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Abstract

his paper develops a co-simulation framework based
on the use of the package LiveLink™ for Matlab to
perform parameters optimization of dynamical
systems implemented in COMSOL Multiphysics. The identi-
fication problem is recast as an optimization problem which
is solved in Matlab. Code for the key steps of the approach is
described in detail, and an implementation based on the
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1. Introduction

hysics-based modeling is an integral part of the scien-

tific research used for design optimization [1] and the

development of control, management, and estimation
strategies [2, 3]. Depending on the complexity and coupling
of the spatial and time dynamics under investigation, different
length scales—from atomic to system level—can be used to
develop models with the desired level of accuracy. Since the
dynamical behavior of a system is the outcome of the inherent
interactions of different physics, the ability to simulate such
phenomena is key for system design and has led to the devel-
opment of multiphysics simulation tools which are used for
system design, testing, and analysis.

COMSOL Multiphysics® is a finite element software
platform specifically designed for multiphysics simulations of
a wide range of physical phenomena (mechanical, fluid
dynamics, chemical, etc.) [4]. An application to fluid dynamics
and electromagnetics is shown in [5], where microwave
heating of liquids is modeled in COMSOL and compared to
other open-source software tools. In [6], energy and
momentum transport equations are used to model a plasma
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particle swarm optimization (PSO) algorithm is proposed.
The effectiveness and general applicability of the framework
are shown for two energy systems: lithium-ion battery (LIB)
and gasoline particulate filter (GPF). Matlab codes and
COMSOL models for both case studies are made publicly
available and can be used as a starting point to solve parameter
identification problems for systems beyond the case studies
presented here.

chemical reactor for the disposal of waste material. In 7], the
flow and hydraulic characteristics of an optimized Chinese
dome digester—a domestic biogas plant—are analyzed and
compared to a traditional design, showing that the addition
of baffles to the geometry can improve mixing in the reactor.
In [8], a coupled thermal-hydraulic-mechanical-chemical
model is used to simulate the behavior of methane hydrate—
bearing sediments during methane gas production. These are
some examples from the recent literature showing the wide
applicability of COMSOL, where the model development is
assisted by a user-friendly interface offering the possibility to
choose between built-in and user-defined equations and
boundary conditions. Moreover, numerical solvers are highly
configurable and ensure fast and stable solutions. An impor-
tant feature of COMSOL is the LiveLink™ for Matlab®, which
allows the communication between Matlab® and COMSOL
with regard to the analysis and processing of simulation
results, changing model parameters, and monitoring variables
during the simulation of the model. This eases the analysis of
COMSOL numerical solutions (e.g., for sensitivity studies)
and, as shown in this work, model optimization.
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A fundamental challenge associated with multiphysics,
and in general, dynamical systems simulations, is the problem
of parameter calibration or identification [9]. In COMSOL,
this problem can be tackled with the built-in optimization
module, which allows us to find the optimal shape of a
geometry or to identify model parameters [10]. This module,
however, is constrained by the use of the gradient-based and
gradient-free optimization libraries provided by COMSOL.

Identification problems are generally recast into optimi-
zation problems and, depending on their characteristics (e.g.,
linear/nonlinear, convex/nonconvex, mixed integer), the
solution is tackled differently. For example, convex optimiza-
tion and solvers like Gurobi [11] are used for programs with
convex objective functions subject to affine equality constraints
and convex inequality constraints. For mixed-integer
problems, branch-and-bound algorithms, based on the divide
and conquer paradigm, are usually employed [12]. However,
optimization problems can be characterized by rough and
discontinuous optimization surfaces, making the evaluation
of derivatives to find the optima difficult. In these cases,
gradient-free techniques such as evolutionary algorithms are
effective in solving problems with nonlinear objective func-
tions subject to linear or nonlinear static and dynamic
constraints. They are also easily implementable and perfor-
mance does not deteriorate severely with the growth of the
search space dimension; for this reason, they are valuable tools
for the solution of a broad class of optimization problems [13].
These algorithms provide great flexibility; however, the
current version of COMSOL does not provide routines based
on such approaches.

Introduced in this paper, the Matlab-COMSOL co-simu-
lation framework is formulated to develop parameter optimi-
zation routines based on evolutionary algorithms for a general
class of systems described by partial differential equations
(PDEs).! Within this framework, the multiphysics system is
implemented in COMSOL, where geometry (1D, 2D, or 3D),
governing equations, mesh, and numerical solver settings are
defined. On the other hand, Matlab is used in a co-simulation
environment to perform parameter optimization by mini-
mizing a user-defined objective function. The framework is
developed for particle swarm optimization (PSO), but it can
be adapted to other optimization techniques such as genetic
algorithms (GA) and differential evolution (DE) algorithms.
The identification process is described theoretically, and codes
for the key steps of the parameter optimization procedure are
analyzed. The general applicability and effectiveness of the
proposed framework is shown in two case studies: a lithium-
ion battery (LIB) and a gasoline particulate filter (GPF).

