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 B S T R A C T

e quantum dense output problem is the process of evaluating time-accumulated observables from time-dependent quantum dynamics using 
antum computers. This problem arises frequently in applications such as quantum control and spectroscopic computation. We present a range of 
orithms designed to operate on both early and fully fault-tolerant quantum platforms. These methodologies draw upon techniques like amplitude 
timation, Hamiltonian simulation, quantum linear Ordinary Differential Equation (ODE) solvers, and quantum Carleman linearization. We provide 
comprehensive complexity analysis with respect to the evolution time 𝑇 and error tolerance 𝜖. Our results demonstrate that the linearization 
proach can nearly achieve optimal complexity (𝑇 ∕𝜖) for a certain type of low-rank dense outputs. Moreover, we provide a linearization of the 
nse output problem that yields an exact and finite-dimensional closure which encompasses the original states. This formulation is related to the 
opman Invariant Subspace theory and may be of independent interest in nonlinear control and scientific machine learning.

 Introduction

Simulating quantum physics is one of the primary applications of quantum computers [35]. The first explicit quantum algorithm 
r quantum simulation was proposed by Lloyd [63] using product formulas, and numerous quantum simulation algorithms have 
en developed [87,89,50,9,74,11,10,12,66,65,67,26,27,14,28,80,81,1,2,90,22,23], with various applications ranging from quantum 
emistry [49,54,70,20,7,80] to quantum field theory [47,75] and condensed matter physics [6]. To analyze the cost of these 
antum simulation algorithms, it is often assumed that we are interested in the final quantum state at some time 𝑇 . After obtaining 
ch a state stored in a quantum register, we can then output its information to a classical computer by measuring certain observables.
However, many applications require not only the information at the final simulation time 𝑇 , but the information of the quantum 
te on a continuous time interval, or its discretized form with dense samples on the time interval (the detailed definition for 
e evaluation of a time-accumulated observable refers to Problem 1 below). Unless the observable of interest commutes with the 
miltonian, according to the principles of quantum mechanics, the state collapses after each measurement. As a result, when we 
quire the state at time 𝑡𝑛 and conduct a measurement, it becomes necessary to restart the simulation from time 0 in order to perform 
ditional measurements at 𝑡𝑛 or to obtain the state at 𝑡𝑛+1. By following this straightforward algorithm, we treat the simulation up 
 each discretized time step 𝑡𝑛 as an individual quantum simulation problem. It is natural to ask whether there are more efficient 
gorithms than the strategy above for evaluating time-accumulated observables. Motivated by the literature of classical simulation 
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Table 1

Summary of quantum algorithms for the dense output problem. Here 𝑇 is the evolution time, 𝜖 is the error tolerance, and Γ is a parameter that depends on 
the output 𝐽 as defined in (5.9).
Theorem Algorithm Measurement Queries to 𝐻(𝑡) Queries to |𝜓in⟩ Notes

Theorem 2.1 Hamiltonian simulation Hadamard test (𝑇 3∕𝜖2) (𝑇 2∕𝜖2) Early fault-tolerant

Theorem 3.3 Hamiltonian simulation Biased amplitude estimation (𝑇 3∕𝜖) (𝑇 2∕𝜖) Fault-tolerant

Unbiased amplitude estimation (𝑇 2.5∕𝜖) (𝑇 1.5∕𝜖) Fault-tolerant

Theorem 4.1 Quantum linear ODE solver Amplitude estimation (𝑇 2∕𝜖) (𝑇 2∕𝜖) Non-unitary relaxation

Theorem 5.1 Quantum Carleman linearization Padding, amplitude estimation (Γ𝑇 ∕𝜖) (Γ𝑇 ∕𝜖) Low-rank, linearization

 differential equations with dense outputs (see e.g., [38,53]) we refer to this setting as dense outputs from quantum simulations.1 To 
r knowledge, such a setting has not been analyzed before in the quantum algorithms literature.
We formally define the quantum dense output problem as below.

oblem 1 (Quantum dense output). A time-accumulated observable associated with a time-dependent quantum dynamics is given by

d
d𝑡
|𝜓(𝑡)⟩ = −𝑖𝐻(𝑡)|𝜓(𝑡)⟩, |𝜓(0)⟩ = |𝜓in⟩,

𝐽 =

𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡. (1.1)

re 𝐻(𝑡) and 𝑂(𝑡) represent continuous Hermitian matrices with respect to 𝑡. We have access to unitaries that block encode 𝐻(𝑡)
d 𝑂(𝑡) for all 𝑡, with ‖𝑂(𝑡)‖ ⩽ 1. Additionally, we are provided with a state preparation oracle that prepares the initial state |𝜓in⟩. 
r objective is to estimate the value of 𝐽 with a desired precision of 𝜖, within a given time duration 𝑇 > 0.

Problem 1 arises in diverse areas such as quantum control and spectroscopic computation. For instance, Li and Wang studied 
cient quantum algorithms for the quantum control problem of the Mayer type [58]. As a more general case, (1.1) can be viewed 

 a quantum control problem of the Bolza type [30,17,78,86]. The dense output problem can also arise when 𝑂(𝑡) = |𝜙(𝑡)⟩⟨𝜙(𝑡)|, and 
𝑇 ⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡 gives the time accumulated fidelity between the driven state |𝜓(𝑡)⟩ and the desired state or trajectory |𝜙(𝑡)⟩. 
 spectroscopic computation, the spectra estimation from the molecular dynamics can also be formulated as (1.1). The observable 
𝑇
𝑒𝑖𝜔𝑡⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡 can be used to compute the linear absorption and fluorescence spectra of molecular aggregates [77]. For 
rther discussions on the applications of Problem 1, we refer readers to Section 6.
We expect the optimal complexity of solving Problem 1 is (𝑇 ∕𝜖) for general Hamiltonian systems, since there is a lower bound 

(𝑇 ) by no-fast-forwarding theorem [9] as well as a lower bound Ω(1∕𝜖) by the Heisenberg limit [5]. To achieve this goal, we 
velop several quantum algorithms for Problem 1 as summarized in Table 1.
(i) We first consider an early fault-tolerant quantum algorithm. We perform separate Hamiltonian simulations and employ Hadamard 
st, with complexity (𝑇 3∕𝜖2).
(ii) We then propose fault-tolerant quantum algorithms with improved 𝜖 dependence. We perform separate Hamiltonian simulations 

ith biased and unbiased amplitude estimation, with improved complexity (𝑇 3∕𝜖) and (𝑇 2.5∕𝜖), respectively.
(iii) In spite of quantum simulation algorithms, we alternatively consider the non-unitary relaxation: we apply the quantum linear 
dinary Differential Equation (ODE) solver [8,13,24] to produce the Feynman-Kitaev history state, and then perform the global 
plitude estimation for the dense output. The global measurement is able to remove the bias accumulation in measurement, and 
nce result in the overall complexity (𝑇 2∕𝜖).
(iv) Finally, we consider the non-unitary embedding/linearization of the whole system: we develop a quantum linearization algo-
hm for the hybrid dynamics based on the Koopman Invariant Subspace (KIS) theory [18]. For Problem 1 with a low-rank observable 
(𝑡) (known as the few-body observable [40,41,39]; see Problem 2 for detailed discussions), we employ an exact finite-dimensional 
ear representation (closure) of the nonlinear hybrid quantum-classical dynamics. For the resulting linearized dynamics, we apply 
e quantum linear ODE solver and perform the amplitude estimation with padding to achieve the overall complexity (𝑇 ∕𝜖). This 
sult is nearly tight for both 𝑇 and 𝜖, matching the no-fast-forwarding lower bound Ω(𝑇 ) [9] and the Heisenberg limit lower bound 
(1∕𝜖) [5].
From the viewpoint of the Koopman von Neumann operator theory, the linearization of the dense output problem offers a 
ncrete example in quantum mechanics such that: (i) it has an exact finite-dimensional closure of the nonlinear dynamics without 
ncation; (ii) the closure system explicitly includes the original state variables. In the Koopman Invariant Subspace (KIS) theory, 
ry few examples are known with both finite-dimensional exact and explicit closure, while previous examples are only found in 
assical mechanics, such as the polynomial attracting slow manifold [18]. We believe the quantum linearization methods for the 

Classical Hamiltonian simulation algorithms typically operate with the wave-function (and consequently, observables) defined on a discrete time grid. Conse-
ently, the concept of dense outputs takes on a slightly different meaning, wherein observables must be resolved on an even finer time grid compared to the given 
2

e grid.
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nse output problem can be of independent interest in Koopman Operator Optimal Control (KOOC), Dynamic Mode Decomposition 
MD), and data-driven discovery and identification in scientific machine learning [55,72,52,19].
It is worth noting that the core findings of this paper on dense outputs are largely unaffected by the nature of the Hamiltonian 
ulation, whether it is time-dependent or not. For the sake of notational simplicity, we can focus on time-independent simulations. 

 cases where explicit time-dependence is present, we can assume access to the time-dependent Hamiltonian matrix 𝐻(𝑡) through 
 oracle defined as

(⟨0𝑚𝐻 |⊗𝐼)HAM-T (|0𝑚𝐻 ⟩⊗𝐼) = 1
𝛼𝐻

∑
𝑙

|𝑙⟩⟨𝑙|⊗𝐻(𝑡𝑙) (1.2)

er a sufficiently dense time grid {𝑡𝑙} ⊂ [0, 𝑇 ], using 𝑚𝐻 ancillary qubits. In this case, we should interpret ‖𝐻‖ ∶= sup𝑡∈[0,𝑇 ] ‖𝐻(𝑡)‖. 
r detailed discussions on such an oracle, we direct readers to [67,33]. We also assume the ratio between the block encoding factor 
and the operator norm ‖𝐻‖ satisfies 𝛼𝐻∕ ‖𝐻‖ =(1). The analysis of differential equation solvers often involves many polylog-

ithmic factors. To simplify the presentation, we may slightly abuse the big- notation to suppress some of these polylogarithmic 
ctors.

The rest of the paper is organized as follows. Section 2 introduces an early fault-tolerant quantum simulation algorithm with 
damard test. Section 3 describes fault-tolerant quantum simulation algorithms with biased or unbiased amplitude estimation. 
ction 4 proposes a quantum linear ODE solver for producing the history-state solution with global amplitude estimation. Section 5
velops a quantum linearization algorithm for the low-rank dense outputs and perform amplitude estimation with padding. Section 6
scusses several applications of our algorithms, including quantum control and spectroscopic computation. Finally, we conclude and 
scuss open questions in Section 7.

