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Abstract

Many protein-protein interactions behave differently in biochemically purified forms as compared
to their in vivo states. As such, determining native protein structures may elucidate structural
states previously unknown for even well-characterized proteins. Here we apply the bottom-up
structural proteomics method, cryolD, toward a model methanogenic archaeon. While they are
keystone organisms in the global carbon cycle and active members of the human microbiome,
there is a general lack of characterization of methanogen enzyme structure and function.
Through the cryolD approach, we successfully reconstructed and identified the native
Methanosarcina acetivorans pyridoxal 5’-phosphate (PLP) synthase (PdxS) complex directly
from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found
that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously
proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not
observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single
8a/8 TIM-barrel domain, surrounded by seven additional helices to mediate solvent and
interface contacts. A density is present at the active site in the cryoEM map and is interpreted
as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a
heterogeneous cellular sample, our results reveal a departure from previously published
archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior
cases. This study demonstrates the potential of applying the cryolD workflow to capture native
structural states at atomic resolution for archaeal systems, for which traditional biochemical

sample preparation is nontrivial.

Importance

Archaea are one of the three domains of life, classified only recently as a phylogenetically

distinct lineage (1). There is a paucity of known enzyme structures from organisms of this
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domain. This is further exacerbated by characteristically difficult growth conditions and a lack of
readily available molecular biology toolkits to study proteins in archaeal cells. As a result, there
is a gap in knowledge concerning the mechanisms governing archaeal protein behavior and
their impacts on both the environment and human health; case in point, the synthesis of the
widely utilized cofactor PLP (a vitamer of vitamin B6, which humans cannot produce). By
leveraging the power of single particle cryoEM and map-to-primary sequence identification, we
determine the native structure of PLP synthase from cellular lysate. Our workflow allows 1) rapid
examination of new or less characterized systems with minimal sample, and 2) discovery of

structural states inaccessible to recombinant expression.

Introduction

While protein complexes from model eukaryotic and prokaryotic systems are highly represented
in structural biology literature, there remain gaps in knowledge in cases of dynamic cellular
processes and taxonomically neglected species. As members of one of the three domains of life
alongside bacteria and eukaryotes, archaeal organisms have been chronically understudied due
to several issues that have hindered accurate documentation of the domain. These include, but
are not limited to, the incompatibility of bacterial identification strategies with archaeal cell
structure, the sheer difficulty of culturing archaea, and the lack of a robust body of archaeal
genome annotation in existing databases (2). Furthermore, many of these species can be
recalcitrant to traditional molecular biology techniques, due to strict anaerobic growth conditions
and a lack of established gene editing capabilities. While clonal and CRISPR-Cas9 techniques
have been recently introduced for methanogenic archaeal clades, they are not currently
commercially available nor widely distributed (3-5). However, often these unique cases provide
crucial evolutionary context for foundational biology.

One such group of organisms are known as methanogens, a subset of the kingdom

Euryarchaeota of the domain Archaea classified by their unique ability to anoxically metabolize
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organic compounds and produce methane. Methanogens are the primary source of biogenic
methane on earth and are cornerstone to the anoxic carbon cycle. These archaea are
ubiquitous, but mostly colonize habitats such as wetlands, sewage plants, and the stomachs of
livestock (6). Methanogenesis is an ancient metabolism, with the first methanogen likely existing
not long after bacteria and archaea diverged (7). We may already have an example of their
tremendous influence on the biosphere, as the emergence of methanogens has been implicated
in disrupting the global carbon cycle prior to a prehistoric era of mass extinction (8). Though still
responsible for producing 1 gigaton of methane annually, much of the methane produced is
subsequently metabolized by other methanotrophic microorganisms living in syntrophic
association (6). The activity of methanotrophs is still insufficient to offset combined biogenic and
non-biogenic sources of methane, such that the impact of microorganisms cannot be ignored in
the effort to curtail greenhouse gas emissions.