LIB are energy storage devices used in today’s portable
electronics, hybrid and electric vehicles, power tools, etc.
In this work, COMSOL is used to implement the Doyle-
Fuller-Newman (DFN) battery model [14], which considers
charge and mass transport dynamics in the electrode (solid)
and electrolyte (liquid) phases to describe the motion of
lithium ions and their intercalation/deintercalation.
Geometrical (e.g., positive electrode, negative electrode, and
separator thicknesses), stoichiometric, and transport

!'The proposed approach can be also applied to ordinary differential equa-
tions and differential-algebraic equations.

parameters (e.g., diffusion coefficients) are identified mini-
mizing the discrepancy between experimental and simu-
lated voltage profiles.

The GPF is a filtration device preventing the release in the
atmosphere of the particular matter generated during gasoline
combustion in engines. As shown in [15], to describe the
exhaust gas motion inside the filter porous structure, energy,
mass, and momentum balance equations are used, and param-
eters—namely, coefficients for inlet temperature and velocity
profiles and the external convective heat transfer coefticient—
are determined from the identification framework proposed
in this paper.

COMSOL models and Matlab identification codes for the
two case studies are made available to the public on the
Mendeley Data repository reported at the end of the paper
and can be used as starting point to solve identification
problems for systems holding similar characteristics.

The remainder of the paper is organized as follows. In
Section 2, basic concepts on the development and implementa-
tion of COMSOL models are presented. The Matlab-COMSOL
co-simulation framework is described in Section 3, where the
parameter identification framework and corresponding code
are introduced. In Section 4, the effectiveness of the identifica-
tion framework is proved in two case studies: LIB and GPF.
The paper is concluded in Section 5.

2. COMSOL Model
Implementation: Basics

A generic COMSOL model is defined by a tree composed of
four principal nodes [16]:

1. Global Definitions: In this node, global parameters,
variables, functions, and couplings are defined. By
default, there are two subnodes:

® Parameters: storing the list of global
model parameters;

® Materials: storing the material properties.
2. Component: In this node, geometry (1D, 2D, or 3D),
model equations, and mesh are defined.

3. Study: This node defines the type of study to
be performed, e.g., stationary or time dependent, and
the corresponding solver settings.

4. Results: This node stores the solution of a simulation.
There are five additional subnodes:

® Datasets: containing a list of solutions;

* Derived values: storing values derived from the
postprocessing of a solution;

* Tables: storing solutions from probes (i.e.,
“virtual sensors”);

® Export: defining numerical data or images to
be exported;

® Reports: containing custom or automatically
generated reports.
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m COMSOL model tree.
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Figure 1 shows a typical COMSOL model tree inclusive
of the nodes listed above.

3. Matlab and COMSOL
Co-simulation

LiveLink for Matlab is a powerful feature of COMSOL
Multiphysics that is used to set up the co-simulation with
Matlab [17]. Thanks to this tool, Matlab can be used for the
analysis and processing of simulation results, to change model
parameters for sensitivity analysis, for example, using local
sensitivity approaches, and for parameter identification [18].
This utility simplifies the analysis of COMSOL simulation
results and model optimization.

In this paper, we focus on developing an optimization
framework that can be used for parameter identification for
systems implemented in COMSOL. General Matlab
commands to simulate a COMSOL model are introduced next,
followed by the description of the identification framework.

3.1. Establishing the
Communication

To establish the communication between Matlab and
COMSOL, double-click on the COMSOL with Matlab icon as
shown in Figure 2. This action automatically opens a console
and a Matlab instance. The console shows the status of the
communication and must remain open during the entire
duration of the co-simulation. To track the COMSOL numer-
ical solver progress, the following code should be typed in the
Matlab command window:

ModelUtil.showProgress (true); [a]

IR coMSOL with Matlab.

Console

2 o

COMSOL with
MATLAB

Matlab

3.2. Simulating COMSOL
Models with Matlab

The first step to simulate a model in Matlab is to load the
COMSOL file model name.mph with the
following command:

model = mphload (’model_name.mph’); [b]

Before running the model, the initial (t_init)and final
(t_final) simulation time instants are defined using the
method set:

model.param.set (t_init’, ... [c]
[num2str (t_init) " [s]’]);

model.param.set ('t_final’, ...
[num2str(t_final) " [s]’]);

When using set, the arguments must be converted into
a string and then passed to the method. A parameter can
be modified in Matlab with set onlyifit is defined inside the
Parameters node of Global Definitions (Figure 1). Additionally,
when performing a time-dependent study, the following
syntax can be used to specify the time instants at which results
of a simulation are stored:

model.param.set ('t_step’, ... [d]
[num2str (t_step) " [s]’1);
model.study (' <study>') .feature (' time’) .set (
"tlist’, ["range (!’ num2str(t_init) ’,’ ...
num2str (t_step) ', ...
num2str (t_final) ")’1]);

In COMSOL, the previous code defines a time vector
betweent initandt final,withsamplingtimet step.
The tag <study> is used as identifier for a generic COMSOL
study. It is worth noticing that the previous code does not
control the time-step taken by the numerical solver, which
could use an adaptive or fixed time-stepping.

Once the model is loaded and the simulation time window
is defined, we can runa COMSOL study with the following code:

model.study (' <study>') .run; [e]
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The outcome of the study is saved in Results. As an
example, to export data from a table with identifier <table>,
one can use the following code:

model.result.export (' <table>’) .run; [f]

As shown in Figure 3, to export data from a table or plot,
subnodes Table and Plot must be added to Export.