 Early fault-tolerant quantum simulation algorithm

We start by outlining an early fault-tolerant algorithm. To be specific, we expect such early fault-tolerant quantum algorithms 
ature a limited number of logical qubits, controlled operations, and ancilla qubits, as well as a short circuit depth. Therefore, we 
ploit the Hadamard test circuit. The quantum circuit is simple and uses only one ancilla qubit as required.

eorem 2.1 (Hamiltonian simulation with Hadamard test). We consider an instance of the quantum dense out problem in Problem 1. There 
ists a quantum algorithm producing an observable approximating the cost functional 𝐽 (𝑢) with error 𝜖 ∈ (0, 1), succeeding with probability 
𝛿, with

(‖𝐻‖𝑇 3 log(1∕𝛿)
𝜖2

)
, (2.1)

eries to the matrix oracle for 𝐻(𝑡), and

(𝑇 2 log(1∕𝛿)
𝜖2

)
(2.2)

eries to the state preparation oracle for |𝜓in⟩.
oof. In Problem 1, we need to estimate the integral

𝐴 =

𝑇

∫
0

⟨𝑂⟩𝑡 d𝑡 ∶= 𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩d𝑡 (2.3)

 precision 𝜖 with success probability at least 1 − 𝛿.

We divide the time interval [0, 𝑇 ] with a composite Clenshaw–Curtis quadrature rule, with nodes {𝑡1, … , 𝑡𝑁𝑡
} and weights 

1, … , 𝜔𝑁𝑡
}. We can approximate 𝐴 as

𝐴 =
𝑁𝑡∑
𝑘=1

𝜔𝑘⟨𝑂⟩𝑡𝑘 (2.4)

ith |||𝐴−𝐴
||| ⩽ 𝜖∕2, where 𝑁𝑡 =(𝑇 log(1∕𝜖)). More details refer to Appendix A.

For the 𝑘-th iteration, we first propagate a few copies of |𝜓(0)⟩ to |𝜓(𝑡𝑘)⟩ by standard Hamiltonian simulation techniques, with 
own complexity (‖𝐻‖𝑡𝑘) =(‖𝐻‖𝑘Δ𝑡) [9,12,28]; we then take measurements from copies of |𝜓(𝑡𝑘)⟩ to produce the observable

𝑓𝑘 = ⟨𝑂⟩𝑡𝑘 = ⟨𝜓(𝑡𝑘)|𝑂(𝑡𝑘)|𝜓(𝑡𝑘)⟩. (2.5)

e time complexity of producing such observables equals to the product of the simulation cost and the measurement cost. This is 
e to the fact that the quantum state collapses after measurement, and hence one must restart propagating |𝜓(0)⟩ to |𝜓(𝑡𝑘)⟩ for 
ch 𝑘-th iteration.
3

Now for each given 𝑡𝑘, we can evaluate 𝑓𝑘 = ⟨𝑂⟩𝑡𝑘 using the Hadamard test.
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adamard test: Assuming each 𝑂(𝑡𝑘) can be accessed via a block encoding matrix, we can estimate Re ⟨𝜓(𝑡𝑘)|𝑂(𝑡𝑘)|𝜓(𝑡𝑘)⟩ using the 
ndard Hadamard test circuit. We introduce a random variable 𝑋𝑘 and set it to be 1 when the measurement outcome of the ancilla 
bit is 0, and set it to be −1 when the measurement outcome is 1. Similarly, we can estimate Im ⟨𝜓(𝑡𝑘)|𝑂(𝑡𝑘)|𝜓(𝑡𝑘)⟩, and introduce 
random variable 𝑌𝑘 that depends in the same way on the measurement outcome.
We then compute

𝑓𝑘 = 𝔼𝑋𝑘 + i𝔼𝑌𝑘. (2.6)

 practice, an unbiased estimator to 𝑓𝑘 is

𝑓𝑘 =
1
𝑁𝑠

𝑁𝑠∑
𝑙=1

(𝑋(𝑙)
𝑘

+ i𝑌 (𝑙)
𝑘

), (2.7)

here 𝑁𝑠 is the number of samples, and 𝑋
(𝑙)
𝑘
, 𝑌 (𝑙)

𝑘
are independent samples. Since |𝜔𝑘𝑋

(𝑙)
𝑘
|, |𝜔𝑘𝑌

(𝑙)
𝑘
| ⩽ 𝜔𝑘, by applying Hoeffding’s 

equality to the real and imaginary part of the observables respectively, we have

ℙ

(||||||𝐴−
𝑁𝑡∑
𝑘=1

𝜔𝑘𝑓𝑘

|||||| ⩾ 𝜖

2

)
⩽ ℙ

(||||||Re𝐴−
𝑁𝑡∑
𝑘=1

𝜔𝑘Re𝑓𝑘

|||||| ⩾ 𝜖

2
√
2

)
+ℙ

(||||||Im𝐴−
𝑁𝑡∑
𝑘=1

𝜔𝑘 Im𝑓𝑘

|||||| ⩾ 𝜖

2
√
2

)

⩽ 4exp
⎛⎜⎜⎝−

𝑁2
𝑠 𝜖

2

16𝑁𝑠

∑𝑁𝑡

𝑘=1𝜔
2
𝑘

⎞⎟⎟⎠ = 4exp
⎛⎜⎜⎝−

𝑁𝑠𝜖
2

16
∑𝑁𝑡

𝑘=1𝜔
2
𝑘

⎞⎟⎟⎠
(2.8)

 we need to estimate the 2-norm of the weight 
∑𝑁𝑡

𝑘=1𝜔
2
𝑘
.

According to Appendix A, we have
𝑁𝑡∑
𝑘=1

𝜔2
𝑘
=(𝑇 ∕ log(1∕𝜖)) =(𝑇 ), 𝑁𝑡 =(𝑇 log(1∕𝜖)). (2.9)

ug this into (2.8), we can choose

𝑁𝑠 =
(
𝑇 log(1∕𝛿)

𝜖2

)
(2.10)

 that

ℙ

(||||||𝐴−
𝑁𝑡∑
𝑘=1

𝜔𝑘𝑓𝑘

|||||| ⩾ 𝜖

2

)
< 𝛿. (2.11)

king the quadrature error 𝜖2 into account (more details refer to Appendix A), we can estimate 𝐴 within precision 𝜖 with probability 
 least 1 − 𝛿.

Since the cost for propagating |𝜓(𝑡𝑘)⟩ is proportional to ‖𝐻‖𝑡𝑘 = ‖𝐻‖𝑘Δ𝑡, the algorithm for evaluating 𝐴 takes

( 𝑁𝑡∑
𝑘=1
‖𝐻‖𝑘Δ𝑡 ⋅𝑁𝑠

)
=(‖𝐻‖𝑇 3 log(1∕𝛿)

𝜖2

)
, (2.12)

eries to the matrix oracle for 𝐻(𝑡).

For the state preparation, we need to prepare a number of quantum states 
{|𝜓(𝑡𝑘)⟩}𝑁𝑡

𝑘=1
and each |𝜓(𝑡𝑘)⟩ requires 𝑁𝑠 copies. 

erall, the algorithm takes

𝑁𝑡 ⋅𝑁𝑠 =(𝑇 2 log(1∕𝛿)
𝜖2

)
(2.13)

eries to the state preparation oracle for |𝜓in⟩. □

 Fault-tolerant quantum simulation algorithm

In the fully fault-tolerant quantum computation scenario, we are able to employ amplitude amplification and estimation with 
proved accuracy [16]. We state the standard (biased) amplitude estimation as follows.

mma 3.1 (Theorem 12 of [16]). Given a state |𝜓⟩ and reflection operators 𝑅𝜓 = 2|𝜓⟩⟨𝜓|− 𝐼 and 𝑅 = 2𝑃 −1, and any 0 < 𝜂 < 1, there 
ists a quantum algorithm that outputs 𝑎, an approximation to 𝑎 = ⟨𝜓|𝑃 |𝜓⟩, so that√

𝑎(1 − 𝑎) 𝜋2
4

|𝑎− 𝑎| ⩽ 2𝜋
𝑟

+
𝑟2

, (3.1)
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th probability at least 1 − 𝜂 and (𝑟 log(1∕𝜂)) uses of 𝑅𝜓 and 𝑅. Moreover, if 𝑎 ⩽ 1∕(4𝑟2), then 𝑎 = 0 with probability at least 1 − 𝜂.

We also consider recent advances in the field of unbiased amplitude estimation [76,84,29]. Here we employ the unbiased ampli-
de estimator proposed in [29].

mma 3.2 (Theorem 2.4 of [29]). Given a state |𝜓⟩ and a projection operator Π with 𝑝 = ‖Π|𝜓⟩‖2, 𝑡 ⩾ 1 and 𝜖 ∈ (0, 1), there exists a 
antum algorithm that outputs 𝑝 ∈ [−2𝜋, 2𝜋], so that

|𝔼[𝑝] − 𝑝| ⩽ 𝜂, and Var(𝑝) ⩽ 91𝑝
𝑟2

+ 𝜂. (3.2)

e algorithm needs 𝑂(𝑟 log log(𝑟) log(𝑟∕𝜂)) uses of the reflection operators 𝐼 − 2|𝜓⟩⟨𝜓| and 𝐼 − 2Π.

We state the complexity results of repeating quantum simulations with biased or unbiased amplitude estimation as below.

eorem 3.3 (Hamiltonian simulation with amplitude estimation). We consider an instance of the quantum dense output problem in Prob-
1. There exist quantum algorithms producing an observable approximating the cost functional 𝐽 (𝑢) with error 𝜖 ∈ (0, 1), succeeding with 

obability 1 − 𝛿, with the following cost:
 Using the Biased Amplitude Estimation, the algorithm requires

(‖𝐻‖𝑇 3 log(1∕𝛿)
𝜖

)
(3.3)

eries to the matrix oracle for 𝐻(𝑡), and

(𝑇 2 log(1∕𝛿)
𝜖

)
(3.4)

eries to the state preparation oracle for |𝜓in⟩;
) Using the Unbiased Amplitude Estimation, the algorithm requires

(‖𝐻‖𝑇 2.5 log(1∕𝛿)
𝜖

)
, (3.5)

eries to the matrix oracle for 𝐻(𝑡), and

(𝑇 1.5 log(1∕𝛿)
𝜖

)
(3.6)

eries to the state preparation oracle for |𝜓in⟩.
oof. Similar as Theorem 2.1, we aim to estimate the integral

𝐴 =

𝑇

∫
0

⟨𝑂⟩𝑡 d𝑡 = 𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩d𝑡. (3.7)

ven quadrature nodes {𝑡1, … , 𝑡𝑁𝑡
} and weights {𝜔1, … , 𝜔𝑁𝑡

} as introduced in Appendix A, we consider

𝐴 =
𝑁𝑡∑
𝑘=1

𝜔𝑘⟨𝑂⟩𝑡𝑘 (3.8)

 an approximation to 𝐴 with |||𝐴−𝐴
||| ⩽ 𝜖∕2.

