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Abstract

Incremental sheet metal forming is known for its high flexibility, making it suitable 

for fabricating low-batch, highly customized complex parts. In this paper, a localized 

multi-pass toolpath referred to as localized reforming, with reverse forming in a region 

of interest, is employed within the double-sided incremental forming (DSIF) process to 

manipulate the mechanical properties of a truncated pyramid formed from austenitic 

stainless steel sheet, SS304, through deformation-induced martensite transformation. 

DSIF forms a clamped sheet through localized deformations by two opposing tools.

The toolpath effect in localized reforming is examined in terms of martensite 

transformation, geometrical accuracy, and thickness distribution. The results are 

compared with a conventional toolpath, i.e., forming in a single pass. The results show 

that varying toolpaths leads to different martensite transformation levels, while final 

geometry and thickness remain similar. The study demonstrates that localized 

reforming significantly increases martensite transformation in the specified region, i.e., 

the center of the pyramid wall, to ~70%, with a martensite fraction remaining around 

25% elsewhere. In comparison, using a single pass forming toolpath leads to a 

decreasing martensite fraction from the base of the pyramid towards the apex, due to 

the heat generated, with values <10% along the entire wall. Through finite element 

simulation, it is shown that the increase in martensite transformation of the region of 

interest is with the plastic deformation accumulation during the reverse pass. These 

findings highlight the potential to tailor mechanical properties in specific areas using a 

reforming toolpath in DSIF.

Keywords: Incremental sheet forming, reforming toolpath, deformation-induced 

martensite transformation, stainless steel
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Nomenclature:

𝛼 Pyramid wall angle

𝛽 Reverse pass wall angle

𝐻 Height of the reformed region of interest

𝐿𝑟𝑒𝑓 Length of the reformed region of interest

𝐿𝑖 Half-length of the square base of the pyramid in the initial pass

𝑙𝑖 Half-length of the square apex of the pyramid in the initial pass

𝐿𝑟 Half-length of the square apex of the pyramid in the reverse 

pass

𝑙𝑟 Half-length of the square, recessed area of the pyramid after 

the reverse pass

𝑙𝑓 Half-length of the square apex of the pyramid in the target 

geometry

ℎ𝑓 Height of the start point of the final pass

𝑅 Tool radius
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1. Introduction

Incremental forming is a non-conventional sheet metal forming process in which 

one or more tools are used to locally form the sheet metal, which is clamped at its 

periphery, into its final geometry [1]. The most common type of incremental forming is 

single point incremental forming (SPIF), which employs a single, e.g., hemispherical, 

tool on one side of the sheet, as shown in Figure 1a. Unlike conventional sheet forming 

methods, incremental forming can create intricate geometries without dedicated dies

like in stamping [2,3] while it presents superior formability beyond the conventional 

stretching-based evaluation method [4–6]. These unique characteristics make

incremental forming an excellent choice for rapid prototyping sheet metal components 

[7] and applications with low-batch, highly customized production requirements in 

aviation [8], automotive [9,10], and biomedical industries [11].

Despite its numerous advantages, SPIF has certain limitations related to speed, 

geometric accuracy, and formability [12]. To address these constraints, researchers 

have studied various process parameters and their interactions [13]. Golabi and 

Khazaali [14] utilized SPIF to form a 0.5 mm thick SS304 sheet into a frustum, 

observing reduced formability when the vertical step was increased from 1 mm to 2 

mm. Conversely, Darzi et al. [15] noted improved formability in SPIF when the vertical 

step was increased from 0.3 mm to 0.6 mm, employing a graphite powder lubricant to 

form a 1 mm thick AA6061 aluminum into a frustum target geometry.

In addition to optimizing process parameters, researchers have explored several 

variations of incremental forming to enhance its capabilities. These variants include 

two-point incremental forming (TPIF) [16] where a die is included in the process (as 

shown in Figure 1b), multi-point incremental forming (MPIF) [17], and double-sided 

incremental forming (DSIF) [18]. DSIF introduces a second tool, often referred to as 
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the support tool, which operates on the opposite side of the sheet metal, as shown in 

Figure 1c. This figure also summarizes the important process parameters in DSIF, e.g.,

wall angle, vertical step, initial thickness of the sheet, tool diameter, and thickness of 

the squeezed wall.

DSIF improves formability and geometric accuracy while still maintaining the die-

less feature of SPIF [19]. The presence of the second tool in DSIF introduces a 

compressive deformation to stretching, bending, and shear deformations present in 

SPIF [20–22]. This stress combination enhances the formability and geometrical 

accuracy while maintaining the plastic deformation at the desired local region around 

tool-sheet contact [23].