3.3. Parameter Identification
of COMSOL Models with
Matlab

We define the parameter vector for a generic dynamical
system as

Eq. (1)

where N, is the number of parameters to be identified and

9, with i =1, ..., N, is the i-th unknown parameter. The
optimal parameter vector 6" is obtained by solving the
following optimization problem:

1(0)=£(0; ¥Y)

minimize
[}

subject to

(a) Governing equations (PDEs)

b, <9, <ub, Fo. @)
q.

(b) {1b, <8, <ub,

IGIILTEER Export data from Results: Table and

Plot subnodes.

4 (@ Results
# Datasets
b &3 Derived Values
b EH Tables
4 & Export
[E+ Table
(@3 Plot
[# Reports

The objective function J(6) is a function of J € R™ and
Y € RV, ie., of the experimental data and simulation results,
respectively.2 The minimization of J(8) is subject to the
governing equations (a) and inequalities (b) that define the
teasible search space for the parameters to be identified. Given
9, 1b; € LB and ub, 2 UB define the lower and upper bounds,
respectively. LB and UB are 1 x N,,, real vectors collecting the

par
lower and upper bounds for all the parameters inside 6.

3.4. PSO-Based Framework

The optimization problem in Equation 2 is solved using the
PSO algorithm [19]. PSO is a computational method that
solves optimization problems iteratively, starting with a
population of candidate solutions, called particles, and
moving these particles in the search space to find the
optimum. PSO can deal with nonlinearities in both the objec-
tive function and constraints, proving to be a good candidate
algorithm to solve identification problems in multiphysics
simulations. The first step of PSO is to define the swarm size
N yarm> 1-€., the number of particles in the swarm, which
controls the number of candidate solutions used to explore
the search space. The initial position of the swarm is defined
by the following matrix:

r 7 1 1 1
1
6, i e ‘9NW, 0
— = j i j Novarm*N par
0,= 6 |= '91,0 ‘9i,o SNWO eR
_eg’mmm | ‘gl%w,m ]9’1‘(’) 9 :’]p(r;

Eq. (3)

where each row in Equation 3 defines the initial guess for the
j-th particle, withj=1, ..., Ny,,,,,.2 During the first PSO itera-
tion (ipsn = 0), the COMSOL model is simulated for each candi-
date solution in Equation 3, and simulation results are stored
in the following matrix:

Y,
Y, =| Y/ |eRY® Eq. (4)
YONSWW

2 For the LIB, experimental and simulated voltages are defined as V and V;
respectively. For the GPF, experimental and simulated temperatures are
defined as 7 and T, respectively.

3 If the number of rows in @ is lower than N,,,,,, the PSO algorithm will
create initial guesses for the remaining particles.
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Evaluating the objective function J(0) for each particle j
in Equation 3, the following vector is obtained:

10 =[1(61) - 7(00) - s(0p)] B
Eq. (5)

The best candidate solution 6, is the one that minimizes
the vector (5), i.e.,

0, = argmm(](@ ))

Eq. (6)
]0 = mln( ) 1

with J; the value of the objective function at 8;. In the second
PSO iteration (ipgo = 1), the position of the particles is updated
according to the following matrix:

= - 1 1 1
1 e
6, %, I, ‘9NW 1
_ j _ j .. J .. j Noyarm*N par
0,= 6 |= ‘91,1 ‘91',1 SNM,,I eR
_ef" | 19111 swarm ‘gil’\lfwm 9 Af;’;;aqn

Eq. (7)

The motion of particles in the search space is governed
by the weighting factors wy,;;and w,;,; controlling the attrac-
tion of a particle to the best location it has visited and to the
best locations visited by the neighboring particles, respec-
tively. For each 0/ in Equation 7, the COMSOL model is solved
and results are used to evaluate the objective function J(6).

Values of the objective function are collected in the
following vector:

1(©,)=]7(8}) - J(9]) -

J(op)] em
Eq. (8)
The best candidate solution 6] is updated as follows:

0; =argmin([J; J(0)])
J; =min([; 3(0,)])

where the minimization is performed while accounting for
the best solution at the previous iteration (ipgy = 0). For a
generic PSO iteration, the following update rule is used:

0; —argm1n<[],m,1 J ((9,-,,50 )J)
];SO _mln([]- 4 ](Q-m )J)

The PSO algorithm is terminated when the relative change
in ] over the last #iter PSO iterations is less than the tolerance
tol. Eventually, the optimal 6§, and J§ , solution of the opti-
mization problem in Equation 2, are returned. Settings of the
PSO algorithm, in terms of Ny Weeip Wsociap #iter, and tol, deter-
mine how the search space is explored. PSO generally cannot
guarantee the global optimality of the solution, and given a search
space, it provides a solution that is optimal only compared to its
neighbors. Therefore, depending on the characteristics of the
optimization problem, the settings should be carefully tuned to
ensure PSO convergence. This can be done by trial and error or
by understanding the effect of different settings on PSO [13].

The flowchart in Figure 4 summarizes the identification
process described in the previous paragraph and shows the

Eq. 9)

Eq. (10)

m Identification framework exploiting Matlab and COMSOL co-simulation.

Matlab

Evaluation of the
objective function <

Simulation |

Initial position
O

COMSOL

J(®ipso)

Update of the best
candidate solution

Are termination

results (Y, ) |

Model simulation ’

A

No

criteria satisfied?

