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Abstract—We propose a geographic content placement policy
for wireless caching networks. This policy, named Joint Caching
Policy (JCP), jointly determines the caching strategy across the
set of base stations (BSs) to improve the hit probability of an arbi-
trarily located user in the network versus caching policies where
placement is independent and identically distributed across the
BSs. To that end, JCP divides the BSs into groups, and executes
a joint caching policy for each group, while content placement
is independent across the groups. Existing joint caching policies
require knowledge of user location to optimize content placement.
On the other hand, JCP does not require any information on
user location, and it provides a content placement policy that
outperforms the one given by Independent Caching Policy (ICP),
proposed by Błaszczyszyn and Giovanidis in 2015, under any user
location distribution. We prove that the hit probability under JCP
is lower bounded by that of ICP. We further propose an extension
of JCP, named JCP-OPT, which improves the hit probability over
JCP by solving a concave maximization problem, provided that
there is side information about the user locations. We validate
the performance of JCP and JCP-OPT via numerical evaluations
and demonstrate that they can provide up to a 30% gain in hit
probability over ICP.

Index Terms—Edge caching, Poisson network, content popu-
larity, hit probability, optimization.

I. INTRODUCTION

With the growth of mobile data traffic by a factor of

2 between 2020 and 2022 [1], the network infrastructure

requires costly upgrades to support the demand. Edge caching

technology has been used to offload the traffic of wireless

networks and alleviate backhaul. Another promising technique

is caching at the base stations BSs [2], using the readily

available infrastructure. Because of limited cache capacities,

the BSs can only store part of the entire catalog content [3].

The placement of these content items determines how much

gain can be achieved by caching at the BSs.

A. Related Work

There has been a significant amount of work on caching

close to the edge. We next review the most related work,

on node-based cache replacement policies, followed by algo-

rithms for caching in networks and coded caching.

Cache replacement algorithms. The conventional ap-

proach to caching, the Most Popular Content (MPC) policy,

fills each cache with the most popular items [4]. In the case

when the popularity of content is unknown, policies, such

as Least Recently Used (LRU) [5], Least Frequently Used

(LFU) [6] and Time-To-Live (TTL) [7], have been designed to

achieve a placement that performs closely to the one of MPC.

Otherwise, if the popularity is known or predicted, there are

policies [8]–[17] that outperform MPC in networks.

Caching in networks and distributed algorithms. Build-

ing on the replacement policies based on various eviction rules,

there have been efforts to optimize the cache hit performance

in wireless networks. For instance, the authors of [8], [9],

and [10] proposed Independent Caching Policies (ICP), which

achieve higher cache hit probabilities compared to MPC.

However, these ICP policies are still suboptimal, because they

set each BS to cache independently from the other BSs. The

authors of [11], [12], [14] proposed joint caching policies

that alleviate redundantly storing identical content in nearby

caches. There have also been game theory-based [15], Gibbs

sampling-based [16], and learning-based algorithms [17] to

optimize uncoded content placement to maximize the cache

hit probability, which has been proved to be NP-hard [18].

Note that joint content placement across caches outperforms

independent placement, as demonstrated by e.g., [11], [12],

[14], [19]. However, existing works on joint placement, such

as [11], [12], [14]–[17], [20], [21], require knowledge of user

location to optimize content placement. In practice, user loca-

tions can be unpredictable. Joint caching without information

on user locations is a key novelty of our proposed framework.

Coded caching in networks. Maddah-Ali and Niesen con-

sidered content placement in a network, where users with finite

memory share a link to the source server containing all content

[22]. The authors discussed the tradeoff between memory and

link rate, which led to the idea of coded caching. In coded

content caching, a cache divides each content item into small

chunks and only stores a subset of these chunks, instead of

storing the item in its entirety. Hence, coded caching leverages

the fine-grained granularity of joint caching, even without

knowledge of user locations. A given user needs to collect

a sufficient number of chunks to obtain a complete item. To

that end, the authors of [23] considered linear network coding-

based content placement in a stochastic network model, but

only for a single content item. The authors of [9] further used

dynamic programming to optimize coded content placement

for multiple items in a stochastic network. In theory, coded

caching can significantly improve the memory-bandwidth

tradeoff. However, in practice, achieving significant gains via

coding requires devising subpacketization mechanisms at fine-

grained granularity, which may not be possible. In this paper,

we restrict our focus to uncoded content caching policies

that always outperform ICP without any knowledge of user



locations. This idea can be reinforced using coded caching

arguments, which is left as a future direction.