Yet another feature of several methanogenic archaea is their relationship with the
human microbiome. Archaeal species have now been identified from skin, the Gl tract, and
respiratory tract (9, 10). The consequence of cross-feeding with fermentative bacteria in this
context is promoting overgrowth of pathogenic microbes, yet this field of research is still in its
infancy. Still, there are some methanogenic archaea now tied to periodontitis, IBS, and
colorectal cancer (11, 12). Since Hzis a methanogenic substrate, methanogens keep
environmental concentrations of Hz low, energetically benefiting the fermentative metabolism of
other bacteria. While these effects are not known to arise from virulence factors of the archaea
themselves, these outcomes do result from their metabolic behavior and adherence to sites of
infection. A mechanistic understanding of their key enzymes may give rise to therapeutic targets
that can ameliorate these polymicrobial diseases.

Of current structural biology techniques, cryogenic electron microscopy (cryoEM)
singularly enables us to achieve high resolution structures of large-scale, frozen-hydrated

protein complexes in their native states (13). Previous publications have pioneered a pipeline
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that allows for autonomous reconstruction and identification of unknown proteins from images of
an enriched cellular milieu, using an in-house software termed cryolD (14-16). By avoiding
extensive genetic modifications, proteins may maintain the conformations, complexation, and
chemical modifications crucial to their activity in living cells. To date, this method has not been
applied to an archaeal system in pursuit of cryoEM reconstruction of native proteins.

Here, we have applied the cryolD approach to study the model methanogen species
Methanosarcina acetivorans. By directly imaging and identifying native cytosolic proteins, we
have successfully determined the PdxS subunit of its pyridoxal 5’-phosphate (PLP) synthase.
Our reconstruction of the dodecamer reveals departures from the only two known crystal
structures of Euryarchaeota Archaea and demonstrates the promise of the cryolD workflow for
samples from less characterized systems, particularly those from Archaea, where molecular

biology approaches have been limited.

Results

Overall Structure

In efforts to simultaneously ensure a sufficiently high population of dominant species in this
sample while preserving as many native interactions as possible, per the cryolD approach, a
glycerol density gradient alone was used to fractionate the sample by size. A 2mL fraction
window containing particles 8-12 nm in diameter was pooled for structural examination due to
the promising 2D class averages noted in negative stain electron microscopy (EM) screening
(Figure 1B). Even after selecting a bespoke size range, resultant images of stained and frozen
samples make evident the retained heterogeneity after separation (Figure 1A). Similar classes
were noted between negative stain and cryoEM 2D averaging, and by employing a single
particle analysis approach, we reconstructed a cryoEM map to 3.38 A with D6 symmetry (Figure
1C). Even with just several views predominating, a high resolution map could be reconstructed.

This made it rather feasible to “mix and match” various putative top and side views of different


https://doi.org/10.1101/2024.07.09.602819

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.09.602819; this version posted July 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

101  proteins in our 2D classes, and discover an ab initio reconstruction that produced a rational and
102 continuous density. After repicking the dataset with a deep learning model trained on particles
103 contributing to the best ab initio model, we successfully expanded our particle dataset selecting
104  specifically for this bespoke species. Using the 3.4 A resolution cryoEM reconstruction, we

105  could identify the particle as the synthase (PdxS) subunit of the Methanosarcina acetivorans
106  pyridoxal 5’ phosphate (PLP) synthase (previously shown to appear in supramolecular complex
107  with its glutaminase subunit, PdxT) through the cryolD software, as well as model amino acids
108 11 to 301 of the monomeric subunit.

109 Like other homologous PLP synthase structures, the M. acetivorans PdxS dodecameric
110  complex consists of two layers of homohexameric rings that stack cylindrically, with an outer
111  diameter of 108 A and an inner diameter of 42 A. Each monomer adapts a triose phosphate
112 isomerase (TIM) barrel fold that houses the active site for deoxyxylulose 5-phosphate (DXP)-
113  independent PLP synthesis from D-ribose 5-phosphate (R5P), D-glyceraldehyde 3-phosphate
114  (G3P), and ammonia. Ribulose 5-phosphate (Ru5P) and dihydroxyacetone phosphate (DHAP)
115  are also acceptable substrates, as PdxS demonstrates triose and pentose isomerase activity in
116  addition to PLP synthesis (as suggested by the domain architecture) (17). There is strong

