = gh, etc.).

We furthermore show that, as long as |K,,| scales
exponentially in L, then Dehn,(L)~ Dehn (L). For
groups, we thus define

Dehn(L) £ Dehn, (L) (16)

as a simpler characterization of the word problem’s time
complexity. The calculation of Dehn,(L) also simplifies
further for groups, as we may fix [w') = |el) in Eq. (14)
without changing the asymptotic scaling of Dehn(L).
Thus, for groups, we mostly focus on computing

Dehn(L) = max Dehn(w,el)

G a group). (17
max (G a group).  (17)
Even for groups where |S|, |R| are both O(1), Dehn(L)
can scale in many different ways. To start, it is easy to
verify that Dehn(L) ~ L for all finite groups and that

G Abelian = Dehn(L) < L2, (18)

with Dehn(L) ~ L? only when G is infinite. Indeed, for all
such groups, such as the G = Z? example above, Dehn(L)
is bounded from above by the time it takes to transport the
conserved charges n, £ 7,(|a)(al; — |a=')(a™!|,) across
the system, which is about L. For our purposes, we regard
any G with Dehn(L) < L? as uninteresting, as for these
groups Dyn, thermalizes on timescales generically no
slower than for conventional systems with conserved
U(1) charges.

A simple example of a group with an “interesting” Dehn
function is the discrete Heisenberg group Hs, which has the
group presentation

H; = (x,v, z|xy = yxz,x2z = zx,yz = zy) (19)

and possesses a Dehn function scaling as Dehn(L) ~ L?
[47]. In Sec. IV, we give an example of a simple group where
Dehn(L) ~2- and, in Sec. V, one with Dehn(L) ~ 22";
examples of semigroups with similarly slow dynamics are
given in Sec. VI Going beyond these examples,
Refs. [48,49] remarkably show that for any constant a,
almost any function with growth L? < f(L) < L* is the
Dehn function of some finitely presented semigroup, includ-
ing, for example, “unreasonable-looking” functions such as
L'* L*logL, and L¢ log(L)"¢") loglog L.

In addition to the worst-case complexity of the word
problem, we also consider its average-case complexity
(both for groups and semigroups), a quantity that has
received much less attention in the math literature (the only
exception we are aware of is Ref. [50]). To this end, we
define the typical Dehn function Dehn (L) as the number
of steps needed to map a certain constant fraction of words
in K,; to one another:

Dehn, (L) £ sup{r: Pr,,, cx,, [Dehn(w.w') > 1] > 1/2}.
(20)

Establishing rigorous results about Dehn is unfortunately
much more difficult than for Dehn, and the landscape of
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typical Dehn functions is comparatively less well explored.
For the examples we focus on in this paper, however, a
combination of physical arguments and numerics will
nevertheless suffice to understand the rough asymptotic

scaling of Dehn,(L).

2. Space complexity

Another complexity measure is the (nondeterministic)
space complexity of the word problem. [51] The space
complexity is nontrivial in cases where, during the course
of being deformed into w/, a word w must expand to a
length L' > L. More formally, we define the expansion
length [52] of a derivation D(w w» W) =w = uy - -+ >
u, — w' as the maximal length of the intermediate words u;:

EL(D(w = w)) £  max |u]. (21)

u; € D(www')

The relative expansion length EL(w,w’) between two
words is then defined as the minimal expansion length
of a derivation connecting them:

EL(w.w) £ min EL(D(ww w)),  (22)

D(www')

as illustrated in Fig. 2(b). The expansion length of a K, ;.
sector is likewise

EL,(L) 2 max EL(w,w'). (23)

ww K,

Similarly, with the Dehn function, we show in Appendix B
that when G is a group, EL (L) S EL,(L) for all g, so for
groups, we may use

EL(L) £ EL,(L) (G a group) (24)
as a simple metric of the space complexity.

In Appendix B, we show that EL(L) < L for all Abelian
groups and that all finite groups have EL(L) < L + C for
some constant C; such scalings are “uninteresting” from the
perspective of space complexity. Just as with the Dehn
function though, there exist simple semigroups for which

EL(L) grows extremely fast with L, the consequences of
which will be explored in Sec. V.

C. Semigroup dynamics and Hilbert space
fragmentation

The existence of multiple K, ; sectors means that Dyng
is not ergodic as long as G is not a presentation of the trivial
semigroup. The simplest case is when G is an Abelian
group. In this case, the K,; can be associated with the
symmetry sectors of a global symmetry. This case is true
simply because the sector that a given product state lives in
can be determined by computing the expectation value of

the operators n, = Y_,(|g)(gl; —|g7")(g7!|;]) for each
generator g. Thus, Dyn; for Abelian G is already very
well understood, given the plethora of work on thermal-
ization in the presence of global symmetries.

When G is not an Abelian group, global symmetries may
still be present, but there inevitably exist other nonlocal
conserved quantities that distinguish different dynamical
sectors. Indeed, in Appendix D, we prove that the dynami-
cal sectors of such models are never described by
global symmetries alone. Since Dyn; always has nonlocal
conserved quantities if G is not an Abelian group, the
lack of ergodicity due to these quantities leads to HSF
[19,21-23,53], a phenomenon whereby the dynamics of
initial states becomes trapped in disconnected subspaces of
H—in our notation, simply the K,;—whose existence
cannot be attributed to the presence of global symmetries
alone.

The original works on HSF [21,22] focused mainly on
fragmentation in spin systems with conserved dipole
moments. While these systems fall within our semigroup
framework, [54] we instead find it more instructive to
review the pair-flip model introduced in Ref. [55]. The pair-
flip model is described by a spin-s Hamiltonian of the
following form:

S

Hpp = Z Z Aap,i(laa)(bbl; ;1 +H.c.).  (25)

i ab=-s

For generic choices of 4,,;, the model is nonintegrable.
Note that the product states |w) where w = a; ---a; are
annihilated by Hpg if a; # a;,; for all i. These product
states alone provide (2s + 1)(2s)L~! dynamically discon-
nected dimension-1 sectors not attributable to any local
symmetry, meaning that Hpp exhibits HSF.

The dynamics generated by Hp is in fact a special case
of our construction applied to the group

Z =gy, . gae|g? =€), (26)

where * denotes the free product. Note that Hpr can be
obtained from our general construction by considering a
modified on-site Hilbert space H' =span{|g),|g~!):g€S},
which contains no e generator. The relation g7 = e can be
rewritten without e as g7 = g7 for all 7, j, and a general
(2s+1)

local Hamiltonian acting on (H')®” that obeys the Z,
may accordingly be written as

H=Y Y (Aggilgg)(nhl,y +He), (27)

i ghes

which matches the Hamiltonian in Eq. (25). Unfortunately,

the Dehn function of Z;* "' is easily seen to scale as
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Dehn(L) ~ L? and thus does not provide a complexity
scaling that is unusual enough to warrant further study.
Having discussed the concept of HSF, let us further
understand the structure and size of disconnected sectors
under the dynamics Dyng. The number of such discon-
nected sectors is at least as large as the number of
subspaces, each labeled by K,; for some g€ G. Thus,
the number of such subspaces—which we denote as
Ng(L)—depends on the number of semigroup elements
expressible as words of length less than or equal to L. In
particular, we define the geodesic length |g| of an element
g€ G as the length of the shortest word representing g:

= mi . 2
lg = min |w] (28)
A word w with ¢(|w)) = g satisfying |w| = |g| is called a
geodesic word. Then,

Nk(L) = Hyllgl < L}. (29)

Semigroups with more elements “close” to the identity thus
have dynamics with a larger number of Hilbert space
fragments. As an example, one may readily verify that in
the pair-flip model, N (L) ~ (2s)L grows exponentially as
long as s > 1/2.

For many models with group constraints, including the
pair-flip model, Nx(L) exactly determines the number of
Hilbert space fragments. However, for some semigroups,
Ng(L) is not the full story, with each K ; further fragment-
ing into subspaces in a way controlled by the expansion-
length function defined in Eq. (23). Understanding this
phenomenon is the subject of Sec. V.

In the study of HSF, a distinction is often made between
“strong” and “weak” HSF. This distinction was originally
discussed in the context of Hamiltonian dynamics [21],
where it was defined by violations of strong and weak ETH,
respectively. Since we focus our discussion at a level where
the nature of Dyn; may or may not involve eigenstates, we
instead adopt a slightly different definition in terms of the
size of the largest K, ; sector, which we denote as K, 1
(in Appendix B, we prove that, for groups, the largest sector
is in fact always the one associated with the identity,
K ax = K, ). We say that the dynamics is

(1) weakly fragmented if |Kp..|/|H|— O(1) as

L — o0, and

(2) strongly fragmented if |K .y 7 |/|H| — 0 as L — oo.
We find it useful to subdivide the strongly fragmented
case into additional classes according to how quickly
|Kmax.|/|H| vanishes as L — co. We say that the frag-
mentation in the case of strong HSF is

(1) polynomially strong if |K.x.|/|H|~1/poly(L),

and

(2) exponentially strong if |K .. |/|H| ~exp(—L).

Note that the above definitions are made without
reference to any global symmetry sectors. Thus, if global
symmetries happen to be present, the quantum numbers
associated with them will constitute part of the elements g
labeling the different dynamical sectors, and the above
definition of strong or weak HSF will simply single out the
largest, regardless of its symmetry quantum number(s).
When symmetries are present, one could also quantify the
degree of fragmentation by first fixing a quantum number,
changing K, (L) to be the largest sector having that
quantum number, and replacing |H| by the dimension of
the chosen symmetry sector. However, since generic Dyn;
dynamics need not have any global symmetries, and since
the result of the above procedure can depend sensitively on
the chosen quantum number [56-58], we focus only on the
above (simpler) definition, which maximizes over all
symmetry sectors.

Our models provide a way of addressing two questions
raised in Ref. [21]. The first question was whether or not
1D models exist with 0 < |K 4 2|/|H| < 1 in the thermo-
dynamic limit (known examples with weak fragmentation
all have |K.r|/|H| = 1 in the thermodynamic limit).
Our construction answers this question in the affirmative,
with examples provided by Dyng for any finite non-
Abelian G (e.g., G = S3).

The second question concerns the existence of models
where |K .. |/|H| vanishes more slowly than exponen-
tially as L — oo after specifying to a fixed symmetry sector
(in fact, an affirmative answer to this question was already
provided by the spin-1 Motzkin chain introduced in
Ref. [59], where |Kyar|/|H| ~ L73/? [60]). Our models
provide (many) more examples of this phenomenon, as one
need only let G be a group with L?> <Dehn(L) < L%, a
simple example being the discrete Heisenberg group
H; [61]. One may further ask whether there are strongly
fragmented systems where |K ., 1 |/|H| decays at a rate in
between 1/poly(L) and exp(—L). The answer to this
question is again affirmative, with one such example being
the focus of Sec. IV.

III. SLOW THERMALIZATION AND THE TIME
COMPLEXITY OF THE WORD PROBLEM

From the discussion of the previous section, it is natural
to expect that systems with Dyng; dynamics will have
thermalization times controlled by the time complexity of
the word problem, as diagnosed by the Dehn functions
Dehn,(L) defined in Eq. (14). In this section, we make this
relationship precise by using the functions Dehn,(L) to
place lower bounds on various thermalization timescales. In
the case of random unitary or classical stochastic dynamics,
Dehn,(L) will be used to bound relaxation and mixing
times; for Hamiltonian dynamics, it will appear in bounds
for hitting times.
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A common feature these timescales have is that they
quantify when Dyn; is able to spread initial product states
across Hilbert space. This feature cannot usually be probed
by looking at correlation functions of local operators,
which would be the preferred method for thinking about
thermalization. While the bounds derived in this section do
not mandate that the relaxation of local operators also be
controlled by Dehn,(L), in Sec. IV we will explore an
explicit example in which they are. Until then, we focus
on the more “global” diagnostics of relaxation and hit-
ting times.

