
2023-01-5047	 Published 28 Jul 2023

A General Matlab and COMSOL Co-simulation
Framework for Model Parameter Optimization:
Lithium-Ion Battery and Gasoline Particulate Filter
Case Studies
Gabriele Pozzato and Simona Onori Stanford University, Energy Science and Engineering

Citation: Pozzato, G. and Onori, S., “A General Matlab and COMSOL Co-simulation Framework for Model Parameter Optimization:
Lithium-Ion Battery and Gasoline Particulate Filter Case Studies,” SAE Technical Paper 2023-01-5047, 2023, doi:10.4271/2023-01-5047.

Abstract

This paper develops a co-simulation framework based
on the use of the package LiveLinkTM for Matlab to
perform parameters optimization of dynamical

systems implemented in COMSOL Multiphysics. The identi-
fication problem is recast as an optimization problem which
is solved in Matlab. Code for the key steps of the approach is
described in detail, and an implementation based on the

particle swarm optimization (PSO) algorithm is proposed.
The effectiveness and general applicability of the framework
are shown for two energy systems: lithium-ion battery (LIB)
and gasoline particulate filter (GPF). Matlab codes and
COMSOL models for both case studies are made publicly
available and can be used as a starting point to solve parameter
identification problems for systems beyond the case studies
presented here.

1. �Introduction

Physics-based modeling is an integral part of the scien-
tific research used for design optimization [1] and the
development of control, management, and estimation

strategies [2, 3]. Depending on the complexity and coupling
of the spatial and time dynamics under investigation, different
length scales—from atomic to system level—can be used to
develop models with the desired level of accuracy. Since the
dynamical behavior of a system is the outcome of the inherent
interactions of different physics, the ability to simulate such
phenomena is key for system design and has led to the devel-
opment of multiphysics simulation tools which are used for
system design, testing, and analysis.

COMSOL Multiphysics® is a finite element software
platform specifically designed for multiphysics simulations of
a wide range of physical phenomena (mechanical, f luid
dynamics, chemical, etc.) [4]. An application to fluid dynamics
and electromagnetics is shown in [5], where microwave
heating of liquids is modeled in COMSOL and compared to
other open-source software tools. In [6], energy and
momentum transport equations are used to model a plasma

chemical reactor for the disposal of waste material. In [7], the
flow and hydraulic characteristics of an optimized Chinese
dome digester—a domestic biogas plant—are analyzed and
compared to a traditional design, showing that the addition
of baffles to the geometry can improve mixing in the reactor.
In [8], a coupled thermal-hydraulic-mechanical-chemical
model is used to simulate the behavior of methane hydrate–
bearing sediments during methane gas production. These are
some examples from the recent literature showing the wide
applicability of COMSOL, where the model development is
assisted by a user-friendly interface offering the possibility to
choose between built-in and user-defined equations and
boundary conditions. Moreover, numerical solvers are highly
configurable and ensure fast and stable solutions. An impor-
tant feature of COMSOL is the LiveLinkTM for Matlab®, which
allows the communication between Matlab® and COMSOL
with regard to the analysis and processing of simulation
results, changing model parameters, and monitoring variables
during the simulation of the model. This eases the analysis of
COMSOL numerical solutions (e.g., for sensitivity studies)
and, as shown in this work, model optimization.

Received: 23 Jan 2023	 Revised: 15 May 2023	 Accepted: 23 Jun 2023

Keywords
Matlab/COMSOL co-simulat ion, Part icle swarm
optimization, Battery modeling, Gasoline particulate filter

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 2 A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

A fundamental challenge associated with multiphysics,
and in general, dynamical systems simulations, is the problem
of parameter calibration or identification [9]. In COMSOL,
this problem can be tackled with the built-in optimization
module, which allows us to find the optimal shape of a
geometry or to identify model parameters [10]. This module,
however, is constrained by the use of the gradient-based and
gradient-free optimization libraries provided by COMSOL.

Identification problems are generally recast into optimi-
zation problems and, depending on their characteristics (e.g.,
linear/nonlinear, convex/nonconvex, mixed integer), the
solution is tackled differently. For example, convex optimiza-
tion and solvers like Gurobi [11] are used for programs with
convex objective functions subject to affine equality constraints
and convex inequality constraints. For mixed-integer
problems, branch-and-bound algorithms, based on the divide
and conquer paradigm, are usually employed [12]. However,
optimization problems can be characterized by rough and
discontinuous optimization surfaces, making the evaluation
of derivatives to find the optima difficult. In these cases,
gradient-free techniques such as evolutionary algorithms are
effective in solving problems with nonlinear objective func-
tions subject to linear or nonlinear static and dynamic
constraints. They are also easily implementable and perfor-
mance does not deteriorate severely with the growth of the
search space dimension; for this reason, they are valuable tools
for the solution of a broad class of optimization problems [13].
These algorithms provide great f lexibility; however, the
current version of COMSOL does not provide routines based
on such approaches.

Introduced in this paper, the Matlab-COMSOL co-simu-
lation framework is formulated to develop parameter optimi-
zation routines based on evolutionary algorithms for a general
class of systems described by partial differential equations
(PDEs).1 Within this framework, the multiphysics system is
implemented in COMSOL, where geometry (1D, 2D, or 3D),
governing equations, mesh, and numerical solver settings are
defined. On the other hand, Matlab is used in a co-simulation
environment to perform parameter optimization by mini-
mizing a user-defined objective function. The framework is
developed for particle swarm optimization (PSO), but it can
be adapted to other optimization techniques such as genetic
algorithms (GA) and differential evolution (DE) algorithms.
The identification process is described theoretically, and codes
for the key steps of the parameter optimization procedure are
analyzed. The general applicability and effectiveness of the
proposed framework is shown in two case studies: a lithium-
ion battery (LIB) and a gasoline particulate filter (GPF).