B. Contributions

In this paper, we consider geographic content placement for

a wireless caching network for a downlink user that requests

content items, where we model the locations of the BSs using

a Poisson Point Process (PPP) model where each BS has a

finite caching capacity. We divide the BSs into groups and

propose low-complexity joint caching policies for each group

exploiting the demand distribution of the user and the BS

groups. Our main contributions can be summarized as follows:

• We propose a novel caching policy, named Joint Caching

Policy (JCP), which divides the BSs into groups and sets

each group of the BSs to cache jointly. The achievable

hit probability by JCP varies relative to the groupings.

• For our proposed caching network model, we provide a

general Upper Bound for Hit probability (UBH) under

any caching policy, which is not practically achievable.

• We prove that the hit probability of JCP is lower-bounded

by that of ICP, as proposed in [8], [9], and [10].

• We conjecture an upper bound JCP-UB for the hit proba-

bility under JCP, which is achieved when the BSs cover-

ing the user are always grouped together. We prove that

JCP-UB reaches UBH if the items are equally popular.

• We propose an extension, named JCP-OPT, to improve

the hit probability over JCP, given that the BSs groups, as

well as the joint placement policy per group, are known.

• Our numerical evaluations show that JCP and JCP-OPT

can provide up to 30% gains in hit probability over ICP.

C. Organization

The organization of the paper is as follows. In Section II, we

introduce the caching network model and describe the cache

hit probability for a typical user. In Section III, we recast prior

work ICP [8], and provide a general Upper Bound for Hit

probability (UBH) under any possible policy. We also propose

the JCP policy with its hit probability upper bound JCP-

UB. In Section IV, we offer an extension of the JCP policy,

namely JCP-OPT, which achieves the upper bound OPT-UB.

In Section V, we compare our policies with the state-of-the-art

through numerical simulations. In Section VI, we conclude the

paper and discuss some possible avenues for future work.

II. WIRELESS SYSTEM MODEL

In this section, we describe our caching network model. We

detail the coverage model in Section II-A, and define the cache

hit probability for our model in Section II-B.

A. Caching Network Model

We consider a wireless downlink where BSs share the same

frequency. The positions of BSs with index i = 1, 2, 3, ...
are modeled by a uniform Poisson Point Process (PPP) with

intensity λ on a finite 2D plane. Let Φ denote the set of all

BSs. Content items of identical size with indices j ∈ [n] are

cached by the set of BSs. Each BS can store up to C items.

Let binary indicator Xi,j = 1 denote that BS i caches item

j, and Xi,j = 0 denote that BS i does not cache item j. The

variable Xi,j obeys the BS cache capacity constraint:
∑

j∈[n]

Xi,j f C, ∀i ∈ Φ . (1)

In this paper, we only consider one typical user at the

origin point o. A subset ΦT of Φ BSs covers the user. The

user requests one item in the item catalog. The probability of

an item being selected obeys Zipf’s law. Let pj denote the

probability that the user requests item j ∈ [n] = {1, 2, ..., n}.

With normalization coefficient c1 and Zipf’s exponent ξ, pj is

given by [24]

pj = c−1
1 j−ξ, j = 1, 2, ..., n . (2)

If the set of BSs ΦT caches the requested item, a ‘hit’ will

be generated, otherwise, there will be a ‘miss’.

According to the Slivnyak-Mecke theorem, the reduced

Palm distribution of a PPP is identical at all points [25],

which means the properties of a PPP are independent of the

observation position. Therefore, we can apply the results of

the typical user to any user on the plane.

