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ABSTRACT: Organic color centers (OCCs), generated by the covalent functionaliza-
tion of single-walled carbon nanotubes, have been exploited for chemical sensing,
bioimaging, and quantum technologies. However, monovalent OCCs can assume at least
6 different bonding configurations on the sp” carbon lattice of a chiral nanotube, resulting
in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-
activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a
reduced number of atomic bonding configurations. The chemistry occurs by simply
mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-
1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70—
140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission
peaks that can be assigned to the three possible bonding configurations of the divalent
OCCs based on density functional theory calculations. Notably, these OCC photo-
luminescence peaks can be controlled by temperature to decrease the emission
heterogeneity even further. This divalent chemistry provides a scalable way to synthesize
OCCs with tightly controlled emissions for emerging applications.
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Organic color centers (OCCs) are molecularly tunable
quantum defects that can be synthesized by covalently
attaching functional groups to the sidewalls of single-walled
carbon nanotubes (SWCNTs).'~* These defects display many
intriguing properties, including the formation of new optically
allowed emission states (E;;” and E;;*) that are red-shifted
from the SWCNT band-edge emission (E;;) in the shortwave
infrared."” These states have shown several unique properties
including brightening dark excitons, ultrafast trapping of
excitons,” stabilization of trions,”” and the emission of single
photons at room temperature.® However, the majority of
synthetic chemistries for OCCs (e.g,, diazonium chemis-
try,"”'° diazoether chemistry,'" reductive alkylation,”'>"* and
photoactivated radical addition'*™®) are monovalent-based,
which produce a large number of different, coexisting bonding
configurations on the same nanotube structure."’ ™" This
structural heterogeneity is in part due to the addition reaction
to the nanotube double bond, which produces an unpaired
electron that typically bonds with a H or OH group available in
solution to close the valence state,”® with the reaction
occurring at any one of the six neighboring carbon atoms
relative to the initial functional group (Figure 1la). This
structural heterogeneity can be beneficial to certain applica-
tions, such as machine learning, which may require a large
number of diverse structures, but in general, it has posed a
synthetic challenge for emerging applications of OCCs in
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One possible solution to this heterogeneity problem is the
use of divalent OCC functional groups in which the two bonds
are created equally to the nanotube sidewall. However,
currently available divalent OCCs (e.g, synthesized using
1,2-diiodobenezene) are produced as a mixture of both
monovalent and divalent OCCs presumably due to the
stepwise nature of the addition reaction.'”'**" An alternative
divalent chemistry is cycloaddition, in which the two bonds are
created simultaneously, and the divalent functional group
provides its own pairing bond, which may help decrease the
structural heterogeneity caused by the bonding of a different
functional group.'”**** One such cycloaddition chemistry is
the Diels—Alder reaction, which typically features [4 + 2]
cycloaddition between a diene and dienophile.”* ™’ Star et al.
have shown that cycloaddition reactions can proceed viaa [2 +
2] pathway between enones and SWCNTs.”® Conceptually, a
cycloaddition reaction on SWCNT's would reduce the number
of possible OCC bonding configurations to just 3—a
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Figure 1. Schematic comparing monovalent vs [2 + 2] cycloaddition
divalent OCCs and the resulting bonding configurations. (a)
Monovalent chemistry using diazonium salt to functionalize
SWCNTs. Six possible bonding configurations of the resulting
OCCs are generated via an addition reaction on the sp* carbon
lattice. The gray atom at the center shows the aryl group attachment
site, while the pairing group (H or OH) may add to the other 6 atoms
shown in cyan. (b) Divalent chemistry via [2 + 2] cycloaddition can
be used to functionalize SWCNTs with enophile molecules, including
N-MMI, MA, or CPD in ethylene glycol at elevated temperatures,
producing 3 possible bonding configurations (shown in cyan atoms).

substantial reduction compared to the 6 bonding config-
urations of monovalent OCCs (Figure 1a,b). Furthermore, it is
reasonable to suspect that the rotational constraint of divalent
OCCs compared to their monovalent counterparts” may
further reduce the emission line width. However, these
important hypotheses have not been experimentally verified.