For the 𝑘-th time step, we first propagate |𝜓(0)⟩ to obtain 𝑈𝑘|𝜓(0)⟩ = |𝜓(𝑡𝑘)⟩ by simulating 𝑈𝑘 = 𝑒−𝑖𝐻𝑡𝑘 , with cost 𝑂(‖𝐻‖𝑘Δ𝑡). 
e then perform the amplitude amplification and estimation for the correlation function

⟨𝑂⟩𝑡𝑘 = ⟨𝜓(𝑡𝑘)|𝑂(𝑡𝑘)|𝜓(𝑡𝑘)⟩ = ⟨𝜓(𝑡0)|𝑈†
𝑘
𝑂(𝑡𝑘)𝑈𝑘|𝜓(𝑡0)⟩. (3.9)

In all, we need to repeat quantum simulations 𝑁𝑡 times, where the simulation cost at the 𝑘-th stage is (‖𝐻‖𝑘Δ𝑡) for 𝑘 ∈ [𝑁𝑡]. 
e total time complexity of producing such observables equals to the product of the simulation cost and the measurement cost.
Now for each given 𝑡𝑘, we can evaluate 𝑓𝑘 = ⟨𝑂⟩𝑡𝑘 using the amplitude estimation. We note that the amplitude estimation with 

 (almost) without bias can result in different complexities.

 Biased amplitude estimation: We estimate 𝑓𝑘 using the standard amplitude estimation. It suffices to take 𝑟 = (1∕𝜖′) in 
mma 3.1 to obtain 𝑎 that is 𝜖′-close to 𝑎, with probability at least 1 − 𝛿′ and (𝑟 log(1∕𝛿′)) uses of 𝑅𝜓 and 𝑅. To ensure that 
𝑁𝑡

𝑘=1 𝑓𝑘 in (3.8) can reach the target precision 𝜖, it suffices to estimate each 𝑓𝑘 within 𝜖′ = 𝜖∕𝑇 , with overall probability 1 − 𝛿, 
5

= 𝛿∕𝑁𝑡, 𝑁𝑡 = 𝑇 log(1∕𝜖), with
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𝐶𝑑 =
(
𝑇 log(1∕𝛿)

𝜖

)
(3.10)

eries to the coherent implementation of |𝜓𝑡𝑘
⟩, due to the use of the reflection 𝐼−2|𝜓𝑡𝑘

⟩⟨𝜓𝑡𝑘
|. Combining with the cost of processing |𝜓(0)⟩ = |𝜓(𝑡𝑘)⟩ as stated above, the algorithm therefore requires

( 𝑁𝑡∑
𝑘=1
‖𝐻‖𝑘Δ𝑡 ⋅𝐶𝑑 ⋅𝑁𝑠

)
=(‖𝐻‖𝑇 3 log(1∕𝛿)

𝜖

)
(3.11)

eries to the matrix oracle for 𝐻(𝑡).

Regarding the state preparation, we need to prepare a number of quantum states 
{|𝜓(𝑡𝑘)⟩}𝑁𝑡

𝑘=1
and each |𝜓(𝑡𝑘)⟩ requires 𝐶𝑑

pies in the circuit of biased amplitude estimation. Overall, the algorithm takes

𝑁𝑡 ⋅𝐶𝑑 =(𝑇 2 log(1∕𝛿)
𝜖

)
(3.12)

eries to the state preparation oracle for |𝜓in⟩.
) Unbiased amplitude estimation: Using the unbiased amplitude estimation in Lemma 3.2, we can afford to estimate each 𝑓𝑘 to 
ecision 𝜖∕

√
𝑇 using a circuit of depth

𝐶𝑑 =(
√

𝑇

𝜖
). (3.13)

 see this, let

𝑓𝑘 =
1
𝑁𝑠

𝑁𝑠∑
𝑙=1

𝑓
(𝑙)
𝑘

. (3.14)

 Lemma 3.2, we should choose 𝜂 =Θ(𝜖′ 2), 𝑟 =Θ(1∕𝜖′), so that

|𝔼𝑓𝑘 − 𝑓𝑘| ⩽ 𝜂, Var(𝑓𝑘) ⩽
91𝑓𝑘

𝑟2
+ 𝜂 =(𝜖′ 2), (3.15)

ith (𝑟 log log(𝑟) log(𝑟∕𝜂)) uses of the reflection operators. Now use the fact that 
∑𝑁𝑡

𝑘=1𝜔𝑘 = 1, 
∑𝑁𝑡

𝑘=1𝜔
2
𝑘
= (𝑇 ), we can choose 

= 𝜖∕
√

𝑇 , so that||||||
𝑁𝑡∑
𝑘=1

𝜔𝑘𝔼𝑓𝑘 −
𝑁𝑡∑
𝑘=1

𝜔𝑘𝑓𝑘

|||||| =(𝜖2∕𝑇 ), Var

(
𝑁𝑡∑
𝑘=1

𝜔𝑘𝑓𝑘

)
=
(
𝜖′ 2

𝑁𝑡∑
𝑘=1

𝜔2
𝑘

)
=(𝜖2). (3.16)

te that the bias can be neglected as long as 𝜖∕𝑇 ≪ 1. Then apply the Chebyshev inequality and then median of means, for any 
ilure probability 0 < 𝛿 < 1, we can run the process above for 𝑁𝑠 = (log 𝛿−1) times to obtain an estimator to 𝐴 denoted by , so 
at

ℙ
(|||𝐴−||| ⩾ 𝜖

2

)
⩽ 𝛿. (3.17)

e total number of uses of reflection operators is thus ((√𝑇 log 𝛿−1)∕𝜖).
The total cost of the algorithm is therefore

( 𝑁𝑡∑
𝑘=1
‖𝐻‖𝑘Δ𝑡 ⋅𝐶𝑑 ⋅𝑁𝑠

)
=(‖𝐻‖𝑇 2.5 log(1∕𝛿)

𝜖

)
(3.18)

eries to the matrix oracle for 𝐻(𝑡).

Regarding the state preparation, we need to prepare a number of quantum states 
{|𝜓(𝑡𝑘)⟩}𝑁𝑡

𝑘=1
and each |𝜓(𝑡𝑘)⟩ requires 𝐶𝑑 ⋅𝑁𝑠

pies in the circuit of unbiased amplitude estimation. In all, the algorithm takes

𝑁𝑡 ⋅𝐶𝑑 ⋅𝑁𝑠 =(𝑇 1.5 log(1∕𝛿)
𝜖

)
(3.19)

eries to the state preparation oracle for |𝜓in⟩. □

 Quantum linear ODE solver for non-unitary dynamics

We now introduce the third approach for Problem 1. We turn to utilize quantum linear ODE solvers [8,13,24,51,15,44,45,4,3]
 produce a Feynman-Kitaev history state of the Hamiltonian system. Such a history state encodes the full time-evolution of the 
6

lution, allowing us to perform an amplitude estimation once to evaluate the dense output on the full time interval.
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eorem 4.1 (Quantum linear ODE solver with amplitude estimation). We consider an instance of the quantum dense output problem in 
oblem 1. There exists a quantum algorithm producing an observable approximating the cost functional 𝐽 (𝑢) with error 𝜖 ∈ (0, 1), succeeding 
th probability 1 − 𝛿, with

(‖𝐻‖𝑇 2 log(1∕𝛿)
𝜖

)
, (4.1)

eries to the matrix oracle for 𝐻(𝑡) and the state preparation oracle for |𝜓in⟩.
oof. Given an initial condition, we perform a composite Clenshaw–Curtis quadrature rule (Appendix A) to divide the time interval 
, 𝑇 ] into 𝑁𝑡 =(𝑇 log(1∕𝜖)) sub-intervals, with 0 = 𝑡0 < 𝑡1 <… < 𝑡𝑁𝑡

= 𝑇 , ℎ𝑘 = 𝑡𝑘+1 − 𝑡𝑘. For a time-independent Hamiltonian 𝐻 , 
e construct (𝑁𝑡 + 1)𝑛 × (𝑁𝑡 + 1)𝑛 linear system

𝐿|Ψ⟩ = |𝐵⟩ (4.2)

here 𝐿 is constructed from the block encoding of 𝐻(𝑡) (detailed encoding refers to e.g., [15]), and the quantum states |Ψ⟩ and |𝐵⟩
e

|Ψ⟩ = [𝜓(𝑡0), 𝜓(𝑡1),⋯ , 𝜓(𝑡𝑁𝑡
)]𝑇 , |𝐵⟩ = [𝜓in,0,⋯ ,0]𝑇 . (4.3)

e can use the quantum linear ODE solvers such as [15, Theorem 2] to produce the history state

|Ψ⟩ = 1√
𝑁𝑡 + 1

𝑁𝑡∑
𝑘=0
|𝑘⟩|𝜓(𝑡𝑘)⟩ (4.4)

ith

(‖𝐻‖𝑇 ⋅ polylog(1∕𝜖)
)

(4.5)

eries to the matrix oracle for 𝐻(𝑡) and the state preparation oracle for |𝜓in⟩. Here we use the fact that 𝑔 = max𝑡∈[0,𝑇 ] ‖Ψ(𝑡)‖‖Ψ(𝑇 )‖ = 1 and ‖𝜓in‖
ax𝑡∈[0,𝑇 ] ‖Ψ(𝑡)‖ = 1.
For a time-dependent Hamiltonian 𝐻(𝑡), we can employ the quantum time-dependent differential equation solvers based on 
antum Dyson series [15], quantum spectral methods [24,25], quantum time marching method [33], or linear combinations of 
miltonian simulation/Schrodingerisation [3,44,45]. For instance, we refer the algorithm based on quantum Dyson series [15, 
eorem 1] to Appendix B.
Our goal is to estimate the integral

𝐴 =

𝑇

∫
0

⟨𝑂⟩𝑡 d𝑡 = 𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩d𝑡 (4.6)

ven quadrature nodes {𝑡1, … , 𝑡𝑁𝑡
} and weights {𝜔1, … , 𝜔𝑁𝑡

} as introduced in Appendix A, we consider

𝐴 =
𝑁𝑡∑
𝑘=1

𝜔𝑘⟨𝑂⟩𝑡𝑘 (4.7)

 an approximation to 𝐴 with |||𝐴−𝐴
||| ⩽ 𝜖∕2. We define the selection observable 𝑂sel with the block-diagonal form

𝑂sel =
𝑁𝑡∑
𝑘=0
|𝑘⟩⟨𝑘|⊗𝜔𝑘𝑂(𝑡𝑘), (4.8)

d we require that ‖𝑂sel‖ ⩽ 1 (ensured by each |𝜔𝑘| ⩽ 1 and ‖𝑂(𝑡𝑘)‖ ⩽ 1), and 𝑂sel can be block-encoded by a unitary 𝑈sel as

𝑈sel =
(
𝑂sel ∗
∗ ∗

)
. (4.9)

Such a block encoding 𝑈sel can be constructed by associating controlled registers with each block encoding of 𝑂(𝑡𝑘) as stated in 
oblem 1.

obal amplitude estimation: We can estimate ⟨Ψ|𝑂sel|Ψ⟩ using amplitude estimation in Lemma 3.1. To estimate
⟨Ψ|𝑂sel|Ψ⟩ = 1

𝑁𝑡 + 1

𝑁𝑡∑
𝑘=0

𝜔𝑘⟨𝑂⟩𝑡𝑘 = 1
𝑁𝑡 + 1

𝐴 (4.10)
7

ithin precision 𝜖∕(𝑁𝑡 + 1) with 𝑁𝑡 + 1 =(𝑇 log(1∕𝜖)), we need a circuit of depth
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𝐶𝑑 =(𝑁𝑡