We use the Boolean model, see e.g., [25], to model the

coverage region of the user, which sets the maximum coverage

distance to be a constant R. The coverage area is the circle

O(o,R) with a radius R for a user that is centered at o. We

denote by ΦT the set of BSs inside O(o,R), and the set of

BSs outside O(o,R) are in Φ\ΦT . The BS coverage number

|ΦT | follows a Poisson distribution with density Λ = λπR2

[25]. Denoting by P[Y = y] the probability of Y taking the

value y, the probability that |ΦT | = m is

P[|ΦT | = m] = am =
e−ΛΛm

m!
, m = 0, 1, 2... (3)

B. Cache Hit Probability

The cache hit probability is the key metric for measuring

network performance. Let XΦT ,j denote vector [Xi,j ]i∈ΦT
.

The probability of a ‘miss’ for item j is

P[Xi,j = 0, ∀i ∈ ΦT ] = P[XΦT ,j = 0] . (4)

Let J be a random variable that denotes the index of the

requested item, which satisfies P[J = j] = pj , ∀j ∈ [n]. The

probability of ‘cache hit’ averaged over ΦT and the requested

item J is

Phit = 1− EΦT ,J [P[XΦT ,J = 0]]

= 1−

∞∑

m=0

am
∑

j∈[n]

pjP[XΦT ,j = 0 | |ΦT | = m] .
(5)

We list the important notations of Section II in Table I. To

improve the hit probability expressed in (5), various caching

policies are proposed, which we discuss next.

III. CACHING POLICIES

In this section, we introduce different content placement

policies. We first recast the prior work [8] utilizing our



notation, and summarize their main result. Then, we propose

a general Upper Bound for Hit probability (UBH) in Section

III-B under any caching policy. We propose Joint Caching

Policy (JCP) in Section III-C, give its conjectured upper bound

JCP-UB in Section III-D, and prove that JCP outperforms ICP

in Section III-E.

A. Independent Caching Policy

Under Independent Caching Policy (ICP) [8], each BS

caches item j ∈ [n] with a probability qj . The caching prob-

abilities {qj}j∈[n] satisfy a probabilistic capacity constraint
∑

j∈[n]

qj f C . (6)

The authors of [8] showed that when (6) is satisfied, the

original capacity constraint in (1) is also satisfied.

Under ICP, each BS caches independently, so the miss

probability for item j ∈ [n] and coverage number m ∈ [0,∞)
is (1− qj)

m. The hit probability under ICP is defined as [8]

PICP = 1−

∞∑

m=0

am
∑

j∈[n]

pj(1− qj)
m . (7)

The authors of [8] proved that PICP is a concave function

of caching probability vector {qj}j∈[n], and give the hit

probability under ICP by solving a concave maximization

problem with constraint (6)

ICP: Maximize:
{qj}j∈[n]

PICP ({qj}j∈[n]) (8a)

s.t.
∑

j∈[n]

qj f C . (8b)

We note that ICP always achieves a higher hit probability than

MPC, as proven in [8].

B. General Upper Bound for Hit Probability

We derive a general Upper Bound for Hit Probability (UBH)

in our network model for any possible caching policy. Hit

probability is the probability of ‘cache hit’ averaged over

different coverage numbers. When there are m BSs covering

the user, to maximize the probability of ‘hit’, we can regard

Notation Description

λ, Φ, ΦT Intensity of PPP modeling the BS positions,
set of all BSs and set of BSs covering the user

am Probability that BS coverage is m

i BS index

R Coverage distance in Boolean model

n Item catalogue size

j Item index, j = 1, 2, 3, ..., n
pj Popularity of item j

ξ Exponent in Zipf’s law

J Random variable satisfying P[J = j] = pj
qj probability that item j is cached in a BS

C Capacity constraint per BS

Xi,j Binary indicator of item j being cached by BS i

XΦT ,j Vector of Xi,j , i ∈ ΦT . XΦT ,j = [Xi,j ]i∈ΦT

Phit Hit probability

Table I: Notation.

these m BSs as a joint large cache with capacity m · C, and

fill this large cache with the most popular items. Assuming

that for any coverage number m, BSs in ΦT are always filled

with the most popular items jointly, we obtain UBH

PUBH =

∞∑

m=0

am
∑

j∈[min{mC,n}]

pj . (9)

We next prove that the hit probability defined in (5) is upper

bounded by UBH.