In this study, we demonstrate the synthesis of divalent
OCCs with reduced structural heterogeneity on SWCNT's via
[2 + 2] cycloaddition using enophiles such as methylmaleimide
(N-MMI), maleic anhydride (MA), and 4-cyclopentene-1,3-
dione (CPD). In the functionalized (6,5)-SWCNTs, we
observed three distinct OCC photoluminescence (PL) peaks
centered at 1112 (1.115 + 0.008 eV), 1139 (1.089 + 0.006
eV), and 1213 nm (1.022 + 0.012 eV), whose predominance
can be controlled by the reaction temperature. At lower
temperatures (80 °C), the ~1139 nm peak is favorably
synthesized, while at 120 °C, the 1112 nm peak dominates.
These observations are corroborated by density functional
theory (DFT) calculations, providing evidence that [2 + 2]
cycloaddition can reduce the atomic bonding configurations to
just 3 on a chiral nanotube.

B EXPERIMENTAL SECTION

Synthesis of OCCs through [2 + 2] Cycloaddition. The OCCs
were synthesized using a [2 + 2] cycloaddition reaction involving the
addition of various enophiles to the conjugated double-bond structure
of SWCNTs. For a typical reaction, approximately 1-5 mg of
SWCNT powder (CoMoCat SG6Si, Sigma-Aldrich, lot no.
MKBZ1159 V) was added to S mL of ethylene glycol (VWR, lot
000238286) in a 10 mL round-bottom flask. Next, 2—15 mg of an
enophile (EP), such as methylmaleimide (N-MMI; Sigma-Aldrich,
97%), maleic anhydride (MA; Sigma-Aldrich, 99%), or 4-cyclo-
pentene-1,3-dione (CPD; Sigma-Aldrich, 95%), was added to the
mixture. The mole ratio of [EP]:[C] was in the range of 20:1-7:1,
where [C] was based on the total mass of the SWCNT powder,

irrespective of the (6,5)-SWCNT purity. The round-bottom flask was
placed in a mineral oil bath and heated overnight at controlled
temperatures between 70 and 140 °C. The mixture was continuously
stirred with a stirring bar throughout the reaction. The reaction was
stopped by cooling the mixture to room temperature. The SWCNTs
were filtered out using a polyvinylidene fluoride membrane
(MilliporeSigma VVLP membrane, 0.1 ym pore size) and rinsed
with approximately 50 mL of nanopure water at least three times. The
functionalized SWCNT material was then rinsed with S mL of ethanol
at least three times to remove the remaining water. Finally, the
powder was dried under a vacuum at room temperature for 1 h to
obtain a dry powder of the OCC-functionalized SWCNTs (OCC-
SWCNTs).

Individual Dispersion of OCC-SWCNTs. The dry OCC-
SWCNT powder was dispersed by ultrasonication (Misonix 4000)
in 1 wt/vol % sodium deoxycholate (DOC; Sigma-Aldrich)-H,0
solution at 4 W/mL for 30 min. Typically, approximately 1 mg of
OCC-SWCNTs was dispersed by 1.5—2 mL of 1 wt/vol % DOC
solution, followed by centrifugation at 25000g (1717 rad/s, 16400
rpm on Eppendorf centrifuge 5417 R) for 1 h to remove bundled
SWCNTs.

PL Characterization. Ensemble PL spectra of the OCC-
SWCNTs were collected by using a NanoLog spectrofluorometer
(Horiba Jobin Yvon). The samples were excited with a 450 W xenon
source dispersed by a double-grating monochromator. The slit width
bandpass of the excitation and emission beams was both set to 10 nm.
The PL spectra were collected using a liquid-N, cooled linear InGaAs
array detector. The emission spectra were collected with excitation
light at the E,, wavelength of each specific chirality. The integration
time for the PL spectra and PL excitation map were 2—60 and S s,
respectively. All samples were diluted with 1 wt % DOC and had an
optical density at the E;; band of less than 0.5 (A/cm), measured
using a PerkinElmer Lambda 1050 spectrophotometer with a
broadband InGaAs detector.