𝜖
) =(𝑇

𝜖
). (4.11)

re we can use the above standard estimator even it is biased, since we only use it to estimate a single amplitude and avoid 
cumulating the biases. The algorithm for evaluating 𝐴 takes

(‖𝐻‖𝑇 ⋅𝐶𝑑 ⋅𝑁𝑠

)
=(‖𝐻‖𝑇 2 log(1∕𝛿)

𝜖

)
, (4.12)

eries to the matrix oracle for 𝐻(𝑡) and the state preparation oracle for |𝜓in⟩. □

 Quantum linearization algorithm for nonlinear dynamics

In recent years, quantum algorithms for nonlinear differential equations have attracted tremendous attention, and several novel 
antum linearization approaches have been developed to handle specific nonlinear problems [61,64,48,32,88,60,51,59,43,46,62,57,
]. A large class of these linearization methods, such as Carleman linearization, are based on the Koopman von Neumann operator 
eory [55,72,52,19]. Koopman theory forms the foundation of offering an infinite-dimensional linear representation of a general 
ite-dimensional nonlinear systems with or without including the original states, for which we can perform finite-dimensional 
ncation and apply quantum linear (differential) equation solvers to efficiently produce the quantum-encoding solutions.
The generic linearization approach can only approximate well for weakly nonlinear systems. For generic nonlinear systems, the 
ncation error is hard to control, and there is a known worst case that cannot be efficiently approximated by quantum mechan-
s [61]. However, for particular systems, we can offer an exact finite-dimensional linear representation that includes the original 
tes as observable functions. This is based on the Koopman Invariant Subspace (KIS)theory [18].
Koopman Invariant Subspace theory provides an operator-theoretic perspective on dynamical systems. It demonstrates that non-
ear dynamical systems associated with Hamiltonian flows could be analyzed with an infinite-dimensional linear operator, from 
hich it is of great importance to find a finite-rank approximation. In particular, the infinite-dimensional linear representation 
at includes the original state variables and their polynomials are known as the Carleman embedding/linearization, as a special 
se of Koopman embedding/linearization. It is quite rare for a dynamical system to admit a finite-dimensional Koopman Invari-
t subspace that includes the state variables explicitly. Fortunately, our problem model modified below Problem 2 has an exact 
ite-dimensional linear representation. We in fact offer the first example in quantum mechanics that satisfies the condition, as a 
ntribution to nonlinear dynamical control theory.
Given the quantum dynamics

d
d𝑡
|𝜓⟩ = −𝑖𝐻(𝑡)|𝜓⟩, (5.1)

e define

𝐽 (𝑡) =

𝑡

∫
0

(⟨𝜓(𝜏)|𝑂(𝜏)|𝜓(𝜏)⟩+ 𝜇

2
𝑢2(𝜏)
)
d𝜏, (5.2)

hich satisfies 𝐽 (0) = 0, 𝐽 (𝑇 ) =𝐴 as target, and since ⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ and 𝑢2(𝑡) are continuous in 𝑡, we have
d𝐽 (𝑡)
d𝑡

= ⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩+ 𝜇

2
𝑢2(𝑡). (5.3)

We rewrite the original problem as a system of quantum-driven classical dynamics

d
d𝑡

[|𝜓⟩
𝐽

]
=
[

−𝑖𝐻|𝜓⟩⟨𝜓|𝑂|𝜓⟩+ 𝜇

2 𝑢
2

]
, (5.4)

here |𝜓⟩ ∈ ℂ𝑛 is a quantum state, 𝐽 ∈ ℂ is a classical cost function, 𝐻 ∈ ℂ𝑛×𝑛 is a Hamiltonian, and 𝑂 ∈ ℂ𝑛×𝑛 is the observable 
erator. We aim to develop quantum algorithms for the initial value problem of (5.4) to obtain the final state 𝐽 (𝑇 ).
In particular, we assume 𝑂 is a low-rank observable. Typical instances include the wave-function follower 𝑂(𝑡) = |𝜙(𝑡)⟩⟨𝜙(𝑡)| [79]

 the projection onto the allowed subspace [73]. The low-rank observable is also named as the few-body observable [40,41,39], 
ith potential applications in fidelity estimation [36,31] and entanglement verification [37].
We generally assume that 𝐽 (𝑡) is positive and lower bounded as 𝐽 (𝑡) = Ω(1), and 𝐽 (𝑡) and non-decreasing in terms of 𝑡 given 
mi-positive definite 𝑂(𝑡). Such class of cost functionals can be time-increasing or time-oscillatory, as illustrated in Appendix D.
We now restate the problem formulation Problem 1 with additional low-rank assumptions.

oblem 2 (Quantum low-rank dense output). A time-accumulated observable associated with a time-dependent quantum dynamics is 
8

ven by
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d
d𝑡
|𝜓(𝑡)⟩ = −𝑖𝐻(𝑡)|𝜓(𝑡)⟩, |𝜓(0)⟩ = |𝜓in⟩,

𝐽 = 𝐽 (𝑇 ) =

𝑇

∫
0

(⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩+ 𝜇

2
𝑢2(𝑡)
)
d𝑡.

(5.5)

re 𝐻(𝑡) and 𝑂(𝑡) represent continuous Hermitian matrices with respect to 𝑡. We have access to unitaries that block encode 𝐻(𝑡) and 
(𝑡) for all 𝑡, and 𝑂(𝑡) is (numerically) low-rank in the sense that the Hilbert-Schmidt norm of the observable 𝑂: ‖𝑂‖HS ∶=√Tr(𝑂2)
upper bounded by a constant independent of the dimension of the matrix. Additionally, we are provided with a state preparation 
acle that prepares the initial state |𝜓in⟩. Our objective is to estimate the value of 𝐽 with a desired precision of 𝜖, within a given 
e duration 𝑇 > 0.

We apply the Carleman linearization method to derive the exact linear representation of (5.4) as

d
d𝑡

[
𝐽|𝜓⟩|𝜓∗⟩
]
=
[
0 𝑃

0 (−𝑖𝐻)⊗𝐼 + 𝐼 ⊗ (−𝑖𝐻∗)

][
𝐽|𝜓⟩|𝜓∗⟩
]
+
[ 𝜇

2 𝑢
2

0

]
, (5.6)

here 𝑃 (𝑡) ∈ℂ1×𝑛2 vectorizes the operator 𝑂(𝑡) and satisfies

⟨𝜓|𝑂(𝑡)|𝜓⟩ = 𝑃 (𝑡)|𝜓⟩|𝜓∗⟩. (5.7)

te that ‖𝑃 (𝑡)‖ = ‖𝑂‖HS =(1).
By applying the quantum algorithm in [61, Theorem 1] or [60, Theorem 4.1], we state our main algorithmic result as follows.

eorem 5.1 (Quantum Carleman linearization with amplitude estimation). We consider an instance of the quantum low-rank dense output 
oblem in Problem 2. Assuming 𝐻 and 𝑂 (and hence 𝑃 ) are time-independent, there exists a quantum algorithm producing an observable 
proximating the cost functional 𝐽 (𝑢) with error 𝜖 ∈ (0, 1), succeeding with probability 1 − 𝛿, with

(‖𝐻‖𝑇Γ log(1∕𝛿)
𝜖

)
(5.8)

eries to the matrix oracle for 𝐻 , 𝑃 and the state preparation oracle for |𝜓in⟩, where we denote
Γ ∶=
|𝐽 (𝑇 )|2 + 1|𝐽 (𝑇 )| . (5.9)

oof. We consider the linear system

𝐿̂|Ψ̂⟩ = |𝐵⟩. (5.10)

re we require the history state has the form

|Ψ̂⟩ = 1
𝑄

{
𝑁𝑡∑
𝑘=0
|𝑘⟩[𝐽𝑘|00⟩+ |𝜓𝑘⟩|⟂⟩] + 2𝑁𝑡+2∑

𝑘=𝑁𝑡+1
|𝑘⟩[𝐽 (𝑇 )|00⟩+ |𝜓(𝑇 )⟩| ⟂⟩]}

= 1
𝑄

{
𝑁𝑡∑
𝑘=0
|𝑘⟩[𝐽𝑘|0⟩|0⟩+ 𝑛∑

𝑗,𝑙=1
𝜓𝑘
𝑗 (𝜓

∗
𝑙
)𝑘|𝑗⟩|𝑙⟩]+ 2𝑁𝑡+2∑

𝑘=𝑁𝑡+1
|𝑘⟩[𝐽 (𝑇 )|0⟩|0⟩+ 𝑛∑

𝑗,𝑙=1
𝜓𝑗 (𝑇 )𝜓∗

𝑙
(𝑇 )|𝑗⟩|𝑙⟩]},

(5.11)

hich includes 𝑁𝑡 + 1 (𝑁𝑡 = (𝑇 log(1∕𝜖))) number of the final state 𝐽 = 𝐽 (𝑇 ) to boost the success probability. Here 𝐽𝑘 = 𝐽 (𝑡𝑘), 
𝑘⟩ =∑𝑛

𝑗=1𝜓
𝑘
𝑗
|𝑗⟩ =∑𝑛

𝑗=1𝜓𝑗 (𝑡𝑘)|𝑗⟩, |𝜓(𝑇 )⟩ =∑𝑛
𝑗=1𝜓𝑗 (𝑇 )|𝑗⟩, | ⟂⟩ is orthogonal to |00⟩, and the normalizing constant is denoted by

𝑄 =

√√√√√ 𝑁𝑡∑
𝑘=0

(|𝐽𝑘|2 + 1) +
2𝑁𝑡+2∑
𝑘=𝑁𝑡+1

(|𝐽 (𝑇 )|2 + 1). (5.12)

According to Lemma C.1, we can solve the linear system (5.10) with

𝑂
(‖𝑃‖(‖𝐻‖+ ‖𝑃‖)𝑇Γ ⋅ polylog(1∕𝜖)

)
(5.13)

eries to the matrix oracle for 𝐻 , 𝑃 and the state preparation oracle for |𝜓in⟩.
plitude estimation with padding: We consider the amplitude estimation in Lemma 3.1, which gives an estimate of

𝑎 = ⟨Ψ̂|𝑂|Ψ̂⟩ = 𝑁𝑡 + 1
𝑄2 |𝐽 (𝑇 )|2. (5.14)
9

re
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𝑂 =
2𝑁𝑡+2∑
𝑘=𝑁𝑡+1

|𝑘⟩|0⟩|0⟩⟨𝑘|⟨0|⟨0| (5.15)

at indicates the position of 𝐽 (𝑇 ).
We now estimate the quantity of 𝑎 used in the amplitude estimation. On one side, since 𝐽 (𝑡) is positive,

𝑄2

𝑁𝑡 + 1
⩾

∑2𝑁𝑡+2
𝑘=𝑁𝑡+1

(|𝐽 (𝑇 )|2 + 1)