The squeeze factor in DSIF, which is defined as the ratio of the tangential distance 

between the tip of the two hemispherical tools to the sheet metal thickness, increases 

hydrostatic pressure and lowers stress triaxiality due to the presence of the second 

tool in DSIF, which contributes to the increased formability [24,25]. Wang et al. [26]

demonstrated that a higher squeeze factor and an overbending toolpath during the 

DSIF process led to reduced springback in AA7075 cone-shaped parts with an initial 

thickness of 1 mm. However, excessive supporting forces, which generate excessive 

squeezing pressure, can trigger localized thinning leading to early fracture of the 

material in the DSIF process [27].

Toolpath design is also an important process parameter affecting the incremental 

forming processes. Junchao et al. [28] successfully applied a multi-pass strategy in 

SPIF to form a complex DC04 car taillight bracket with an initial thickness of 0.8 mm. 

The normal single pass toolpath had failed, resulting in material rupture. They reported 

that increasing the number of passes led to reduced thinning in the formed part and a 

geometry that was closer to the desired shape. Moser et al. [29] increased the 
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6

maximum achievable wall angle from 61° to 82°, while forming an axisymmetric 

cylinder out of a 1mm thick AA5754-O sheet, by using a multi-pass toolpath in DSIF. 

One of the unique advantages of the incremental forming process lies in its 

capability to control the deformation path, allowing for the customization of the 

mechanical properties of the final part through, e.g., deformation-induced α'-

martensite transformation [30]. This martensite transformation involves a change in 

the crystal structure from face-centered cubic (fcc, γ-austenite) to hexagonal closed 

packed (hcp, ε-martensite), and finally to body-centered tetragonal (bct, α'-martensite), 

resulting in increased strength as the fraction of martensite increases.

Several important parameters can influence the deformation-induced martensitic 

transformation, such as chemical composition, plastic strain level [31], stress state 

[32–34], and temperature [30]. In the case of austenitic stainless steels, the attainable 

α'-martensite phase increases at higher strain levels and lower temperatures as 

reported for SS304L [34,35], SS304 [36], and SS316L [37–39]. Different chemical 

compositions exhibit varying degrees of transformation under different stress states. 

The incremental forming process parameters that are adjustable to affect the α'-

martensite transformation include the toolpath, feedrate [40], external cooling 

utilization, and stress superposition [41]. Darzi et al. [42] increased martensite volume 

fraction from <10% to 95% along SS304L truncated pyramid walls, using DSIF. This 

was achieved by using vortex tubes for cooling and a three-pass, reforming toolpath, 

which generated higher strains while maintaining the same final geometry. Although 

this study proved the concept of adjusted mechanical properties using DSIF, more 

research is required to explore deformation mechanisms, especially related to varying 

process parameters, and localized property manipulation in DSIF. This will be crucial 

knowledge for producing, e.g., trauma-fixation hardware with heterogeneous 
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mechanical properties, like increasing strength at mounting points while preserving 

formability elsewhere.

In this study, the ability of the DSIF process is demonstrated to locally manipulate 

the deformation-induced martensite transformation within a SS304 sheet metal by 

varying the deformation path and feedrate. Localized reforming is performed with a 

reverse pass in the region of interest, which increases the martensite fraction to ~70%, 

while outside of the reforming area remains at ~25%. Moreover, the FE simulation is 

used to explain the effect of the reverse pass on plastic deformation and its relation to 

the martensite transformation. This research underscores the potential for customizing 

the local mechanical properties of the final part during the incremental forming while 

maintaining consistency in the final geometry and thickness distribution of the 

components.

2. Materials and methods

Experiments are conducted using the DSIF machine, depicted in Figure 2a. Square 

blanks, measuring 215 mm × 215 mm, are cut from a 1.2 mm thick austenitic stainless 

steel SS304 sheet using an abrasive waterjet cutting machine. The initial martensite 

fraction of the material is near zero. For the DSIF process, two hemispherical-tip tools 

made of A2 steel with a 10 mm diameter are employed. One tool performs forming 

(i.e., forming tool) while the other serves the role of supporting the sheet on the 

opposite side (i.e., support tool), as shown in Figure 2b.

A FLIR infrared (IR) thermal camera (SC-645) measures the temperature 

variations caused by plastic deformation and friction between the tools and the sheet. 