(updated ©;,,,)
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TABLE 1 List of Matlab variables used in Listing 1.

Matlab variable Meaning

initial position B9
lower bound LB
upper bound UB
n_vars Npar
swarm size Nswarm
self weight Wseir
social weight Wsocial
max_iter #iter
tol tol
x_opt ONeso
J_opt Jeso

communication links between Matlab and COMSOL. The
PSO algorithm is implemented in Matlab and uses COMSOL
to perform simulations for the different candidate solutions
in O, __ and build the vectors J(®, _ ). In Matlab, the PSO

ipso ipso
algorithm is initialized in themain . mscript shown in Listing

1, where the initial position of the swarm and PSO options
are defined according to Table 1. PSO is run with the
following code:

[x_opt,J_opt] = particleswarm( [g]
@fit_comsol_model,n_vars, lower_bound, ...
upper_bound, options) ;

where x_optandJ optare®, and]; ,respectively,and
particleswarm is the Matlab imp}fgmentation of the
PSO algorithm.

In Listing 2, the function fit comsol model.msimu-
lates the COMSOL model for each 6/ and computes the value
of the objective function. In the script, Ofm is indicated by x

(RS [cRM main.m

Initial position

initial_position = ...
[theta_1_1 theta_1_2 theta_1_N
theta_2_1 theta_2_2

theta_2_N 4

theta_Nswarm_1 theta_Nswarm_ 2 ... theta_Nswarm_N]J;

% Lower and upper bounds
lower_bound = [lb_theta_1l 1b_theta_2 ... 9
1b_theta_N]; 1(
upper_bound = [ub_theta_1l wub_theta_2 ... 1
ub_theta_N]; 12
13
% PSO options 14
options = optimoptions (’particleswarm’, ... 15

’

SwarmSize’,swarm_size, ... 16

'MaxStallIterations’,max_iter, ... 17
’FunctionTolerance’,tol, ... 18
fInitial rmMatrix’,initial_position,... 19
’SocialAdjustmentWeight’, social_weight, ... 20
’SelfAdjustmentWeight’, self_weight); 2
n_vars = length(initial_position);

5 Run PSO
[x_opt,J_opt] = particleswarm(@fit_comsol_model,n_vars,
lower_bound, upper_bound, options) ;

(NERIL [l fit comsol model.m

function J = fit_comsol_model (x)

% Parameters to be identified 2
theta_1 = x(1);

theta_2 =

x(2); 4
theta_N = x(n_vars); 6

% Loading of the COMSOL model

[b] 9
1¢
% Time vector setting 1
[c] 12
(d] 13
14
% Parameter vector setting 15
model.param.set (' theta 1’ , [num2str (theta_1l) " [-]1"]); 16
model.param.set (' theta_2’ , [num2str (theta_2) '[-]1"1); 1
000 18
model.param.set (' theta N’ , [num2str (theta_N) "[-]"1); 19
2(
% Model run 2
lel] 22
3 Export results 2
[£f] 25,
% Objective function calculation 2
J = f(y_exp,y_sim)
end 2

and code snippets from Section 3.2 (labeled with letters) are
reused to load the model [b], set the time vector [c] [d],
run the model [e], and export the results [ £]. Relying on
the method set, lines 16 to 19 of Listing 2 modify the values
of the parameters in the COMSOL model before running the
simulation. Ultimately, line 28 computes the objective
function. Matlab variables for Listing 2 are summarized in
Table 2.

4. Case Studies

The identification routine presented in Figure 4 is applied in
two case studies: DFN battery model and GPF model, both
developed in COMSOL Multiphysics 5.6. Matlab R2020b is
used to run the PSO for parameter identification, with settings
for the two case studies shown in Appendix A (Table A.1).

4.1. LIB Cell

The identification framework is tested on a DFN battery elec-
trochemical model [14]. This pseudo-two-dimensional model
relies on mass and charge transport PDEs to describe lithium-
ion motion in the electrolyte and its intercalation/deintercala-
tion in the electrodes. Electrodes are treated as spherical
particles of a homogeneous medium in which mass transport

TABLE 2 List of Matlab variables used in Listing 2.

Matlab variable Meaning

x 0o
J J(©)
y_exp Yy
y sim \74

ipso
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m DFN battery model: COMSOL implementation. Mass and charge transport equations are highlighted and a pictorial
representation of the battery is shown in the bottom right corner. Both positive and negative electrodes are modeled as a

conglomerate of spherical particles.

Add
Component »

Model

Application 2D electrode.
Builder model +
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- P

Application Definitions Geometry
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h Parameters
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fpod | gemmmpemm—————
o :» Name | Expression
{Lapp) 1 brug 5
erpolation 5 (De) IR 8.314 [I¥mol/K]
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96485 [C/moll

0363

Vdinfdine |0
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30,9276 [m]
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2e-14[m"27s]
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de model (pseudo_dim) | k.pos_nor...|4.48e-4 [mol/m*2/5]
b = Definitions | Cs_neg_m.. | 27088 [mol/m*3]

b Y\ Geometry2 1 ¢s_pos_max | 48700 [mol/m*3]

i2 Materials Lenint 07916

% Analytic 1 (nice_abs)
I Step 1 (step)
%) Materials

4 — 1D cell model (main_dim)

Electrode and electrolyte
charge transport
Electrolyte mass transport

]

Electrode mass

- T e i 7 > —
transport b A Mesh3 !

b o Study

b [ Results [zt

Expression:

Model
parameters

Description:

visibility

is resolved along the radius of the particle (r). In the electro-
lyte, one-dimensional transport of mass and charge, along
the x coordinate, is assumed. The governing equations of the
DFN model are listed in Appendix B (Table B.1) and the
COMSOL implementation, following [20], is shown in Figure
5. Mass and charge transport equations are highlighted, and
a pictorial representation of the battery (with electrodes
composed of spherical particles) is shown.