We note in passing that it is impossible to use
Dehn,(L)—or any other quantity—to place upper bounds
on thermalization timescales without making any addi-
tional assumptions about the details of Dyn, (as without
additional assumptions, we could always choose Dyn; to
be the evolution with a many-body localized Hamiltonian,
and the relevant timescales would all diverge). Even in
the case where Dyng is an appropriately constrained
form of random unitary evolution, upper bounding the
relaxation timescales requires techniques beyond those
employed below and constitutes an interesting direction
for future work.

A. Circuit dynamics

We first discuss the case where Dyny; is generated by a
G-constrained random unitary circuit, which can be
mapped to the case where Dyns is a classical Markov
process. We assume that Dyn; is expressed as a brickwork
circuit whose gates act on £y sites, with £ the maximum
size of a relation in R. Note that Dyn(¢) will be used to
denote €N time steps of this dynamics, with each time
step consisting of ¢ staggered layers of gates.

Let us first look at how operators evolve under Dyng (7).
We use overbars to denote averages over circuit realiza-
tions, so acting on an operator O with one layer of the
brickwork (corresponding to a time of t = 1/£%) gives

O(t = ¢5') = Dyn{,(¢z")ODyng(¢7")
= E @ D U,0D D Uy,.

WigUypgt j g€y, J d€Gy

(30)

where each U; , acts on a length-£ block of sites and G, ,
as before, denotes the set of group elements expressible as
words of length less than or equal to . Assuming the U ,
are drawn uniformly from the |K,,, |-dimensional Haar
ensemble, [62] performing the average gives

Tr|O.I1
7[ ! KMR]HK;;./R) (31)

| 9.Cp

=7 -8( 3

J

where we have defined

Me, 2 37wl (32)

weK_qu
as the projector onto the space of length-£; words w with
@(lw)) = g, as well as—without loss of generality—taken
O to factorize as O = ®j(9j.

Thus, after a single step of the dynamics, all operators
completely dephase and become diagonal in the computa-
tional basis, and operators violating the dynamical con-
straint evaluate to zero under Haar averaging. We may thus
focus on diagonal operators without loss of generality,
which we indicate using vector notation as |O(¢)). With this
notation, Eq. (31) becomes

|0(t = £3")) = M, |O) (33)

with the matrix

- ®L/Cg
M, = ( > HKMR> : (34)
g€ Gep
where
i, 2! )| (35)
Kyrp |K

9L | wow' GKH-/R

projects onto the uniform superposition of states within
K

GLR"

Different layers of the brickwork likewise define matri-
ces M;, withi =1, ..., £y, where i denotes the staggering.
Defining

‘R
MET[Mm. (36)
i=1

diagonal operators evolve as

0(1)) = M'|O). (37)

Here, M is a symmetric [64] doubly stochastic matrix, with
the smallest eigenvalue of O and the largest eigenvalue of 1.
Because of the group constraint, M does not have a unique
steady state, following from the fact that the Markovian
dynamics is reducible as

M= @ M,. (38)

9geG,

However, each M, defines a irreducible aperiodic Markov
chain, whose unique steady state is the uniform distribution

|7,) = (1/IKgrl) > owe K,. [w). Infinite-temperature cir-
cuit-averaged correlation functions are determined by the
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mixing time and spectral gap of the M, which we now
relate to the Dehn function.

First, consider the mixing time of Mg, which we may
view as a characterization of the thermalization timescale
within K ;:

fnix(9) £ min{fi‘wgréag IMglw) = lzg)lly <172} (39)

9

A basic result [65] about #,,; (¢) is that it is lower bounded
by half the diameter of the state space that M, acts on
simply because, in order to mix, the system must, at the
minimum, be able to traverse across most of state space.
Thus, we have the bound

Dehn,(L)

. (40)

Tmix (g) 2

However, this bound is, in fact, too loose. Intuitively, to
saturate the bound, Dyn;(7) would need to immediately
find the optimal path between any two nodes in configu-
ration space. Since M generates a random walk on state
space, the dynamics will instead diffusively explore state
space in a less efficient manner. On general grounds, one
might therefore expect a bound on #,,;, (¢) that is the square
of the rhs above. This guess, in fact, turns out to be
essentially correct, with

Dehn(L)

> ) 41
Y =16m|K, ;| (41)

tmix(

which follows from Prop. 13.7 of Ref. [66] after using the
fact that the equilibrium distribution of M, is always
uniform on K, by virtue of M, being doubly stochastic.
Since |K,, | is at most exponential in L, we thus have

2
tn(9) 2 €, o) @)
for some g-dependent O(1) constant C,. We generically
expect the random walk generated by M to be the fastest
mixing local Markov process; hence, we expect it to
saturate the above bound on 7., (g), a prediction that we
will confirm numerically for the example in Sec. IV.

Correlation functions for operators computed in states in
K, are controlled by the relaxation time #, of M,,
defined by the inverse gap of M

A 1
1=

trel(g) (43)
where 4, is the second-largest eigenvalue of M,. This

quantity admits a similar bound to 7.;;,(g), as one can see
that [65]

tmix(g)
te >— " 44
l(g) 1n<2|Ky.L ) ( )
and hence
Dehn2(L
trel(g) = Ci] .ﬁl( ) ’ (45)

with C}, another O(1) constant. Thus, Dehn (L) places
lower bounds on both mixing and the decay of correlation
functions. Note that the operators whose correlators decay
as f,1(g) need not be local; indeed, the obvious ones to
consider are projectors like |w)(w|. In Sec. IV, we will,
however, explore an example that possesses local operators
that relax according to Eq. (45).

Note that the mixing and relaxation times are worst-case
measures of the thermalization time. We can additionally
define a “typical” mixing time 7., (g) as

mix(9) £ min{t: Pry,) (|| M5|w) = |z,)|, < 1/2) > 1/2},
(46)

where Pr|,,, indicates the probability over words uniformly
drawn from K ;. By following similar logic as above, one
can derive similar bounds on 7., (g) in terms of the typical
Dehn function.

B. Hamiltonian dynamics

We have thus far discussed mixing times of the Markov
chains that arise from random unitary dynamics. However,
purely Hamiltonian dynamics does not mimic that of a
Markov chain, and being reversible, it possesses no direct
analogues of mixing and relaxation times. Nevertheless, the
Dehn function can still be used to place bounds on the
timescales taken for time evolution to spread wave func-
tions across Hilbert space. To be more quantitative, we
focus on the hitting time #,;(g) of Dyng, which we define
as the minimum time needed for product states in K, to
“reach” all other product states in K, ;. Since (w'|e™""|w)
will generically be nonzero for all |w), [w’) €K, as soon
as t > 0, we need a slightly different definition of #,;(g) as
compared with the Markov chain case.

To define #,;(g) more precisely, we first define the
hitting amplitude between two computational-basis product
states [w),|w') €K, as

Iy (£3.9) 2 | (W [Dyng () [w) 2. (47)

Note that £, .(#;g) is a probability distribution on K,
with 3 ek, hww(t:9) = 1 for all [w) €K, ;. We define
thic (g, w, W) between two words w and w’ as the minimum
time for which h,,,(f; g) reaches a fixed fraction of its
infinite-time average h,,,(g), defined by
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A . 1T
hy(9) = Jim 7/, dth,,, (, g). (48)

The hitting time is the maximum over all pairs of words
lw), W) €K, of ty (g, w,w'), which is written as

A

@2 max minf 150 (50) > 1 (o). G9)

) ) €K,

To bound #,;(g), we first evaluate the hitting amplitude
as

hyne (:9) = [(W/|e™ ™ w) ]2

o 2

*
k!
— k!

= (W'|(=iH) w) (50)

We know that the minimum k such that (w'|H¥|w) # 0 is
given by Dehn,(w,w’), which, for brevity, we denote by
d,,, in the following. The first d,,,,, terms in the above sum
will thus vanish; thus, truncating the above Taylor series at
the leading nonzero term, we apply the remainder theorem
to find

l‘dww/ / Hdww' 2
holiig) < (R )

To diagnose the hitting time, we need to compare A, (t; g)
with its long-time average h,,,(g) by relating the above

matrix element |[(w'|H% |w)|*> to h,,(g) as follows.
Writing {|E)} for H’s eigenbasis, we find

[

WP =

Z<W|E> (E|w') Edo 2

E

< (;|<w|E|2|<E|w/|2) <ZE|>

(52)

where the second line follows from the Cauchy-Schwarz
inequality. The first factor in parentheses is simply 7, (g),
which can be readily verified:

1>

hww’ (g)

T—oo

m — Wt g)dt

= Jim S (u|E) (W) (| ) ()

T ,
X / e {E=ENt gy, (53)
0

which, assuming that the spectrum of H| k,, is nondegen-

erate (which we assume to be the case throughout this
paper), gives

B (9) = D I WIE)PI(EW) 2. (54)

Inserting this into Eq. (52), we obtain

2d,,.

[(WIH W) > < [y (9) < [|H|[™". (55)

Since H is local, ||H||,, = AL for some O(1) constant A.
We may thus write Eq. (51) as

N2
hww’(t;g) < (%) |H|hww’(g) (56)

ww' -

Aslong as d,,,, = Q(L), h,,,(t; g) is much smaller than
its equilibrium value when ¢ = Q(d,, /L). Indeed, from
Stirling’s approximation, we have

(ﬂ]’le ) 2dww/

N (q), 57
red M), (57)

hww/ (ndww’ /L’ g) <

which can always be made exponentially small in L by
choosing 7 appropriately if d,,,, = Q(L). We conclude that

Dehn,(L)

o (58)

tie(9) >
which is essentially the same bound as our naive result (40)
for 7,,(g) in the case of random circuit evolution. It would
be interesting to see if this bound could be improved to the
square of the rhs, as in Eq. (45).
Finally, we note that just as with the mixing time, a
typical hitting time may also be defined as

— A
[hit(g) = Sup{t: Prw,w’ng.L([hit.ww’ 2 [) 2 1/2} (59)

Arguments similar to the above then show that 7 (g)
admits a similar bound in terms of Dehn,(L).

IV. BAUMSLAG-SOLITAR
GROUP: EXPONENTIALLY
SLOW HYDRODYNAMICS

The previous two sections have focused on developing
parts of the general theory of semigroup dynamics. In this
section, we take an in-depth look at a particular example
that exhibits anomalously long relaxation times.

Our example will come from a family of groups whose
Dehn functions scale exponentially with L, yielding word
problems with large time complexity. [67] When
Dehn(L) ~ exp(L), the hitting and mixing times discussed
in the previous section are exponentially long. It is perhaps
already rather surprising that a translation-invariant local
Markov process or unitary circuit can have mixing times
that are this long, but our example is most interesting for
another reason: It also possesses a global symmetry whose
conserved charge takes Dehn(L) time to relax. This feature
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allows the slow time complexity of the word problem to be
manifested in the expectation values of simple local
operators, rather than being hidden in hitting times between
different product states.

Our example comes from a family of groups known in
the math literature as the Baumslag-Solitar groups [68],
which are parametrized by two integers n, m €N. Each
group BS(n, m) in this family is generated by two elements
a and b obeying a single nontrivial relation, with the group
presentation

BS(n,m) = (a,blba”b~! = a"). (60)

Models with Dyngg;,,,,) dynamics are thus most naturally
realized in spin-2 systems with max(n, m)-local dynamics
and on-site Hilbert space

a™ly, e)}. (61)

The simplest Baumslag-Solitar group that is interesting for
our purposes is BS(1,2), and the rest of our discussion will
focus on this case. For convenience, in what follows, we
will write BS(1,2) simply as BS.

The nontrivial relation in BS reads

b),

b1y,

Hloc = Span{|a>7

ab = ba?, (62)

so a generators duplicate when moved to the right of b
generators. By taking inverses, the a generators are also
seen to duplicate when moved to the left of b~! generators:

b la=a%. (63)

This duplication property means that an O(n) number of b
and b~! generators can be used to grow an a generator by
an amount of order O(2"), as

b"ab" = a?'. (64)

We will see momentarily how this exponential growth can
be linked to the Dehn function of BS, which also scales
exponentially.