PL images of the OCC-SWCNTs were imaged on the single
nanotube level using a hyperspectral imaging setup.*®*" In brief, ~5
uL of the 1000-fold diluted OCC-SWCNTs solution was drop-cast on
a polystyrene-coated Au-on-Si substrate. The polystyrene layer
insulates the SWCNTSs from contacting the Au, which would quench
the PL, while the Au layer is used as a mirror to enhance the
excitation and collection efficiency of the emission. An infrared
optimized 100X objective (LCPLN100XIR, numerical aperture (NA)
= 0.85, Olympus) was used, along with a continuous wave laser at 730
nm (Shanghai Dream Lasers Technology Co., Ltd.) as the excitation
light source. Fluorescence emission from the sample was filtered
through a long pass dichroic mirror (875 nm edge, Semrock, USA),
which removed the elastic laser scattering from the sample and then
dispersed by a volume Bragg grating (VBG; Photon Etc, Inc.
Montreal, Canada). Only diffracted light with a narrow bandwidth of
3.7 nm was collected on the detector to form a spectral image.

As the functionalized SWCNT samples were prepared in ethylene
glycol and sonicated under aqueous conditions, some peak position
variation can be attributed to different degrees of water or ethylene
glycol filling inside the nanotubes.”'~** Therefore, a more accurate
way to compare the relative energy of each bonding configuration is
through the relative energy difference between the E;; peak and the
OCC emission (AE = AE = Eqcc emission — E11), Which corresponds to
the OCC trapping depth.** Consequently, we deconvoluted the OCC
emission peaks based on AE rather than solely using the emission
energies.

Raman spectroscopy was performed by using a LabRAM ARAMIS
Raman microscope (Horiba Jobin Yvon) with a 532 nm laser
excitation (46 mW) and a 1.0 neutral density filter to prevent sample
damage. The integration time was 1 s and repeated 10 times. The
dispersed nanotube solution was precipitated with ethanol and then
deposited on a Si substrate, whose 520.7 cm™" Si peak served as a
reference during the measurement.

Quantum-Chemical Modeling. All calculations except for
transition state search and ab initio molecular dynamics (AIMD)
were performed with Gaussian 09 software.” A 10 nm (6,5)-SWCNT
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Figure 2. OCC generation on SWCNTs via cycloaddition using N-MML. (a) PL excitation map of the pristine SWCNT starting material, which
primarily features the (6, S) nanotube chirality, but also contains other chiralities, including (8, 3), (7, S), (8, 4), and (9, 2). (b) PL excitation—
emission map of the nanotubes from (a) after reacting with N-MMI at a [N-MMI]:[C] ratio of 7:1 at 100 °C, showing the OCC emission at
wavelengths in the range of 1100—1300 nm. (c) PL excitation map of the SWCNTs from (a) treated under the same conditions as in (b) at 100
°C, but without the addition of N-MMI. (d) PL spectra extracted from a-c of the pristine (6,5)-SWCNT starting material (black) after reaction
with N-MMI at 100 °C (red) and after treatment with the same reaction conditions but without the addition of N-MMI (blue). The SWCNTs are
excited at the E,, transition (565 nm). All the PL spectra were measured after dispersing the samples in 1 wt/vol % DOC/D,O. Note that the small
peaks in the pristine material and the “without N-MMI” control are the E;; or phonon sideband emissions from other nanotube chiralities. (e)
Raman spectra of SWCNTs reacted with N-MMI (red) and the pristine SWCNT starting material (black). Note that the PL spectra are normalized

to the maximum peak intensity and the Raman spectra are normalized to the G-band at ~1590 cm™".

1

was functionalized with N-MMI at 3 positions (PP(1/3,1/3), PP(1/
3,-2/3), and PP(—2/3,1/3)). The geometries of all structures were
optimized using the Coulomb-attenuated B3LYP (CAM-B3LYP)
functional”® and 3-21G basis set.”” The optical transitions were
computed by using TD-DFT with the same functional and basis set.
We analyzed the natural transition orbitals (NTOs)*® with Gaussian
09 software and confirmed that the NTOs are strongly localized at the
OCGC, further verifying the defect origin of the optical transitions. We
note that the simulated peaks are higher in energy compared to the
experimental data mainly due to the finite length of the SWCNTs, the
functional, the limited basis set, and the vacuum environment used in
the simulations. However, these limitations do not change the relative
emission energy ordering of the different bonding configurations®’
and hence we did not attempt to make corrections of the simulated
peaks to the experimentally observed range as the correction is a
qualitative adjustment and requires significantly more computational
expense.