LIB are energy storage devices used in today’s portable
electronics, hybrid and electric vehicles, power tools, etc.
In this work, COMSOL is used to implement the Doyle-
Fuller-Newman (DFN) battery model [14], which considers
charge and mass transport dynamics in the electrode (solid)
and electrolyte (liquid) phases to describe the motion of
lithium ions and their intercalation/deintercalation.
Geometrical (e.g., positive electrode, negative electrode, and
separator thicknesses), stoichiometric, and transport

1 The proposed approach can be also applied to ordinary differential equa-
tions and differential-algebraic equations.

parameters (e.g., diffusion coefficients) are identified mini-
mizing the discrepancy between experimental and simu-
lated voltage profiles.

The GPF is a filtration device preventing the release in the
atmosphere of the particular matter generated during gasoline
combustion in engines. As shown in [15], to describe the
exhaust gas motion inside the filter porous structure, energy,
mass, and momentum balance equations are used, and param-
eters—namely, coefficients for inlet temperature and velocity
profiles and the external convective heat transfer coefficient—
are determined from the identification framework proposed
in this paper.

COMSOL models and Matlab identification codes for the
two case studies are made available to the public on the
Mendeley Data repository reported at the end of the paper
and can be used as starting point to solve identification
problems for systems holding similar characteristics.

The remainder of the paper is organized as follows. In
Section 2, basic concepts on the development and implementa-
tion of COMSOL models are presented. The Matlab-COMSOL
co-simulation framework is described in Section 3, where the
parameter identification framework and corresponding code
are introduced. In Section 4, the effectiveness of the identifica-
tion framework is proved in two case studies: LIB and GPF.
The paper is concluded in Section 5.

2. �COMSOL Model
Implementation: Basics

A generic COMSOL model is defined by a tree composed of
four principal nodes [16]:

	 1.	 Global Definitions: In this node, global parameters,
variables, functions, and couplings are defined. By
default, there are two subnodes:

•• Parameters: storing the list of global
model parameters;

•• Materials: storing the material properties.

	 2.	 Component: In this node, geometry (1D, 2D, or 3D),
model equations, and mesh are defined.

	 3.	 Study: This node defines the type of study to
be performed, e.g., stationary or time dependent, and
the corresponding solver settings.

	 4.	 Results: This node stores the solution of a simulation.
There are five additional subnodes:

•• Datasets: containing a list of solutions;

•• Derived values: storing values derived from the
postprocessing of a solution;

•• Tables: storing solutions from probes (i.e.,
“virtual sensors”);

•• Export: defining numerical data or images to
be exported;

•• Reports: containing custom or automatically
generated reports.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 3A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

Figure 1 shows a typical COMSOL model tree inclusive
of the nodes listed above.

3. �Matlab and COMSOL
Co-simulation

LiveLink for Matlab is a powerful feature of COMSOL
Multiphysics that is used to set up the co-simulation with
Matlab [17]. Thanks to this tool, Matlab can be used for the
analysis and processing of simulation results, to change model
parameters for sensitivity analysis, for example, using local
sensitivity approaches, and for parameter identification [18].
This utility simplifies the analysis of COMSOL simulation
results and model optimization.

In this paper, we focus on developing an optimization
framework that can be used for parameter identification for
systems implemented in COMSOL. General Matlab
commands to simulate a COMSOL model are introduced next,
followed by the description of the identification framework.

3.1. �Establishing the
Communication

To establish the communication between Matlab and
COMSOL, double-click on the COMSOL with Matlab icon as
shown in Figure 2. This action automatically opens a console
and a Matlab instance. The console shows the status of the
communication and must remain open during the entire
duration of the co-simulation. To track the COMSOL numer-
ical solver progress, the following code should be typed in the
Matlab command window:

3.2. �Simulating COMSOL
Models with Matlab

The first step to simulate a model in Matlab is to load the
COMSOL f i le m o d e l _ n a m e . m p h with the
following command:

Before running the model, the initial (t_init) and final
(t_final) simulation time instants are defined using the
method set:

When using set, the arguments must be converted into
a string and then passed to the method. A parameter can
be modified in Matlab with set only if it is defined inside the
Parameters node of Global Definitions (Figure 1). Additionally,
when performing a time-dependent study, the following
syntax can be used to specify the time instants at which results
of a simulation are stored:

In COMSOL, the previous code defines a time vector
between t_init and t_final, with sampling time t_step.
The tag <study> is used as identifier for a generic COMSOL
study. It is worth noticing that the previous code does not
control the time-step taken by the numerical solver, which
could use an adaptive or fixed time-stepping.

Once the model is loaded and the simulation time window
is defined, we can run a COMSOL study with the following code:

 FIGURE 1  COMSOL model tree.  FIGURE 2  COMSOL with Matlab.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 4 A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

The outcome of the study is saved in Results. As an
example, to export data from a table with identifier <table>,
one can use the following code:

As shown in Figure 3, to export data from a table or plot,
subnodes Table and Plot must be added to Export.