Another key property of Eq. (62) is that it preserves the
number of b’s. Thus, models with Dyn; dynamics possess
a U(1) symmetry generated by the n,, defined as

n, £ D Min £ ()l = ) (). (65)

1

It is this conserved quantity that will display the exponen-
tially slow hydrodynamics advertised above.

A. Geometric perspective on group complexity

To understand how dynamics in Dyngg works, we find it
helpful to introduce a geometric way of thinking about the

group word problem. [69] Given a general discrete group
G, we let CGg denote the Cayley graph of G. Recall that
CG; is a graph with vertices labeled by elements of G and
edges labeled by generators of G and their inverses, with
two vertices h, k being connected by an edge g iff h = gk.
As simple examples, CGz, for Zy = (glg" =e) is a
length-N closed cycle; CG - for 72 = (x,y|xy = yx) isa
2D square lattice; and CGg, for the free group Z « Z =
(x,v]|) is a Bethe lattice with coordination number 4 [70].

It is useful to realize that from any Cayley graph CGg,
we can always construct a related 2-complex by associating
oriented faces (or 2-cells) to each of CGg’s elementary
closed loops; the 2-cells have the property that the product
of generators around their boundary is a relation in R. For
the above-mentioned examples, Z, would have one
N-sided face, Z> would have a face for each plaquette
of the square lattice (with the generators around the
plaquette boundaries reading xyx~'y~!), and the free
product Z x Z would have no faces at all (due to its lack
of nontrivial relations). The 2-complex thus constructed is
known as the Cayley 2-complex of G, and we abuse
notation by also referring to it as CGg.

Any group word w € W(G) naturally defines an oriented
path in CG; obtained by starting at an (arbitrarily chosen)
origin of CG; and moving along edges based on the
characters in w. The end point of this path on the Cayley
graph is thus the group element ¢(|w)). Additionally,
applying local relations in R to w deforms this path while
keeping its end points fixed. This process gives a geometric
interpretation of the subspaces K, :

K,; = {P|P = length-L path from origin to g in CGg}.
(66)

In particular, the (largest) subspace K, ; is identified with
the set of all length-L closed loops in CGg. The number
Nk (L) of Krylov sectors is the number of vertices of CGg
located a distance of less than or equal to L from the origin.

Having provided a relationship between Krylov sub-
spaces and the Cayley 2-complex, what is the geometric
interpretation of the Dehn function? Based on the defi-
nition (17), we can restrict our attention to deformations
D(w w el) for we K, ;, which are simply homotopies
that shrink the loop defined by w down to a point. The loop
passes across one cell at each step, and the number of steps
in D(w  el) is the area enclosed by the surface swept out
by the homotopy. In particular, the Dehn function of w is

Dehn(w.e") = min area(s). (67)

where the minimum is over surfaces in CG; with boundary
w; we thus refer to

area(w) £ Dehn(w, el) (68)
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as the area of w. The Dehn function of the group is then the
largest area of a word in K, ;:
Dehn(L) = Dehn(w, el).

max (69)

loops w of length L

This perspective is important as it gives the algorithmic
definition of Dehn(L) a geometric meaning. The large-
scale geometry of CG; thus directly affects the complexity
of the word problem and, consequently, the thermalization
dynamics of Dyng;.

B. Geometry of BS and the fragmentation of Dyngg

The simple examples (discrete groups, Abelian groups,
and free groups) discussed above are all geometrically
uninteresting, but the BS group is a notable exception. Note
that CGgg has the structure of an infinite branching tree of
hyperbolically tiled planes; it is illustrated in Fig. 3. To
understand how this happens, recall that b™"ab”" = a*".
Thus, for all n, b™"ab"a~?" forms a closed loop in CGgg.
This closed loop gives rise to a tiling of the hyperbolic
plane, as shown in Fig. 3(a). Letting multiplication by a
correspond to the motion along the X direction and
multiplication by b to the motion along ¥, the hyperbolic
structure comes from the fact that moving by 2" sites along

(@)

b==>
...4< . o . ’
b b
SR IVR IR NS

FIG. 3.

the X direction of the Cayley graph can either be accom-
plished by a direct path (multiplication by a') or a path
that requires exponentially fewer steps, which first traverses
n steps along the ¥ direction before moving along X
(multiplication by b™"ab").

The full geometry of CGgg is more complicated than a
single hyperbolic plane, however. As shown in Fig. 3(a),
this can be seen from the fact that the word bab cannot be
embedded into the hyperbolic plane. Instead, this word
must “branch out” into a new sheet, which also forms a
hyperbolic plane. Figure 3(b) illustrates the consequences
of this process for the Cayley graph, whose full structure
consists of an infinite number of hyperbolic planes glued
together in the fashion of a binary tree (formally, the
presentation complex of BS is homeomorphic to R x T3,
where T3 is a 3-regular tree).

The locally hyperbolic structure of CGgg means that the
number of vertices within a distance L of the origin—and
hence the number of Krylov sectors N (L)—grows expo-
nentially with L. In Appendix E, we argue that the base of

the exponent is very nearly v/3:

Nk(L)~ /3" (70)
(b) :
@-+--® @-+-9
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1 ] # I
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Group geometry of BS(1,2). The Cayley graph of BS(1, 2) is constructed from an infinite number of two-dimensional sheets

glued together in a treelike fashion. (a) Single sheet of the Cayley graph, which resembles a hyberbolic plane. Orange arrows denote
multiplication by a and purple arrows multiplication by b, with the boundary of each plaquette being the defining relation
aba~!a™!b™! = e. The diagonal purple lines denote edges that connect to different sheets; all diagonal edges connected to vertices at
the same “height” connect to the same sheet. (b) How different sheets are glued together to form the full Cayley graph. The shaded
yellow region denotes how a section of a single sheet is embedded in the full Cayley graph. The bold dashed path denotes the path traced
out by a “large” word wiyee(n) = ab™a™'b"a”'b™"ab", which is homotopic to the identity (¢ (|Wjuge)) = €) and possesses an area
scaling exponentially with its length. In the figure, n = 3, and the path on the Cayley graph is ordered by points 1 to 8, according to the 8
different components of wy,,. (read from right to left). Thus, the point 2 corresponds to the word b3, the point 5 corresponds to

a~'b3ab’, and so on.
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Interestingly, despite having exponentially many Hilbert
space fragments, it is known that the largest sector K,
occupies a fraction of the full Hilbert space H that
decreases subexponentially with L:

|Ke| L'/3
el | gmal'”, (71)
H|

where the numerical results in Fig. 4—obtained by sam-
pling random words and postselecting on membership in
K, ;—indicate that a ~ 1.84. Models with Dyngg dynam-
ics provide an example (indeed, the first that we are aware
of) of a strongly fragmented model where the largest sector
occupies neither an exponentially nor polynomially small
fraction of Hilbert space.

C. Dehn function

We finally have the necessary tools to explain why the
Dehn function of BS grows exponentially with L. Define
the word

Wiarge (1) £ ab"a"'b'a b "ab", (72)

which is of length [wy,ee(n)| = 4n + 4, belongs to K, ,
and is shown for n = 3 in Fig. 3 as the thick dashed line in
panel (b). As a path, this word can be broken into two legs.
The first leg moves to the vertex labeled by a®' by first
going “up” the hyperbolic plane of a given sheet, traversing
one step along X, and then coming back “down.” The
second leg moves back to the origin but does so by passing
along a different sheet of the tree. From Fig. 3, it is clear
that the area of the minimal surface bounding wi,.(n) is
exponentially large; more precisely, it is

| | |
—Q\ p Ne_aLl/S
1072 N I 5
- \ ]
i \h .
\
S 1073 \ -
: \‘o\ :
i . .
i o -
107 N
F | | | o
2 3 5

4
L1/3

FIG. 4. Probability p, for a randomly chosen word to lie in the
identity sector, determined according to the procedure described
in Appendix E. The dashed line is a fit to p, x e=*L"" with
ax1.84.

n—1
area(Wige(n)) =23 20 =21 -2, (73)
i=0

which scales exponentially with n. This construction thus
shows that Dehn(L) = Q(2F) [71]. This bound is in fact
tight (see Appendix E), so

Dehn(L) = ©(2%). (74)

From the results of Sec. I, this finding implies that Dyng
has exponentially long mixing, relaxation, and hitting
times.

A more sophisticated treatment needs to be given in
order to understand the scaling of the typical Dehn function
Dehn(L). To our knowledge, this question has not been
answered in the math literature. While we will not provide a
completely rigorous proof of Dehn(L)’s scaling, a combi-
nation of physical arguments and numerics—which we
relegate in their entirety to Appendix E—indicates that

Dehn(L) ~2VL. (75)

The rough intuition behind this result is that a typical
closed-loop path in K,; will roughly execute a random
walk along the tree part of CGgg, reaching a “depth” of
\/Z; from this point, it is then able to enclose an area
exponential in this depth. Giving a rigorous proof of
Eq. (75) could be an interesting direction for future
research.

D. Exponentially slow hydrodynamics

An observation about the word Wyy..(n) is that it
contains a density wave of bs, with the profile of ny;
looking like two periods of a square wave as a function of i.
Utilizing the fact that area(wjyge (1)) ~ 2", one sees that this
density wave takes an exponentially long time to relax, with
a thermalization time #y,(n) ~ [area(Wiyge(n))]* = Q(2%")
[where the square of the area comes from the square in
Eq. (45)]. Furthermore, almost any word with an ny, density
wave will admit a similar bound on 7. Indeed, consider
WOrds Wiy (12, L) obtained by extending wiyee (1) to length
L > 4n + 4 by inserting L — (4n + 4) random characters
at random points of wi,. (1) (we will assume, for sim-
plicity, that in fact wyyee(n, L) € K, 1, but this assumption
is not crucial). The only way for area(Wjyge(n,L)) to be
significantly smaller than area(wj,(n)) is if the added
characters cancel out almost the entirety of the b density
wave or cancel a large number of a’s located near the peaks
and troughs of the density wave. For a random choice of
Wiaree (71, L), these situations are exponentially unlikely to
occur, and we expect

area(wlarge<nv L)) = Q(zn) (76)
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with probability 1 in the large-n limit. The long relaxation
time of the density wave is attributed to the long mixing
time of BS because of its large Dehn function (see Sec. ITI).
This feature is remarkable because probing the large-scale
complexity of BS only requires studying the dynamics of
local operators, namely, those that overlap with n,. We
henceforth will denote the relaxation and mixing times
by t[h'

Of course, since 2" is the smallest possible time needed
t0 Map Wiy (1) to ¥4, it gives only a lower bound on .
In the case where Dyngg() is generated by a classical
Markov process or random unitary circuit dynamics,
Dyng (1) effectively leads to words executing a random
walk on the configuration space of loops. Due to the
diffusive nature of this random walk, we expect that the true
thermalization time instead scales as the square of its lower
bound, namely,

fih (Wlarge(n)) = 0(22n)’ (77)

an estimate that we will confirm shortly in Sec. IV E.

To examine the relaxation in more detail, consider a state
|wa 4) that contains a n,, density wave of momentum ¢ and
amplitude A but that is otherwise random. In other words,
the expectation value of ny,; in |w,,) is (switching to
schematic continuum notation)

ny(x) = Asin(gx), (78)

and |w, ,) is chosen randomly from the set of all states in
K, that have this expectation value (with the restriction to
K, ; done purely for notational simplicity).

The “depth” n, that w, , proceeds into CGgg is equal to
the contrast of the density wave, which we define as the
integral of the b density over a quarter period of the density
wave:

/2 A
mé/q%W:< (79)
0 q

We thus expect the density wave defined by |w, ,) to have a
thermalization timescale of

i = 0(2%1) = 0(2%4/4), (80)
Note that this exponential timescale is not visible in the
standard linear-response limit, in which one takes A — 0
before taking ¢ — 0: The two limits lead to qualitatively

different relaxation. In the standard linear-response limit,
fluctuations at scale ¢ will decorrelate on a typical

relaxation timescale of about 2VZ.