Transition State Search and AIMD. To better understand the
reaction pathways, we applied the climbing-image nudged elastic band
(CI-NEB)>%*" and AIMD calculations. DFT calculations were carried
out using the Vienna ab initio simulation package (VASP)** with the
generalized gradient approximation (GGA) Perdew—Burke—Ernzer-
hof (PBE)** functional in a plane-wave basis set along with projector
augmented-wave (PAW) pseudopotentials.** For geometry optimiza-
tion, we used a plane-wave cutoff of 400 eV and optimized the
atomistic models until the total energy converged to a threshold of 1
X 107 eV. We generated (6,5) SWCNTSs with one unit cell (364
atoms) and extended the length along the tubular axis to infinity
under periodic boundary conditions. Vacuum spacings of 9 A were
added in the x and y directions to minimize spurious interactions. The
overall size of the rectangular simulation cell was 26.26, 16.50, and
40.68 A. The CI-NEB calculations were carried out with a force
tolerance of 0.01 eV/A. For AIMD calculations, the PP(1/3, 1/3)
configuration was first heated to 300 K for a duration of 150 fs with a
time step of 0.5 fs by a Nosé—Hoover thermostat with repeated
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velocity rescaling. Then, 1 ps microcanonical trajectories were
generated using the Verlet algorithm with a time step of 1 fs. All
calculations were performed at the I" point.

B RESULTS AND DISCUSSION

To synthesize the divalent OCCs via [2 + 2] cycloaddition, we
used CoMoCat SG65i SWCNTs, which primarily consist of
the (6,5) nanotube chirality, along with minor (8,3) and (7,5)
components and a limited amount of larger diameter
nanotubes, such as (9,2) and (8,4). Figure 2a shows a two-
dimensional (2D) PL excitation—emission map of the SG65i
starting material in which the E;; emissions of the different
chiralities can be identified. To conduct the [2 + 2]
cycloaddition reaction, 1—5 mg of this SWCNT powder was
added to ethylene glycol, which is a highly viscous “solvent”
that can kinetically suspend the SWCNTs (as bundles) by the
shearing force created from a stir bar, in which the resulting
suspension remains stable for ~2 days. We added 2—15 mg of
the enophile molecules, such as N-MMI, MA, or CPD, to this
SWCNT suspension under stirring, and then heated the
mixture overnight at different temperatures, ranging from 70 to
140 °C, to activate the reaction. The resulting OCC-
functionalized SWCNTs (OCC-SWCNTSs) were then sub-
sequently dispersed in 1 wt/vol % sodium deoxycholate
(DOC)/D,0 solution for further characterization (see the
Experimental Section for details).

After the reaction, we measured the 2D excitation—emission
map of the samples to determine whether or not the OCCs
were successfully added to the nanotubes. Figure 2b shows the
ensemble PL results of the N-MMI functionalized SWCNT's
(N-MMI-SWCNTs) at 100 °C. Compared to the pristine
starting material, the functionalized SWCNTs display multiple

https://doi.org/10.1021/jacs.4c08105
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OCC emissions'® red-shifted from the E,; peaks of the
individual chiralities, convoluted at >1100 nm. In contrast,
when we treated the SWCNTs to the same reaction conditions
but without adding N-MMI, we observed the same E;;
SWCNT emission (Figure 2c) as that of the pristine nanotubes
(Figure 2a). The PL emission spectra of the pristine SWCNTs,
N-MMI-SWCNTSs, and the control without the addition of N-
MMI are shown in Figure 2d by using 565 nm excitation,
which corresponds to the E,, band of the (6,5)-SWCNTs. For
the SWCNTSs reacted with N-MMI at 100 °C, there is a bright
OCC emission peak (E;;”) at ~1130 nm (1.097 eV) with a
shoulder band extending to 1400 nm (0.886 eV). In contrast,
the control group (no N-MMI added) shows no significant
increase in PL intensity in the range of >1100 nm, though its
E,, emission shows a marginal blueshift of ~1-2 nm
compared to the pristine nanotubes. These control experi-
ments exclude side reactions due to the solvent or dissolved
oxygen. We also measured the 2D PL maps and emission
spectra (565 nm excitation) for SWCNTs reacted with MA
and CPD at 100 °C (Figure S1). Similar to N-MMI, new
OCC-induced emission was observed for both samples in the
range of 1100—1300 nm.