3.3. �Parameter Identification
of COMSOL Models with
Matlab

We define the parameter vector for a generic dynamical
system as

	 � � � ��
�

�
��

�� � �1
1

i N
N

par

par 	 Eq. (1)

where Npar is the number of parameters to be identified and
ϑi, with i = 1, …, Npar, is the i-th unknown parameter. The
optimal parameter vector θ* is obtained by solving the
following optimization problem:

	 minimize
�

� �J f Y� � � � �; , 	

Eq. (2)

	 subject to

	

a Governing equations PDEs

b

lb ub

lb ub

lb

� � � �

� �

� �
�

� �
�

1 1 1�

�i i i

Nparr par parN N� �

�

�

�
��

�

�
�
� � ub 	

The objective function J(θ) is a function of � �1 N and
Y ∈ ℝ1 × N, i.e., of the experimental data and simulation results,
respectively.2 The minimization of J(θ) is subject to the
governing equations (a) and inequalities (b) that define the
feasible search space for the parameters to be identified. Given
ϑi,  lbi ∈ LB and ubi 2 UB define the lower and upper bounds,
respectively. LB and UB are 1 × Npar real vectors collecting the
lower and upper bounds for all the parameters inside θ.

3.4. �PSO-Based Framework
The optimization problem in Equation 2 is solved using the
PSO algorithm [19]. PSO is a computational method that
solves optimization problems iteratively, starting with a
population of candidate solutions, called particles, and
moving these particles in the search space to find the
optimum. PSO can deal with nonlinearities in both the objec-
tive function and constraints, proving to be a good candidate
algorithm to solve identification problems in multiphysics
simulations. The first step of PSO is to define the swarm size
Nswarm, i.e., the number of particles in the swarm, which
controls the number of candidate solutions used to explore
the search space. The initial position of the swarm is defined
by the following matrix:

	

�

�

�

�

0

0
1

0

0

1 0
1

0
1

0
1

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�

� �

j

N

i N

swarm

par
� � �, , ,

��

� �

�

� �

� � �

� � �

1 0 0 0

1 0 0 0

, , ,

, , ,

j
i
j

N
j

N
i
N

N
N

par

swarm swarm

par

swarm

��

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

� �N Nswarm par

	
Eq. (3)

where each row in Equation 3 defines the initial guess for the
j-th particle, with j = 1, …, Nswarm.3 During the first PSO itera-
tion (iPSO = 0), the COMSOL model is simulated for each candi-
date solution in Equation 3, and simulation results are stored
in the following matrix:

	 Y0

0
1

0

0

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

� �

Y

Y

Y

j

N

N N

swarm

swarm

�

�
 	 Eq. (4)

2 For the LIB, experimental and simulated voltages are defined as  and V,
respectively. For the GPF, experimental and simulated temperatures are
defined as  and T, respectively.

3 If the number of rows in Θ0 is lower than Nswarm, the PSO algorithm will
create initial guesses for the remaining particles.

 FIGURE 3  Export data from Results: Table and
Plot subnodes.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 5A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

Evaluating the objective function J(θ) for each particle j
in Equation 3, the following vector is obtained:

	
J � � � �0 0

1
0 0

1� � � � � � � � � � ��
�

�
� � �J J Jj N Nswarm swarm

	
Eq. (5)

The best candidate solution �0
� is the one that minimizes

the vector (5), i.e.,

	
� �

�
�

0 0

0 0

�

�

� � �� �
� � �� �

arg min

min

J

JJ
	 Eq. (6)

with J0
∗ the value of the objective function at �0

� . In the second
PSO iteration (iPSO = 1), the position of the particles is updated
according to the following matrix:

	

�

�

�

�

1

1
1

1

1

1 1
1

1
1

1
1

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�

� �

j

N

i N

swarm

par
� � �, , ,

��

� �

�

� �

� � �

� � �

1 1 1 1

1 1 1 1

, , ,

, , ,

j
i
j

N
j

N
i
N

N
N

par

swarm swarm

par

swarm

��

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

� �N Nswarm par

	
Eq. (7)

The motion of particles in the search space is governed
by the weighting factors wself and wsocial controlling the attrac-
tion of a particle to the best location it has visited and to the
best locations visited by the neighboring particles, respec-
tively. For each θ1

j in Equation 7, the COMSOL model is solved
and results are used to evaluate the objective function J(θ).

Values of the objective function are collected in the
following vector:

	
J � � � �1 1

1
1 1

1� � � � � � � � � � ��
�

�
� � �J J Jj N Nswarm swarm

	
Eq. (8)

The best candidate solution �1
� is updated as follows:

	
� �

�
�

1 0 1

1 0 1

� �

� �

� � ��� ��� �
� � ��� ��� �

arg min

min

J

J J

J

J
	 Eq. (9)

where the minimization is performed while accounting for
the best solution at the previous iteration (iPSO = 0). For a
generic PSO iteration, the following update rule is used:

	
� �

�

�
i i i

i i i

PSO PSO PSO

PSO PSO P

J

J J

�
�

�

�
�

�

� � ��
�

�
�� �

�

arg min

min

1

1

J

J
SSO

� ��
�

�
�� �

	 Eq. (10)

The PSO algorithm is terminated when the relative change
in JiPSO

∗ over the last #iter PSO iterations is less than the tolerance
tol. Eventually, the optimal �NPSO

� and JNPSO

∗ , solution of the opti-
mization problem in Equation 2, are returned. Settings of the
PSO algorithm, in terms of Nswarm, wself, wsocial, #iter, and tol, deter-
mine how the search space is explored. PSO generally cannot
guarantee the global optimality of the solution, and given a search
space, it provides a solution that is optimal only compared to its
neighbors. Therefore, depending on the characteristics of the
optimization problem, the settings should be carefully tuned to
ensure PSO convergence. This can be done by trial and error or
by understanding the effect of different settings on PSO [13].