Proposition 1. UBH gives an upper bound on the cache hit

probability as

Phit f PUBH . (10)

Proof. See proof of Proposition 1 in our report [26].

In our network model, the coverage set ΦT is randomly

generated, so without further restrictions, no policy can guar-

antees that ΦT is jointly filled with the most popular items,

and therefore UBH is not achievable in practice.

C. Joint Caching Policy

Under Joint Caching Policy (JCP), to obtain a gain from the

joint placement, we divide the Φ BSs into groups and set the

BSs in the same group cache jointly. The caching policy for

the BSs in different groups is independent. We do not restrict

which BSs to be grouped together.

In each group, the joint placement is done according to

caching probabilities {qIj }j∈[n], obtained as the solution of ICP

optimization problem in (8), where I represents ICP. In this

setting, when we group l BSs together, we regard these l BSs

as a large unified cache with capacity lC. In this unified cache,

items can be repeatedly stored. Our goal is to first determine

the number of item copies to be stored in this unified cache.

To that end, we first draw lC empty bars with length 1, which

Figure 1: Illustration for describing the caching policy under JCP,
where U ∼ Unif[0, 1], the parameter l is the BS group size, and C
is the cache capacity.

is shown in Fig. 1. Then, we fill n colored bars with lengths

from lqI1 to lqIn into the empty bars one by one. If a colored bar

exceeds the empty bar, we put the rest of the colored bar into

the next empty bar. Because {qIj }j∈[n] satisfies probabilistic

capacity constraint (6), all colored bars are filled into empty

bars without overflow. After this, we uniformly generate a

random number U between 0 and 1, and draw a line at U .

Every time the line crosses a colored bar, the unified cache

stores one more copy of the corresponding item. As a result,

there will be at most lC copies of items to be stored.



After the number of copies for each content item has been

determined, we distribute the item copies to the l BSs that

compose this unified cache. Denote the copy amount of item

j by hj . We detail this algorithm below (Algorithm 1).

Algorithm 1 Joint placement algorithm for each BS group

Randomly index the BSs with i = 1, ..., l.
for j = 1, ..., n do

Set indicator h = 0
for i = 1, ..., l do

while h < hj do
if BS i has spare capacity

∑
j∈[n] Xi,j < C then

BS i ← a copy of item j
h = h+ 1

end if
end while

end for
end for

We next define the hit probability under JCP as a function

of the caching probabilities. We first set

Ql,qI
j
= +lqIj ,, Q ∈ N , (11)

and

xl,qI
j
= Ql,qI

j
+ 1− lqIj , x ∈ (0, 1] . (12)

Under JCP, for a BS group with size l, Ql,qI
j

BSs cache

item j with a probability of xl,qI
j
, and (Ql,qI

j
+ 1) BSs cache

item j with a probability of (1− xl,qI
j
).

If we randomly pick k ∈ [l] BSs from the l BSs in the group,

the probability that these k BSs miss item j is a function of

k, l, and qIj , which we determine next.

Proposition 2. Under JCP, for k BSs from a group with size

l, the probability of missing item j is

Pmiss(k, l, q
I
j )

=xl,qI
j
·

k−1∏

r=0

max{1−
Ql,qI

j

l − r
, 0}

+ (1− xl,qI
j
) ·

k−1∏

r=0

max{1−
Ql,qI

j
+ 1

l − r
, 0} .

(13)

Proof. See proof of Proposition 2 in [26].

Because ΦT is randomly generated from Φ in our network

model, the BSs in ΦT may come from different groups, e.g.,

blue or yellow, as shown in Fig. 2-(c). In set ΦT , for a subset

of all BSs from a same group, e.g., the set of blue or the set of

yellow BSs, we denote the size of the subset by k, e.g., k = 1
for each group, i.e., |ΦT | = 2, and the size of the group by l,

e.g., l = 3 for each group. The union of the groups gives the

set of all BSs Φ. We denote by bk,l the number of the subsets

with identical (k, l) pair. We use a matrix B = [bk,l]k,l∈[l′] to

denote how BSs in ΦT are grouped, where l′ is the largest

group size. Because ΦT is random, B is a random matrix.