We measured the Raman spectra of the reacted samples to
further confirm the covalent functionalization of the SWCNTs
rather than surface adsorption. Figure 2e shows the Raman
spectra of the pristine SWCNTSs and N-MMI-SWCNTs. The
Raman G-band (~1590 cm™) is related to the stretching of
the sp’ C—C bonds in graphitic material. The Raman D-band,
known as the disorder band or the defect band,” appears as a
minor peak at ~1316 cm™' in the pristine sample. Upon
covalent functionalization, the conversion of the sp* hybridized
carbon atoms into sp® results in a noticeable increase in the
Raman D-band in N-MMI-SWCNTs. Specifically, after the
reaction, the D/G ratio increased from 0.07 to 0.31. Note that
the starting nanotube material (SG6Si) contains metallic
nanotubes, which could react more efficiently than the
semiconductors, and it is difficult to quantify their contribu-
tions. However, these results show that the OCCs are
covalently created on the SWCNTs, which generates the
optically allowed OCC PL emission in the observed red-shifted
range >154

To further investigate the convoluted emission of the N-
MMI-SWCNTs prepared at 100 °C (1100—1300 nm, Figure
2b), we utilized hyperspectral PL microscopy to directly
observe the PL of individual nanotubes.** This method allows
us to circumvent averaging effects in the ensemble PL to
observe which individual E;;” emissions may occur. To
prepare the sample, we dispersed the nanotubes in 1 wt/vol
% DOC aqueous solution, which we deposited on a
polystyrene (PS)-coated Au on Si substrate (see the
Experimental Section). Note that ultrasonication was used
during the dispersion step, which cuts the SWCNTSs short,
beyond the diffraction limit.’® Therefore, the individual
nanotube PL appears as white spots rather than rodlike, as
shown in Figure 3a. In addition to using tip sonication and
centrifugation to individualize and remove nanotube bundles,
the sample was diluted 1000-fold prior to deposition on the
substrate to ensure the SWCNTs were well-separated and
individualized.

Unlike the ensemble PL, which featured convoluted OCC
emission, the hyperspectral imaging revealed 80 individual N-
MMI-SWCNTs (Figure 3b) that featured three distinct OCC
peaks. The average peak positions were centered at
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Figure 3. Hyperspectral PL imaging of individual (6,5)-SWCNTs-N-
MML. (a) Photoluminescence image of the N-MMI-SWCNTs taken
in a broadband mode covering the 900—1550 nm hyperspectral range.
(b) Venn diagram illustrating the statistically analyzed OCC
functionalization emissions of the 80 measured individual nanotubes
synthesized at 100 °C. Three sets of nanotubes are found: nanotubes
containing E;;~* only (blue), nanotubes containing E;; "% only (red),
and nanotubes containing E;; ™ only (green). The overlap between
circles represents nanotubes containing two or more of the OCC
emission peaks. The numbers indicate the number of nanotubes
containing one or more specific OCC peaks. (c—e) PL spectra of
individual (6,5)-SWCNTs-N-MMI with different OCC emission
peaks of (c) E;;™ at 1112 nm (1.115 V), (d) E;; " at 1139 nm
(1.089 eV), and (e) E;; ¢ at 1213 nm (1.022 eV).

approximately 1117 (1.111 + 0.008 eV), 1145 (1.083 +
0.009 eV), and 1216 nm (1.019 + 0.015 eV), as shown in
Figure 3c—e. We denote these peaks as E;; ™", E, % and E;; 5
respectively, all of which feature a similar full width at half-
maximum (fwhm) of 0.033 + 0.007, 0.033 + 0.006, and 0.038
+ 0.011 eV (Table S1). While some nanotubes displayed only
one of these peaks, we also observed convoluted, multipeak
OCC emission from individual nanotubes and built a
histogram of the OCC emission peaks (Figure S2). Note
that in these individual nanotubes, the E;;” to E;; PL intensity
ratio ranges from 1:3 to 1:2, suggesting a relatively low defect
density. Similar OCC emissions were recorded for (8,3)- and
(7,5)-SWCNTs functionalized by the same cycloaddition
reaction using N-MMI (Figure S3).