𝑁𝑡 + 1
= |𝐽 (𝑇 )|2 + 1, (5.16)

d on the other side, since 𝐽𝑘 ⩽ 𝐽 for non-decreasing 𝐽 (𝑡),

𝑄2

𝑁𝑡 + 1
⩽

∑𝑁𝑡

𝑘=0(|𝐽 (𝑇 )|2 + 1) +
∑2𝑁𝑡+2

𝑘=𝑁𝑡+1
(|𝐽 (𝑇 )|2 + 1)

𝑁𝑡 + 1
= 2|𝐽 (𝑇 )|2 + 2. (5.17)

In the amplitude estimation, we aim to produce

𝑎 =
𝑁𝑡 + 1
𝑄2 |𝐽 (𝑇 )|2, (5.18)

at approximates 𝑎, such that 𝐽 = 𝐽 (𝑇 ) is an estimate of 𝐽 = 𝐽 (𝑇 ). To satisfy |𝐽 − 𝐽 | ⩽ 𝜖 with 𝜖 = 𝑜(𝐽 ), we require

|𝐽 2 − 𝐽 2| ⩽ (2𝐽 + 𝐽 − 𝐽 )|𝐽 − 𝐽 | ⩽ (2𝐽 + 𝜖)𝜖 ⩽ 3𝐽𝜖, (5.19)

en it gives

|𝑎− 𝑎| = | 𝐽 2

𝑄2∕(𝑁𝑡 + 1)
− 𝐽 2

𝑄2∕(𝑁𝑡 + 1)
| ⩽ 3𝐽𝜖

𝑄2∕(𝑁𝑡 + 1)
⩽ 3𝐽𝜖

𝐽 2 + 1
= 3𝜖

Γ
, (5.20)

here Γ is denoted as (5.9). It suffices to take 𝑡 =(Γ∕𝜖) and the same as the circuit depth
𝐶𝑑 =( Γ

𝜖
), (5.21)

ch that |𝑎− 𝑎| ⩽ 3𝜖
Γ , and henceforth |𝐽 − 𝐽 | ⩽ 𝜖.

Since the quantum linear ODE solver takes (‖𝑃‖(‖𝐻‖ + ‖𝑃‖)𝑇Γ) to produce the history state |Ψ̂⟩ in (5.11), the algorithm for 
aluating 𝐴 = 𝐽 (𝑇 ) takes

(‖𝑃‖(‖𝐻‖+ ‖𝑃‖)𝑇Γ ⋅𝐶𝑑 ⋅𝑁𝑠

)
=(‖𝑃‖(‖𝐻‖+ ‖𝑃‖)𝑇Γ log(1∕𝛿)

𝜖

)
, (5.22)

eries to the matrix oracle for 𝐻 , 𝑃 and the state preparation oracle for |𝜓in⟩.
Using ‖𝑃‖ = ‖𝑂‖HS =√Tr(𝑂2) =(1), the above complexity can be simplified as

(‖𝐻‖𝑇Γ log(1∕𝛿)
𝜖

)
. □ (5.23)

This approach achieves the complexity (𝑇Γ∕𝜖). Here Γ depends on the time-varying behavior of the observables. We refer the 
amples with different complexity results to Appendix D.

 Applications

We introduce several prototype applications of Problem 1, including quantum control and spectroscopic computation.
Quantum control plays a pivotal role in the development of quantum technologies such as quantum computing, quantum simu-

tions and quantum sensing. There are kind classes of control problems: Mayer, Lagrange, and Bolza. A problem of Mayer describes 
situation where the cost is determined by the final state and time; a problem of Lagrange describes a situation where the cost 
cumulates with time; and a problem of Bolza is a combination of problems of Mayer and Lagrange.
We consider a controlled quantum system with a general cost of the Bolza type [30,17,78,86]

d
d𝑡
|𝜓⟩ = −𝑖𝐻(𝑢(𝑡))|𝜓⟩,
𝐽 (𝑢) =

𝑇

∫
0

𝐿
(|𝜓(𝑡)⟩, 𝑢(𝑡), 𝑡) d𝑡+𝐺

(|𝜓(𝑇 )⟩, 𝑇). (6.1)

re |𝜓⟩ ∈ ℂ𝑛 is a quantum state, 𝑢 ∈ ℂ is a control function, and 𝐻(𝑢) ∈ ℂ𝑛×𝑛 is a Hamiltonian determined by the control 𝑢. We 
ll 𝐿
(|𝜓(𝑡)⟩, 𝑢(𝑡), 𝑡) and 𝐺(|𝜓(𝑇 )⟩, 𝑇) as running cost and terminal cost. The problems whose cost functions containing only the 

rminal or running cost are called Mayer or Lagrange type; and a problem combines both the terminal and running costs is named 
10

 Bolza type [30].
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In our paper, we can express the cost functional as observable functions

𝐿
(|𝜓(𝑡)⟩, 𝑢(𝑡), 𝑡) = ⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩+ 𝜇

2
𝑢2(𝑡)

𝐺
(|𝜓(𝑇 )⟩, 𝑇) = ⟨𝜓(𝑇 )|𝑂(𝑇 )|𝜓(𝑇 )⟩. (6.2)

rticularly, we consider certain few-body observables in the running cost, such as the form 𝑂(𝑡) = |𝜙(𝑡)⟩⟨𝜙(𝑡)| [40,41,39]. When 
(𝑡)⟩ = |𝜙⟩, it is often used in the state trapping problem, for which we hope |𝜓(𝑡)⟩ can approach to the desired state |𝜙⟩ as fast as 
ssible and try to stay in that state [78]. Fidelity estimation with pure target states can also be used in quantum communication 
.g. when |𝜙⟩ is a GHZ state [36]), fault-tolerant quantum computation (e.g. when |𝜙⟩ is a toric code ground st [36]), and serves 
(bipartite) entanglement witness [37]. In more general, given a desired pure state trajectory |𝜙(𝑡)⟩, we can estimate the fidelity 
(𝑡)⟩⟨𝜙(𝑡)| with the change of the evolution time.
Another formulation of the few-body observable is 𝑂(𝑡) =

∑𝑟
𝑘=1 𝛼𝑘|𝜙𝑘⟩⟨𝜙𝑘|, where |𝜙𝑘⟩ is the 𝑘-th energy eigenstate of a certain 

antum system. We assume |𝜓(𝑡)⟩ has a large overlap lying in the eigenspace. Then |⟨𝜓(𝑡)|𝑂|𝜓(𝑡)⟩| can be used to estimate the 
erlap of |𝜓(𝑡)⟩ lying in the low-lying energy eigenspace.
The policy iteration is popular in optimal control or modern predictive control problems. Given a known control 𝑢, we propagate 
e controlled quantum dynamics and evaluate the cost functional 𝐽 (𝑢) in order to update the control 𝑢. In quantum control, our algo-
hm can be utilized to estimate 𝐽 (𝑢) and update 𝑢. Moreover, it has potential to implement as a subroutine in Variational Quantum 
gorithms (VQA) [21], Quantum Approximate Optimization Algorithms (QAOA) [34], and quantum reinforcement learning [71].
Spectroscopic computation is another class of applications that falls into the scope of Problem 1. Understanding the spectrum of 
olecular systems is the first step to understand the effects of molecular aggregates and polymers in computational chemistry. How-
er, it is challenging to quantitatively calculate the spectrum of many-particle dynamics. Several numerical approaches have been 
veloped for computing the spectrum problems based on the Time-Dependent Density Functional Theory (TDDFT) algorithms [83]
d the Time-Dependent Density Matrix Renormalization Group (TD-DMRG) algorithms [77].
For instance, we consider the spectra estimation from the quantum dynamics

d
d𝑡
|𝜓⟩ = −𝑖𝐻|𝜓⟩,

𝐽 (𝜔) =

𝑇

∫
0

𝑒𝑖𝜔𝑡⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡. (6.3)

re 𝐽 (𝜔) is calculated by taking Fourier transform of the time correlation function, as a type of dense outputs. The factor 𝑒𝑖𝜔𝑡 can 
 substituted by cos(𝜔𝑡) and sin(𝜔𝑡) instead.
In zero and finite temperature TD-DMRG, 𝐽 (𝜔) in (6.3) is used to compute the linear absorption and fluorescence spectra of 
olecular aggregates [77]. The spectral analysis of the time correlation function has also been broadly applied to estimate resonance 
tes of molecular systems [85,68,69].

 Discussion

In our work, we manage to estimate the time-accumulated observable associated with the quantum dynamics in Problem 1 within 
ror tolerance 𝜖, and 𝜖 is supposed to be independent of the evolution time 𝑇 . In Problem 2 in which we rewrite the original system 
 a quantum-driven classical dynamics, the cost function |𝐽 (𝑡)| can either increases linearly in terms of 𝑡 when 𝐽 (𝑡) > 0 or 𝐽 (𝑡) < 0
r all 𝑡; or |𝐽 (𝑡)| can be slowly time-varying, i.e. 𝐽 (𝑡) =(polylog(𝑡)) for any 𝑡 > 0, such as in oscillatory systems. The time-varying 
havior of |𝐽 (𝑡)| relies on features such as the overlap between the eigenstates of 𝐻(𝑡), the observable 𝑂(𝑡), and the inhomogeneity 
etailed discussions refer to Section 4.5 of [4]). We illustrate simple examples of time-increasing or time-oscillatory observables in 
pendix D. In our unified framework, our goal is to upper bound the additive error to 𝐽 (𝑡) as 𝜖 for all cases. The error measurement 
ight change while there is an additional assumption. For instance, it is more desirable to replace 𝜖 by 𝜖𝑇 for strictly time-increasing 
(𝑡)|. It would be of interest to investigate the complexity with respect to different error measurement.
We are concerned with lower bound or fast-forwarding results of Problem 1. For general Hamiltonian systems, the no-fast-
rwarding theorem gives a Ω(𝑇 ) lower bound [9], and the Heisenberg limit gives a Ω(1∕𝜖) lower bound [5]. Henceforth, the upper 
und (𝑇 ∕𝜖) that we achieve in Theorem 5.1 is nearly tight for separately 𝑇 and 1∕𝜖. It remains an open problem whether Θ(𝑇 ∕𝜖)
ould be the lower bound for joint 𝑇 and 1∕𝜖, or it could be further improved as (𝑇 + 𝑇 𝑐∕𝜖), 𝑐 < 1. Besides, it is appealing to 
st-forward particular types of quantum dynamics [67] or non-quantum dynamics [4] and more efficiently produce dense outputs.
We have briefly introduced prototype applications in quantum control and spectroscopic computation. While the output only 
pends on the single final state, there is a recent developed quantum algorithm for the quantum control problem of the Mayer 
pe [58]. When contemplating applications, we hope future work can investigate quantum algorithms with end-to-end settings.
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pendix A. Clenshaw–Curtis quadrature

For a continuous function 𝑓 (𝑡) defined on [−1, 1], the Clenshaw–Curtis quadrature formula approximates the integral 𝐼 =
1
1 𝑓 (𝑡) d𝑡 = ∫ 𝜋

0 𝑓 (cos𝜃) sin𝜃 d𝜃 by expanding 𝑓 (cos𝜃) into a polynomial of cos𝜃. This amounts to the following quadrature for-
ula