117  density in this binding pocket adjacent to residues annotated as binding sites for R5P,

118  suggestive of captured particles undergoing native catalysis. The first ten residues lack clear
119  density for modeling, as was similarly observed with the Arabidopsis thaliana Pdx1.2/1.3

120  pseudoenzyme structures (18), indicating that this region is relatively flexible when unbound to
121  its glutaminase, PdxT. The rest of the monomeric secondary structure elements are named by
122 sequence, as depicted in Figure 1B. There are in total 15 alpha helices and 8 beta sheets, with
123 helices a1-8 (excluding prime and double-prime alpha helices) participating in the TIM-barrel
124 fold with beta sheets 31-38.

125 Interactions between PdxS subunits
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The atomic model of the PdxS complex shows high levels of surface and charge
complementarity in its inter-subunit binding interfaces (Figure 3A, 3D). The monomer itself
resembles an asymmetric, inverted triangle, demonstrating on either side a convex (A) or
concave (B) facet posed for lateral binding. Monomer tips also interdigitate at the hexamer-
hexamer interface, creating altogether three distinct types of lateral contacts that give rise to the
dodecamer, here described as AB, AA, and BB (Figure 3B). A network of 6 inter-subunit
hydrogen bonds anneal the facets of interface AB together, while 6 such interactions comprise
AA, and another 6 comprise BB (while each have 3 unique bonds respectively, these are
doubled due to the inherent two-fold symmetry of the “self’ interfaces). The residues
contributing to the AB contacts are as follows. One hydrogen bond forms between glutamate 98
of helix 3 and arginine 233 of helix 7. Also posed on a7 is aspartate 227, which forms two
hydrogen bonds; one with histidine 93 from loop B3 to a3, and arginine 90 on B3. Arginine 67
from loop a2’- a2 forms a backbone contact with methionine 282 of loop a8”-a9. Loop a8”-a9
also supports a glycine backbone H-bond to glutamate 72 on a2. Lastly, aspartate 118 from
loop B4 to a4 forms a hydrogen bond with lysine 172 of a6. The “self’ interfaces (AA and BB)
are dominated by electrostatic interactions between alpha helices 6 and 6'. Comprising the AA
interface, the three unique sidechain bond pairs include hydrogen bonds between lysine 186
(a6’) to aspartate 124 (06-6’), arginine 194 (a6’) to glutamate 197 (a6’), and arginine 194 to the
C-terminal carboxylate of tryptophan 301. For the contacts involved in BB, the three unique
bonds include a hydrogen bond between lysine 172 (a6) and glutamate 187 (a6’), and another
two between arginine 179 (a6) and glutamate 188 (a6’).

The overall shape of the monomer is topologically complementary to itself, given that
monomers within a hexamer self-associate via the concave-convex fit of the A and B interfaces.
The alpha helices external to the (B/a)s TIM barrel motif (aN, a2’, a6’, a6”, a8’, a8”, and a9) are
also responsible for some morphological stabilization in addition to protecting the active site

from solvent exposure (aN and a2’). These stabilizing contacts include a protrusion of the T115-
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Y121 loop into a hydrophobic patch along the crevice between the adjacent monomer’s a6 and
a7 helices along the AB interface. Another such region is located at the same interface, anterior
to the aforementioned loop; a7 and a8" share valine and (iso)leucine-mediated contacts with the
adjacent monomeric unit's a3 helix.

In our maps, no instances of PdxT binding were observed, even after extensive 3D
classification and examination under a low-density threshold. Furthermore, upon screening the
higher molecular weight fractions off of the glycerol density gradient, no abundance of PdxS-
PdxT supracomplexes were present as determined by 2D classification and examination of
individual micrographs. In homologous proteins for which there are crystal structures, the aN
helix of PdxS is instrumental to PdxT binding (19). The M. acetivorans aN helix displays several
solvent-exposed hydrophobic residues (116, G19, F20, M23), with regions of dense negative
and positive charge above and below, respectively, which is highly suggestive of a putative
binding interface for the glutaminase. That being said, given that this sample represents a
composite of the most dominant states in our cellular lysate, our work may suggest a novel state
wherein PdxT binds extremely transiently and upon delivery of substrates, need not remain
docked to the PdxS homo-dodecamer.