The identification framework presented in Section 3.3 is
used to identify the following parameter vector:

0=[L, L, L, A, D, D, k,k, R

cell

xn,im't ‘xp,init Cs,n,max Cs,p,max ns,n ns,p ne,n ne,s ne,p]

Eq. (11)

with L,, L, and L, the thicknesses of the negative electrode
(n), separator (s), and positive electrode (p) as shown in Figure
5, Aoy the cross-sectional area, D;, and D;, the solid-phase
diffusion coefhicients, k, , and k, , the reaction rate constants,
Xpimie a0d X, 5, the initial stoichiometric coefficients, c;,, s
and ¢ ,, ;. the maximum solid-phase lithium concentrations,
n,,and n,, the active material volume fractions, and n,, ,, n,.,»
and n,, the electrolyte volume fractions.

The parameter vector in Equation 11 is identified mini-
mizing the following objective function:

B
initions  Geometry  Sket s Mesh  Study  Results
& P B [ Import

Developer 2]
B v B B R = ]| v 5 @
Solid Add Build  Mesh Compute Study Add Cell  AddPlot  Windows Reset
Material ~ diffusion = Physics ~ Mesh v Study  Voltage= Group + Desktop +
Materials Physics Mesh Study Results Layout
~ B Graphics Messages Progress Log Table -
aa @ E L m E@-@-RBE ~2E- 5O~
=] L L L ' L
=" or

Description
Bruggeman coefficient
Gas constant
Temperature
Faraday's constant
Cationic transport number

8314)/(molK)
296K

96485 C/mol
0363

o
531786-5m
2467565 m
3992765 m
01037 m?
SE-14mis
BE-14ms
725E-Amolf...
4.44E-4 ol
27088 mol/m*
48700 mol/m*
07916

Geometry

Solid phase Li-diffusity... |
Solid phase Li-diffusivity... | 0.6 o
Reaction rate coefficient... |
Reaction rate coefficient... | 0.1 -
Max solid phase concent... |

Max solid phase concent... | u L
Initial Negative State of C..
Initig Positive State &

™
<)
5
&
2.
&

@

Current
Collector

Ln LS
Negative
electrode

LP
Positive
electrode

where N is the number of data samples and V and V are the
experimental and simulated voltage profiles, respectively. In
this paper, model parameters are identified for a Sony 2.1Ah
US18650VTC4 NMC cylindrical cell discharged at 1C constant
current at 23°C. Properties of this cell, such as cut-off voltages
and operating temperatures, can be found in [21].

In Table 3, the lower and upper bounds, initial position,
and identified parameter vector 0" are listed. To show the
goodness of the identification results, a comparison between
experimental and simulated data is proposed in Figure 6. The
one-shot identification of 18 parameters could lead to overfit-
ting experimental data, and as proposed in [22], a more robust
approach splitting the identification between geometrical,
stoichiometric, and transport parameters could be used. In
this paper, to show the potentialities of the proposed frame-
work, we stick to the one-shot identification. Additional
details on the battery model and governing equations can
be found in [22], where the proposed identification framework
is used to identify parameters of both DFN and full homog-
enized macroscale battery models.

4.2. Gasoline Particulate Filter

The identification framework is tested on a second case study,
i.e., the GPE. The GPF is a filtration device used in gasoline
direct-injection engines to trap particulates generated during
combustion and prevent their release into the atmosphere.
In [15], a two-dimensional model for a clean? and
uncoated GPF accounting for mass, energy, and momentum

4 A clean filter has no trapped particulate matter.
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TABLE 3 DFN identification results.

Parameter Lower bound Upper bound Initial position Identified vector 6

L, 45 x 1076 55 x107° 50 x 1076 45 x 1070 [m]

L 20 x 1076 32 %1076 26 x 1076 32 x107° [m]

L, 35x 1076 45 % 1076 40 x107® 44.7 x107° [m]

Acelr 0.1006 0.1120 0.1063 0.1083 [m?]

D, 1x107 6 %107 3.5x10™ 2.3 %107 [m?/s]

D, 2x10™ 10 x 107 6 %107 9.9 x10™ [m?/s]

Kon 2 %10 14 x 10 8x 10 2x10* [Am?23/mol*>]
Kop 1x104 8 x 10 45x10* 1x10 [Am?5/mol*]
R, 0.0240 0.0360 0.0300 0.0359 [Q]

Xninit 0.7500 0.8000 0.7750 0.7759 -]

Xpinit 0.3100 0.3600 0.3350 0.3392 [-]

C— 26,000 31,500 28,750 31,318 [mol/m?3]
Comares 45,000 50,000 47,500 49,089 [mol/m?3]

Nsn 0.5400 0.6600 0.6000 0.6315 -1

Nsp 0.5000 0.6000 0.5500 0.5097 -]

Nen 0.2800 0.3600 0.3200 0.2803 [-]

Nes 0.3500 0.4500 0.4000 0.4494 [-]

Nep 0.2800 0.3600 0.3200 0.2822 -1

J =0.014 [V]

m Comparison between 1C experimental and
simulated voltage profiles for a Sony 2.1Ah US18650VTC4 NMC
cylindrical cell tested at 23°C.