The flowchart in Figure 4 summarizes the identification
process described in the previous paragraph and shows the

θ

θ

 FIGURE 4  Identification framework exploiting Matlab and COMSOL co-simulation.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 6 A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

 LISTING 1  main.m

communication links between Matlab and COMSOL. The
PSO algorithm is implemented in Matlab and uses COMSOL
to perform simulations for the different candidate solutions
in ΘiPSO and build the vectors J(ΘiPSO). In Matlab, the PSO
algorithm is initialized in the main.m script shown in Listing
1, where the initial position of the swarm and PSO options
are defined according to Table 1. PSO is run with the
following code:

where x_opt and J_opt are �NPSO

� and JNPSO

∗ , respectively, and
particleswarm is the Matlab implementation of the
PSO algorithm.

In Listing 2, the function fit_comsol_model.m simu-
lates the COMSOL model for each θi

j
PSO

 and computes the value
of the objective function. In the script, θi

j
PSO

 is indicated by x

and code snippets from Section 3.2 (labeled with letters) are
reused to load the model [b], set the time vector [c][d],
run the model [e], and export the results [f]. Relying on
the method set, lines 16 to 19 of Listing 2 modify the values
of the parameters in the COMSOL model before running the
simulation. Ultimately, line 28 computes the objective
function. Matlab variables for Listing 2 are summarized in
Table 2.

4. �Case Studies
The identification routine presented in Figure 4 is applied in
two case studies: DFN battery model and GPF model, both
developed in COMSOL Multiphysics 5.6. Matlab R2020b is
used to run the PSO for parameter identification, with settings
for the two case studies shown in Appendix A (Table A.1).

4.1. �LIB Cell
The identification framework is tested on a DFN battery elec-
trochemical model [14]. This pseudo-two-dimensional model
relies on mass and charge transport PDEs to describe lithium-
ion motion in the electrolyte and its intercalation/deintercala-
tion in the electrodes. Electrodes are treated as spherical
particles of a homogeneous medium in which mass transport

TABLE 1 List of Matlab variables used in Listing 1.

Matlab variable Meaning
initial_position Θ0

lower_bound LB

upper_bound UB

n_vars Npar

swarm_size Nswarm

self_weight wself

social_weight wsocial

max_iter #iter

tol tol

x_opt ∗θ PSON

J_opt ∗J PSON

 LISTING 2  fit_comsol_model.m

TABLE 2 List of Matlab variables used in Listing 2.

Matlab variable Meaning
x θ

PSO

j
i

J J(θ)

y_exp 

y_sim
PSO

j
iY

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 7A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

is resolved along the radius of the particle (r). In the electro-
lyte, one-dimensional transport of mass and charge, along
the x coordinate, is assumed. The governing equations of the
DFN model are listed in Appendix B (Table B.1) and the
COMSOL implementation, following [20], is shown in Figure
5. Mass and charge transport equations are highlighted, and
a pictorial representation of the battery (with electrodes
composed of spherical particles) is shown.

The identification framework presented in Section 3.3 is
used to identify the following parameter vector:

	

� � ��L L L A D D k k R

x x c c
n s p cell s n s p n p c

n init p init s n s

, , , ,

, , , ,max ,

0 0

pp s n s p e n e s e p,max , , , , ,� � � � � �� 	
Eq. (11)

with Ln, Ls, and Lp the thicknesses of the negative electrode
(n), separator (s), and positive electrode (p) as shown in Figure
5, Acell the cross-sectional area, Ds,n and Ds,p the solid-phase
diffusion coefficients, k0,n and k0,p the reaction rate constants,
xn,init and xp,init the initial stoichiometric coefficients, cs,n,max
and cs,p,max the maximum solid-phase lithium concentrations,
ηs,n and ηs,p the active material volume fractions, and ηe,n, ηe,s,
and ηe,p the electrolyte volume fractions.

The parameter vector in Equation 11 is identified mini-
mizing the following objective function:

	 J
N

i V i
i

N

� �� � � � � � � �� �
�
�1

1

2
 ; 	 Eq. (12)

where N is the number of data samples and  and V are the
experimental and simulated voltage profiles, respectively. In
this paper, model parameters are identified for a Sony 2.1Ah
US18650VTC4 NMC cylindrical cell discharged at 1C constant
current at 23°C. Properties of this cell, such as cut-off voltages
and operating temperatures, can be found in [21].

In Table 3, the lower and upper bounds, initial position,
and identified parameter vector θ* are listed. To show the
goodness of the identification results, a comparison between
experimental and simulated data is proposed in Figure 6. The
one-shot identification of 18 parameters could lead to overfit-
ting experimental data, and as proposed in [22], a more robust
approach splitting the identification between geometrical,
stoichiometric, and transport parameters could be used. In
this paper, to show the potentialities of the proposed frame-
work, we stick to the one-shot identification. Additional
details on the battery model and governing equations can
be found in [22], where the proposed identification framework
is used to identify parameters of both DFN and full homog-
enized macroscale battery models.

4.2. �Gasoline Particulate Filter
The identification framework is tested on a second case study,
i.e., the GPF. The GPF is a filtration device used in gasoline
direct-injection engines to trap particulates generated during
combustion and prevent their release into the atmosphere.