The camera has a resolution of 0.05°C, a temperature range of 20 to 650°C, and a 

spatial resolution of 640 × 480 pixels. The emissivity of the lubricated surface is 
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calibrated and determined to be 0.97 at 50°C, representing the average temperature 

during the IF process under different experimental cases in this study. Thermal image 

analysis is conducted using FLIR Research IR software, and images were captured at 

a rate of 1 Hz. The camera position in the setup is shown in Figure 2b.

The target geometry for the experiments is a truncated square pyramid with a 45º 

wall angle (𝛼), a 90 mm square base (2𝐿𝑖), and a 30 mm flat apex (2𝑙𝑓), illustrated in 

Figure 3a. To enhance the deformation-induced martensite in the region of interest, 

i.e., the center of the pyramid wall, a localized reforming toolpath is employed. This 

deformation path consists of three passes: the initial pass, the reverse pass, and the 

final pass. The region of interest is defined as a section of the wall with a length of 

𝐿𝑟𝑒𝑓, centered at point C (red circle in Figure 3) and located at a height of 𝐻 on the 

final part geometry (see Figure 3a).

In the initial pass, a truncated square pyramid with a wall angle of 𝛼, a square base 

of 2𝐿𝑖, and a flat apex square with a side of 2𝑙𝑖 is formed, in the positive z-direction. 

Then the part is inverted to perform the reverse pass in the opposite forming direction, 

i.e., negative z-direction, starting from point B (purple circle in Figure 3, located at the 

height ℎ𝑟 on the wall) with the wall angle of 𝛽 with respect to the horizontal line (𝛼 + 𝛽

with respect to the wall of the initial pass) and the apex square side of 2𝑙𝑟. Note that 

the dimensions of the reverse pass are calculated in a way to ensure that the length 

of the reformed wall remains as 𝐿𝑟𝑒𝑓. In the final pass, the part is inverted once more 

to form the specimen to the final target geometry in the positive z-direction, i.e., the 

same forming direction as the initial pass. In this pass, tools start the deformation from 

point A (black circle in Figure 3), located at the height of ℎ𝑓 . This is done to 

compensate for any unintended deformation of the wall in the vicinity of point B (purple 
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circle in Figure 3) caused by the reverse pass. Parameters 𝑙𝑖, ℎ𝑟, 𝐿𝑟, 𝑙𝑟, and ℎ𝑓 are 

calculated based on the following trigonometric equations:

𝑙𝑖 = 𝐿𝑖 − 𝐻 𝑐𝑜𝑡 𝛼 −
𝐿𝑟𝑒𝑓

2
∙ 𝑐𝑜𝑠 𝛼 (1)

ℎ𝑟 = 𝐻 −
𝐿𝑟𝑒𝑓

2
∙ 𝑠𝑖𝑛 𝛼 (2)

𝐿𝑟 = 𝐿𝑖 − 𝐻 𝑐𝑜𝑡 𝛼 +
𝐿𝑟𝑒𝑓

2
∙ 𝑐𝑜𝑠 𝛼 (3)

𝑙𝑟 = 𝐿𝑟 − 𝐿𝑟𝑒𝑓 ∙ 𝑐𝑜𝑠 𝛽 (4)

ℎ𝑓 = ℎ𝑟 − 5 (5)

With 𝐻 = 15 𝑚𝑚 , 𝐿𝑟𝑒𝑓 = 15 𝑚𝑚 , and 𝛽 = 5° , Figure 4 displays the target 

geometries for the initial, reverse, and final passes. The outcome of the part formed 

through the localized reforming process is compared with a pyramid formed to the 

same target geometry in a single pass. In this context, a "pass" refers to the process 

of the tool traversing the workpiece, deforming it according to the toolpath generated 

by the software developed by Kiridena et al. [9]. 

Forming the material using the generated toolpath for the localized reforming 

process can lead to two defects in the final part, i.e., ruptures at the corners of the 

pyramid and wall protrusions. Corner ruptures occur when the tools start the reverse 

pass deformation at point B (Figure 5a), equivalent to a vertical step of approximately 

10 mm (i.e., the distance between points B and D). To address this, the reverse pass 

is performed in four consecutive passes using three intermediate geometries, starting 

from point D, as shown in Figure 5a. Wall protrusion occurs when the hemispherical 

tip of the support tool contacts the pyramid walls at the start of the reverse pass around 

point B, causing unintended plastic deformation in the wall, as illustrated in Figure 5b. 
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10

To resolve this issue, any tool position with X and/or Y coordinates for the center of 

the hemispherical tool greater than 𝐿𝑟 − 𝑅 in the reverse pass is adjusted to 𝐿𝑟 − 𝑅.

Another parameter employed to enhance martensite transformation is the feedrate. 