Beyond #;, we would also like to know how the
amplitude A—or, equivalently, the contrast n,—behaves
as a function of time. To estimate this, consider first how
Wiarge(11) telaxes. By the geometric considerations of

Sec. IV B, the shortest homotopy reducing Wiy (1) to
the identity word must first map wiye (1) = Wigrge (1 — 1),
then wigrge (1 — 1) = Wigge (n — 2), and so on; see Fig. 9 for
an illustration. The self-similarity of this process means that
the time needed to map Wiyge (1) = Wigrge (m — 1), namely,
tin (Wiarge (M — 1)), is equal to the combined time needed to
perform all of the maps wiype(k) = Wigre (K — 1), with
k < m. Applying this observation to the density wave
under consideration and using Eq. (77), we estimate

ns(q. ty (1 =27%)) m ny(q,0) — k (81)

for k < ny(0). Writing k on the rhs in terms of the time
t =ty (1 = 27%), these arguments suggest that the density
relaxes as

ny(q. 1) R O(ty, — 1) (Mo + logy (1 — 1/t + 2701/ 1y,)),
(82)

where ty, = C2?4/4, with C an O(1) constant, ny is

shorthand for ny,(g,0), and the 27"2(49)¢/¢, inside the
logarithm ensures that ny(g, ty,) = 0.

An interesting consequence of Eq. (82) is that the
relaxation of the density wave happens “all at once” in
the large-contrast limit (e.g., small g at fixed A), meaning
that the density profile remains almost completely
unchanged until a time very close to fy,, at which point
the density wave is abruptly destroyed. Indeed, we define
the collapse timescale

feoi(€) 2 min{r:ny(g.1) < (1 —€)na(g.0)}  (83)

as the time at which the collapse of the density wave
becomes noticeable within a precision controlled by the
constant 0 < &€ < 1. Then, the form (82) implies that

t
lim fim &) (84)
e-0A/qg—0  ly,

suggesting that the collapse is instantaneous in the large-
contrast limit.

These arguments show that density waves collapse
abruptly but do not tell us about the statistical distribution
of collapse times obtained when considering an ensemble
of realizations of the dynamics (specific disorder realiza-
tions of random unitary circuits, specific choices of
Hamiltonian, etc.). In systems that relax suddenly, the
width ¢, of this distribution can be either parametrically
smaller (in system size) than the mean collapse time ¢y, or it
can scale as Q(ty,). The former case occurs in Markov
chains displaying a “cutoff” (see, e.g., Refs. [72,73]),
which can occur when the chain describes random
motion on a highly connected graph, or when it describes
relaxation in a metastable system [where relaxation is
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caused by rare events that yield a Poissonian scaling
61, ~ V't = 0(ty)]. The latter case is typical in systems
which relax diffusively, with an unbiased random walk on
Z, being a typical example. From the geometric consid-
erations of this section, it is perhaps not clear which
scenario should apply a priori. However, the numerics
of the following section tentatively point to the latter
scenario, with the distribution of thermalization times
roughly obeying o, ~ t,. Giving a more precise charac-
terization of this scaling would be interesting to explore in
future work.

E. Numerics

We now present the results of numerical simulations that
let us take a more detailed look into the relaxation of n;, and
confirm the predictions made in the previous subsection.

1. Stochastic circuits

Our simulations all treat Dyngg as time evolution under
BS-constrained random unitary circuits. Because off-
diagonal operators are rendered diagonal after a single
step of random unitary dynamics [as was shown in
Eq. (31)], without loss of generality, we can focus on
the evolution of diagonal operators. In Sec. III, we showed
that the product states associated with diagonal operators
evolve in time according to the stochastic matrix M
derived in Eq. (34). Explicitly, since the maximal size of
an elementary relation in BS is Zz = 3 (e.g., abe = baa),
M is most naturally constructed using three brickwork
layers of three-site gates:

A L3

M é M]MQMS’ Ma - 1‘431'+a7 (85)

i=0+a

where, as in Eq. (34), the matrices M, induce equal-weight
transitions among all dynamically equivalent three-letter
words:

A
M; = g1 0263.940506
gy.....96 € SUSTIU{e}
1
X 191,92, 93) (94,95, el i41,:42.  (86)
|K919293(3)| Litlit

where the 1/|K 4,4, (3)| factor ensures that M; is stochas-
tic—in fact, doubly so on account of MT = M;. The
steady-state distribution |z,) of M within K, is accord-
ingly given by the uniform distribution on K ;:

) 2 S ). (87)

|K9~,L| weK,,

In practice, we do not actually diagonalize M but rather
use the matrix elements of M to randomly sample updates

that may be applied to a computational-basis state |w), with
the system thus remaining in a product state at all times. A
single time step in our simulations corresponds to a single
brickwork layer of M, i.e., to the application of a single
relation at each three-site block. Since |L/3 ] relations can
be applied at each time step, in these units, it is
Dehn(L)/L—rather than Dehn(L)—that lower bounds
the mixing and relaxation times of M.

2. Slow relaxation

We start by exploring how long it takes the state
[Wiaree (11, L)) to relax under M’s dynamics, where as above
Wiarge (71, L) is obtained from [wy,ee (7)) by padding it with
L — (4n + 4) identity characters inserted at random posi-
tions. This process is accomplished by initializing the
system in [Wy,ee (7, L)) and tracking the local n;,; density
over time. We focus, in particular, on the moving average of
the ny, density and the fluctuations thereof, defined as

+T

(np.0) () = %Z npi(1'),

20 £ 5> . (85)

i=1

>

where 1y, (1) = 8q,(1) b — g, (1) »- 1s the b charge on site i at
time step ¢ [with g;(¢) the ith entry of the state at time 7) and
T is a time window that is small relative to the thermal-
ization timescales of interest but large enough to suppress
short-time statistical fluctuations ny ;(¢) (here, (-) denotes
averaging over this time window, while ~ denotes averag-
ing over space). The equilibrium distribution |7,)
>wek,, W) for g = e satisfies (7,|ny;|7.) ~ 0 for all i
(see Appendix E), so for initial states |w)e€K,;, any
nonzero value of (n,,;)(¢) indicates a lack of equilibration
(for g # e, the average (7,|ny,;|7,) can be nonzero and
must first be computed in order to diagnose equilibration).

The evolution of (ny,;)(t) for a single realization of the
dynamics initialized in [Wj, (72, L)) is shown in Fig. 5(a)
for n = L/10 and L = 120. From this evolution, we can
clearly see the sudden collapse phenomena predicted above
in Eq. (84): The ny, density wave hardly decays at all until
very close to ty, ~ 5 x 10°, at which point (n, ;)(¢) rapidly
becomes very close to zero. This finding is quantified in
Fig. 5(b), which plots the spatially averaged n,, fluctuations

(ny,)? for the same realization. A relatively good fit (dashed
line) is obtained using the square of the “sudden collapse”
function defined in Eq. (82).

We now investigate how the thermalization time of
[Wiarge (1, L)) scales with n, continuing to fix n/L = 10
so as to keep both n, L extensive. Operationally, we define
the thermalization time as the first time when the magnitude
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FIG. 5. Stochastic circuit time evolution of observables associated with the b charge for the system initialized in a state

[Wiarge (n = L /10, L)), which is a large-area word wyy,e(n = L/10) with identities inserted at random places. (a) Time evolution

of the spatial profile of b charge, (n,,;), where averaging is performed over a time window of 7 = 103 brickwork layers. (b) Time

evolution of observable (n,,)? from Eq. (88). Thermalization occurs at time #y,, when this observable drops to zero, which corresponds to
the b-charge density wave collapsing to a flat profile. The run corresponding to panel (a) is shown in gray, while the blue curve
corresponds to an average over several independent runs, with the red shade showing the standard deviation. Time for each run has been
rescaled by the respective thermalization time. The analytic formula from Eq. (82) is shown by the dashed green line (rescaled by the
value at t = 0). (c) Thermalization time scaling exponentially with the system size L if the density of b’s in the initial word is kept

fixed, n = L/10.

of fluctuations in ny, drops below a fixed fraction of their
initial value:

1

to 2 min{r: (2)2(1) < 5 (5)(0)). (89

Figure 5(c) shows the scaling of #; with L, which is
observed to admit an excellent fit to the predicted scaling of
around 2%". As shown in Fig. 6, the distribution of
thermalization times across different runs is additionally
observed to be rather broad, with a standard deviation that
scales approximately in the same way as fy,.

While this result confirms that the density wave present
in [Wiye (1, L)) relaxes on a timescale of 7y, ~ 2%, it does

Count

FIG. 6. Distribution of thermalization times #y, of the density
wave defined by [Wiye (71, L)) with n = L/10, shown for differ-
ent system sizes with 300 circuit realizations. A rather broad
distribution is observed.

not show that all states with b density waves of amplitude A
and wavelength g relax on times of order 224/4, In fact, this
cannot be true, and fast-relaxing density waves always
exist. Indeed, consider the word wgy,.; (7, L) obtained from
Wiarge (12, L) by replacing all as and a~'s with es. The Dehn
time of this word is merely Dehn(wgy.1(n, L)) ~ n? since
there are no as present to slow down the dynamics of the bs
(any aa~! pairs created in between the segments of the
density waves have a net zero number of as and are thus
ineffectual at providing a slowdown). Thus, the relaxation
time of an initial state |w) carrying an ny, density wave
cannot be predicted from knowledge of the conserved
density alone—one must also have some knowledge about
the distribution of as in |w).

However, we expect that ty, ~ 2249 for generic states
containing an amplitude-A, wavelength-g density wave.
Indeed, as argued above near Eq. (76), this is simply
because as long as the value of the a-charge > _.(|a)(al; —
la=!)(a~!|;) is nonzero in the regions between the seg-
ments of the density wave—which will almost always be
true for a random density-wave state in the thermodynamic
limit—the as trapped “inside” the density wave will take an
exponentially long time to escape. Note that this remark
applies to a generic density-wave state |w), regardless of
whether or not |w) €K, ;.

In Fig. 7, we numerically investigate the relaxation of
generic density waves by considering initial states that host
density waves of momentum ¢ = 4z/3L and amplitude
A = nq (with n fixed at n = L/10) but that are otherwise
random. Compared with [Wyy. (72, L)), these random den-
sity waves (which generically lie in different K, ; sectors)
exhibit a much broader range of thermalization times;
some thermalize very quickly, while some never thermalize
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FIG. 7. Relaxation of n, under stochastic circuit dynamics for
initial states with random b density waves. The initial states are
chosen to be words of the form w;b"w,b™"w;b"w, b~ ws, where
n = L/10 and the w5 are random words containing only the

characters {a,a”!, e}. (a) Time evolution of observable (n,)>
from Eq. (88) for several independent runs with random initial
states described above and the time averaging window 7" = 100.
The time at which the density wave collapses and the final

equilibrium value of (ny,)? are seen to change significantly for
different choices of initial state, with some runs thermalizing
faster than 7" (low-lying blue lines) and some runs not thermal-
izing within the whole displayed time window of 50007 (high-
lying blue lines). (b) Thermalization times fy, of random density

waves, postselected on initial states that exhibit a drop in (n,,)? of
at least 75% during the displayed time window. Here, #, is
determined as the median across all runs (as opposed to the mean)
due to the presence of a long tail in the distribution of #y,, the
statistics of which are shown for L = 80 in the inset. Note that 7,
determined in this way is seen to scale exponentially or faster
with n.

over our chosen simulation time window [Fig. 7(a)].
Nevertheless, we still observe the average thermalization
timescale to scale exponentially with n [Fig. 7(b)]. The
large sample-to-sample fluctuations of 7, make it difficult
to reliably extract the exact scaling behavior, but the above
reasoning suggests that 7, continues to scale as 2%" for
typical initial states.