0=[A B h, | Eq. (13)

A and B control the shape of the inlet exhaust gas velocity

I i i and temperature profiles, which are defined as follows:
N Experimental (V)
N — =Simulation |
S~ Velocity profile :
— —~ -~ u(r t)| _ uin1e1i+uinlet-
Z 3541 —— = _ | o T T r )
& — 2 Eq. (14)
: . e D/2—-r q.
= \ W = A, (8) [1—( o ) }
>
3t \ .
{ u:nlet =0
|
2.5 ‘ ‘ ‘ ‘ | Temperature profile :

0 500 1000 1500 2000 2500 3000 3500
Time [s]

T(r,t)L:O =B T,, (t)+

2 Eq. (15)
D/2—r
+ (I_B) ,Tinlet(t) {1_[ D/Z J :l

transport is developed. The model considers 47 single
channels, each composed of one inlet channel, one outlet

channel, walls, and plugs, where transport PDEs are resolved ) i .
in space (x and r coordinates) and time. Figure 7 shows the with D th¢ lczlamete; ' ?f the filter, v;,,, the inlet exhaust gas

COMSOL implementation of the GPF model with highlights Veloc.ity, u,” and u™ the x e.md r components of the inlet
on mass, energy, and momentum balance equations, model velocity profile, and 7. the inlet exhaust gas temperature.

inlet
parameters, geometry, and single channel. A summary of the The parameter h,,; in Equation 13 is the convective heat
model equations, governing the transport dynamics inside

transfer coefficient between the filter and the external environ-
the filter, is shown in Appendix B (Table B.2). Geometrical ment, entering the following boundary condition:
properties of the GPF, available in the COMSOL model (at the
link specified at the end of the paper) and in [15], were provided “n- ( JAY T) =h,, (Tm —
by the industrial partner of the project.

The identification framework described in Section 3.3 is where k is the exhaust gas thermal conductivity and T, the
used to identify the following parameter vector: ambient temperature.

T) Eq. (16)
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m GPF: COMSOL implementation. Mass, energy, and momentum balance equations are highlighted in the model tree
on the left. In the middle, model parameters are shown. CAD geometry and one single channel are depicted on the right.

° BDrER ® BN E - - o
Home Definions  Geomelry  Sketch  Materials  Physics  Mesh  Study  Results  Developer
Variables - [ Import ° o = A ;
Q < P; B = : | 3. B B = ) =
A ' feoFunctions + &2 | e i@ A e B & &=
Application  Component dd Parameters Build Add Chemistry _Add Build Mesh  Compute Study Add  Concentraion AddPlot ~ Windows Reset
- Component + - Parameter Case All Material 1+ ° Physis  Mesh 2~ 1+ Study Desktop ~
Appli Model Definition: Geometry Material Physic Mesh Stud Result ayout
Mode I v % settings Properties ~ % Graphics Messages  Progress Log Probe Table 15 v
. SEEm - T aa@-¢H L @ @ -@-BE ~22- @ T
4 % gpf_model.mph (root) &~ G-@d
4 (@) Global Definitions Label: Parameters 1 r L 1 1 1 1 1 1
Pi Parameters 1 011" or
4 Default Model Inputs v Parameters
% Materials [ it Pt B s 01 rF
4 Component 2 (comp2) | Name  Expression Value Description :
= Definitions Iporo 065 065 Porosity i 0.00] r
Mass balance A\ Geometry 1(2D) M 12e-3(kg/mol] 0.012kg/mol | Molar weight ¢ I
12 Materials M2 32e-3(kg/mol] 0032 kg/mol | Molar weight 02 : 0.08 o
4 Chemistry 1 (chem) 1Mco2 4de-3(kg/mol] 0044 kg/mol | Molar weight co2 § Geometry
&' Transport of Diluted Species (tds) :M(u 28e-3[kg/mol] 0.028 kg/mol Molar weight co ] 0.0771 r
Energy balance * Heat Transfer in Fluids 1 (ht) Mn2 28e-3(kg/mol] 0028 kg/mol | Molar weight n2 }
& Free and Porous Media Flow 1 (fp) |Mh2o 18e-3(kg/mol] 0018 kg/mol | Molar weight h2o 1 0.067 r
/ A Mesh2 Tkm poro’d_por*2/66.7 28163E-12m* | Permeabilityin filter walls |
. 1 /|
& Study 1 lambda_m | 1[W/m/K] 1 W/(mK) Cordierite thermal condu... | 0.0571 r
Momentum balance @ Resars lhom  250lkg/m3] B00kg/m' | Codertedensty |
i 127(mm] 0127m Filter length 1 0.0471 u
0 116.52(mm] 0.11652m  Filter diemeter '
trhocell 300 300 | lcpsil Cell density ] 0.031 f
\Across  pi"(D/2)%2/2 00053316 m® | Effective cross sectional a... :
Wirap 072501 725E-4m’  Filter volume ) 0.02 r
Model /: Rgas 8310/(K"mol)] 831)/(molK) | Ideal gas constant ]
parameters \p_inlet 1[atm] 1.013365Pa  Inlet pressure ! 0.01 [
tp ot Yatml _ _______[1013365Ps _ |Qutetpresre __ _ ]
o o - L
Name ---.___Single channel 1
lame: oo X
r
Expression: -0.02 )
0.03 Wall
Description:
0041 Inlet channel
- Plug
Visibility -0.057]
T | e
Plug
Outlet channel
Wall |
i '
T