In the localized reforming toolpath, a reduced feedrate of 500 mm/min is applied when 

the tools contact the region of interest (i.e., the area indicated by the red color in Figure 

4) to reduce the heating effect, while a feedrate of 3000 mm/min is used elsewhere. 

In the single pass case, a feedrate of 3000 mm/min is used throughout the entire 

toolpath.

A bidirectional z-level toolpath with a 0.1 mm step-down is used as the toolpath 

type. The gap between the tools is calculated using the sine law and is defined as the 

squeeze factor, which is set as 0.95 for the initial and final passes and 0.98 for the 

reverse pass. This adjustment is made to avoid a sharp bending angle at the beginning 

of the reverse pass, which could cause defects on the final part, e.g., tearing. In the 

case of the single pass, a squeeze factor of 0.95 is employed. Super Lube Translucent 

Multi-Purpose Synthetic Lubricant with Syncolon (PTFE) is thoroughly applied to both 

sides of the sheet before each forming pass to prevent its removal by the tools. The 

emissivity value is assumed to remain constant throughout the forming process. A 

summary of the experimental parameters can be found in Table 1.

3. Finite element model for simulation

The effect of the deformation path in the single pass and localized reforming 

toolpaths is studied through FE simulations employing ABAQUS/Explicit software. The 

blank is constructed with 35,132 linear brick elements with reduced integration 

(C3D8R) and a finer mesh design (1 x 1 x 0.4 mm³) is considered in the central forming 

region. Note that a greater number of elements through-thickness to enhance the 
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accuracy of FE simulations would be required if exact predictions of, e.g., strain, are 

desired, but this would increase the computation time considerably. The focus of this 

study is to compare the DSIF results under two different toolpaths rather than striving 

for precise predictions for each of them, and thus only three elements through the 

thickness are used. 

In addition, simple isotropic material properties are assumed, incorporating J2-

plasticity and the Hockett-Sherby hardening law, which is expressed as 𝜎 = 2089 −

1799 ∙ exp(−0.95𝜀̅0.72) (MPa) to reduce the computational load by avoiding 

complicated material modeling approach [4,43]. The parameters of the Hockett-

Sherby hardening law are determined based on uniaxial tension stress-strain results. 

These tests, conducted with three repetitions at room temperature in the rolling 

direction, use prescribed displacement rates according to ISO 6892-1, producing a 

strain rate of ~0.001 s-1.

The same toolpaths as the experiment are applied to the rigid tool holders (see 

Figure 6), which are connected to tool shanks and rigid hemispherical tooltips on each 

side of the sheet. This is to consider the tool deflection [22], which increases the gap 

between the two tools causing the sheet to deform with a lower squeeze factor. To 

incorporate the tool deflection in the simulation, the tool geometry is simplified into 

three sections: a rigid tip, deformable shank, and rigid holder, as shown in Figure 6. 

The tooltip is constructed using rigid elements maintaining the same 10 mm 

hemisphere geometry as in the experiments. In contrast, the tool shank is modeled as 

a cylindrical deformable body using 43 equal-length beam elements (B31), defined by 

Hooke’s law (𝐸=200 GPa, 𝜈=0.33) since only elastic deformation exists due to the 

relatively low bending forces exerted. The 9.2 mm radius is determined by the Euler–

Bernoulli beam theory for cantilever beam deflection under a point load, maintaining 
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equivalence of bending moments to the original tool shape. Then, the top of the 

deformable shank is connected to the rigid tool holder where the toolpath’s boundary 

conditions are applied. A Coulomb friction model, with a constant coefficient of friction 

(𝜇=0.1) between the tooltip and sheet surfaces, is adopted. It is important to highlight 

that no contact is specified between the tool shank and the sheet in the numerical 

model; hence, the tool shank does not contact the sheet in the simulation. 

To reduce the computational cost, artificial time scaling is employed. Scaling 

factors of 100 for the straight toolpath and 70 for the corners of the pyramid geometry 

are utilized, ensuring that the ratio of kinetic energy to internal energy remains below 

5%. It is noteworthy that mass scaling is not used in this study because artificially 

increasing the mass of the tools leads to excessive tool deflection due to centrifugal 

forces rather than forming forces. The simulations are conducted utilizing 32 CPU 

cores, with a total wall clock time of 16 days for the single pass case and 27 days for 

the localized reforming toolpath. Moreover, an additional step utilizing 

ABAQUS/Standard is incorporated to capture springback after the removal of the tools 

and boundary conditions, which is equivalent to unloading the deformed sample from 

the fixture.