These results suggest that the three observed OCC emission
peaks may be related to the 3 possible bonding configurations
of the [2 + 2] cycloaddition product, which is significantly
reduced compared to the 6 distinct emission peaks of the six
bonding configurations created by monovalent diazonium
chemistry.”>” Additionally, we hypothesize that more than one
OCC with different bonding configurations can be present on
the same SWCNT, which would explain the multipeak
emission observed from some of the individual nanotubes.
We note that [2 + 2] cycloaddition reactions typically require
photoactivation. The observation of thermally activated [2 + 2]
reactions with SWCNTSs was therefore surprising, which
warrants further studies to explore the underlying mechanism.

To further explore these 3 different OCC emission peaks, we
aimed to control the reaction products using temperature.
First, we functionalized SWCNTs at different temperatures
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ranging from 80 to 120 °C at a [N-MMI]:[C] ratio of 7:1 and
measured the ensemble PL spectra (Figure 4) as well as the 2D

80 °C
w0 °C
100 °C
1 e=120°C
= «Pristine

—al
B¢, e
E

PL intensity

T T T
1100 1200 1300

Wavelength (nm)

T
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Figure 4. Temperature-dependent OCC emission from the reaction
of (6,5)-SWCNTs with N-MMI at [N-MMI]:[C] = 7:1. PL spectra of
(6,5)-SWCNTs reacted at 80 °C (blue), 90 °C (green), 100 °C
(orange), and 120 °C (red). The PL spectrum of the pristine
SWCNTs is shown by the dashed gray line. The PL spectra are
normalized to the E;; emission of the (6,5)-SWCNTs.

PL maps (Figure S4). Note that we deconvoluted the OCC
emissions in the ensemble PL spectra of these samples based
on the relative energy difference between the E;; and E;;~
peaks (AE), as determined from the single nanotube
hyperspectral imaging results (see Table S1 and the
Experimental Section for details). At a reaction temperature
of 80 °C, the resulting OCC emission primarily features E;;
at ~1130 nm (~1.097 eV) (Figure 4, Figure S4a). As we
increase the temperature beyond 90 °C, E;; ™ and E,, ™ appear
and ultimately begin to dominate the spectra. Specifically, at
120 °C, the OCC emission switches to E;;™* at ~1111 nm
(~1116 eV) along with E;; ™ at ~1228 nm (1.010 eV) (Figure
4, Figure S4d). Similarly, we investigated the temperature
dependence of the implantation of the OCC using MA ([MA]:
[C] = 20:1) at reaction temperatures of 70 to 140 °C (Figure

S5). The lower reaction temperature (70—90 °C) favors E;,
while the higher temperature (110—140 °C) favors the
formation of E;; " E;"° is also generated at medium
temperature (90—110 °C). However, at a higher temperature
of 140 °C, E,,"° is less favorable, and the main emission is
E,;”". We note that the relative reactant ratios also affect the
peak distribution (Figure S6), but this effect is less pronounced
compared with the temperature. These results suggest that the
formation of E,, " is kinetically favored with a smaller
activation energy, while the formation of E;;”* and E;;”*
requires a higher activation energy (Figure S7). However,
E,™" is more favorably synthesized at higher temperatures
compared to E,; ‘. Therefore, the E;;”* emission likely derives
from the most thermodynamically stable OCC product
compared to E;; " and E;; .