Active site chemistry and evolutionary conservation

On the interior of the TIM barrel, we observe an elongated density adjacent to residues
annotated as substrate binding sites (Figure 4A). The PLP synthase active site chemistry as
currently understood is rather complex, involving ring openings, closings, and isomerizations,
but generally proceeds with a linearized R5P being stabilized via formation of a Schiff base of its
C1 with an active site lysine residue (19). A secondary lysine residue likewise bonds with the C5
of R5P, and is eventually responsible for swinging the intermediate to a second phosphate
binding site exterior to the TIM barrel (20). Based on comparison with previous crystal
structures where PdxS was co-crystallized with R5P and various intermediate states, the

density is most likely to belong to either bound RSP or a R5P Schiff-base intermediate. Docking
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a R5P moiety with the molecule oriented such that the phosphate group is positioned in the
bulbous density nestled between 36 and loop 156-164 then positions the oxygen 1 of RSP next
to lysine 88, which is where the structurally equivalent lysine in other structures (e.g.
Plasmodium berghei) forms a Schiff base intermediate with R5P (Figure 4B-E). This also
positions R5P to engage in a hydrogen bond with aspartate 31. One caveat to this assignment
is that the oblong density adjacent to the putative phosphate density does, however, run in a
perpendicular direction to the conserved R5P position. Repositioning the R5P to align with this
perpendicular density could suggest engagement of the second active site lysine (K156) in
formation of a second Schiff base with C5, but the density in our map for K156 is very strongly
oriented in its alternate conformation facing away from the TIM barrel active site (Figure 4C). It
is clear, therefore, that multiple substrate states have likely been captured in this averaged
density map.

Upon performing a phylogenetic analysis of the PLP synthase sequences from other
biological systems for which crystal structures have been deposited, it is apparent that the M.
acetivorans PdxS shares more sequence and structural homology with the other deposited
bacterial and eukaryotic PLP synthases than with the two archaeal systems so far determined
(Pyrococcus horikoshii and Methanococcus jannaschii) (21, 22). This is due to a 37-aa insertion
that appears in various archaeal classes within the kingdom Euryarchaeota (a kingdom shared
with M. acetivorans), though notably this mainly appears within extremophile genera. The
insertion gives rise to an extra alpha helix and beta sheet between equivalent helices to M.

acetivorans a6’ and a6”.

Discussion

In this study, we have determined the first native structure of the PdxS component of PLP
synthase from an archaeon by cryoEM and the cryolD approach. We demonstrate that the high

degree of structural and sequence conservation witnessed in other crystal structures across
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bacteria and eukaryotes, is also shared in this archaeal lineage. Intriguingly, our model shows
greater divergence from the sole deposited archaeal PLP synthase structures at current than all
other taxa for which the synthase structure is known. Given that these two species are
extremophiles, the helical insertions may provide greater stability of the oligomeric interfaces
under high temperature conditions. The comparisons also shed light upon early evolutionary
history, as this could further evidence the crosstalk between diverging archaeal and bacterial
lineages via horizontal gene transfer, resulting in highly conserved properties such as de novo
PLP synthesis coexisting with highly divergent properties such as s-layer and membrane
composition (23-26).