4. Experimental results and discussion

Figure 7 shows the specimens formed using the single pass and localized 

reforming (after each pass) toolpaths. To investigate the impact of the localized 

reforming toolpath on deformation-induced martensite transformation, the martensite 

fraction of formed parts using the single pass case and each pass of the localized 

reforming toolpath is measured at four locations along the wall. Figure 8 illustrates 

these measurement points on the specimens. Note that Locations 1 to 4 are different 
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from the points A-D in Figure 3. Measurement points on the specimen formed by the 

single pass case are the same as the final pass of the localized reforming toolpath, 

shown in Figure 8c. The distance between adjacent locations is 10 mm along the wall 

surface. Measurement of the martensite fraction at each of these points is obtained 

using an FMP30C Feritscope, which is a non-destructive method that relies on the 

magnetic permeability of the martensite phase. Mamros et al. [44] demonstrated that 

the readings from this device correspond to Electron Backscatter Diffraction (EBSD) 

measurements for SS304. Note that the reverse forming area is large enough (length 

along the wall >10 mm) to ensure that the remaining area without reforming does not 

influence the Feritscope measurements.

Figure 9 presents the martensite fraction at each measurement location for the 

single pass case and every pass of the localized reforming toolpath. The symbols in 

this figure represent the average of five readings at each measurement location, where 

the error bars are the maximum and minimum values of these measurements. The 

maximum standard deviation of a given measurement location is 1.2. The changes in 

martensite transformation can be attributed to both the accumulated plastic 

deformation and temperature change. Figure 10 displays the equivalent plastic strain 

evolution at each measurement location during single pass case and different passes 

of the localized reforming toolpath obtained from the FE simulations. Figure 11

illustrates the temperature contours for each measurement location during plastic 

deformation in both single pass and reforming toolpaths. The cells labeled "No plastic 

deformation" in this figure indicate that the corresponding measurement location is not 

plastically deformed by the tools at this location and for this particular pass.

During the initial pass of localized reforming, Locations 1, 2, and 3 experience 

plastic deformation, as evidenced by their equivalent plastic strain evolution in Figure 
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10a (represented by red, green, and blue dense-dashed lines, respectively). This 

leads to martensite fractions of 22%, 9.2%, and less than 5%, respectively, as shown 

in Figure 9. The decreasing martensite fraction is due to the accumulated heat 

generated by plastic deformation (temperature increase from ~55°C at Location 1 to 

~77°C at Location 3), as shown in Figure 11. Following the reverse pass, there is a 

significant increase in martensite transformation at Location 3, rising to 28.5%. This 

increase aligns with the increased plastic deformation (∆𝜀=̅0.12, blue dashed line in 

Figure 10a) and lowered temperature (~31°C in Figure 11) during the reverse pass. In 

contrast to Location 3, the other locations remain relatively unaffected during this pass. 

During the final pass of localized reforming, Location 3 undergoes a substantial 

increase in plastic deformation ( ∆𝜀 ̅=0.17), reaching 68.4% martensite fraction. 

Similarly, Locations 2 and 4 obtain additional plastic deformation (∆𝜀=̅0.03 and 0.50, 

respectively), reaching 26% and 24.3% martensite fraction, respectively, while 

Location 1 does not experience any plastic deformation during the final pass. (The 

relatively low martensite fraction, compared to the plastic deformation, achieved at 

Location 4 will be explained with the temperature effect later.) These results 

demonstrate that the localized reforming path successfully increases the martensite 

fraction in the region of interest, i.e., Location 3. The single pass simulation results in 

Figure 10b show that nearly the same strain values with the localized reforming 

toolpath are induced at Locations 1, 2, and 4 compared to the localized reforming 

toolpath (the maximum difference being 0.04 difference at Location 4, which will be 

explained later in the paper in the thickness distribution analysis). The only significant 

variation in strain values occurs at Location 3, i.e., 𝜀=̅0.54 for the single pass case 

versus 𝜀=̅0.84 for the localized reforming toolpath due to the additional deformation 

being induced. Additionally, a 0.03 difference in strain is seen at Location 2 (𝜀=̅0.33 for 
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the single pass case versus 𝜀=̅0.36 for the localized reforming toolpath) due to some 

deformation (∆𝜀=̅0.03) generated during the reverse pass.

In the single pass case, Locations 1 and 2 experience a similar increase in 

transformation as in the initial pass of localized reforming, while Locations 3 and 4 

show minor amounts of transformation. Again, the decreasing trend of the martensite 

fraction from Location 1 to Location 4 in the single pass case is due to the increase in 

the temperature (from ~55°C at Location 1 to ~81°C at Location 4, as shown in Figure 

11).