To gain an atomistic understanding of the three OCC
emissions, we utilized first-principles simulations of the (6,5)-
SWCNTs-N-MMI. A DFT framework was employed to
explore the potential energy landscape and perform ab initio
molecular dynamics (AIMD), while time-dependent DFT
(TD-DFT) was used to calculate the optical properties, as
described in the Experimental Section. As model systems, three
bonding configurations of 10 nm-long (6,5)-SWCNTs were
constructed with N-MMI OCCs via the [2 + 2] cycloaddition
mechanism®” at different pairing positions (PP) of PP(—2/3,
1/3), PP(1/3, 1/3), and PP(1/3, —2/3), as shown in Figure
Sa—c. This notation of bonding configuration was adopted
from our previous study.'® For (6,5)-SWCNTs, these three
PPs create 33, 87, and 27° angles with respect to the SWCNT
axis, respectively.

Furthermore, the five-membered ring of the N-MMI s tilted
on the helical surface of the (6,5)-SWCNT. DFT calculations
on six different configurations using the PBE functional and a
plane-wave basis set (Figure S8) showed that the tilt angle of
the N-MMI group has a negligible impact on the ground and
excited state properties. Instead, the most significant effect
arises from the relative position of the functional group with
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Figure S. Emission and relative energy of the three possible bonding configurations of OCCs generated by N-MMI. (a—c) Schematics of the OCC
bonding configurations formed on the SWCNT based on the [2 + 2] cycloaddition reaction, in which the functional group is covalently bonded at a
pair of nanotube carbon atoms indicated by (a) PP(—2/3, 1/3) (33° to the SWCNT axis), (b) PP(1/3, 1/3) (87° to the SWCNT axis), and (c)
PP(1/3, —2/3) (27° to the SWCNT axis). (d) TD-DFT simulated emission wavelengths of OCCs featuring the PP(—2/3, 1/3) (red), PP(1/3, 1/
3) (blue), and PP(1/3, —2/3) (black) bonding configurations (oscillator strength vs simulated wavelength shown in the left and bottom axes in
black), superimposed with the experimental PL spectra from (6,5)-SWCNTs-N-MMI synthesized at 80 (green) and 100 °C (yellow) (PL intensity

vs experimental wavelength shown in the right and top axes in red).
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respect to the nanotube’s axis (Tables S2 and S3). Based on
the geometry optimization, we obtained the total energies of
each isomer relative to PP(—2/3, 1/3), which has the lowest
total energy (Table S4). The other two isomers were 0.100 and
0.069 eV higher than that of PP(—2/3, 1/3), suggesting that
they are kinetic products.

We next simulated the excited states of these isomers via
TD-DFT to obtain the OCC PL wavelengths of each isomer.
Figure 5d and Table SS show that PP(—2/3, 1/3), PP(1/3, 1/
3), and PP(1/3,-2/3) have simulated OCC emissions at 960,
972, and 1186 nm, respectively. These divalent attachments
result in significantly less distortion of structural symmetry
compared with monovalent defects. Specifically, the PP(—2/3,
1/3) and PP(1/3, 1/3) defects exhibit nearly identical angles
(29.5° and 30.5°) relative to the chiral vector of the (6,5)
SWCNT. This reduced distortion leads to nearly degenerate
excitons associated with these defects. Similar findings have
been predicted for other types of divalent OCCs,”” suggesting
a general trend of lower spectral diversity for divalent defects
compared to their monovalent counterparts. It is important to
note that the wavelengths obtained with TD-DFT are blue-
shifted compared to what is observed experimentally due to
the limitation of the computational methodology. The
approximations include quantum confinement effects due to
the vacuum environment and the short tube length used in the
model as well as the limited basis set.’”” Since these factors
affect the emission signal for all model systems similarly and do
not change the relative energy ordering between the different
bonding configurations,”” the relative positions of the three
peaks allow for a reasonable assignment of the experimental
peaks. As shown in Figure 5d, comparing the simulated peaks
to the experimental data allows us to assign the thermody-
namic bonding configuration PP(—2/3, 1/3) to the E;; ™ peak
at 1112 nm, while the kinetic configurations of PP(1/3, 1/3)
and PP(1/3, —2/3) can be assigned to E;; " at 1139 nm and
E;,™° at 1213 nm, respectively. We further constructed the
natural transition orbitals of these OCCs, which support these
excited state assignments (Figure S9). The results consistently
suggest that the [2 + 2] cycloaddition chemistry can effectively
reduce the number of possible bonding sites.