When coverage number |ΦT | = m, the possible realizations

of matrix B satisfy
∑

k,l∈[l′]

k · bk,l = m . (14)

We denote the set of all realizations of B that satisfy (14)

by Bm. Let PG(m,B′) denote the probability of realization

B′ = [b′k,l]k,l∈[l′] in Bm, which is given by

PG(m,B′) = P[B = B′ |B′ ∈ Bm] . (15)

Therefore, the probability that the set ΦT with size m misses

item j under JCP is given as

P[XΦT ,j = 0 | |ΦT | = m]

=
∑

B′∈Bm

PG(m,B′)
∏

k,l∈[l′]

Pmiss(k, l, q
I
j )

b′k,l . (16)

Substituting (16) into (5) gives the hit probability under JCP:

JCP: PJCP ({q
I
j }j∈[n])

=1−

∞∑

m=0

am
∑

j∈[n]

pj
∑

B′∈Bm

PG(m,B′)

∏

k,l∈[l′]

Pmiss(k, l, q
I
j )

b′k,l .

(17)

D. Joint Caching Policy Upper Bound

As shown in (17), the hit probability under JCP depends on

how BSs in ΦT are grouped. We conjecture an upper bound

for the hit probability under JCP, named JCP-UB, by setting

that BSs in ΦT always compose a group. Then, for a given

coverage number m, the probability that the set ΦT misses

item j under JCP-UB is

P[XΦT ,j = 0 | |ΦT | = m] = max{1−m · qIj , 0} . (18)

Substituting (18) into (5) gives JCP-UB

PJCP−UB({q
I
j }j∈[n])

=1−

∞∑

m=0

am
∑

j∈[n]

pjmax{1−m · qIj , 0} .
(19)

We conjecture that the hit probability under JCP is upper

bounded by JCP-UB.

Conjecture 1. The hit probability under JCP is upper

bounded by JCP-UB as follows:

PJCP ({q
I
j }j∈[n]) f PJCP−UB({q

I
j }j∈[n]) . (20)

We also find that JCP-UB equals UBH when items are

equally popular, which is given next.

Corollary 1.1. When pj = 1
n
, ∀j ∈ [1, n], JCP-UB equals

UBH

PJCP−UB({q
I
j }j∈[n]) = PUBH , (21)

where the right-hand side is given in (9).

Proof. See proof of Corollary 0.1 in [26].



Figure 2: Under Independent Caching Policy (ICP) [8] as shown in (a), the BSs cache independently. Under JCP-UB as shown in (b), the
BSs in ΦT cache jointly. Under JCP as shown in (c), the BSs are grouped. BSs i1,i2, and i5 compose a group, while BSs i3, i4, and i6
form another group. Only the BSs in the same group cache jointly.

E. Joint Caching Policy Lower Bound

We prove that JCP always outperforms ICP.

Theorem 1. The hit probability under JCP is lower bounded

by that of ICP as

PJCP ({q
I
j }j∈[n]) g PICP ({q

I
j }j∈[n]) . (22)

Proof. See proof of Theorem 1 in [26].

IV. EXTENSION OF JCP

In this section, we propose an extension of the JCP policy,

named JCP-OPT, and give its conjectured upper bound OPT-

UB. Under JCP, we do not have knowledge about the distri-

bution of random matrix B. However, there can be situations

in which we obtain some information on B.

Under the assumption that the function PG is known,

we propose JCP-OPT, which improves JCP by solving an

optimization problem with a probabilistic capacity constraint,

as given next.

JCP-OPT: Maximize:
{qj}j∈[n]

PJCP ({qj}j∈[n]) (23a)

s.t.
∑

j∈[n]

qj f C . (23b)

We prove that the optimization problem (23) is a concave

maximization problem.