Pyridoxal 5’-phosphate is a vitamer of vitamin B6, which is an essential cofactor for
human neurological and immune health yet is one that humans and animals cannot natively
synthesize. PLP is the biologically active state of vitamin B6, participating in over 160 crucial
enzymatic processes which include the metabolism of glycogen, amino acids, and lipids (Figure
5) (27, 28). Particularly due to its roles in production of neurotransmitters and modulation of
interleukin-2, PLP deficiencies have been correlated with neurological disorders such as
epileptic encephalopathy, schizophrenia, and Parkinson’s disease, as well as immune system
dysregulation and heightened inflammation (29, 30). Since humans can only obtain vitamin B6
from their diet or from endogenous microbial species, it is clear that microbiome composition
and activity have an effect on vitamin B6 utilization (31). As components of the gut and oral
microbiome, vitamin B6 production may represent another route through which archaea have
specific relevance to human health outcomes, as our work both confirms the expression and
particular abundance of PLP synthesis in our model species M. acetivorans. Furthermore, the
fact that humans lack the genes for de novo vitamin B6 synthesis suggests that PLP synthases
are a potentially druggable target for microbial disease. Some methanogenic archaea can grow
mutualistically with environmental bacterial colonies, marking them for examination in the

development of therapeutics against pathogenic bacterial species.

10
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229 Our present work also demonstrates the promise of leveraging the cryolD workflow for

230  native proteins harvested directly from cellular lysate. With only crude size-based fractionation,
231  current single particle analysis capabilities were successful in selecting, reconstructing, and

232 identifying a native protein. Furthermore, we observe in our density some evidence of active site
233 occupancy. Because of the multiple orientations of R5P or R5P intermediates this density

234  accommodates, it is likely that we captured an amalgamation of many catalytic states. With

235  further imaging and a greater particle set, these states can be classified and separately

236  reconstructed. As such, this particular promise is fruitful for studying native interactions involved
237  in catalytic cycles of enzymes, or for those systems which lack developed or established

238  molecular biology techniques for extensive gene editing and endogenous protein purification.
239  Structural characterization of biomolecules is crucial to 1) the development of targeted therapies
240  in disease-causing systems, and 2) the pursuit of evolutionary descriptions of function. This

241  shows it is essential to leverage the gross information retrieval capabilities of bottom-up cryoEM

242 toward understudied organisms, such as those in archaeal taxa.

243 Materials and Methods

244  Sample Preparation

245 M. acetivorans C2A (DSM 2834) was cultivated in 100 mL serum bottles with a N2:CO2 (80:20)
246  headspace and 50 mL medium as previously described (32). Methanol was used as the sole
247  carbon and energy supply (50 mM). Cells were harvested at OD ~ 1 by centrifugation at 10,000
248  x g for ten minutes at 5°C in an IEC tabletop centrifuge. Cells were resuspended in chilled lysis
249  buffer (137 mM NaCl, 2.7 mM KCI, 10 mM Na2HPO4, 1.8 mM KH2PO4, 5 mM MgCl, 2 mM
250  dithiothreitol (DTT), and protease inhibitor) and lysed via 1.5-150 Watt adjustable sonication at
251  20-25 kHz (40% power using ten 2s pulses at 4°C). Cell lysate was incubated with benzonase
252 for 10 min before centrifugation (12,000 g for 6 min at 4°C) to clarify nucleic acid and cellular

253  debris. The supernatant was decanted, applied to a 10-30% glycerol density gradient, and

11
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254  centrifuged at 110,000 g for 20 hours at 4°C. 500 uL gradient fractions were evaluated by SDS-
255  PAGE and negative stain electron microscopy (EM), and selected fractions containing particles
256  8-12 nm in diameter were pooled together for subsequent grid preparation.

257  Electron microscopy (EM) of stained and vitrified samples

258  For negative stain EM screening, 3 L aliquots were applied to glow-discharged formvar/carbon-
259  coated grids (300 mesh, Ted Pella) and incubated for 1 min, before negative staining with 2%
260  uranyl acetate. Samples were screened on an FEI Tecnai F20 electron microscope operated at
261 200 keV, and images were recorded on a TIETZ F415MP 16-megapixel CCD camera at a

262  nominal magnification of 60,000x%.