In [15], a two-dimensional model for a clean4 and
uncoated GPF accounting for mass, energy, and momentum

4 A clean filter has no trapped particulate matter.

 FIGURE 5  DFN battery model: COMSOL implementation. Mass and charge transport equations are highlighted and a pictorial
representation of the battery is shown in the bottom right corner. Both positive and negative electrodes are modeled as a
conglomerate of spherical particles.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 8 A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

transport is developed. The model considers 47 single
channels, each composed of one inlet channel, one outlet
channel, walls, and plugs, where transport PDEs are resolved
in space (x and r coordinates) and time. Figure 7 shows the
COMSOL implementation of the GPF model with highlights
on mass, energy, and momentum balance equations, model
parameters, geometry, and single channel. A summary of the
model equations, governing the transport dynamics inside
the filter, is shown in Appendix B (Table B.2). Geometrical
properties of the GPF, available in the COMSOL model (at the
link specified at the end of the paper) and in [15], were provided
by the industrial partner of the project.

The identification framework described in Section 3.3 is
used to identify the following parameter vector:

	 � � �� ��A B hext 	 Eq. (13)

 and  control the shape of the inlet exhaust gas velocity
and temperature profiles, which are defined as follows:

	

Velocity profile

r t u u

u v

x x
inlet

r
inlet

x
inlet

inle

,

:

u i j� � � �

�

�0

 tt

r
inlet

t D r
D

u

� � �
��

�
�

�
�
�

�

�
�
�

�

�
�
�

�

�

��

�
�
�

1 2
2

0

2/
/

	 Eq. (14)

	

Temperature profile

T r t t

t

x inlet

inlet

,

:

� � � � � �

� �� � � � �

�0

1 1

B T

B T
DD r
D
/

/
2

2

2
��

�
�

�
�
�

�

�
�
�

�

�
�
�

	 Eq. (15)

with D the diameter of the filter, vinlet the inlet exhaust gas
velocity, ux

inlet and ur
inlet the x and r components of the inlet

velocity profile, and inlet the inlet exhaust gas temperature.
The parameter hext in Equation 13 is the convective heat
transfer coefficient between the filter and the external environ-
ment, entering the following boundary condition:

	 � � �� � � �� �n k T h T Text ext 	 Eq. (16)

where k is the exhaust gas thermal conductivity and Text the
ambient temperature.

TABLE 3 DFN identification results.

Parameter Lower bound Upper bound Initial position Identified vector θ* Unit
Ln 45 × 10–6 55 × 10–6 50 × 10–6 45 × 10–6 [m]

Ls 20 × 10–6 32 × 10–6 26 × 10–6 32 × 10–6 [m]

Lp 35 × 10–6 45 × 10–6 40 × 10–6 44.7 × 10–6 [m]

Acell 0.1006 0.1120 0.1063 0.1083 [m2]

Ds,n 1 × 10–14 6 × 10–14 3.5 × 10–14 2.3 × 10–14 [m2/s]

Ds,p 2 × 10–14 10 × 10–14 6 × 10–14 9.9 × 10–14 [m2/s]

k0,n 2 × 10–4 14 × 10–4 8 × 10–4 2 × 10–4 [Am2.5/mol1.5]

k0,p 1 × 10–4 8 × 10–4 4.5 × 10–4 1 × 10–4 [Am2.5/mol1.5]

Rc 0.0240 0.0360 0.0300 0.0359 [Ω]

xn,init 0.7500 0.8000 0.7750 0.7759 [–]

xp,init 0.3100 0.3600 0.3350 0.3392 [–]

cs,n,max 26,000 31,500 28,750 31,318 [mol/m3]

cs,p,max 45,000 50,000 47,500 49,089 [mol/m3]

ηs,n 0.5400 0.6600 0.6000 0.6315 [–]

ηs,p 0.5000 0.6000 0.5500 0.5097 [–]

ηe,n 0.2800 0.3600 0.3200 0.2803 [–]

ηe,s 0.3500 0.4500 0.4000 0.4494 [–]

ηe,p 0.2800 0.3600 0.3200 0.2822 [–]

J* = 0.014 [V]

 FIGURE 6  Comparison between 1C experimental and
simulated voltage profiles for a Sony 2.1Ah US18650VTC4 NMC
cylindrical cell tested at 23°C.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 9A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

The parameter vector θ in Equation 13 is identified mini-
mizing the following objective function:

	 J
N

i T i
i

N

� �
�

� �� � � � � � � �� �� �
�

1
1

2
 ; 	 Eq. (17)

where ι and Tι are the ι-th experimental and simulated
temperatures, respectively. The objective function is the
summation of the root mean squared errors computed at
different locations inside the filter, namely, ι ∈ {2, 3, 7, 8, 10}
(Figure 8). This allows to capture the spatial temperature
gradient, leading to a robust identification of the parameters.

Identified parameters, together with the lower/upper
bounds, initial position, and minimum of the objective func-
tions, are summarized in Table 4. A comparison between
experimental and simulated temperature profiles in the center
location of the filter (#8) is shown in Figure 8. For additional
details on the GPF modeling and selection of the numerical
solver settings, readers are referred to [15, 23], respectively.

4.3. �Numerical Solution
Identification problems are solved on a Dell Precision 7920
Tower equipped with an Intel Xeon Gold 6136 CPU at
3.00 GHz and 32.0 GB of RAM. The minimization of cost
functions Equations 12 and 17 is shown in Figure 9, where
each subplot depicts the number of model evaluations together

with the objective function value. In red, the minimum value
of the cost function, corresponding to the solution of the iden-
tification problem in Tables 3 and 4, is highlighted. Given the
PSO settings in Table A.1, parameter vectors minimizing the
objective functions are obtained in 56 h and 155 h for the
battery and GPF case studies, respectively.