Theorem 2. The JCP-OPT optimization problem (23) is a

concave maximization problem.

Proof. See proofs of Proposition 3, Proposition 4, and Theo-

rem 2 in [26].

The upper bound for JCP-OPT can be found by solving a

similar concave maximization problem:

OPT-UB: Maximize:
{qj}j∈[n]

PJCP−UB({qj}j∈[n]) (24a)

s.t.
∑

j∈[n]

qj f C . (24b)

We denote the maximal hit probabilities under JCP-OPT and

OPT-UB by P ∗
JCP and P ∗

JCP−UB , respectively. Similar to

Conjecture 1, we conjecture that JCP-OPT is upper bounded

by OPT-UB.

Conjecture 2. JCP-OPT is upper bounded by OPT-UB as

P ∗
JCP f P ∗

JCP−UB . (25)

OPT-UB equals UBH when items are equally popular.

Corollary 2.1. When the item popularity satisfies pj =
1
n
, ∀j ∈ [n], OPT-UB equals UBH:

P ∗
JCP−UB = PUBH . (26)

Proof. See proof of Corollary 2.1 in [26].

Fig. 2 briefly shows the differences between ICP, JCP and

JCP-UB.

V. NUMERICAL RESULTS

In this section, we compare the hit probabilities achieved by

ICP, JCP-UB, JCP-OPT, and UBH, under equal and unequal

item popularity conditions.

We first consider the case that all items are equally popular.

We set ξ = 0, λ = 0.5, c2 = 1, α = 3, n = 25, and C = 3.

We show the hit probabilities achieved under different policies

versus SINR threshold T in Fig. 3-(a). As proved in Corollaries

1.1 and 2.1, both JCP-UB and OPT-UB are equal to UBH. The

hit probability of JCP is located in the shaded region between

ICP and JCP-UB, and the hit probability of JCP-OPT (the

shaded region) lies between the curves corresponding to ICP

and OPT-UB. Both JCP and JCP-OPT provide up to a 30%
gain in hit probability over ICP.

We next consider the case that the items are not equally

popular. We set ξ = 0.56, and keep all other parameters

the same as in the previous paragraph. We illustrate the hit

probabilities achieved under different policies versus the SINR

threshold T in Fig. 3-(b). As shown in the figure, JCP-UB and

OPT-UB perform worse than UBH, but always better than ICP.

The hit probability of JCP (the shaded region) lies between the

curves of JCP-UB and ICP, and the hit probability of JCP-OPT

is located in the shaded region between OPT-UB and ICP. Both

JCP and JCP-OPT provide up to a 25% gain in hit probability

over ICP.

VI. CONCLUSIONS

In this paper, we considered a hit probability maximization

problem in a PPP-modeled cellular network. Drawing on

previous work ICP [8], we proposed a new caching policy, JCP,

which increases the hit probability regardless of user location.



Figure 3: (Left) Cache hit probability versus SINR threshold when content items have equal popularity. (Right) Cache hit probability versus
SINR threshold, where Zipf’s exponent is given as ξ = 0.56.

We further proposed the JCP-OPT policy, which improves JCP

by solving a concave maximization problem, yet requires extra

information on how the BSs are grouped. We also provided

UBH, which is a general upper bound to the hit probability

under any caching policy. We conjectured upper bounds for

JCP and JCP-OPT and proved that the cache hit performances

of both policies are lower bounded by that provided by ICP.

We also proved that the upper bounds for the two policies

reach UBH when the content items are equally popular.

The potential future directions include the followings. First,

the hit probabilities under JCP and JCP-OPT are impacted

by how the BSs are grouped. The BS grouping policy is

an interesting topic. Second, item popularity is dynamic in

practice, and a policy is required to efficiently count the

item popularity. Considering the hit probability achieved with

expired cache items is also part of potential future work. Third,

we only considered the case of a single user in this paper, but

the multi-user situation is more practical. Finally, because the

network has a distributed nature, a distributed algorithm needs

to be proposed to implement joint content placement in each

group under JCP and JCP-OPT.
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