V. FRAGILE FRAGMENTATION AND THE SPACE
COMPLEXITY OF THE WORD PROBLEM

Our discussion in the past few sections has focused on
the way in which the time complexity of the word problem
enters in the thermalization times of Dyn,;. In this section,
we turn to the space complexity of the word problem. As
discussed in Sec. II B, the space complexity of the word
problem is determined by the maximal amount of space
required to map between two words w,w' €K, as
diagnosed by the expansion-length function EL,(L) in
Eq. (23). When the expansion length is large, transitioning
from w to w' necessarily requires that w first grow to be
much larger than its original size before shrinking down to
w'. When EL (L) > L, the dynamics thus lacks the spatial
resources needed to connect all states that describe the same
group element. In this situation, Dyn, cannot act ergodi-
cally in K, and thus K, become further fragmented.
Each fragment now contains words that can be reached
from some reference word w by derivations that do not
involve intermediate words longer than L. We call this
phenomenon fragile fragmentation in analogy to the notion
of fragile topology in band theory [39]: Dyng is said to
exhibit fragile fragmentation if there are pairs of words w,
w' of length L such that Dyn; on a system of length L does
not connect |w) and |w'), but Dyng; on a larger system of
length L > L connects the “padded” words |w) ® |l %)
and |w') ® |eX ") [74]. A schematic illustration of this
definition is given in Fig. 8.

A simple example of this phenomenon that exists in
higher dimensions is the jamming transition. In jammed
systems, an ensemble of particles with hard-core repulsive
interactions can exhibit a phase transition from a low-
density mobile phase to a high-density jammed phase. The
analog of fragmentation is the limited configuration space
that particles can explore in the jammed phase. When the
jammed particles are given more space, their density
decreases, and when it drops below a critical value, the
dynamics becomes ergodic. If the extra space is sub-
sequently removed, ergodicity may again be broken, but
the system may find itself in a previously inaccessible
microstate. The models we discuss in this section are more
drastic examples of this phenomenon: Unlike the examples
with hard-core particle models, the models we study exhibit
jamming even in one dimension, where the analog of the
critical jamming density can be polynomially or exponen-
tially small in system size.

To understand when Dyn,; exhibits fragile fragmenta-
tion, we need to compute the expansion length EL(L). [75]
Doing so for a general group can be rather difficult, as
EL(L)’s definition involves a rather complicated minimi-
zation problem. However, if we already know the time
complexity of the word problem—i.e., if we know the
scaling of Dehn(L)—it is possible to place a lower bound
on EL(L) [76]. Indeed, suppose a word we€ K, ; has an
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(b)

(a) Schematic of a jammed system, illustrated by densely packed, repulsively interacting particles. The interactions and high

()

density prevent the system from rearranging itself with the space available to it. However, if the system size is increased for an
intermediate period of time—allowing the particles to intermittently occupy a larger region of space before returning to their original
volume—all different particle configurations can be reached. The amount by which the system size must be increased for ergodicity to
be restored defines the expansion length EL. (b) Fragile fragmentation, which is the analogue of jamming in our dynamics. For a fixed
system size, the dynamics is nonergodic, but in panel (c), (some degree of) ergodicity is restored when a reservoir of trivial ancillae |0) ,
is appended to the system. The analogue of returning to the original system size in the jamming example is played by projecting the
ancillae onto their original state |0), at the end of the time evolution.

expansion length EL(w), implying that |w| is at most
EL(w) during any homotopy from w to el. Then, the
expansion length of any derivation D(w ~ e) cannot
exceed the total number of length-EL(w) words; if it
did, there would be at least one state that appears multiple
times in D(w ~ e)—which implies that such a derivation
cannot be of minimal length. Since the number of length-
EL(w) words is (2|S| + 1)E-(), we thus have Dehn(w) <
(2|S| + 1)EL). By maximizing over all possible w € K, ;
and taking a logarithm, we obtain the general bound

In (Dehn(L))
ELL) = a1 (50)
This bound is interesting in that it connects the spatial and
temporal complexities of the word problem. It also has the
consequence that, to find examples with additional ergo-
dicity breaking, we need only find a group with a super-
exponential Dehn function, which we will do in Sec. V B.
However, before doing so, we want to understand fragile
fragmentation and the spatial complexity of the word
problem in the simpler case of Dyngg dynamics. A general
discussion of fragile fragmentation and its repercussions for
thermalization will be given in Sec. V C.

A. Fragile fragmentation in BS dynamics

We saw in Sec. IV that the word wy,.. (1) encloses an
area of O(2") on the BS Cayley graph, leading to a word
problem with exponentially large time complexity. We now
address the space complexity of the word problem for the
BS group. At first glance, it may seem that the spatial
complexity is also exponentially large. Indeed, the action of
the naive homotopy mapping i, (1) to the trivial word is

to bring the two excursions that wi,. (1) makes along the b
axis back “down” onto the a axis. This process would cause
wlarge(n) to grow to a length of about 2" over the course of
the homotopy.

However, it turns out that w,,. (1) can be deformed in a
way that does not require its size to significantly increase,
via the process illustrated in Fig. 9. As shown in the figure,
instead of collapsing the excursions “down,” we instead
first make the loop “skinnier” by narrowing its extent along
the a axis before bringing the excursions “down’ after their
area has become small enough.

It is then clear that the length of W, () does not grow
by too much—at least, not by more than a factor linear in
L—during this homotopy. In Appendix E, we prove that at
large L,

EL(L) ~ (1 + )L, (91)

where a > 0 is an O(1) constant. Importantly, the fact that
a > 0 means that as L approaches 4(n + 1) from above,
there will be an L, > 4(n + 1) at which [wiee(n)| < L.
[so that wyyee(n) can still fit inside of the system], but
EL(Wiarge(n)) > L,; in this regime, the density wave
defined by Wy, (72, L) cannot relax even at infinite times.
Therefore, there is a transition at a finite density of es in the
initial product state between a jammed regime (where
homotopies are unable to contract) and an ergodic regime,
leading to fragile fragmentation. Since the expansion length
EL(L) « L, the severity of this jamming is comparable to
that of conventional jammed systems in higher dimensions.

We can identify L, numerically simply by decreasing L
until [y, (7, L)) ceases to thermalize. The results are
shown in Fig. 10. In this example, the length of the initial
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FIG.9. How a word wy,,. enclosing an exponentially large area can be deformed to the identity word without incurring an exponential
amount of expansion. The deformation proceeds by making the loop defined by wy,.,. narrower along the a direction before shrinking

the loop in the b direction.

word (without identities) iS |Wiyee| = 4(n + 1) = 44.
We observe that thermalization time diverges as L
approaches L, <50 (for L = 50, we have observed only
a single instance of thermalization at a very long time,
ti ~ 5 x 108), confirming a nontrivial expansion length.

B. Exponential spatial complexity: Iterated
Baumslag-Solitar group

We now present an example of group dynamics that
exhibits fragile fragmentation with a zero density jamming
transition: the iterated Baumslag-Solitar group [40]. This

50
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81 40
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S 30
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2- n
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FIG. 10. Thermalization time for stochastic BS dynamics as a
function of L for a system initialized in a product state
[Wiarge (1. L)) with n = 10 (so that the initial states for different
L differ only by the density of es). The thermalization time
diverges at some finite L, which defines the expansion length of
the word Wiy (7). Each thermalization time is obtained by
averaging over several independent runs with the same param-
eters. For L = 50, we observe a single thermalizing run, with
thermalization time 7y, =~ 5 x 10® (not shown in the plot). No
thermalization is observed for L < 50. Inset: expansion length of
Wiaree (1) for different n. For the BS group, EL is a linear function
of n (and, therefore, of L).

group is (loosely speaking) constructed by embedding a BS
group inside of itself. We refer to it as BS(®) and define it
via the presentation

BS® = (a,b,c|ab = ba?,bc = cb?).  (92)

Thus, Dyngge dynamics are most naturally realized in
spin-3 chains with 3-local dynamics, whose local Hilbert
space is obtained from that of the BS model by appending

the two states {|c), |c~")}. Note that like BS, BS®) has a
single conserved U(1) charge given by the density of ¢

generators, ne £ Y, ne; = Soi(le) (el = [e™) ™)),
Several facts about BS®) (and related generalizations
thereof) are proven in Appendix F. The most important

result is that the Dehn function of BS® is a super-
exponential function of L:

Dehn(L) ~ 22", (93)

This finding can be intuited from the fact that the word
v(n) = (c™b~'c")a(c™bc") is equivalent to a double
exponentially long string of as:

v(n) = (c"b~c")a(c™bc")
=b?ap*
=a, (94)
with the length of the rhs being double exponentially larger
than that of |v(n)| (and where “=" in the above denotes
equality as elements of BS(>). By following the same
strategy as in the construction of wy,.. (1), we can construct

a word wyye (1) € K, ; whose area grows double exponen-
tially with its length, namely,

whuge(n) = a~lv(n)lav(n). (95)
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Like with BS, the slow dynamics of BS(® is manifest in the
relaxation of the conserved charge n., which from the
scaling of Dehn(L), we expect to relax with an effective
momentum-dependent diffusion constant that is double
exponentially suppressed with q.

The general bound (90) implies that EL(L) 2 2. In
Appendix F, we prove that this bound is in fact tight, so

EL(L) ~ 2", (96)

Thus, unlike BS, there is no way to contract wy,() to the
identity without it taking up an exponentially larger amount
of space. [77] Therefore, the n. density-wave pattern
present in the state |[Wyyee (7)) ® |€”) will remain present
even at infinite times unless m = 2", i.e., unless the n.
density wave is exponentially dilute.

We now demonstrate this phenomenon numerically, using
an extension of the analysis presented for BS. A direct
implementation of the bistochastic circuit (86) is numeri-
cally rather expensive when investigating how n. relaxes
due to the requirement of needing simulations to be run for
times double exponential in the characteristic scale of the n
fluctuations under study. For this reason, we instead con-
sider an irreversible modification of Eq. (86). We modify the
dynamics so that cc™! and ¢! ¢ pairs can be annihilated but
not created. Thus, our elementary stochastic gates M;
contain terms like |e, e, e)(c,c™!, e[;;, 4, but not the
transpose thereof, with the quantity

Ryl = Z(|C><C|i +1e™)e) (97)

decreasing monotonically with time.

The merit of taking this approach is that the irreversible
setting allows us to extract lower bounds on the relaxation
time of n for the reversible setting. Our simulations are run
by initializing the system in |wpye(n,L)), a version of
Whuge (77) padded with L — [wpye(n)| e characters at ran-
dom locations, so that [wyyee (7, L)| = L, and then tracking
the time evolution of n.|. The results are shown in Fig. 11
for different values of n, which are necessarily very small
on account of the double exponential growth of the Dehn
function. In the main panel, we show the relaxation time of
|Whuge (3, L)) as a function of L, defined by the time at
which no ¢, ¢! characters remain in the evolved word. The
inset shows EL(n), defined as the minimal value of L for
which relaxation (namely, reaching a state containing no
c, ¢! characters) was observed to occur over 1000 runs of
the dynamics. The extracted EL(n) roughly conforms to
our expectation of EL(n) ~2%* for an O(1) constant a;
however, the long timescales required to observe thermal-
ization mean that statistical errors are rather large, and with
our current data, we should not expect to obtain a perfectly
exponential scaling.

- )
1.5¢
= 1.0}
= o)
=
+ 0.5¢ 3 4 5
% n
0.0+ §§§§Dngnnngnnﬁ§§ﬁ§§§§
40 60 80 100 120 140
L
FIG. 11. Thermalization time as a function of L for irreducible

BS(® dynamics, where cc™! and c¢~'c pairs can be annihilated
but not created. The dynamics is initialized in the state
[Whuge (1, L)) with n = 3, and the system is considered to have
thermalized when no c, c™! characters remain. Inset: expansion
length of Wy (1) for different 7, defined as the minimal system
size for which thermalization was observed to occur over 1000
runs of the dynamics. An approximately exponential dependence
on n is observed.