 FIGURE 7  GPF: COMSOL implementation. Mass, energy, and momentum balance equations are highlighted in the model tree
on the left. In the middle, model parameters are shown. CAD geometry and one single channel are depicted on the right.

 FIGURE 8  Comparison between identification results and
experimental temperature data measured in the center
location of the filter.

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 10 A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

5. �Conclusions
The paper provides guidelines to set up and run COMSOL
and Matlab co-simulations with the aim of model parameter
identification. As shown by the LIB and GPF case studies,
the proposed approach is general and can be used for the
identification of unknown model parameters in various
scenarios and with customizable objective functions. The
framework proposed in this paper is based on PSO; however,
the routine could be modified to use other gradient-free opti-
mization algorithms, such as GA (which uses similar prin-
ciples to PSO). In the battery field, the proposed framework
adds to the available software for DFN development and,
specifically, identification. As a matter of fact, except for
DEARLIBS [24], current publicly available tools (such as
PyBaMM [25] and LIONSIMBA [26]) focus on forward DFN
model simulation and do not include embedded
identification routines.

Matlab co-simulation scripts, together with LIB and GPF
COMSOL models, are publicly available. Interested readers
can freely download and use these resources to develop iden-
tification routines for COMSOL models.

Acknowledgments
The authors gratefully acknowledge the support of Fiat
Chrysler Automobiles (FCA) US LLC for granting permission
to utilize experimental data from previous research collabora-
tion. This work was supported by the National Science
Foundation (NSF), USA through CAREER Award number
CMMI-#1839050.

The DFN battery COMSOL model was developed by
Harikesh Arunachalam [24].

Nomenclature
0 - initial position
* - optimum
ϑ - model parameter
θ - model parameter vector
Θ - particles’ position
i - index indicating the i-th parameter to be identified
iPSO - PSO iteration
j - index indicating the j-th particle
k - index indicating the positive electrode, negative electrode,
and separator (battery) or chemical species in the exhaust
gas (GPF)
lb, ub - lower and upper bounds for one parameter
LB, UB - vector of the lower and upper bounds
J - objective function
J - vector of objective function evaluations
N - number of samples
Npar - number of parameters to be identified
NPSO - number of PSO iterations
Nswarm - number of particles
t - time [s]
wself, wsocial - PSO weights
x, r - axial and radial coordinates [m]
Y - simulation results
 - experimental data

Battery Case Study
ηe,k - electrolyte volume fraction, k = (n, s, p) [–]
ηs,k - active material volume fraction, k = (n, p) [–]
ϕe,k - electrolyte-phase potential, k = (n, s, p) [V]
ϕs,k - solid-phase potential, k = (n, p) [V]
Acell - cell cross-sectional area [m2]
ak - specific surface area, k = (n, p) [m2/m3]
cs,k - solid-phase lithium concentration, k = (n, p) [mol/m3]
cs,surf,k - solid-phase lithium concentration at the surface, k =
(n, p) [mol/m3]
cs,k,max - maximum solid-phase lithium concentration, k = (n,
p) [mol/m3]

θ
θ

 FIGURE 9  Objective function versus iterations number for
the LIB and GPF case studies.

TABLE 4 GPF identification results.

Parameter
Lower
bound

Upper
bound

Initial
position

Identified
vector θ* Unit

 1.63 2.06 1.72 2.04 [–]

 0.82 1.00 0.91 0.91 [–]
h
ext 27.37 37.03 32.20 34.90 [W/(m2 K)]

J* = 61.76 [K]

Downloaded from SAE International by The Library, Friday, October 25, 2024

	 11A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

ce,k - lithium electrolyte-phase concentration, k = (n, s, p) [mol/
m3]
De k

e f f
, - effective electrolyte-phase diffusion coefficient, k = (n,

s, p) [m2/s]
Ds,k - solid-phase diffusion coefficient, k = (n, p) [m2/s]
F - Faraday constant [C/mol]
Iapp - applied current [A]
JLi,k - intercalation current density, k = (n, s, p) [A/m3]
k0,k - reaction rate constant, k = (n, p) [Am2.5/mol1.5]
Ke k

eff
, - effective electrolyte conductivity, k = (n, s, p) [S/m]

Ks k
eff
, - effective electrode conductivity, k = (n, s, p) [S/m]

Lk - region thickness, k = (n, s, p) [m]
n, s, p - negative electrode (n), separator (s), and positive
electrode (p)
R - universal gas constant [J/(mol·K)]
Rc - contact resistance, k = (n, s, p) [Ω]
T - temperature [K]
t+ - transference number [–]
U0,k - open-circuit potential, k = (n, p) [V]
V - simulated voltage profile [V]
 - experimental voltage profile [V]
xk,init - initial stoichiometric coefficient, k = (n, p) [–]

GPF Case Study
p - exhaust gas pressure [Pa]
εεP
w - wall porosity [–]
ι - index indicating the temperature location
κw - wall permeability [m2]
μ - exhaust gas dynamic viscosity [Pa s]
ρ - exhaust gas density [kg/m3]
ρplug - plug density [kg/m3]
ρw - wall density [kg/m3]
[ck] - k-th species concentration [mol/m3]
Cp - exhaust gas specific heat capacity at constant pressure [J/
(kg K)]
Cw - wall specific heat capacity [J/(kg K)]
Dk - k-th species diffusion coefficient [m2/s]
eff - effective property
hext - external convective heat transfer coefficient [W/(m2 K)]
i, j ∈ ℝ2 - unit vectors
kgas - exhaust gas thermal conductivity [W/(mK)]
kplug - plug conductivity [W/(mK)]
kw - wall thermal conductivity [W/(mK)]
n ∈ ℝ2 - normal vector
T - simulated temperature [K]
 - measured temperature [K]
Text - room temperature [K]
u - exhaust gas velocity field [m/s]

v - exhaust gas Darcy velocity field [m/s]
vinlet - inlet exhaust gas velocity [m/s]
w - wall property

References
	 1.	 Rao, R.V. and Savsani, V.J., Mechanical Design Optimization

Using Advanced Optimization Techniques (London, UK:
Springer, 2012).