The parameter vector 0 in Equation 13 is identified mini-
mizing the following objective function:

1

LS ()T (0

! i=1

Eq. (17)

where 7, and T, are the 1-th experimental and simulated
temperatures, respectively. The objective function is the
summation of the root mean squared errors computed at
different locations inside the filter, namely, 1 € {2,3,7,8, 10}
(Figure 8). This allows to capture the spatial temperature
gradient, leading to a robust identification of the parameters.
Identified parameters, together with the lower/upper
bounds, initial position, and minimum of the objective func-
tions, are summarized in Table 4. A comparison between
experimental and simulated temperature profiles in the center
location of the filter (#8) is shown in Figure 8. For additional
details on the GPF modeling and selection of the numerical
solver settings, readers are referred to [15, 23], respectively.

4.3. Numerical Solution

Identification problems are solved on a Dell Precision 7920
Tower equipped with an Intel Xeon Gold 6136 CPU at
3.00 GHz and 32.0 GB of RAM. The minimization of cost
functions Equations 12 and 17 is shown in Figure 9, where
each subplot depicts the number of model evaluations together

with the objective function value. In red, the minimum value
of the cost function, corresponding to the solution of the iden-
tification problem in Tables 3 and 4, is highlighted. Given the
PSO settings in Table A.1, parameter vectors minimizing the
objective functions are obtained in 56 h and 155 h for the
battery and GPF case studies, respectively.

m Comparison between identification results and
experimental temperature data measured in the center
location of the filter.

700 -
g 600 J Center ]
o | location
=
=
b5
g 500 1
joh
5
=
400 | 1
I —— Experimental (7
1 — =Simulated (T")
300 : ‘ : :
0 500 1000 1500 2000
Time [s]
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TABLE 4 GPF identification results.

Initial Identified
Parameter position vector 0
A 1.63 2.06 1.72 2.04 [-]
B 0.82 1.00 0.91 0.91 [-]
W 27.37 37.03  32.20 34.90 [W/(m2 K)]
J =61.76 [K]

m Objective function versus iterations number for
the LIB and GPF case studies.

0 1000 2000 3000 4000 5000 6000
Model evaluation [#]

GPF
200 ;
E . o"""o." -\."c . -'.-... .-. Ceee c.- ... ‘et
8 100 7'.. . ’ o o’ ..o .. oo .. : ¢ o o ;
R/ s "o ¢ o % ,° e®Po Ceo
0 . . . . .
0 20 40 60 80 100

Model evaluation [#]

5. Conclusions

The paper provides guidelines to set up and run COMSOL
and Matlab co-simulations with the aim of model parameter
identification. As shown by the LIB and GPF case studies,
the proposed approach is general and can be used for the
identification of unknown model parameters in various
scenarios and with customizable objective functions. The
framework proposed in this paper is based on PSO; however,
the routine could be modified to use other gradient-free opti-
mization algorithms, such as GA (which uses similar prin-
ciples to PSO). In the battery field, the proposed framework
adds to the available software for DFN development and,
specifically, identification. As a matter of fact, except for
DEARLIBS [24], current publicly available tools (such as
PyBaMM [25] and LIONSIMBA [26]) focus on forward DEN
model simulation and do not include embedded
identification routines.

Matlab co-simulation scripts, together with LIB and GPF
COMSOL models, are publicly available. Interested readers
can freely download and use these resources to develop iden-
tification routines for COMSOL models.
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Nomenclature

0 - initial position

* - optimum

9 - model parameter

0 - model parameter vector

O - particles’ position

i - index indicating the i-th parameter to be identified

ipgo - PSO iteration

j - index indicating the j-th particle

k - index indicating the positive electrode, negative electrode,

and separator (battery) or chemical species in the exhaust
gas (GPF)

Ib, ub - lower and upper bounds for one parameter
LB, UB - vector of the lower and upper bounds
J - objective function

] - vector of objective function evaluations

N - number of samples

N,,, - number of parameters to be identified
Npgo - number of PSO iterations

N pyarm - number of particles

t - time [s]

Weelp Wiocial - PSO weights

x, r - axial and radial coordinates [m]

Y - simulation results

Y - experimental data

Battery Case Study

1, - electrolyte volume fraction, k = (n, s, p) [-]

1,k - active material volume fraction, k = (1, p) [-]

¢, - electrolyte-phase potential, k = (1, s, p) [V]

&, « - solid-phase potential, k = (n, p) [V]

A,y - cell cross-sectional area [m?]

a, - specific surface area, k = (n, p) [m?/m?3]

¢, « - solid-phase lithium concentration, k = (1, p) [mol/m?]

Cs surfk - Solid-phase lithium concentration at the surface, k =
(1, p) [mol/m?]