Further analysis of the temperature results reveals that the material plastically 

deforms at lower temperatures at Locations 2 and 3 in the reverse and final passes of 

the localized reforming toolpath. This is mainly caused by higher heat dissipation due 

to the lower feedrate and interruptions between each pass of the localized reforming. 

The lower forming temperature at Location 3 in the reverse pass, i.e., ~31°C 

(compared to ~77°C in the initial pass) explains the higher transformation (28.5%, 

compared to <5% in the initial pass) despite the lower plastic deformation increment 

(∆𝜀=̅0.55 in the initial pass, compared to 0.12 in the reforming pass). Moreover, a 

higher transformation is observed at Location 4 during the final pass of the localized 

reforming toolpath compared to the single pass case (24.3% compared to 5.2%) while 

in both cases this measurement point is deformed only once. This is due to the lower 

deformation temperature in the localized reforming deformation path (~62°C) 

compared to the single pass case (~81°C). Furthermore, a relatively similar martensite 

fraction is observed at Locations 2 and 4 (26% and 24.3%, respectively) after the final 

pass of the localized reforming toolpath, despite Location 4 exhibiting higher final 

plastic strain than Location 2 (𝜀=̅0.55 compared to 0.36). This is attributed to the lower 

temperatures at the moment of plastic deformation at Location 2 compared to Location 
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4 (~26°C compared to ~62°C) during the final pass of the localized reforming toolpath.

A summary of the experimental (temperature and martensite transformation) and 

numerical (final equivalent plastic strain) results can be found in Table 2 in Appendix 

A.1.

In addition to evaluating martensite transformation, the cross-sectional profiles of 

the truncated pyramids are examined. After each pass of the localized reforming 

process, as well as in the single pass case, the specimens are unclamped and 

scanned using a Faro Arm Quantum laser line probe, which has an accuracy 

specification of ±0.025 mm. Figure 12 displays the profiles of the specimens after 

single pass case and each pass of the localized reforming toolpath, with martensite 

measurement locations indicated. Additionally, Figure 12 presents simulation 

predictions of the cross-sectional profile for both the single pass and the final pass of 

localized reforming toolpaths, which are nearly identical. A comparison between the 

experimental results of single pass and localized reforming toolpaths reveals that both 

cases are formed to nearly the same geometry. This illustrates that the localized 

reforming successfully maintains geometric accuracy while the increased martensite 

transformation is achieved in the region of interest. The predicted profile from the 

simulation is in good agreement with the experiments; however, a minor deviation 

exists at the center of the inclined wall of the pyramid in the localized reforming 

toolpath (between solid red and green lines shown in the insets of Figure 12). The 

error in the prediction is possibly caused by the simplifications in the model, e.g., not 

considering the generated heat during deformation, martensite transformation kinetics 

[45–47], material anisotropy, etc.

The reverse pass profile displays a pronounced pillowing effect at the apex of the 

pyramid, which is a result of compressive forces acting in the plane of the sheet [48]. 
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The reverse pass causes a slight change in the wall angle at Location 2, as it is close 

to the start point of the bending region of the reverse pass (shown in the inset in Figure 

12). Recall that, since the final pass of localized reforming starts from point A in Figure 

3, any geometrical variation due to bending during the reverse pass should be 

corrected in the final pass, as evidenced by a marginal strain increment (∆𝜀=̅0.03) at 

the onset of the final pass in Figure 10a (green solid line).

Following the profile scanning, the parts are cut in half perpendicular to the rolling 

direction to measure the thickness along the cross-section using a micrometer. The 

values at each measurement location are averaged and the results of both toolpaths 

are presented in Figure 13 along with the simulation predictions. Both toolpaths show 

a similar thickness distribution from the base of the pyramid to Location 2, but the 

localized reforming toolpath starts deviating with slightly lower thickness at Location 3 

and greater around Location 4. Location 3 undergoes plastic deformation in the initial, 

reverse, and final passes, which leads to higher thinning compared to the single pass 

case. For Location 4, the material undergoes forming once in both deformation paths. 

However, the relatively lower temperature in the localized reforming toolpath (~62°C) 

can reduce the thermal softening and thinning at Location 4 compared to the single 

pass case (~81°C). Additionally, the parallel wall angle to the target geometry at

Location 4 after the reverse pass (circled triangle symbol in Figure 12) requires less 

change during the final pass compared to the single pass case. This can be observed 

by slightly lower plastic deformation experienced by Location 4 during the localized 

reforming toolpath compared to the single pass case, with 𝜀 ̅=0.55 and 0.59, 

respectively, as shown in Figures 10a and 10b.