	 2.	 Guzzella, L., Sciarretta, A. et al., Vehicle Propulsion Systems.
Vol. 1 (Berlin, Germany: Springer, 2007).

	 3.	 Savaresi, S.M., Poussot-Vassal, C., Spelta, C., Sename, O.
et al., Semi-active Suspension Control Design for Vehicles
(Elsevier, 2010).

	 4.	 Dickinson, E.J., Ekström, H., and Fontes, E., “COMSOL
Multiphysics®: Finite Element Software for Electrochemical
Analysis. A Mini-Review,” Electrochemistry Communications
40 (2014): 71-74.

	 5.	 Vencels, J., Birjukovs, M., Kataja, J., and Råback, P.,
“Microwave Heating of Water in a Rectangular Waveguide:
Validating EOF-Library against COMSOL Multiphysics and
Existing Numerical Studies,” Case Studies in Thermal
Engineering 15 (2019): 100530.

	 6.	 Obraztsov, N., Subbotin, D., Popov, V., Frolov, V. et al.,
“Modelling of Heating of Plasma-Chemical Reactor in
COMSOL Multiphysics,” Journal of Physics: Conference
Series 1038 (2018): 012137.

	 7.	 Jegede, A.O., Gualtieri, C., Zeeman, G., and Bruning, H.,
“Three-Phase Simulation of the Hydraulic Characteristics of
an Optimized Chinese Dome Digester Using COMSOL
Multiphysics,” Renewable Energy 157 (2020): 530-544.

	 8.	 Sun, X., Luo, H., and Soga, K., “A Coupled Thermal–
Hydraulic–Mechanical–Chemical (THMC) Model for
Methane Hydrate Bearing Sediments Using COMSOL
Multiphysics,” Journal of Zhejiang University-Science A 19,
no. 8 (2018): 600-623.

	 9.	 Ljung, L., “System Identification,” in Signal Analysis and
Prediction (Springer, 1998), 163-173.

	10.	 COMSOL Multiphysics, “Optimization Module: User’s
Guide,” https://doc.comsol.com/.

	11.	 Gurobi Optimization, https://www.gurobi.com/.
	12.	 Conforti, M., Cornuéjols, G., Zambelli, G. et al., Integer

Programming. Vol. 271 (Cham: Springer, 2014).
	13.	 Das, S., Abraham, A., and Konar, A., “Particle Swarm

Optimization and Differential Evolution Algorithms:
Technical Analysis, Applications and Hybridization
Perspectives,” in Advances of Computational Intelligence in
Industrial Systems (Berlin, Germany: Springer, 2008), 1-38.

	14.	 Doyle, M., Fuller, T.F., and Newman, J., “Modeling of
Galvanostatic Charge and Discharge of the Lithium/
Polymer/Insertion Cell,” Journal of the Electrochemical
Society 140, no. 6 (1993): 1526.

	15.	 Pozzato, G., Hoffman, M.A., and Onori, S., “Multi-channel
Physics-Based Modeling and Experimental Validation of an
Uncoated Gasoline Particulate Filter in Clean Operating

Downloaded from SAE International by The Library, Friday, October 25, 2024

https://doc.comsol.com/
https://www.gurobi.com/

	 12 A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

Conditions,” in 2017 American Control Conference (ACC),
Seattle, WA, 2017, IEEE, 5392-5397.

	16.	 COMSOL Multiphysics, COMSOL Multiphysics User Guide
(version 4.3 a), 2012.

	17.	 COMSOL Multiphysics, “LiveLinkTM for Matlab: User’s
Guide,” https://doc.comsol.com/.

	18.	 Allam, A. and Onori, S., “Online Capacity Estimation for
Lithium-Ion Battery Cells via an Electrochemical Model-
Based Adaptive Interconnected Observer,” IEEE
Transactions on Control Systems Technology 29, no. 4 (2021):
1636-1651.

	19.	 Ebbesen, S., Kiwitz, P., and Guzzella, L., “A Generic Particle
Swarm Optimization Matlab Function,” in 2012 American
Control Conference (ACC), Montreal, QC, Canada, 2012,
IEEE, 1519-1524.

	20.	 Plett, G.L., Battery Management Systems, Volume I: Battery
Modeling. Vol. 1 (Norwood: Artech House, 2015).

	21.	 Arunachalam, H., “A New Multiscale Modeling Framework
for Lithium-Ion Battery Dynamics: Theory, Experiments,
and Comparative Study with the Doyle-Fuller-Newman
Model,” PhD thesis, Clemson University, Clemson, SC, 2017.

	22.	 Arunachalam, H. and Onori, S., “Full Homogenized
Macroscale Model and Pseudo-2-Dimensional Model for
Lithium-Ion Battery Dynamics: Comparative Analysis,
Experimental Verification and Sensitivity Analysis,” Journal
of the Electrochemical Society 166, no. 8 (2019): A1380.

	23.	 Levine, K., Pozzato, G., and Onori, S., “Modeling of
Regeneration Dynamics in Gasoline Particulate Filters and
Sensitivity Analysis of Numerical Solutions,” SAE Technical
Paper 2022-01-0556, 2022, doi:https://doi.org/10.4271/2022-
01-0556.