€ k,max - Maximum solid-phase lithium concentration, k = (n,
p) [mol/m?]



Downloaded from SAE International by The Library, Friday, October 25, 2024

A GENERAL MATLAB AND COMSOL CO-SIMULATION FRAMEWORK FOR MODEL PARAMETER OPTIMIZATION -

¢,x - lithium electrolyte-phase concentration, k = (, s, p) [mol/
m?]

DY’/ - effective electrolyte-phase diffusion coefficient, k = (1,
s, p) [m?/s]

D, ;. - solid-phase diffusion coeflicient, k = (n, p) [m?/s]

F - Faraday constant [C/mol]

I“PP

Jiix - intercalation current density, k = (n, s, p) [A/m?]

- applied current [A]

ko . - reaction rate constant, k = (1, p) [Am?>/mol*-]
K:f{( - effective electrolyte conductivity, k = (n, s, p) [S/m]
K:ﬁk - effective electrode conductivity, k = (n, s, p) [S/m]
L, - region thickness, k = (1, s, p) [m]

n, s, p - negative electrode (n), separator (s), and positive
electrode (p)

R - universal gas constant [J/(mol-K)]

R, - contact resistance, k = (n, s, p) [Q2]

T - temperature [K]

t, - transference number [-]

U, x - open-circuit potential, k = (n, p) [V]

V - simulated voltage profile [V]

V - experimental voltage profile [V]

X inis - iNitial stoichiometric coefficient, k = (1, p) [-]

GPF Case Study

p - exhaust gas pressure [Pa]

g, - wall porosity [-]

1 - index indicating the temperature location
K,, - wall permeability [m?]

p - exhaust gas dynamic viscosity [Pa s]

p - exhaust gas density [kg/m?>]

Ppiug - Plug density [kg/m’]

p,, - wall density [kg/m?]

[ci] - k-th species concentration [mol/m?®]

C, - exhaust gas specific heat capacity at constant pressure [J/
(kg K)]

C,, - wall specific heat capacity [J/(kg K)]

Dy - k-th species diffusion coefficient [m?/s]

eff - effective property

h,,, - external convective heat transfer coefficient [W/(m? K)]
i, j € R? - unit vectors

kg, - exhaust gas thermal conductivity [W/(mK)]

Kpg
k,, - wall thermal conductivity [W/(mK)]

n € R? - normal vector

- plug conductivity [W/(mK)]

T - simulated temperature [K]
T - measured temperature [K]
T,., - room temperature [K]

u - exhaust gas velocity field [m/s]

v - exhaust gas Darcy velocity field [m/s]

Viuer - inlet exhaust gas velocity [m/s]

w - wall property
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Appendix A

Table A.1 shows the PSO settings for the battery DFN and
GPF models, respectively. For the GPF, only 15 particles are
used because the initial position is a good guess of the param-
eter vector. Among the parameters listed in Table A.1,
swarm_ size and max_iter are the most important to
control the convergence of the algorithm.

TABLE A.1 PSO settings for the DFN battery model and

GPF model.

Matlab variable DFN GPF

n vars 18 3
swarm_size 400 15
self weight 0.3 0.2
social weight 3.6 3.7
max_iter 5 5

tol 0.5x10-6 0.5x10-6

Appendix B

TABLE B.1 DFN battery model governing equations.

Electrode mass transport equation—k = (n, p)

o, 10 ( D, acs,k]

a rPer ar Eq. (18)
Electrolyte mass transport equation—k = (n, s, p)
OCe i 0 eff OCe i (1_t+)
LE=—| @ ol ks i
ek "ot~ ox ( ok ox ] Fooue Eq. (19)
Electrode charge transport equation—k = (n, p)
Keff 62¢$,k =J
sk 6)(2 = JLik Eq. (20)
Electrolyte charge transport equation—k = (n, s, p)
4, 2KZURT(1-t.) 8%Inc,
-Kk axz'k — ) axf'k =i Eq. (21)
Intercalation current density—k = (n, p)
Jiik = akKok "/ Cs,surf i * Cek
° (Cs,k,max - Cs,surf,k )
- 2sinh| 22 (& = dese —Uouc) |, Eg. (22)
RT
JLf,s =0
Output voltage equation
V=¢S|X=Ln+LS+Lp_¢SIX=0_Rclapp EQ- (23)
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TABLE B.2 GPF model governing equations.

Inlet/outlet channels

o|c
I:atk:l :—U'V[Ck]+V'(DkV[Ck]) Eq (24)
Co 2L 4 pC, (u-VT) =V (keosVT)
pPtp o PLp gas Eq. (25)
p a—u+u-Vu =-Vp+uVvau
ot Eq. (26)
Walls
0
Sg%=—V'V[Ck:|+V'( eV;f,kVI:Ck:I) Ea. (27)
(0G)" L (V-VT)=V-(kisVT)
P Jeff ot P eff
(pCp):ff =(1—sg)pWCw +eppC, Eq. (28)
off =(1_8g)kw +8VF"/kgas
PNV gylovps Fyry_H
e [at T Vv) VP gV Y Eq. 29)
Plugs
or
pp/ugCWE:V'(kn/ugvr) Eq. (30)

Web Resources

Matlab scripts for co-simulation and COMSOL models are available at the following link: https://data.mendeley.com/
datasets/298yzrnw35/2
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