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Abstract—Photonic neural networks have unique weight-
actuating mechanisms and manufacturing variations, resulting in
a suboptimal performance by conventional offline training. By
incorporating a power-pruning regularization term in the loss
function, we demonstrate an online training method that can
overcome manufacturing errors and minimize power
consumption.
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I. INTRODUCTION

Photonic neural networks (PNNs) [1] offer superior speed
and energy efficiency for computing tasks but are challenging to
train accurately. Like human brains, no two PNNs are identical
due to manufacturing variations. This leads to errors that
accumulate within layers, even if designed to be the same.
Although chip design optimization has improved error tolerance
and robustness [2], it could be more effective. Online training,
which iterates trainable parameters while monitoring actual
PNN output, offers a more straightforward way to compensate
for errors. Gradient-based [3] and gradient-free [4] algorithms
have been used for online training, with the latter showing better
error immunity. Furthermore, previous training models have
overlooked a physical peculiarity of PNNs that the power
consumption can differ with executed weights. The on-chip
weighting actuators, including microring (MRR) and Mach-
Zehnder interferometer (MZI), require different amounts of
current (or voltages) for setting different weights. Therefore,
optimizing the trade-off between applied current and network
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performance can help result in reduced power consumption,
similar to" pruning" in digital electrical neural networks [5].

Here, we propose a training approach for PNNs that
effectively addresses manufacturing errors and optimizes power
consumption. Specifically, we demonstrate a gradient-free
online training method based on particle swarm optimization
(PSO) [6]. Moreover, we implement pruning for PNNs by
incorporating an additional regularization term into the loss
function to account for power consumption. We evaluate the
proposed method through experiments on a 2x2 PNN and a
simulation on a larger PNN with three layers and 804 random
MRRs. Results indicate a one-third reduction in power
consumption while maintaining high prediction accuracy.

II. RESULTS

As a gradient-free training algorithm, PSO treats a potential
solution of trainable parameters as a particle. In each iteration, a
population of particles is tested on a PNN. The outcome is
evaluated using a loss function, and PSO adjusts each particle
based on its reward and that of its neighbors. The particles are
randomly placed within the search space, bounded by the
applicable current or voltages, until they converge. The velocity
of each particle is calculated using empirically selected
weighting factors, cognitive and social factors, and random
factors. The cognitive factor reflects the particle's best position,
while the social factor represents the best position found by the
entire swarm. Random factors add exploration to the search.
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Fig. 1. (a) Photo and (b) schematic of the experimental setup. PIC, photonic integrated circuit. BPD, balanced photodetector. MUX, wavelength multiplexer. ADC,
analog-to-digital converter. (c) Weight tuning curves of MRRs. MRR1 and MRR3 have the same diameter of 22.29 pm, and that of MRR2 and MRR4 are 22.32
um. Vertical lines represent tuning current obtained by online training. Smaller currents are used by the pruning method, reducing power from 10.4 mW to 6.7 mW.
(d) and (e) Confusion matrix for the 50 test samples resulting from offline and online training, respectively.
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The loss function comprises cross-entropy (CE) and a
power-related regularization term, as fioss = CE + AZ; IZ.
The CE is determined by the probability of each output item
generated by a softmax function, which translates as the
prediction accuracy of the PNNs. As we focus on MRR-based
PNNs in this paper, the additional regularization term is a
coefficient A times the sum of the square of the applied current
(in mA). This term is proportional to the total tuning power
since the power consumed by the ith MRR is given by I? X R,
where R is the resistance of the heater. By minimizing the
output of this loss function, the training algorithm considers
both prediction and power performance, finding the optimal
trade-off affected by the empirically determined A.

We experimentally test the proposed training method on a
classification task of two iris flower types using a modified
iris dataset with only petal width and length features. The task
is fitted into a 2x2 PNN with six trainable parameters: the
weights of four MRRs, wy 1, W;,, Wy, W5, and two biases, by
and b,. We randomly select 100 samples for training and 50
samples for testing. We modulate values of the petal widths
and lengths onto laser 1 and 2, respectively, and combine the
two laser lights before splitting them equally into two MRR
weight banks. An FPGA analyzes the weighted addition
output by built-in ADCs and then updates the tuning current
by programming the MRR driver. The PSO algorithm is
carried out via Python-coded software. The actual weights of
all four MRRs against tuning currents (Fig. 1c) illustrate the
misalignment of resonance frequencies between MRRs of the
same diameters due to manufacturing variations. We train the
same PNN under three conditions: offline, online with a
regular loss function, and online with a power-pruning loss
function. All three training results converge at 100% accuracy
for the training samples. However, offline-trained PNN shows
errors on the test samples due to incorrectly executed weights.
In contrast, online-trained PNNs maintain error-free
prediction, and the pruning results show a one-third reduction
in power consumption.

Furthermore, we extend our evaluation to simulate a larger
PNN that classifies images of handwritten digits ranging from
0to 9. The PNN architecture comprises three layers with 1510
trainable parameters that include 1480 MRR currents and 30
biases. To simulate weight tuning curves for each MRR, we
vary their resonance frequencies in a Gaussian distribution
while maintaining the same transmission width, as illustrated
in Fig. 2b. We compare the same three training methods as in
the previous experiment and observe a lower prediction
accuracy of 76% for the offline training. In contrast, online-
trained models produce accuracies of higher than 93%.
Notably, smaller tuning currents are used when applying the
pruning loss function, resulting in a significant reduction in
power consumption from SW to 3W, while maintaining a high
accuracy of 90%. These observations emphasize the
importance of online training and power pruning as PNNs
scale up and highlight the potential of our proposed method
for future studies involving an increasing number of photonic
neurons.
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Fig. 2. Simulation on MNIST dataset. (a) PNN architecture has one hidden
layer with 20 nodes fully connected to the input and output layers. (b) Weight
tuning curves and trained current of all the 1480 MRRs. With pruning, the
actuated tuning currents, shown as deep green triangles, are smaller than the
non-pruning case, shown as light green dots. (c)-(¢) Confusion matrice
resulted from three training methods.

III. CONCLUSION

In conclusion, our proposed online training mechanism for
PNNs enables the self-correction of manufacturing errors and
minimizes inference power budgets. This approach can be
extended to a more efficient learning process, where offline
learning provides a starting point for PNNs, and individual
PNNs further optimize their parameters through online
learning. This methodology allows for transferable
knowledge, such as weights obtained through offline learning,
and non-transferable knowledge resulting from self-
adaptations. We anticipate further investigation of exploiting
the co-packaged FPGAs for real-time learning rates, resulting
in greater versatility and adaptiveness. Our online training
demonstration will serve as a methodology foundation for
future PNN studies, enhancing their ability to address real-
world tasks.
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