C. Fragile fragmentation: Generalities

The BS(?) example has a conserved density, so its failure
to thermalize manifests itself as the freezing of a conserved
density. In general, however, models exhibiting fragile
fragmentation need not have conserved densities.
Defining fragile fragmentation and finding reliable diag-
nostics for it in the general case are nontrivial tasks, which
we address below. First, we provide a more precise
definition of fragile fragmentation, to distinguish it from
what we call intrinsic fragmentation. Second, we present a
physical “decoupling” algorithm for detecting whether a
system exhibits fragile fragmentation, given access to a
large enough reservoir of ancillae. Third, we comment on
the ways in which fragile fragmentation manifests itself in
the dynamics of a thermalizing system.

1. Defining fragile fragmentation

We begin by precisely defining the notions of intrinsic
and fragile fragmentation in a general context (i.e., without
reference to the word problem). For concreteness, we
specialize to quantum systems evolving under unitary
dynamics, specified by a sequence of evolution operators
U;,(A),i€eZ,, acting on the system plus a collection of
ancillae A, with each ancilla assumed, for simplicity, to
have the same on-site Hilbert space as the system itself. We
assume that U; forms a uniform family of time evolution
operators that can be defined for any number of ancillae.
Given any initial state |y) of the system, and a fixed
reference state |0) 4 of the ancillae, we define an ensemble
of states on the system as
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tA(y) ={{04(Uilw) & 10) 1) }12;- (98)

In other words, 74 is the ensemble of pure states one
obtains by evolving the initial state |y) ® |0), for an
arbitrary time and postselecting on the ancillae being in the
final state |0) . Note that, in principle, we could make 7 4
depend explicitly on the state of the ancillae. However, for
group dynamics, the most natural choice for this state is
|0) 4 = |e) 4, and for semigroups, an analogous state can be
defined by augmenting the local Hilbert space with a
character |e) that commutes with all characters. We there-
fore content ourselves with studying fragmentation for this
particular choice of ancilla state. We define the Krylov
sector of |y) extended to A as

Kl// (A) = Span(TA(V/)) - 7_[sys» (99)

where H,y, is the Hilbert space of the system (without
ancillae). We furthermore define the intrinsic Krylov sector
associated with |y) as the limit

(100)

Under a generic thermalizing Hamiltonian or unitary
dynamics, the intrinsic Krylov sector of any |w) will be
the entire Hilbert space, Kj, ,, = Hy. Intrinsic fragmenta-
tion occurs whenever this is not true, i.e., when there exist
distinct initial states that do not mix under the dynamical
rules even when the system is attached to an infinitely large
bath (undergoing the same dynamics as the system).

When |A| is finite, each intrinsic Krylov sector may
further shatter into many subsectors. This phenomenon (for
|A| larger than the system) is what we have referred to
above as fragile fragmentation. The expansion length
associated with the dynamics is the minimal size of A
below which additional subsectors form.

2. Probing fragile fragmentation

Our definition of fragile fragmentation above makes
reference to postselection on the final state of the ancillae
being |0) 4. The probability of postselection succeeding is
clearly exponentially small in |.A4|. We now present a more
efficient algorithm for (i) identifying whether a given
system exhibits fragile fragmentation and (ii) constructing
the subspace K, (A) associated with an initial state |y)
given a maximum expansion length L + |A|. This pro-
cedure is more efficient than naively postselecting on the
state of the ancillae in various regimes, which we dis-
cuss below.

The general algorithm proceeds as follows. We start with
the state |y) ® |0) 4 and evolve it under Dyn acting on the
system plus ancillae for some time #4,. After time 4, we
repeat the following steps many times:

(1) Measure the last site of the system plus ancillae in

the computational basis.

(2) If the outcome is e, decouple this site from the rest

of the system. Otherwise, leave the site coupled.

(3) Run the dynamics for a time f, e, On the system

plus remaining ancillae, and go to step 1.
The iteration stops when all ancilla sites have been
decoupled: We know this is always possible since the
initial state was originally decoupled from the ancillae. On
physical grounds, we expect that the probability of getting
outcome 0 in step 1 is O(1) at all times, but for our
purposes, it suffices for it to scale as 1/poly(L + |Al).

We first discuss how this algorithm can be used to
construct the subspace K, (A). To accomplish this goal, we
set t, to be the maximum possible thermalization time for
the system plus ancillae, i.e., g ~exp(L + |A]). Any
fragmentation that persists after #; will persist to infinite
time for the given spatial resources. One can take the
rethermalization time after a measurement, f.gem, t0 be
much shorter (i.e., as a low-order polynomial in L + |.AJ),
as the measurement is a single-site perturbation to the
equilibrated state, and it is not expected to take more than
polynomial time to have a significant amplitude to yield
|e). When the procedure terminates, it yields a state [y”)
that (by hypothesis) is in K,,(A). After many runs, the
ensemble of generated states spans K,,(A).

The procedure we described avoids the exponential
overhead of postselection but still incurs the exponential
overhead of mixing. If we want to reconstruct a state with
overlap on all states in Kj,,, this overhead cannot be
avoided. Suppose, however, that we are not interested in
full reconstruction of Kj,,, but just in the simpler task of
showing that adding ancillae and removing them (as above)
partially lifts the fragmentation of the original system.
More generally, suppose that we have constructed K,,(Ay)
and want to know if enlarging .4, to A, enlarges the sector.
We can run the initial equilibration step to a much shorter
time than the full equilibration time. We stop when we have
compressed back down to A, and we check if the resulting
state is in K,,(Aj). [78] Finding a single state that lies
outside K, (Ay) suffices to establish fragile fragmentation.
Thus, detecting fragile fragmentation can be accomplished
without requiring a large bath or the system to fully
thermalize.

Can this procedure be used to study other properties of
the fragmentation? One additional quantity that can be
computed using this method is the geodesic length of group
elements. Recall that the geodesic length |g| of an element
g€ G is the length of the shortest word that represents g,
namely, |g| = min{|w|:¢@(|w)) =g¢}. To compute this
length, we repeat the sequential length-reducing procedure
until the system freezes. Formally speaking, the system will
freeze when (e|pe,q|e) = 0 for quantum dynamics (where
Pend 18 the reduced density matrix of the spin at the end of
the system) or p(egq) = 0 for classical dynamics [where
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p(+) denotes a marginal distribution for the last site of the
chain]. When freezing occurs, the system size reaches the
minimum length needed to support a word in the Krylov
sector, therefore yielding the geodesic length of the word.

3. Fragile fragmentation and thermalization

We now discuss the unexpectedly subtle consequences
of fragile fragmentation for the evolution of generic states
under unitary dynamics that need not be time independent
or have any local conserved densities. To keep our
discussion concrete, we focus on Dyn; dynamics for some
group G, although the diagnostics we arrive at are much
more general. As we will see, when G is a group (rather
than just a semigroup), fragile fragmentation is particularly
hard to detect locally; when G is instead a semigroup,
simpler diagnostics exist (see Sec. VI for an example).

In a system exhibiting fragile fragmentation, a random
word w of length L will contain many substrings s that have
expansion length greater than L; in particular, treating a
specific substring s as subsystem A and B = A€ as a bath of
es, |s), ® |e)p exhibits fragile fragmentation so long as
|B| < EL(|s]). In reality, the substring is nested in the
system as [w) = |w; swpg), but we still claim that the action
of Dyn; can never map |w) to |[w') = |w,s'wg), where s’ is
a word with expansion length asymptotically greater than L
and in a different fragment to s which satisfies
¢(s) = ¢(s'). In particular, one might worry that the
presence of the environment words w; r can “catalyze”
transitions of s, thereby sending |w) to |w’) despite s and s’
living in different fragile sectors.

A simple argument shows that such catalysis cannot
parametrically change the expansion length of a word.
Indeed, suppose that, by contradiction, catalysis can occur.
We can append w;! to the left and wg' to the right,
increasing the length of the system by less than L. Then, the
sequence

|e2|wL\se2\WR‘> <~ |WZIWLSWRW1_€]>
< |[w'wes'wewi!)

o |e2ilg/ ey (101)
is allowed by Dyng. Therefore, the space complexity of the
transition s <> s’ is at most 2L. For groups with asymp-
totically superlinear expansion lengths, this finding is a
contradiction, and thus such a catalysis cannot occur.

To summarize, a random word contains large substrings
that are frozen in some sense: If the initial state can be
written as |w; swp), time evolution under Dyn,; will never
produce |w; s'wg). An immediate consequence of this fact
is that the time-evolved reduced density matrix for a region
A has (s|p,(t)|s’) = 0 at all times if s, 5" are in distinct
fragile fragments. Furthermore, since both s and s’ can be
locally generated, through the transition

|2y < |ss71), (102)

which only requires 2|s| < L of space, we expect, in
general, (s|pals), (s'|pals’) to both be nonzero.

In conventional systems that exhibit the jamming tran-
sition, one can easily diagnose the jammed phase by
computing local autocorrelation functions. However, in
contrast, fragile fragmentation is hard to detect in this way
because the frozen substrings can slide around in the
system and locally change their configuration (while
remaining in the same fragile sector). Thus, while one
can write down a conserved quantity describing the frozen
strings, such a quantity will generically be very nonlocal.
Nevertheless, the observation that the dynamics does not
connect pairs of states like swy and s'wy regardless of wg
still allows one to construct a reasonable dynamical probe
of fragile fragmentation. For any two words w, w' in the
same Krylov sector, consider the two-point correlation
function

wa’(t) = Tr(Wwa’(t))

=2-Re) _(walDynj(t)|wp)(w'fIDyng (1)|wa).
ap

(103)

where W = |w)(w| and X,,,, = |w){w'| + H.c. are opera-
tors that can be fully supported in a subsystem of size
max(|wl, [w']). Suppose that EL(w, w’) is large so that all
derivations between w and w' require large spatial resour-
ces. Then, if Dyng describes circuit dynamics, C,,, () is
zero for small ¢ since if both (wa|Dynj(r)|wp) and
(W'p|Dyng(t)|wa) are nonzero, one can transition from
|[wp) to |[w'p) in time 2¢. Thus, Dehn(wf, w'f3) is expected
to control when this quantity is nonzero. [79] Furthermore,
for systems where the spacetime bound is saturated (like
iterated BS) or close to being saturated, this timescale is
dictated by EL(w,w’) and can be, at most, around
exp (EL(w,w)).

Beyond this timescale, the system is able to undergo a
large-scale rearrangement that connects w and w' (i.e., w
and w’ will no longer appear to live in disconnected fragile
sectors). By measuring the onset timescale for C,,,(f) to
become nonzero as a function of |w/|, |w'|, one can diagnose
the existence of and place bounds on large expansion
lengths. Alternatively, computing C,, /() can be thought
of in the following way: Prepare an initial state p, where a
subregion R is in the pure state |w), time evolve this state to
get p, and measure the expectation value of X,, ., in the
reduced density matrix pg.

The above prescription suggests a heuristic way to
determine the expansion length as follows (we leave
various technical details of this proposal to future work).
Define @ to be a dephasing channel acting on region R of
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the system (decomposing the system to the form ABR for
convenience):

D] = Z Paywrag.pawrPs lagwrag) (BawgPp|- (104)

a8 Wr-Pas

Starting in the state p, described above, one can alternate
between time evolving under Dyn; and applying @
before measuring the expectation value of X, . Call A
the subsystem in which the state |w) is initially present. If
dist(A, R) > EL(w,w’), then repeatedly dephasing the
system should not change the value of C,,,(f) by much.
However, if the dephasing channel is applied within a
distance of EL(w,w’) from A, then we would expect a
further suppression of C,,,(7), given that the dephasing
eliminates many trajectories mapping w to w’. Finding the
location of R where one crosses over between these two
behaviors would thus provide an estimate of EL(w, w').