	24.	 Lee, S.B. and Onori, S., “A Robust and Sleek Electrochemical
Battery Model Implementation: A Matlab Framework,”
Journal of the Electrochemical Society 168, no. 9
(2021): 090527.

	25.	 PyBaMM, https://www.pybamm.org/.
	26.	 Torchio, M., Magni, L., Gopaluni, R.B., Braatz, R.D. et al.,

“LIONSIMBA: A Matlab Framework Based on a Finite
Volume Model Suitable for Li-Ion Battery Design,
Simulation, and Control,” Journal of the Electrochemical
Society 163, no. 7 (2016): A1192.

Appendix A
Table A.1 shows the PSO settings for the battery DFN and
GPF models, respectively. For the GPF, only 15 particles are
used because the initial position is a good guess of the param-
eter vector. Among the parameters listed in Table A.1,
swarm_size and max_iter are the most important to
control the convergence of the algorithm.

Appendix B

TABLE B.1 DFN battery model governing equations.

Electrode mass transport equation—k = (n, p)

∂ ∂ ∂ =  ∂ ∂ ∂ 
, ,2

,2

1s k s k
s k

c c
D r

t r rr 	 Eq. (18)

Electrolyte mass transport equation—k = (n, s, p)

()+−∂ ∂ ∂ η = + ∂ ∂ ∂ 
, ,

, ,,

1e k e keff
e k Li ke k

tc c
D J

t x x F 	 Eq. (19)

Electrode charge transport equation—k = (n, p)

∂ φ
=

∂

2
,

,, 2
s keff

Li ks kK J
x 	 Eq. (20)

Electrolyte charge transport equation—k = (n, s, p)

()+−∂ φ ∂
− − =

∂ ∂

2 2
,, ,

,, 2 2

2 1 lneff
e ke k e keff

Li ke k

K RT t c
K J

Fx x
	 Eq. (21)

Intercalation current density—k = (n, p)

()

()

= ⋅ ⋅

⋅ −

 ⋅ φ − φ −  
=

, 0, , , ,

, , , ,

, , 0,

,

0.5
2sinh ,

0

Li k k k s surf k e k

s k max s surf k

s k e k k

Li s

J a k c c

c c

F
U

RT

J

	 Eq. (22)

Output voltage equation

V = ϕs |x = Ln + Ls + Lp
 − ϕs |x = 0 − RcIapp	 Eq. (23)

TABLE A.1 PSO settings for the DFN battery model and
GPF model.

Matlab variable DFN GPF
n_vars 18 3

swarm_size 400 15

self_weight 0.3 0.2

social_weight 3.6 3.7

max_iter 5 5

tol 0.5×10–6 0.5×10–6

Downloaded from SAE International by The Library, Friday, October 25, 2024

https://doc.comsol.com/
http://www.sae.org/technical/papers/2022-01-0556
http://dx.doi.org/https://doi.org/10.4271/2022-01-0556
http://dx.doi.org/https://doi.org/10.4271/2022-01-0556
https://www.pybamm.org/

© 2023 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies
solely with the author(s).

ISSN 0148-7191

	 13A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION

Web Resources
Matlab scripts for co-simulation and COMSOL models are available at the following link: https://data.mendeley.com/
datasets/298yzrnw35/2

TABLE B.2 GPF model governing equations.

Inlet/outlet channels

()∂    = − ⋅∇ +∇ ⋅ ∇      ∂
k

k k k
c

c D c
t

u 	 Eq. (24)

() ()∂
ρ + ρ ⋅∇ = ∇ ⋅ ∇

∂p p gas
T

C C T k T
t

u 	 Eq. (25)

∂ ρ + ⋅∇ = −∇ + µ∇ ∂ 
2p

t
u

u u u	 Eq. (26)

Walls

()∂   ε = − ⋅∇ +∇ ⋅ ∇      ∂ ,
kw w

P k eff k k
c

c D c
t

v 	 Eq. (27)

() () ()
() ()

()

∂
ρ + ρ ⋅∇ = ∇ ⋅ ∇

∂

ρ = − ε ρ + ε ρ

= − ε + ε

1

1

w w
p p effeff

w w w
p P w w P peff

w w w
eff P w P gas

T
C C T k T

t

C C C

k k k

v

	 Eq. (28)

µ µ
κ

 ρ ∂
+ ⋅∇ = −∇ + ∇ − ∂ε ε ε 

2
w w w

wP P P

p
t
v v

v v v	 Eq. (29)

Plugs

()∂
ρ = ∇ ⋅ ∇

∂plug w plug
T

C k T
t 	 Eq. (30)

Downloaded from SAE International by The Library, Friday, October 25, 2024

https://data.mendeley.com/datasets/298yzrnw35/2
https://data.mendeley.com/datasets/298yzrnw35/2

	10.4271/2023-01-5047: Abstract
	10.4271/2023-01-5047: Keywords
	1 Introduction
	2 COMSOL Model Implementation: Basics
	3 Matlab and COMSOL Co-simulation
	3.1 Establishing the Communication
	3.2 Simulating COMSOL Models with Matlab
	3.3 Parameter Identification of COMSOL Models with Matlab
	3.4 PSO-Based Framework

	4 Case Studies
	4.1 LIB Cell
	4.2 Gasoline Particulate Filter
	4.3 Numerical Solution

	5 Conclusions

	Acknowledgments
	Nomenclature
	Battery Case Study
	GPF Case Study
	References