𝐼𝑛 =
𝑀∑
𝑘=0

𝜔𝑘𝑓 (𝑡𝑘), (A.1)

here 𝑡𝑘 are chosen to be the Chebyshev points 𝑡𝑘 = cos 𝑘𝜋

𝑀
, 𝑘 = 0, … , 𝑀 . Assuming 𝑀 is an even number, the weights are

𝜔𝑘 =
(2 − 𝛿𝑘,0 − 𝛿𝑘,𝑀 )

𝑀

𝑀∕2∑
𝑙=0

(2 − 𝛿𝑙,0 − 𝛿𝑙,𝑀∕2)
𝑇2𝑙(𝑡𝑘)
1 − 4𝑙2

, 𝑘 = 0,… ,𝑀. (A.2)

re 𝑇𝑙(𝑥) is the 𝑙-th order Chebyshev polynomial, and 𝛿 is the Kronecker delta. We may write 𝑇2𝑙(𝑡𝑘) = cos(2𝑙𝑘𝜋∕𝑀), and the 
adrature weights {𝜔𝑘} are positive [42]. When 𝑀 is large, the weights 𝜔𝑘 can be efficiently carried out using fast Fourier 
nsform (FFT) (see e.g., [82]). We may use other efficient quadrature schemes, such as the Gauss-Legendre quadrature. However, 
e find that it is simpler to estimate the 2-norm of the weights {𝜔𝑘} for the Clenshaw–Curtis quadrature needed for the tail bound: 
ing the fact that ||𝑇2𝑙(𝑡𝑘)|| ⩽ 1, we have

𝑀∑
𝑘=0

𝜔2
𝑘
⩽

𝑀∑
𝑘=0

16
𝑀2

(
1 +

𝑀∕2∑
𝑙=1

1
(2𝑙)2 − 1

)2

⩽ 16
𝑀2

𝑀∑
𝑘=0

(
1 +

∞∑
𝑙=1

1
(2𝑙)2 − 1

)2

= 36(𝑀 + 1)
𝑀2 =(𝑀−1). (A.3)

When 𝑇 =(1), we may map the interval [0, 𝑇 ] to [−1, 1] via a linear transformation. For simplicity assume that ⟨𝑂⟩𝑡 is an analytic 
nction in an open region including the interval [0, 𝑇 ] on which ||⟨𝑂⟩𝑡|| ⩽ 𝐶 for some constant 𝐶 . Then the error of Clenshaw–Curtis 
adrature decreases exponentially in 𝑀 ([82, Theorem 4.5]). In other words, to achieve additive error 𝜖, number of quadrature 
ints is (log(1∕𝜖)).
For long time integration, mapping the interval [0, 𝑇 ] to [−1, 1] introduces additional 𝑇 -dependence in the magnitude of ||⟨𝑂⟩𝑡||. 

 a result, we may use a composite Clenshaw–Curtis quadrature, which divides the time interval [0, 𝑇 ] into 𝐼 intervals as 0 = 𝑡0 <
<… < 𝑡𝐼 = 𝑇 with time step with Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 = Θ(1). Within each segment, we use a Clenshaw–Curtis quadrature with nodes 
𝑖,0, … , 𝑡𝑖,𝑀} and weights {𝜔𝑖,0, … , 𝜔𝑖,𝑀}. Putting all the segments together, we can approximate 𝐴 as

𝐴 =
𝐼∑

𝑖=1

𝑀∑
𝑚=0

𝜔𝑖,𝑚⟨𝑂⟩𝑡𝑖,𝑚 (A.4)

ith |||𝐴−𝐴
||| ⩽ 𝜖∕2. With some abuse of notation, we reorder 𝐴 as

𝐴 =
𝑁𝑡∑
𝑘=1

𝜔𝑘⟨𝑂⟩𝑡𝑘 (A.5)
12

here 𝑁𝑡 is the total number of nodes, with 𝑁𝑡 = (𝑀 + 1)𝐼 =(𝑇 log(1∕𝜖)). The 2-norm of the weight satisfies
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𝑁𝑡∑
𝑘=1

𝜔2
𝑘
=(𝑇 ∕𝑀) =(𝑇 ∕ log(1∕𝜖)). (A.6)

pendix B. Quantum time-dependent ODE solver based on Dyson series

We state the complexity of the quantum time-dependent ODE solver developed by Berry and Costa [15] as below.

mma B.1 (Theorem 1 of [15]). Given an ODE of the form

d
d𝑡

𝑥(𝑡) =𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡), 𝑥(0) = 𝑥in, (B.1)

ere 𝑏(𝑡) ∈ℂ𝑛 is a vector function of 𝑡, 𝐴(𝑡) ∈ℂ𝑛×𝑛 is a coefficient matrix with non-positive logarithmic norm, and 𝑥(𝑡) ∈ ℂ𝑛 is the solution 
ctor as a function of 𝑡. The parameters of the differential equation are provided via 𝑈𝐴, 𝑈𝑏 and 𝑈𝑥 such that

⟨0|𝑈𝐴|0⟩ = 1
𝜆𝐴

𝐴(𝑡), 𝑈𝑏|0⟩ = 1
𝜆𝑏
|𝑏(𝑡)⟩, 𝑈𝑥|0⟩ = 1

𝜆𝑥
|𝑥in⟩. (B.2)

quantum algorithm can provide an approximation |𝑥̂⟩ of the solution |𝑥(𝑇 )⟩ satisfying ‖|𝑥̂⟩− |𝑥(𝑇 )⟩‖ ⩽ 𝜖𝑥max using an average number

(𝜆𝑇 log(1∕𝜖)
)

(B.3)

lls to 𝑈𝑏, 𝑈𝑥,

(𝜆𝑇 log(1∕𝜖) log(𝜆𝑇 ∕𝜖)
)

(B.4)

lls to 𝑈𝐴, and

(𝜆𝑇 log(1∕𝜖) log(𝜆𝑇 ∕𝜖)
[
log(𝑇∕𝜆𝜖) + log(𝜆𝑇 ∕𝜖)

])
(B.5)

ditional gates, where 𝜆 =max{𝜆𝐴, 𝜆𝑏∕𝑥max}, given constants satisfying

 ⩾
𝑥max‖𝑥(𝑇 )‖ 𝜆𝑏∕𝜆

min𝑚 ‖𝑣(𝑚Δ𝑡, (𝑚− 1)Δ𝑡)‖− 𝜖𝑥max∕(𝜆𝑇 )
,

 ⩾ max
𝑡∈[0,𝑇 ]

‖𝐴′(𝑡)‖+ max𝑡∈[0,𝑇 ] ‖𝑏′(𝑡)‖
𝑥max

,

𝑥max ⩾ max
𝑡∈[0,𝑇 ]

‖𝑥(𝑡)‖,
𝑏max ⩾ max

𝑡∈[0,𝑇 ]
‖𝑏(𝑡)‖.

(B.6)

re

𝑣(𝑡, 𝑡0) =
∞∑
𝑘=0

𝑡

∫
𝑡0

d𝑡1

𝑡1

∫
𝑡0

d𝑡2⋯

𝑡𝑘−1

∫
𝑡0

d𝑡𝑘𝐴(𝑡1)𝐴(𝑡2)⋯𝐴(𝑡𝑘−1)𝑏(𝑡𝑘), (B.7)

d

Δ𝑡 = 𝑇⌈ 𝑇

min( 1
2𝜆𝐴

,
𝑥max
𝑏max

)
⌉ . (B.8)

When 𝐴 is time-independent, the complexity can be simplified as below.

mma B.2 (Theorem 2 of [15]). Given an ODE of the form

d
d𝑡

𝑥(𝑡) =𝐴𝑥(𝑡) + 𝑏, 𝑥(0) = 𝑥in, (B.9)

ere 𝑏 ∈ ℂ𝑛 is a vector function of 𝑡, 𝐴 ∈ ℂ𝑛×𝑛 is a coefficient matrix with non-positive logarithmic norm, and 𝑥(𝑡) ∈ ℂ𝑛 is the solution 
ctor as a function of 𝑡. The parameters of the differential equation are provided via 𝑈𝐴, 𝑈𝑏 and 𝑈𝑥 such that

⟨0|𝑈𝐴|0⟩ = 1
𝜆𝐴

𝐴, 𝑈𝑏|0⟩ = 1
𝜆𝑏
|𝑏⟩, 𝑈𝑥|0⟩ = 1

𝜆𝑥
|𝑥in⟩. (B.10)

quantum algorithm can provide an approximation |𝑥̂⟩ of the solution |𝑥(𝑇 )⟩ satisfying ‖|𝑥̂⟩− |𝑥(𝑇 )⟩‖ ⩽ 𝜖𝑥max using an average number( )

13

 𝜆𝑇 log(1∕𝜖) (B.11)
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lls to 𝑈𝑏, 𝑈𝑥,

(𝜆𝑇 log(1∕𝜖) log(𝜆𝑇 ∕𝜖)
)

(B.12)

lls to 𝑈𝐴, and

(𝜆𝑇 log(1∕𝜖) log2(𝜆𝑇 ∕𝜖)
)

(B.13)

ditional gates, where 𝜆 =max{𝜆𝐴, 𝜆𝑏∕𝑥max}, given constants satisfying

 ⩾
𝑥max‖𝑥(𝑇 )‖ ,

𝑥max ⩾ max
𝑡∈[0,𝑇 ]

‖𝑥(𝑡)‖. (B.14)

Without loss of generality, the above quantum algorithm for time-independent ODEs takes query and gate complexity

(𝑔 ⋅max{‖𝐻‖, 𝜆𝑏∕𝑥max} ⋅ 𝑇 ⋅ polylog(1∕𝜖)
)
, (B.15)

here

𝑔 =
𝑥max‖𝑥(𝑇 )‖ . (B.16)

r time-dependent ODEs, the query and gate complexity includes additional factors from Dyson series as described above.

pendix C. Quantum ODE solver for quantum-driven classical dynamics

mma C.1 (Quantum Carleman linearization algorithm). For Problem 2, we consider an instance of (5.4) with its Carleman linearization 
 defined in (5.6). We assume 𝐻 and 𝑂 (and hence 𝑃 ) are time-independent. There exists a quantum algorithm producing a quantum state 
oportional to [𝜓(𝑇 ); 𝐽 (𝑇 )] with error at most 𝜖 ⩽ 1, succeeding with probability Ω(1), with a flag indicating success, with

𝑂
(‖𝑃‖(‖𝐻‖+ ‖𝑃‖)𝑇Γ ⋅ polylog(1∕𝜖)

)
(C.1)

eries to the matrix oracle for 𝐻 , 𝑃 and the state preparation oracle for |𝜓in⟩, where
Γ = |𝐽 (𝑇 )|2 + 1|𝐽 (𝑇 )| (C.2)

 denoted in (5.9).