We further evaluated the reaction pathways for the three
bonding configurations using the climbing image extension of
the nudged elastic band (CI-NEB) approach (Experimental
Section). Here, the initial reactants were generated by shifting
the functional groups of corresponding bonding configurations
about 3.7 A along the Z axis. Although these initial reactants
are not identical, the energy variation is minimal (~0.007 eV).
Along the reaction pathways, we find 10 intermediate
structures, with the highest energy structure corresponding
to the saddle point, ie, the transition state (Figure 6 top
panel). Throughout all pathways, it is found that the N-MMI
gradually approaches the tube. At the transition state, the C=
C bond in the N-MMI molecule elongates from ~1.3 to 1.5 A,
and a C—C bond of ~1.6 A forms between the molecule and
the tube. In later stages, a second C—C bond forms, leading to
a four-membered ring with bond lengths of ~1.6 A. Our
calculations reveal that the three bonding configurations
exhibit different barrier heights (Figure 6 bottom panel).
The thermodynamically stable structure PP(-2/3, 1/3) has
the lowest barrier of 2.17 eV, while the kinetic configurations
of PP(1/3, 1/3) and PP(1/3, —2/3) have slightly higher
barriers of 2.35 and 2.20 eV, respectively. Note that these
calculations are carried out in vacuum conditions, a significant

PP(-2/3,1/3) 2301 A 2174 2196
PP(1/3, 1/3) r ]
PP(1/3, -2/3)

o 1 2 3 4 5 6 7 8

Reaction coordinate, A
Figure 6. Transition state search by the CI-NEB method shows that
the cycloaddition reaction pathways of the three divalent OCCs on
(6,5)-SWCNT are similar, with differences in barrier heights,
suggesting kinetic control of divalent OCCs using temperature. The
top panels show the calculated three transition states, whereas the
bottom panel depicts the potential energy along the reaction
coordinate.

approximation compared to experimental measurements
performed in solvent environments. Therefore, the absolute
values of the barrier heights are not quantitative. Nonetheless,
the variations in barrier heights align with our expectations
about the temperature dependence of product distributions.
Finally, we expect the presence of complex chemical dynamics
mediated by thermal fluctuations toward the formation of
thermodynamically stable products. To illustrate this possi-
bility, we conducted AIMD simulations of the PP(1/3, 1/3)
configuration under ambient conditions. A sample trajectory
shown in Figure S10 shows the formation of a more stable
configuration concomitant to the elongating C—C bond within
the four-membered ring structure on the tube. A detailed
theoretical investigation of these dynamics will be presented in
our follow-up study.

B CONCLUSIONS

We demonstrate that the addition of enophile molecules to
SWCNTSs can enable a [2 + 2] cycloaddition reaction to
produce divalent OCCs with just three bonding configurations
on chiral nanotubes. These three bonding configurations can
be controlled by the reaction temperature. A low temperature
(70—90 °C) favors the synthesis of the E;;”” OCC bonding
configuration emitting at 1139 nm, which is likely a kinetically
favored product. A higher temperature (110—120 °C) favors
the synthesis of E;; ™" and E;,”* sites emitting at 1112 and 1213
nm. The synthesis of E;;™ becomes suppressed at an even
higher temperature of 140 °C. The relative system energy and
the OCC emission wavelengths were rationalized by first-
principles simulations, which we used to assign the OCC
emissions to the three distinct bonding configurations. Our
results suggest that the E, " and E,,~° emissions are related to
kinetic OCC products, while E;;~* corresponds to the
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thermodynamically most stable bonding configuration. These
findings demonstrate a potentially scalable method that can be
used for various SWCNT chiralities to create structurally
controlled chiral OCCs at specific bonding configurations.
Importantly, this cycloaddition reaction does not require a
catalyst, nor does it generate byproducts®® that can affect the
nanotube emission properties. These findings help address the
heterogeneity challenge and provide a scalable synthesis of
OCCs for applications that require narrow emission.”**’
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