263 Prior to freezing, n-dodecyl-beta-maltoside (DDM) was added to the sample to a final
264  concentration of 0.0043% (one half the CMC) to alleviate protein denaturation arising from

265  aggregation at the air-water interface. Subsequently, 3 pL aliquots were applied to glow-

266  discharged holey carbon grids (Quantifoil R1.2/1.3 300 mesh, Ted Pella) and incubated for 10 s
267  before automated blotting and flash-freezing in liquid ethane with a Vitrobot Mark IV vitrification
268  system (Thermo Fisher Scientific). Various freezing conditions—including chamber temperature,
269  humidity, blotting time, blotting force, and drain time after blotting—were screened on the

270  aforementioned instrument used during negative stain evaluation. Optimal conditions were

271  obtained with a 90 s glow discharge, a chamber temperature of 4°C and 100% humidity, 5 s
272  blotting time, blot force of 0, and 0 s drain time. Optimized cryoEM grids were stored in liquid
273 nitrogen until cryoEM data collection.

274 Imaging for downstream processing was performed on a Titan Krios 300 kV electron
275  microscope (Thermo Fisher Scientific) equipped with a Gatan Imaging Filter (GIF) Quantum LS
276  and a Gatan K3 direct electron detector. 14,890 movies were recorded with SerialEM in super-
277  resolution mode at a nominal magnification of 81,000, yielding a calibrated pixel size of 0.55

278  AJpixel at the specimen level (33). The GIF slit width was set to 20 eV. Each movie contained 44

12
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279  frames with an exposure time of 2.2 s per frame, giving a total estimated electron dose of 50 e-/
280 A2,

281  Structure determination

282  Movie frames were aligned with patch motion correction in the cryoSPARC v4 suite, after which
283  the calibrated pixel size was 1.1 A/pixel (34). Defocus values were determined with the

284  cryoSPARC patch CTF estimation job. Autonomous, reference-free particle picking was first
285  performed with the Blob Picker tool, specifically selecting for particles in the size range of 80-
286 120 A diameter. Initially 14,627,499 particles were picked from 14,890 micrographs, and boxed
287  out by 300 x 300 pixels. After several iterations of 2D classification to remove junk classes,

288 three distinct classes demonstrating alignment to 6 A resolution emerged. These classes were
289  used as templates to repick the dataset, which after iterative 2D classification yielded 17 well-
290 aligned classes of 614,949 particles. This particle subset was subsequently used to train the
291  deep learning-based particle picker Topaz, after which the entire dataset was again repicked
292 with the trained model, yielding 3,724,083 particles (35). Another round of iterative 2D

293  classification gave rise to many well-aligned, distinct 2D classes. Of these, several classes

294  appeared to represent a 100 A D6-symmetric structure. These were used for training of a

295  separate Topaz model, and the dataset was picked a third time with a model trained on just
296  these views. From the resultant 2D classes, a total of 99,971 particles were selected and

297  subjected to ab initio reconstruction in cryoSPARC.

298 This initial model was used as a reference for nonuniform refinement, and with D6

299  symmetry enforced, the map reconstructed to 3.59 A. After 3D classification and iterative CTF
300 refinement and 3D refinement, the final resolution was 3.38 A based on the gold standard FSC
301 0.143 criterion. B-factor, local resolution, and FSC curves were all calculated in cryoSPARC.
302  Structure Identification with CryolD

303  After feeding cryolD our sharpened map, the program generated two query sequences built into

304 two helical domains. The model was extended on both termini as permitted by the density,

13
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resulting in the following query sequences: 1) GGKYLKLPLGLGKGLGGKGLL, and 2)
LPGKLGLGG. The top ranked output was UniProt Q8TQH®6, or PdxS, which was further
validated by docking the Alphafold3-predicted structure into our density.