We consider a quantum linear ODE solver for (5.6)

d
d𝑡

[
𝐽|𝜓⟩|𝜓∗⟩
]
=
[
0 𝑃

0 𝑄

][
𝐽|𝜓⟩|𝜓∗⟩
]
+
[ 𝜇

2 𝑢
2

0

]
. (C.3)

e denote a skew-Hermitian 𝑄 = (−𝑖𝐻) ⊗𝐼 + 𝐼 ⊗ (−𝑖𝐻∗) for simplicity, and denote 𝐴 = [0, 𝑃 ; 0, 𝑄].
Without loss of generality, we are able to shift 𝐻 so that the eigenvalues of 𝐻 are lower bounded by 1. Henceforth, 𝐻 (and 
nce 𝑄) is invertible, and ‖‖‖𝐻−1‖‖‖ ⩽ 1. We also consider a non-decreasing 𝐽 (𝑡) in terms of 𝑡 given semi-positive definite 𝑂(𝑡), such 
at 𝑔 =max𝑡∈[0,𝑇 ]

|𝐽 (𝑡)||𝐽 (𝑇 )| = 1.
We observe the diagonalization

𝐴 = 𝑉 Λ𝑉 −1 =
[
0 𝑃

0 𝑄

]
=
[
𝐼 𝑃

0 𝑄

][
0 0
0 𝑄

][
𝐼 −𝑃𝑄−1

0 𝑄−1

]
, (C.4)

en the matrix exponential of 𝐴 has the form

𝑒𝐴𝑡 = 𝑉 𝑒Λ𝑡𝑉 −1 =
[
𝐼 𝑃

0 𝑄

][
𝐼 0
0 𝑒𝑄𝑡

][
𝐼 −𝑃𝑄−1

0 𝑄−1

]
=
[
𝐼 𝑃 (𝑒𝑄𝑡 − 𝐼)𝑄−1

0 𝑒𝑄𝑡

]
. (C.5)

nce ‖𝑒𝑄𝑡‖ = 1, we have

max
𝑡∈[0,𝑇 ]

‖𝑒𝐴𝑡‖ ⩽ 1 + 2‖𝑃‖‖𝑄−1‖ =𝑂(‖𝑃‖). (C.6)

hen 𝑃 and 𝐻 (and hence 𝑄) are time-dependent, it is technically difficult to explicitly upper bound the time-ordering exponential
𝑡

14

max
𝑡∈[0,𝑇 ]

‖ 𝑒∫0 𝐴(𝑠)d𝑠‖ (C.7)
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 we only consider the time-independent case.
For the above ODE with a positive norm of the matrix exponential, we employ the quantum algorithm for the time-independent 
ear ODEs in [51].

mma C.2 (Theorem 7 of [51]). Given an ODE of the form

d
d𝑡

𝑥(𝑡) =𝐴𝑥(𝑡) + 𝑏, 𝑥(0) = 𝑥in, (C.8)

d define

𝑔 ∶=
max𝑡∈[0,𝑇 ] ‖𝑥(𝑡)‖‖𝑥(𝑇 )‖ , 𝐶(𝐴) ∶= sup

𝑡∈[0,𝑇 ]
‖ exp(𝐴𝑡)‖. (C.9)

ere exists a quantum algorithm that produces a quantum state 𝜖-close to the normalized solution with

(𝑔𝑇 ‖𝐴‖𝐶(𝐴) ⋅ polylog(1∕𝜖)
)
, (C.10)

eries to the oracles for 𝐴 and 𝑏, and gate complexity is greater by polynomial factors.

Since 𝐶(𝐴) =𝑂(‖𝑃‖), ‖𝐴‖ = ‖𝐻‖ + ‖𝑃‖, and 𝑔 = 1, there is a quantum algorithm for solving (5.6) with

𝑂
(‖𝑃‖(‖𝐻‖+ ‖𝑃‖)𝑇Γ ⋅ polylog(1∕𝜖)

)
(C.11)

eries to the oracles for 𝐴 and 𝑏, and gate complexity is greater by polynomial factors.

pendix D. Simple examples of low-rank observables

To compare the cost of different approaches, we consider two types of low-rank observables:
) time-increasing low-rank observables, e.g. 𝑂(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)|;
) time-oscillatory low-rank observables, e.g. 𝑂(𝑡) = cos 𝑡 ⋅ |𝜓(𝑡)⟩⟨𝜓(𝑡)|.
(a) We compute the cost functional 𝐽 given the observable 𝑂(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)|,

𝐽 = 𝐽 (𝑇 ) =

𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡 = 𝑇 . (D.1)

is demonstrates a time-increasing function 𝐽 (𝑇 ) in terms of 𝑇 .
In more general, we consider the wave-function follower 𝑂(𝑡) = |𝜙(𝑡)⟩⟨𝜙(𝑡)| [79]. It is used to force the system to follow a 
edefined wave-function 𝜙(𝑡). We assume that ⟨𝜙(𝑡)||𝜓(𝑡)⟩ ⩾ 𝛾 > 0 for all 𝑡, i.e. |𝜓(𝑡)⟩ has a large overlap with |𝜙(𝑡)⟩, then

𝐽 = 𝐽 (𝑇 ) =

𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡 ⩾ 𝛽𝑇 . (D.2)

re 𝐽 (𝑇 ) increases linearly with 𝑇 as well.
We compute the parameter Γ as defined in (5.9)

Γ = |𝐽 (𝑇 )|2 + 1|𝐽 (𝑇 )| =Θ(𝑇 ). (D.3)

(b) We compute the cost functional 𝐽 given the observable 𝑂(𝑡) = cos 𝑡 ⋅ |𝜓(𝑡)⟩⟨𝜓(𝑡)|,
𝐽 = 𝐽 (𝑇 ) =

𝑇

∫
0

⟨𝜓(𝑡)|𝑂(𝑡)|𝜓(𝑡)⟩ d𝑡 = sin𝑇 . (D.4)

indicates that 𝐽 (𝑇 ) oscillates with time and 𝐽 (𝑇 ) =𝑂(1) for all 𝑇 > 0.
We compute the parameter Γ as defined in (5.9)

Γ = |𝐽 (𝑇 )|2 + 1|𝐽 (𝑇 )| =Θ(1). (D.5)

Overall, we examine the query complexities of our algorithms for the two types of observables, as summarized in Table 2. For 
) time-increasing observables, both the quantum linear ODE solver and the quantum Carleman linearization approaches with 
plitude estimation can achieve the best scaling (𝑇 2∕𝜖); For (b) time-oscillatory observables, the quantum Carleman linearization 
15

proach with amplitude estimation is superior to other approaches with complexity (𝑇 ∕𝜖).
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Table 2

Complexities of quantum algorithms for the time-increasing and time-oscillatory observables. Here 𝑇 is the evolution time, and 𝜖 is the error 
tolerance.

Theorem Algorithm Measurement 𝑂(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)| 𝑂(𝑡) = cos 𝑡 ⋅ |𝜓(𝑡)⟩⟨𝜓(𝑡)|
Theorem 2.1 Hamiltonian simulation Hadamard test (𝑇 3∕𝜖2) (𝑇 3∕𝜖2)
Theorem 3.3 Hamiltonian simulation Biased amplitude estimation (𝑇 3∕𝜖) (𝑇 3∕𝜖)

Unbiased amplitude estimation (𝑇 2.5∕𝜖) (𝑇 2.5∕𝜖)
Theorem 4.1 Quantum linear ODE solver Amplitude estimation (𝑇 2∕𝜖) (𝑇 2∕𝜖)
Theorem 5.1 Quantum Carleman linearization Padding, amplitude estimation (𝑇 2∕𝜖) (𝑇 ∕𝜖)

ferences

1] Dong An, Di Fang, Lin Lin, Time-dependent unbounded Hamiltonian simulation with vector norm scaling, Quantum 5 (2021) 459, arXiv :2012 .13105.
2] Dong An, Di Fang, Lin Lin, Time-dependent Hamiltonian simulation of highly oscillatory dynamics and superconvergence for Schrödinger equation, Quantum 6 

(2022) 690, arXiv :2111 .03103.
3] Dong An, Jin-Peng Liu, Lin Lin, Linear combination of Hamiltonian simulation for non-unitary dynamics with optimal state preparation cost, arXiv :2303 .01029, 

2023.

4] Dong An, Jin-Peng Liu, Daochen Wang, Qi Zhao, A theory of quantum differential equation solvers: limitations and fast-forwarding, arXiv :2211 .05246, 2022.
5] Yosi Atia, Dorit Aharonov, Fast-forwarding of Hamiltonians and exponentially precise measurements, Nat. Commun. 8 (1) (2017) 1–9, arXiv :1610 .09619.
6] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, Garnet Kin-Lic Chan, Low-depth quantum simulation of materials, Phys. Rev. X 

8 (1) (2018) 011044, arXiv :1706 .00023.
7] Bela Bauer, Sergey Bravyi, Mario Motta, Garnet Kin-Lic Chan, Quantum algorithms for quantum chemistry and quantum materials science, Chem. Rev. 120 (22) 

(2020) 12685–12717, arXiv :2001 .03685.
8] Dominic W. Berry, High-order quantum algorithm for solving linear differential equations, J. Phys. A, Math. Theor. 47 (10) (2014) 105301, arXiv :1010 .2745.
9] Dominic W. Berry, Graeme Ahokas, Richard Cleve, Barry C. Sanders, Efficient quantum algorithms for simulating sparse Hamiltonians, Commun. Math. Phys. 

270 (2007) 359–371, arXiv :quant -ph /0508139.
0] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, Rolando D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. 

Rev. Lett. 114 (9) (2015) 090502, arXiv :1412 .4687.
1] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, Rolando D. Somma, Exponential Improvement in Precision for Simulating Sparse Hamilto-

nians, Forum of Mathematics, Sigma, vol. 5, Cambridge University Press, 2017, arXiv :1312 .1414.
2] Dominic W. Berry, Andrew M. Childs, Robin Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: IEEE 56th Annual Sympo-

sium on Foundations of Computer Science, IEEE, 2015, pp. 792–809, arXiv :1501 .01715.
3] Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, Guoming Wang, Quantum algorithm for linear differential equations with exponentially improved 

dependence on precision, Commun. Math. Phys. 356 (3) (2017) 1057–1081, arXiv :1701 .03684.
4] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, Nathan Wiebe, Time-dependent Hamiltonian simulation with 𝐿1 -norm scaling, Quantum 4 (2020) 

254, arXiv :1906 .07115.
5] Dominic W. Berry, Pedro Costa, Quantum algorithm for time-dependent differential equations using Dyson series, arXiv :2212 .03544, 2022.
6] Gilles Brassard, Peter Hoyer, Michele Mosca, Alain Tapp, Quantum amplitude amplification and estimation, Contemp. Math. 305 (2002) 53–74, arXiv :quant -ph /

0005055.