The protocol discussed above is general but somewhat
indirect. As we saw in Sec. V B, in specific examples,
fragile fragmentation can have more direct and dramatic
manifestations. In the next section, we show that when the
group property is violated, fragile fragmentation generally
has easier-to-detect physical consequences: In these cases,
there can sometimes be a transition where, at small
subsystem sizes, reduced density matrices are generically
full rank, while above a threshold size, reduced density
matrices have nontrivial kernels.

VI. SEMIGROUP EXAMPLES

In the explicit examples of Dyn; dynamics studied above,
G has been taken to have the structure of a group. However,
the phenomena discussed so far are not limited to models
with a group structure; indeed, all of the general results
obtained in Secs. I and III are valid for any finitely presented
semigroup. For semigroups, however, the geometric per-
spective adopted above in the discussion of Dyngg is less
useful. [80] In this section, we introduce two new semigroup
models that do not admit a group structure but that
nevertheless have word problems exhibiting large time
and space complexity, which we establish using combina-
torial rather than geometric arguments. The first example has
large time and small space complexity and shares similarity
with the BS model. The second example has both large time
and large space complexity, is qualitatively unique to non-
group-based dynamics, and leads to a more direct charac-
terization of fragile fragmentation than that provided by the
general criterion of Sec. V C 3.

These models are inspired by the Motzkin spin chain and,
more broadly, Motzkin dynamics (see Refs. [59,81]). For the
readers’ convenience, we briefly summarize Motzkin
dynamics. The local state space includes an identity char-
acter |0) (which plays the role of |e) in our group-based
models) as well as left and right parentheses |)(, |)). The
dynamics is engineered so that the “nestedness” of the

parentheses remains preserved, where nestedness is defined
by the number of left parentheses located to the left of
matching right parentheses; for example, under the dynam-
ics, the word “()” may evolve to “()(),” “(()),” or “0,” but not
to “)(,” “((,” or ©)).” These rules can be summarized formally
by defining the Motzkin semigroup as

Motz = semi(0, (,)|(0 = 0(,)0 = 0), () = 00). (105)

Alternatively, we may define a height field &; that keeps
track of the level of nestedness at site i via

hi = (104 = D) I))-

j<i

(106)

The dynamics then preserves both %; (the net difference
between the number of left and right parentheses) and
min; i; (which measures the extent of the nestedness).

A. Star-Motzkin model: Slow thermalization

Our first example has a local state space, which we label
by {(,),0,x}. As usual, all of what follows can be applied
to Hamiltonian, random unitary, or classical stochastic
dynamics. The purpose of the extra character * is to slow
down the dynamics of the parentheses, which is done by
adding to the relations of Motz the relations

(x0=sx%x( 0%x)=)xx 0% ==x0. (107)

Thus, when a parenthesis moves past a * character (in a
certain direction), the * character is duplicated. The
combination of these sets of rules results in the dynamics
that we refer to as Dyn, ;. One can readily see that Dyn,,,
exhibits Hilbert space fragmentation. Indeed, if we ignore
the * character that was added, the Hamiltonian describes
Motzkin dynamics and thus already possesses fragmenta-
tion, which cannot be described solely by a conserved
parenthesis density. The sectors of these dynamics are
labeled by a sequence of closed parentheses followed by a
sequence of open parentheses taking the form )™ (": This
case corresponds to the total parentheses imbalance in the
configuration. When the * character is added, a label for the
Krylov sectors becomes
Kf,m,n = )m * (n’ (108)
where =0,1,...,0(L - Zma"(’”’”)). It is clear that there are
exponentially more sectors with the addition of the
character, and the structure of fragmentation is thus richer.
At some level, Dyn,,, resembles Dyngg, as the x
duplicates every time it is moved past a parenthesis, in a
way similar to the duplication of as that occurs as they
move past bs in BS. However, there are two differences.
The first is that * does not have a natural inverse. The
second is that the underlying Motzkin dynamics does not
satisfy properties of a group: If the characters (and) are
identified with a generator and its inverse, then we
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necessarily must also allow the rule () <>)(, which is absent
in Dyn,,,. Nevertheless, in Appendix G, we show that the
word problems for these models exhibit the same scaling of
spatial and temporal complexities as in Dyngg:
(1) Within the sector K, the expansion length is
linear, EL(w,w') = O(L).
(2) Within the sector K, o, there exist words w, w' such
that Dehn(w,w') = O(q).
Since g can grow to be exponentially large in L, this last
fact implies slow dynamics. In fact, one way to study this
slow dynamics is to observe that atypical configurations of
the U(1) charge corresponding to the parentheses take a
very long time to thermalize. Regarding the second result,
we also provide a crisper characterization for the circum-
stances under which it takes a long time to transition
between two words (see Appendix G).

B. Chiral star-Motzkin model: Fragile fragmentation

We now present an example where the expansion length is
exponentially large, implying fragile fragmentation. In this
example, we simply replace the * character with a “chiral”
version of the character, which we denote as t>. The rules for
these new characters are similar to those of *, except that the
rules are only activated when a > character is adjacent to).
More specifically, we replace the rules in Eq. (107) as

0>) = )>r>, 0> = 0. (109)
Note that one could also add another chiral character <
that only interacts with) and commutes with >, but the
necessary physics is already illustrated for >.

We first discuss the intrinsic Krylov sectors of the
dynamics. In particular, assuming the system is a large
bath of Os, then one can show that any configuration can be
reduced to the canonical form:

Rippn = )"l (BH (R (5 (0 (110)
Note that we can have a large number of > characters
locked between adjacent ‘(" because > characters cannot
tunnel past ‘(C characters. As a result, we label the Krylov

sectors by the four indices (/?, ¢,m,n), where dimk = n.

Chirality of the I> character plays a crucial role in the large
space complexity. Define a nest as a collection of paren-
theses in the form (((---))). In particular, > characters
embedded in a nest can exit the nest but cannot enter an
adjacent one, due to the chirality constraint. As a result, the
transition from >*(((---))) to (((---)))>* (which sub-
sequently allows > to enter the nest) is not possible unless
(((-++))) is collapsed. Collapsing (((---))) can, however,
require exponentially large space if the nest (((---)))
contains a large number of I> characters. Thus, intuitively,
an exponentially large bath is needed to unfreeze the system.

In Appendix G, we provide a more rigorous argument for
when the expansion length connecting two words w and w/

can be exponentially large, and we also discuss an interest-
ing consequence of the fragile fragmentation in this model,
which does not have an analog in group dynamics. In
particular, we argue that under unitary time evolution p(z) =
e Hp(0)e' where p(0) is a product state, the subsystem
density matrix p4 (1) = Tre (p(1)) exhibits a transition in its
rank as |A| is increased. When |A| < log L, p,(t) is of full
rank, and when |A| > log L, p4(¢) is no longer of full rank.
Probing this property in a physically reasonable way is
further discussed in Appendix G.

VII. GENERALIZATION TO TWO DIMENSIONS:
GROUP LOOP MODELS

The discussion thus far has been restricted to 1D models
of group dynamics. It is natural to wonder whether or not
higher-dimensional models with similar behavior can be
constructed, especially since the aforementioned phenom-
ena are more prevalent in higher dimensions.

In this section, we discuss one 2D generalization of our
group-based models that, in some sense, is the most faithful
way of embedding the 1D group constraint in a two-dimen-
sional system and that leads to a qualitatively new way of
producing glassy dynamics and jamming in 2D. This process
proceeds by fixing a group G [82] and considering loop
models that possess one flavor of loop for each generator of
G. Along any one-dimensional reference loop, one can
associate a group element corresponding to the product of
all of the generators corresponding to loops that the reference
loop intersects. The dynamics is engineered so that this group
element remains invariant under the dynamics.

This class of models can be viewed as a broad generali-
zation of the construction in Refs. [83,84] (which studied
dynamics) and Ref. [85] (which studied ground-state proper-
ties), and we expect similar robustness of the Hilbert space
fragmentation in these models. For the sake of brevity, we
discuss this construction at a high level—e.g., we largely use
continuum language in order to avoid the notational burden
incurred by an explicit lattice description—and defer a more
comprehensive analysis to future work.

Given a discrete group G and a presentation thereof, the
degrees of freedom in our 2D model are associated with
directed loops labeled by generators of G. In the following,
we describe how to place constraints on the dynamics of
these loops to produce phenomenology similar to that
present in our 1D models.

We start by observing that each directed reference path y
through space (microscopically, along the lattice) can be
associated with a group word w(y). This word is deter-
mined by the ordered labels of the loops that y intersects.
Specifically, when proceeding along y, each time y inter-
sects a loop labeled by the generator g;, w(y) is multiplied
by (i) g; if the local tangent vector 7 of y and the local

tangent vector ¢ of the loop can have a cross product
7 x ¢ parallel to Z, and (ii) g7 ! if 7 x £ is antiparallel to 2.
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This observation means that isolated closed loops can be
regarded as implementing trivial relations in the words
associated with the paths that pass through them, a fact we

illustrate pictorially as follows.
r @ -
w(y) = &g

w(y) = ) = &'
(111)

Therefore, we associate processes nucleating a loop with a
free expansion (ee — gg~') and those annihilating a loop
with a free reduction (gg~' — ee). With more loops, a
more general situation might look like the following:

8n

4
8m

(112)

W) = & IS &mSn

We now discuss how to implement relations of the group
in terms of the loops. Suppose the group presentation is
indicated by

G:<gl’gb- vgn|rlvr2" m> (113)
where each of the r; are words to be identified with the
identity in G, and |r;] <3 for all i; this restriction on
the length of the relations follows from the fact that any
group (but not any semigroup) exhibits a finite presentation
satisfying |r;| < 3 (see Appendix A for the proof). Writing
ri = 9,,9,9s, this corresponds to an object that we refer to
as a net:

(114)

As another example, if r; = g,,9;'g, (i.e., one of the
generators is replaced with its inverse), then the net
looks like

(115)

and so on. Any loop configuration corresponding to one
of the above nets can be created or destroyed without
changing @(w(y)) [the group element associated with
w(y)] since, for any curve y that cuts across the net,
creating or destroying the net simply corresponds to
applying the appropriate relation r; at some point in the
word w(y).

The dynamics we consider are generic dynamical proc-
esses that preserve ¢(w(y)) for all closed curves y, which
may be viewed as an unusual type of gauge constraint.
Thus, the dynamics will include processes that nucleate and
destroy nets associated with each r; and will also include
processes where lines are moved, stretched and contracted,
and where intersections of lines are moved. It will also
include processes that attach a loop with an intersection
point of other loops, as shown below:

Y

where an analogous deformation occurs for g, replaced
with g;] (in which case, the arrow is reversed). To avoid
problems on the lattice where an unbounded number of
joins can occur (requiring unphysically large degrees), we
only allow for a join if the degree of the intersection point is
below a certain threshold, set by max; |r;.

The dynamical processes described above are sufficient
to simulate the full group dynamics. For example, suppose
we want to determine whether the processes we wrote down
suffice to simulate g,,g,, = g;! (assuming r; = g,,9,9; =
e is a relation to the group). We can show that this is
indeed the case by applying the following sequence of
relations:

(117)
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where the first relation creates a net, the second relation
corresponds to two joins, the third relation corresponds to
two unjoins, and the last relation corresponds to a free
reduction. A similar derivation shows that cyclic conjugates
of relations (such as g7'r;g; = g7'g,9, = e) can sim-
ilarly be simulated by the rules we have already discussed.

To summarize, our 2D dynamics contains the following
processes:

(1) Processes that deform loops in ways that do not

create or destroy loop crossings.

(2) Processes that nucleate and annihilate closed loops

(performing free reductions and expansions).
(3) Processes that join a free loop with an intersection of
loops [86].

(4) For each relation r;, a process that nucleates or

annihilates an r; net.