Atomic Modeling, Model Refinement and Graphics Visualization

Modeling was performed by docking the Alphafold3 predicted structure of the PdxS monomer
into the cryoEM density, and confirming that the output identification was rational. The model
was then iteratively real-space refined in the ISOLDE package of UCSF ChimeraX and
validated in PHENIX, until outlier scores became negligible (36-38). A last round of real space
refinement was performed in PHENIX, and evaluated using the PDB validation server (39).
Visualization of all maps and models was performed with UCSF ChimeraX. All sequence

alignments were performed with ClustalW and visualized with ESPript 3 (40, 41).
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494  Fig. 1. CryolD workflow for the reconstruction of PdxS. (A) M. acetivorans cells are lysed by

495  sonication, fractionated by size, and applied to TEM grids. (B) Representative negative stain
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TEM micrograph of selected density gradient fraction and corresponding 2D class averages. An
example PdxS particle and its corresponding 2D class are both boxed in blue. (C-E) Cryo data
reconstruction workflow (boxed in dotted gray). An example cryoEM micrograph (C) illustrates
the extent of sample heterogeneity, with particles of interest corresponding to PdxS boxed in
blue. Like in panel B, corresponding 2D class averages are boxed in blue. After selecting initial
classes that represent top and bottom views, the dataset was repicked with a Topaz model
trained on the selected classes, giving rise to the second set of 2D classes exclusively showing
different views of our chosen particle (D). Using D6 symmetric nonhomogenous reconstruction

in cryoSPARC, we obtain the map seen in panel E. Density map is colored by cylindrical radius.
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Fig. 2. Monomer structure of PdxS. (A) Multimer structure of PdxS with one subunit highlighted.
The monomer subunit is depicted as a ribbon representation with secondary structure elements
labeled (B) and with selected sections docked into the cryoEM density (represented as a mesh)

to demonstrate sidechain fit (C). (D) Domain structure of the PdxS monomer and its complete
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510  primary sequence with secondary structure elements, binding site residues, and multimer

511 interface interactions annotated according to UniProt entry (42). (E) Space-filling representation
512  of the monomer model with multimer interfaces colored in pink and R5P binding site residues
513  colored in green, along with a second cut-away view to reveal the beta barrel ribbon depiction

514  within.

515

516  Fig. 3. Charge and shape complementarity in oligomeric interfaces. (A) Top and side view of the
517  space-filling representation of the PdxS dodecamer with surface electrostatics depicted in red

518 (acidic) and blue (basic). (B) Cartoon schematic of intersubunit interactions defining each of

23


https://doi.org/10.1101/2024.07.09.602819

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.09.602819; this version posted July 10, 2024. The copyright holder for this preprint (which

519

520

521

522

523

524

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

three types of contacts, based on splitting the asymmetric monomer unit into two unique lateral
faces, A and B. Each contact region is assigned a corresponding annotation color. (C)
lllustration of views for each interface to be depicted in panel D. (D) Electrostatic surface
coloring of complementary interfaces with each unique contact region annotated in its
corresponding color as defined in (B). The AA and BB regions are self-contacts. Overall, acidic

and basic patches along each surface are complementary.
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526  Fig. 4. Active site densities and potential ligand modeling. (A) Ribbon model and corresponding
527  CryoEM density of PdxS in its active site. Nearby active site residues are represented as stick
528 models. The elongated density and its neighboring spherical density colored in pink are not
529  occupied by any nearby side chains. (B-C) Possible R5P configuration in active site density,
530  with the phosphate group docked into the spherical density. A potential Schiff base is

531 represented with K88 as a dashed dark blue and grey line. Hydrogen bonds between the

532  phosphate group and nearby backbone are depicted with a dashed light blue line. (C)

533  Alternative view of the docked R5P, revealing the strong density for the second active sight
534 lysine (K156) in its extra-active site conformation. (D-E) Comparison of Plasmodium berghei
535  and Methanosarcina acetivorans Pdx structure (D) and primary sequence (E). The crystal

536  structure for P. berghei bound with R5P is aligned with our structure, including our hypothesized
537  R5P placement in the density.

538
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RSP + G3P + NH; — PLP + POy + 3H,0

Reaction formula for PdxS catalysis
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Fig. 5. PLP is an essential cofactor for many basic cellular processes implicated in human
health, including biosynthesis and metabolism of amino acids, carbohydrates, lipids, and nucleic
acids; neurotransmitter production; modulating steroidal receptor gene expression; and

regulating immune function and inflammatory responses (17, 43, 44).
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