While the FE simulation prediction aligns well with the experimental results, e.g., 

for the single pass case, it predicts less thinning than observed experimentally near 
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Location 2 and near the corner of the pyramid apex for the localized reforming toolpath. 

This discrepancy may arise due to not accounting for the martensite transformation 

kinetics in the simulations, especially at Locations 2 and 3 experiencing the reverse 

loading and thus the Bauschinger effect, but much more critical at Location 2 which is

close to the bending region of the reverse pass. In the single pass case, where there 

is lower martensite transformation and no reverse pass, more accurate thickness 

predictions are achieved despite the absence of transformation kinetics and 

temperature in the model.

6. Conclusions and summary

In this paper, the capability of the DSIF process to locally manipulate the 

deformation-induced martensite transformation by using a localized reforming toolpath 

and varying the feedrate is demonstrated. This is evaluated by comparing the 

martensite fraction, geometrical accuracy, and thickness distribution of truncated 

pyramids formed by a localized reforming toolpath and a conventional single pass 

case. Moreover, FE simulations are used to explain the effect of the reverse pass on 

plastic deformation and its relation to the martensite transformation. It is observed that 

implementing a reverse forming pass at the desired region of the pyramid wall resulted 

in an accumulation of plastic deformation and thus a localized increase in the 

martensite fraction leading to higher strength. Geometrical accuracy and thickness 

distribution remain comparable to those in a single pass case. Measurements of 

martensite transformation indicate that achieving transformations as high as ~70% at 

the region of interest, i.e., the center of the pyramid wall, is feasible while the 

martensite transformation at other locations along the wall remains lower, around 25%. 

In contrast, the maximum martensite fraction with a single pass case is 20%, with a 
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decreasing trend from the base to the apex due to the temperature increase during 

the forming process. These findings underscore the potential to tailor mechanical 

properties in specific regions of interest by employing a localized reforming toolpath in 

the DSIF process. This methodology holds promise for producing, e.g., trauma fixation 

hardware with heterogeneous mechanical properties, exemplified by cranial implants 

with enhanced strength at the mounting regions, while maintaining a lightweight and 

formable structure elsewhere.

Acknowledgements

Funding for the NH BioMade Project from the U.S. National Science Foundation 

EPSCoR award (#1757371).

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
dhardware with heterogeneous mechanical properties, exemplified by cranial implants 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
dhardware with heterogeneous mechanical properties, exemplified by cranial implants 

with enhanced strength at the mounting regions, while maintaining a lightweight and 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
dwith enhanced strength at the mounting regions, while maintaining a lightweight and 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Funding for the NH BioMade Project from the U.S. National Science Foundation 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Funding for the NH BioMade Project from the U.S. National Science Foundation 

Journal of Manufacturing Science and Engineering. Received March 28, 2024;
Accepted manuscript posted July 22, 2024. doi:10.1115/1.4066123
Copyright © 2024 by ASME; reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4066123/7357935/m
anu-24-1224.pdf by U

niversity of N
ew

 H
am

pshire user on 07 August 2024



20

Appendix

A.1 Experimental and numerical results summary

A summary of the experimental (temperature and martensite transformation) and 

numerical (final equivalent plastic strain) results at each of the measurement locations 

(i.e., Locations 1 – 4) during single pass toolpath and every pass of the localized 

reforming case are shown in Table 2.
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Figure captions:

Figure 1: Schematics of incremental forming variants: (a) SPIF, (b) TPIF, and (c) DSIF.
Figure 2: Experimental setup: (a) DSIF machine and (b) tools and FLIR camera for 
temperature measurement.
Figure 3: Parametric dimensions of (a) target geometry, (b) initial pass, and (c) reverse 
pass.
Figure 4: Target geometries of (a) initial pass, (b) reverse pass, and (c) final pass.
Figure 5: Reforming toolpath modifications: (a) adding intermediate geometries to reverse 
pass and (b) adjusting the position of tools.
Figure 6: Schematic of FE simulation with blank mesh design and tool simplification.
Figure 7: Formed specimens after single pass and localized reforming with (a) initial pass, 
(b) reverse pass, and (c) final pass.
Figure 8: Martensite transformation measurement locations on reforming specimen after (a) 
initial pass, (b) reverse pass, and (c) final pass, as well as single pass case.
Figure 9: Martensite fraction measurements after single pass and localized reforming 
toolpaths.
Figure 10: Equivalent plastic strain evolution along the wall for (a) localized reforming 
passes and (b) single pass predicted by numerical simulations.
Figure 11: Temperature contours for each measurement location while plastically deforming 
during single pass and localized reforming toolpaths. The values indicate the local 
temperatures at each location.
Figure 12: Profile of specimens after single pass and each pass of localized reforming 
toolpaths: a comparison between experiments and simulation results.
Figure 13: Thickness distribution of parts after single pass and final pass of localized 
reforming toolpaths, including a comparison between experiments and simulation results.
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Table headings:

Table 1 Experimental parameters summary
Table 2 Experimental and numerical results summary
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Figure 1: Schematics of incremental forming variants: (a) SPIF, (b) TPIF, and (c) 
DSIF.
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Figure 2: Experimental setup: (a) DSIF machine and (b) tools and FLIR camera for 

temperature measurement.

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Experimental setup: (a) DSIF machine and (b) tools and FLIR camera for 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Experimental setup: (a) DSIF machine and (b) tools and FLIR camera for 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received March 28, 2024;
Accepted manuscript posted July 22, 2024. doi:10.1115/1.4066123
Copyright © 2024 by ASME; reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4066123/7357935/m
anu-24-1224.pdf by U

niversity of N
ew

 H
am

pshire user on 07 August 2024



28

Figure 3: Parametric dimensions of (a) target geometry, (b) initial pass, and (c) 

reverse pass.
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Figure 4: Target geometries of (a) initial pass, (b) reverse pass, and (c) final pass.
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Figure 5: Reforming toolpath modifications: (a) adding intermediate geometries to 

reverse pass and (b) adjusting the position of tools.
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Figure 6: Schematic of FE simulation with blank mesh design and tool simplification.
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Figure 7: Formed specimens after single pass and localized reforming with (a) initial 

pass, (b) reverse pass, and (c) final pass. 
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Figure 8: Martensite transformation measurement locations on reforming specimen 

after (a) initial pass, (b) reverse pass, and (c) final pass, as well as single pass case.
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(c) final pass, as well as single pass case.
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Figure 9: Martensite fraction measurements after single pass and localized reforming 

toolpaths.
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Figure 10: Equivalent plastic strain evolution along the wall for (a) localized reforming 

passes and (b) single pass predicted by numerical simulations.
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Figure 11: Temperature contours for each measurement location while plastically 

deforming during single pass and localized reforming toolpaths. The values indicate 

the local temperatures at each location.
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Figure 12: Profile of specimens after single pass and each pass of localized reforming 

toolpaths: a comparison between experiments and simulation results.
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Figure 13: Thickness distribution of parts after single pass and final pass of localized 

reforming toolpaths, including a comparison between experiments and simulation 

results.
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Table 1 Experimental parameters summary

Pass
Parameter

Localized reforming
Single 
passInitial 

pass
Reverse 

pass
Final 
pass

Tool feedrate 
(mm/min) 3000 500

500 within the 
region of interest, 
3000 elsewhere

3000

Squeeze factor 0.95 0.98 0.95 0.95

Tool-tip material and 
geometry A2 steel, 10 mm hemisphere (same for both tools)

Material and initial 
blank size

SS304 
(215 mm×215 mm×1.2 mm)

Lubricant Multi-Purpose Synthetic Lubricant with Syncolon (PTFE)

Toolpath technique Standard bi-directional Z-level
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Table 2 Experimental and numerical results summary

Parameter

Location

Temperature (ºC) Equivalent plastic strain Martensite transformation 
(%)

Single 
pass

Localized 
reforming

Single 
pass

Localized 
reforming

Single 
pass

Localized 
reforming

Location 1 55

Initial 
pass 55

0.15

Initial 
pass 0.15

20.7

Initial 
pass 22

Reverse 
pass NA Reverse 

pass 0.15 Reverse 
pass 22

Final 
pass NA Final pass 0.15 Final 

pass 22

Location 2 72

Initial 
pass 72

0.33

Initial 
pass 0.33

6.2

Initial 
pass 9.2

Reverse 
pass NA Reverse 

pass 0.33 Reverse 
pass 9.2

Final 
pass 26 Final pass 0.36 Final 

pass 26

Location 3 77

Initial 
pass 77

0.54

Initial 
pass 0.55

5.6

Initial 
pass 3.6

Reverse 
pass 31 Reverse 

pass 0.67 Reverse 
pass 28.5

Final 
pass 32 Final pass 0.84 Final 

pass 68.4

Location 4 81

Initial 
pass NA

0.59

Initial 
pass 0

5.2

Initial 
pass 0.6

Reverse 
pass 33 Reverse 

pass 0.05 Reverse 
pass 5.5

Final 
pass 62 Final pass 0.55 Final 
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