7] Constantin Brif, Raj Chakrabarti, Herschel Rabitz, Control of quantum phenomena: past, present and future, New J. Phys. 12 (7) (2010) 075008, arXiv :0912 .5121.
8] Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, J. Nathan Kutz, Koopman invariant subspaces and finite linear representations of nonlinear dynamical 

systems for control, PLoS ONE 11 (2) (2016) e0150171, arXiv :1510 .03007.
9] Steven L. Brunton, J. Nathan Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2022.
0] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas 

P.D. Sawaya, et al., Quantum chemistry in the age of quantum computing, Chem. Rev. 119 (19) (2019) 10856–10915, arXiv :1812 .09976.
1] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, 

et al., Variational quantum algorithms, Nat. Rev. Phys. 3 (9) (2021) 625–644, arXiv :2012 .09265.
2] Yu-An Chen, Andrew M. Childs, Mohammad Hafezi, Zhang Jiang, Hwanmun Kim, Yijia Xu, Efficient product formulas for commutators and applications to 

quantum simulation, Phys. Rev. Res. 4 (1) (2022) 013191, arXiv :2111 .12177.
3] Andrew M. Childs, Jiaqi Leng, Tongyang Li, Jin-Peng Liu, Chenyi Zhang, Quantum simulation of real-space dynamics, Quantum 6 (2022) 860, arXiv :2203 .17006.
4] Andrew M. Childs, Jin-Peng Liu, Quantum spectral methods for differential equations, Commun. Math. Phys. 375 (2020) 1427–1457, arXiv :1901 .00961.
5] Andrew M. Childs, Jin-Peng Liu, Aaron Ostrander, High-precision quantum algorithms for partial differential equations, Quantum 5 (2021) 574, arXiv :2002 .

07868.

6] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, Yuan Su, Toward the first quantum simulation with quantum speedup, Proc. Natl. Acad. Sci. 
115 (38) (2018) 9456–9461, arXiv :1711 .10980.

7] Andrew M. Childs, Aaron Ostrander, Yuan Su, Faster quantum simulation by randomization, Quantum 3 (2019) 182, arXiv :1805 .08385.
8] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, Shuchen Zhu, Theory of Trotter error with commutator scaling, Phys. Rev. X 11 (1) (2021) 011020, 

arXiv :1912 .08854.
9] Arjan Cornelissen, Yassine Hamoudi, A sublinear-time quantum algorithm for approximating partition functions, in: Proceedings of the 2023 Annual ACM-SIAM 

Symposium on Discrete Algorithms (SODA), SIAM, 2023, pp. 1245–1264, arXiv :2207 .08643.
0] Domenico d’Alessandro, Introduction to Quantum Control and Dynamics, Chapman and Hall/CRC, 2021.
1] Eric Dennis, Alexei Kitaev, Andrew Landahl, John Preskill, Topological quantum memory, J. Math. Phys. 43 (9) (2002) 4452–4505, arXiv :quant -ph /0110143.
2] Ilya Y. Dodin, Edward A. Startsev, On applications of quantum computing to plasma simulations, Phys. Plasmas 28 (9) (2021) 092101, arXiv :2005 .14369.
3] Di Fang, Lin Lin, Yu Tong, Time-marching based quantum solvers for time-dependent linear differential equations, Quantum 7 (2023) 955, arXiv :2208 .06941.
4] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, A quantum approximate optimization algorithm, arXiv :1411 .4028, 2014.
5] Richard P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (6) (1982) 467–488.
6] Daniel M. Greenberger, Michael A. Horne, Anton Zeilinger, Going beyond bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, 

Springer, 1989, pp. 69–72, arXiv :0712 .0921.
7] Otfried Gühne, Géza Tóth, Entanglement detection, Phys. Rep. 474 (1–6) (2009) 1–75, arXiv :0811 .2803.
8] E. Hairer, A. Ostermann, Dense output for extrapolation methods, Numer. Math. 58 (1) (1990) 419–439.
9] Hsin-Yuan Huang, Sitan Chen, John Preskill, Learning to predict arbitrary quantum processes, arXiv :2210 .14894, 2022.
16

0] Hsin-Yuan Huang, Richard Kueng, Predicting features of quantum systems from very few measurements, arXiv :1908 .08909, 2019.

http://refhub.elsevier.com/S0021-9991(24)00462-5/bib71D7498AD1669198C87B172E4725A6C3s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib68EB4A696F3301424674747E6D2F4E14s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib68EB4A696F3301424674747E6D2F4E14s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibEEDFCF8CD27D1C8AF525FFEB96DF8BB2s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibEEDFCF8CD27D1C8AF525FFEB96DF8BB2s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib33DC54CFEC983274E3FA46210AD430F4s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib0CD6C95650C29C05DC1A4F47C18097F3s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib961A15A6F2BD9854E24F73A123ABD4B2s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib961A15A6F2BD9854E24F73A123ABD4B2s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibEE43AA8B31FFEB92285ADD17684C47B7s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibEE43AA8B31FFEB92285ADD17684C47B7s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibCE342B1362794593FE08E57C90603FD1s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib68E2E27A939E88080D2F3984C24A3748s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib68E2E27A939E88080D2F3984C24A3748s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib1DF4A858513DE701D62F3DF1CBDE838Es1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib1DF4A858513DE701D62F3DF1CBDE838Es1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib2C7C178B5CD03CDF59A7B597A92CAB1Es1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib2C7C178B5CD03CDF59A7B597A92CAB1Es1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib23769AA3EF97456CD60125F1FA2E1EFAs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib23769AA3EF97456CD60125F1FA2E1EFAs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib287F43C5E199B58A49FD5001680BEAF3s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib287F43C5E199B58A49FD5001680BEAF3s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib31C1E8ED39FE825D6E37C8D31BAD970Bs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib31C1E8ED39FE825D6E37C8D31BAD970Bs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibD5171CE77EC9BBA7F22375E152F94697s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibBF1B052032E5019C8B20CE72A01EF43Fs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibBF1B052032E5019C8B20CE72A01EF43Fs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibE293AF1456D0A25BEFA470234BA3B14Ds1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib653E2B53895D1A69C2B35B4EF4F9A5FAs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib653E2B53895D1A69C2B35B4EF4F9A5FAs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibB0B26B70D4A9C236E3B7D8854C319ED9s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibF71683B077E41AB098BA8B421CD3B078s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibF71683B077E41AB098BA8B421CD3B078s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibA41B2E8D3D4D4E039C7454F3FB884FB6s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibA41B2E8D3D4D4E039C7454F3FB884FB6s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib1EE7E90CBF51C719899C3C8549BAA8C4s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib1EE7E90CBF51C719899C3C8549BAA8C4s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibE35F6B91773465323D6DA4932A226169s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibDB2239F9357539EECF738D852C688F80s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib9EFEAAFD16306560663EE48053A53494s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib9EFEAAFD16306560663EE48053A53494s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib7477A08614FB8FA3627A1E8618219D53s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib7477A08614FB8FA3627A1E8618219D53s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibD08BD37224B2D3FD02896141C11C5A85s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib977D3391E4E4B8994715600901C3F504s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib977D3391E4E4B8994715600901C3F504s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib149766DD9F7BFB84AA4CC39A233DC770s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib149766DD9F7BFB84AA4CC39A233DC770s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibC1C967C8912A3F236E30F8C43E787CFCs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibBC1089E8CB9C108F6F0FF16AE68B8E56s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibD9271739E65A9C18BF47AF7035987F6Fs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib2D18A5CC5264B3DDC0D9C127D66AD2B3s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibC14E19232CD5E79A6B6D0D775F0B12E7s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib9D2399D4C2505163C252E4802B894914s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib51156F8A634490A54DF72C91537B0F2Cs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib51156F8A634490A54DF72C91537B0F2Cs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibDEE79B3972A12AB48DC06A9117640461s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibBD52613C69B567912230906128DC17D8s1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bib1316DF6C57092D733CF93F23950C50BAs1
http://refhub.elsevier.com/S0021-9991(24)00462-5/bibB7BC0983F19A258AAA666424BA096BEBs1


J.-

[4

[4

[4

[4

[4

[4

[4

[4

[4

[5

[5

[5

[5

[5

[5

[5

[5

[5

[5

[6

[6

[6

[6

[6

[6

[6

[6

[6

[6

[7

[7

[7

[7

[7

[7

[7

[7

[7

[7

[8

[8

[8

[8

[8

[8

[8
Journal of Computational Physics 514 (2024) 113213P. Liu and L. Lin

1] Hsin-Yuan Huang, Richard Kueng, John Preskill, Predicting many properties of a quantum system from very few measurements, Nat. Phys. 16 (10) (2020) 
1050–1057, arXiv :2002 .08953.

2] J.P. Imhof, On the method for numerical integration of Clenshaw and Curtis, Numer. Math. 5 (1) (1963) 138–141.
3] Shi Jin, Nana Liu, Quantum algorithms for computing observables of nonlinear partial differential equations, arXiv :2202 .07834, 2022.
4] Shi Jin, Nana Liu, Yue Yu, Quantum simulation of partial differential equations via Schrodingerisation, arXiv :2212 .13969, 2022.
5] Shi Jin, Nana Liu, Yue Yu, Quantum simulation of partial differential equations via Schrodingerisation: technical details, arXiv :2212 .14703, 2022.
6] Shi Jin, Nana Liu, Yue Yu, Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations, 

arXiv :2209 .08478, 2022.
7] Stephen P. Jordan, Keith S.M. Lee, John Preskill, Quantum algorithms for quantum field theories, Science 336 (6085) (2012) 1130–1133, arXiv :1111 .3633.
8] Joseph Ilon, Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics, Phys. Rev. Res. 2 (4) (2020) 043102, arXiv :2003 .09980.
9] Ivan Kassal, Stephen P. Jordan, Peter J. Love, Masoud Mohseni, Alán Aspuru-Guzik, Polynomial-time quantum algorithm for the simulation of chemical dynamics, 

Proc. Natl. Acad. Sci. 105 (48) (2008) 18681–18686, arXiv :0801 .2986.
0] Ian D. Kivlichan, Nathan Wiebe, Ryan Babbush, Alán Aspuru-Guzik, Bounding the costs of quantum simulation of many-body physics in real space, J. Phys. A, 

Math. Theor. 50 (30) (2017) 305301, arXiv :1608 .05696.
1] Hari Krovi, Improved quantum algorithms for linear and nonlinear differential equations, Quantum 7 (2023) 913, arXiv :2202 .01054.
2] J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, 

2016.

3] Chantal Landry, Alexandre Caboussat, Ernst Hairer, Solving optimization-constrained differential equations with discontinuity points, with application to atmo-
spheric chemistry, SIAM J. Sci. Comput. 31 (5) (2009) 3806–3826.

4] Benjamin P. Lanyon, James D. Whitfield, Geoff G. Gillett, Michael E. Goggin, Marcelo P. Almeida, Ivan Kassal, Jacob D. Biamonte, Masoud Mohseni, J. Ben 
Powell, Marco Barbieri, Alán Aspuru-Guzik, Andrew G. White, Towards quantum chemistry on a quantum computer, Nat. Chem. 2 (2) (2010) 106, arXiv :
0905 .0887.

5] Andrzej Lasota, Michael C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, vol. 97, Springer Science & Business Media, 1998.
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