The dynamical processes above were formulated for the
case where G is a group, but it is also possible to generalize
to the case when G is merely a semigroup, producing
models reminiscent of the 2D generalizations of the
Motzkin chain studied in Ref. [85]. Obtaining a more
systematic understanding of the temporal and spatial
complexity of the dynamics of these models would con-
stitute an interesting avenue for future work.

One final observation we make is that there is a simple
way to map group loop models to what we call tile models.
Observe that a configuration of loops or nets splits the plane
into a set of disjoint tiles (two adjacent tiles are joined by an
edge that corresponds to a generator of the group). Then, it
is possible to label tiles with an element g € G such that if
two tiles have labels g and s and share an edge corre-
sponding to generator k, then gk = h. For example, if
G = Z, each tile will be labeled by an integer, and two
adjacent tiles have labels that differ by 1 (which is the
generator of Z). This case corresponds to a mapping to a
height model, which the tile model is a generalization of in
the case of arbitrary G. This mapping may play a role in
understanding the nature of fragmentation in these models,
which we leave to future work.

VIII. DISCUSSION

In this work, we have constructed a number of natural
dynamical systems—with local few-body interactions—in
which relaxation places anomalously expensive demands
on a system’s temporal and/or spatial resources. When the
models have local conserved densities, the hydrodynamics
of these densities is anomalous or frozen; even when
conserved densities are absent, we have presented diag-
nostics for nonergodic behavior.

Our examples were all constructed in the context of
models with intrinsic Hilbert space fragmentation. A
natural question is whether the intrinsic fragmentation is
essential to their physics. In our framework, dynamics
without fragmentation is generated by finite presentations
of the trivial group, which cannot have a superlinear Dehn

function (see Appendix B). Of course, this does not mean
that the dynamics of models without fragmentation cannot
be slow, but it does mean that any mechanism for slow
thermalization must originate from something other than
the Dehn function.

Our results lend themselves to several natural extensions.
Most naturally, the anomalous hydrodynamic relaxation we
saw in the BS model can be extended to other groups with
presentations that manifest a conservation law. Whether
these groups give rise to new classes of hydrodynamic
relaxation is an interesting question for future work (a
family of such examples will be presented in Ref. [87]).
Another interesting direction is to investigate the ground
states of Hamiltonians that implement group dynamics. A
natural class of frustration-free Hamiltonians can be read
off from the transfer matrices of bistochastic Markov
processes [88]; their ground states are equal-weight super-
positions of all the configurations in a sector, and their
spectral gaps can be bounded by the Markov-chain gap.
The tools developed here may be useful for undertaking a
more detailed study of properties of these states.

The family of models we considered is restricted in the
sense that the dynamical constraints can be expressed in the
computational basis, so every computational-basis product
state is in a definite dynamical sector of Hilbert space. More
generally, one can consider constraints associated with a
commuting set of projectors with entangled eigenstates. In
one-dimensional spin chains, such commuting projectors
can be deformed into unentangled projectors by a short-
depth unitary circuit. However, this process just corresponds
to conjugating the Hamiltonians or unitaries we have
explored with short-depth unitary circuits, and it yields
nothing qualitatively new. Obtaining something new in one
dimension thus requires defining constraints using non-
commuting projectors—which occurs in the (quantum-
fragmented) Temperley-Lieb model [23,89,90]—and hence
pursuing this direction requires systematic characterization
of such constraints. In higher dimensions, however, there are
sets of commuting projectors (like those of the toric code)
whose simultaneous eigenstates are inherently long-range
entangled. An interesting task for future work would be to
extend our group-theoretic dynamical systems to these
models and explore the resulting entanglement dynamics.

Finally, it would be interesting to explore the stability of
our results with respect to weak violations of the con-
straints. One way to do this is by breaking the constraints in
an isolated region of space or by bringing a thermal bath in
contact with the system at its boundary. In the case of group
dynamics, doing so destroys fragmentation, making the
dynamics fully ergodic. Furthermore, it leads to all states
being connected by at most O(L?) steps of the resulting
dynamics since the O(L) elements of a given product
state’s geodesic word need to be moved at most an O(L)
distance to the constraint-free region, at which point they
can be changed into the elements of any other geodesic
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word. However, it is still possible for the dynamics in this
case to have long (even exponentially long in L) thermal-
ization times due to bottlenecks in Fock space that arise
from the finite spatial extent of the constraint-free region. A
specific example of this case is presented in Ref. [91].
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APPENDIX A: SEMIGROUP PRESENTATIONS

In this appendix, we review some basic notions about
discrete semigroup presentations and prove a few small
results mentioned in the main text.

Formally, a discrete semigroup G is a set equipped with a
binary associative operation; when G is a group, it addi-
tionally has a distinguished element that acts as the identity,
and each member of the set has a corresponding inverse. It
is common to discuss a semigroup G in terms of a specific
set of generators S and relations R between them, writing

G = semi(S|R) (A1)
to signify this relationship (in the main text, when G is a
group, we will simply write G = (S|R) and omit inverse
generators and the identity from S, as well as trivial
relations involving the identity from R). For example,
one might think of the group Z as being defined by a
single generator S = {x} that obeys no nontrivial relations.
However, this viewpoint is too narrow since it is possible
for different choices of § and R to produce the same
semigroup. As an example, consider the groups

G = (),

G, = (x,y[x" =y", xy = yx), (A2)
where m, n are relatively prime. These two groups are
isomorphic, G; = G, = Z, with the isomorphism associat-
ing an element x%y” with the integer am -+ bn; note that

this finding is true despite the fact that G; and G, have a
different number of generators and relations.

A given semigroup, in general, admits an infinite number
of different presentations, but below, we will prove that the
group-theoretic functions defined in the main text—the
Dehn function, expansion length, and so on—have asymp-
totic scaling behaviors that are presentation independent.

We can exploit this fact to choose presentations satisfy-
ing some particular desired property. For example, we may
be concerned with choosing a model of dynamics where the
Hamiltonian or unitary gates are as local as possible. Since
the locality of the dynamics is limited by the maximum size
of the relations in R, we would thus like to minimize the
size of the relations. To this end, we have the following
proposition:

Proposition 1. Every finitely generated group has a
presentation (S|R) where all relations r; €R have length
ri| <3.

Proof. Consider the Cayley 2-complex CGg; of a finitely
presentable group G (see Sec. IV for a brief discussion of its
definition) obtained from a finite presentation P. While the
exact structure of CGg depends on P, CGg can always be
subdivided to obtain a simplicial complex where each 2-
cell has three edges. Since each 2-cell in the complex
corresponds to a relation, |r;| <3 for all r;ER in the
subdivided complex, thereby defining a presentation P’
whose relations all have length less than or equal to 3. Since
P is finite, this subdivision is completed after only a finite
number of steps, and P’ is consequently also finite. [

Note that while the Cayley 2-complex of a semigroup
can also be subdivided, the lack of translation invariance in
a semigroup’s Cayley complex means that the resulting
subdivision may yield a presentation with infinitely many
generators (an illustrative example is to compare the
semigroup N x N with the group Z x Z).

As mentioned above, the group-theoretic properties we
are interested in from the point of view of group dynamics
is largely insensitive to the choice of presentation. For
example, recall the growth function Ng (L) £ {g,lg] <
L}| defined in Eq. (29) of the main text, which measures
the number of dynamical sectors as a function of system
size. The scaling of Ng(L) with L is independent of the
choice of presentation, allowing us to meaningfully talk
about the growth function of a semigroup, rather than of a
presentation:

Proposition 2. Let N p denote the growth function for a
particular presentation P = semi(S|R) of G. Then,

Ngp~Ngp (A3)
for all finite presentations P, P’ of G.

Proof. Let stemi<a1,...,a|5||R> and P'=semi(a/,...,
a? 5| |R'). Then, since both P, P’ present G, each a} can be
expressed as a product of a finite number of a;. Let npp
denote the maximal number of generators of P that appear
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when writing the a} in terms of these generators. Let |g|p
also denote the geodesic distance of g € G with respect to
the presentation P. Then, |g|p < npp|g|p. Thus,

Nk (L) < Ngs(npplL). (A4)
We may also perform a similar rewriting of generators of P
in terms of those of P’. After running the same argument,
we find that there exist O(1) constants npp:, npp such that

Ngp(L/npp) S Ngp(L) < Ngp(nppL), (AS)
and hence Nk p ~ Ng pr. =

Similar reasoning can be applied to show that the Dehn
function and expansion length (see Sec. II or the following
appendix for definitions) of a semigroup are presentation
independent:

Proposition 3. Let Dehnp(L) and ELp(L) be the Dehn
function and expansion length of a semigroup with a finite
presentation P = (S|R). Then, if P, P’ are any two such
finite presentations,

Dehnp(L) ~ Dehnp (L),

ELy(L) ~ ELp(L). (A6)

APPENDIX B: A PRIMER IN GEOMETRIC
GROUP THEORY

In this appendix, we state and prove some useful facts
about the geometry and complexity of finitely presentable
discrete groups. Many of the statements derived below are
well-known results in the math literature, and we have tried
to provide citations to the original works when appropriate.
A particularly accessible review of background material
relevant to the discussion to follow can be found in
Ref. [40]; a more advanced reference is Ref. [92]. As a
small notational convenience, in the following, the notation
w ~ g will be used as shorthand to denote that the word w
evaluates to ¢; in the main text, this was written as

p(Iw)) = g:

w~g < o(lw) =g (B1)

We are mostly interested in infinite groups since finite
ones have trivial large-scale geometry (in a sense soon to be
made precise). Finitely presentable infinite semigroups are,
of course, very easily constructed; indeed, it is easily
verified that any group presentation where the number
of generators exceeds the number of nontrivial relations
[93] will generate an infinite group. Free groups (on n > 1
generators) and Abelian groups, in some sense, define
opposite extremes since the free group has a Cayley graph
that is embeddable in the hyperbolic space H", while
Abelian groups have Cayley graphs that are embeddable
in R”. Most of the interesting cases for us correspond to

when an intermediate amount of “Abelian-ness” is intro-
duced to the non-Abelian free group.

1. Time complexity: The Dehn function

The definition of the Dehn function (14) in the main text
relates only to the (worst-case) complexity of deforming a
given word w € K, into the identity word [recall that K ; is
the set of length-L words that represent the element g,
namely, K, = {w||w| = L,g(w) = g}]. In the main text,
we claimed that focusing on the complexity of words in
K ,—as opposed to K, for g # e—was done without loss of
generality. We now prove that studying the complexity of
the word problem in K., indeed does not produce any-
thing that is not already captured by Dehn(L):

Proposition 4. For a given element g of geodesic distance
lg| < L, define the g-sector Dehn function as

A

Dehn,(L) = max Dehn(w,w’),

!
ww K,

(B2)

where Dehn(w, w') is the minimum number of applications
of relations needed to transform w into w'. Then,

Dehn, (L) ~ Dehn,(L) £ Dehn(L) (B3)
for all g.

Proof. For two words w;, in the same K, sector, any
deformation (a.k.a. based homotopy) of w; to w, gives a
deformation between the length-2L word wyw;! € K, (2L)
and e. Thus, the minimal number of steps needed to relate
wq to w, cannot be asymptotically smaller than the minimal

number of steps needed to deform w(w')~! to e. This
finding implies

Dehn(w(w')~!, e) < Dehn(w,w’), (B4)

where < denotes the equivalence of additional contribu-
tions linear in L. [94] Thus, Dehn(L) < Dehn,(L).
Conversely, since we can deform e to wilw,~e in
time around Dehn(w,w;!), w; can be deformed into
wi(wi'w,) = w, in time less than or around Dehn(L).
Thus, we also have Dehn(w, w’) < Dehn(w;w51), so up to
factors of order L, we have

Dehn(w;w;') ~ Dehn(w,w’) = Dehn,(L) ~ Dehn(L).
(B5)

|

The above argument