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Abstract— Magnetic modular cubes are cube-shaped bodies

with embedded permanent magnets. The cubes are uniformly

controlled by a global time-varying magnetic field.

A 2D physics simulator is used to simulate global control and

the resulting continuous movement of magnetic modular cube

structures. We develop local plans, closed-loop control algo-

rithms for planning the connection of two structures at desired

faces. The global planner generates a building instruction graph
for a target structure that we traverse in a depth-first-search

approach by repeatedly applying local plans.

We analyze how structure size and shape affect planning

time. The planner solves 80% of the randomly created instances

with up to 12 cubes in an average time of about 200 seconds.

I. INTRODUCTION

Self-assembling modular parts forming bigger structures
is a well-known concept in nature, from DNA to whole
organisms [7]. Self-reconfiguring robot swarms have promis-
ing applications including targeted drug delivery [25], or
microscale manufacturing [21]. Equipping each tiny robot
with its own sensing, actuation, connection, and power
systems remains challenging. Instead, a promising solution is
using external global control that applies the same torque and
force to each robot [26]. Robots with embedded magnets can
be controlled by an external magnetic field and also connect
to each other without any internal power supply [19], [22].
This paper designs a motion planner to assemble structures
using magnetic modular cubes [6]. Planning occurs in the
2-dimensional special Euclidean group SE(2).

This paper follows the Tilt model from [3]–[5], [9], [24],
where all tiles move in the same direction unless they are
obstructed. Reconfiguring one configuration into another is
PSPACE-complete [2]. Minimizing the number of actions for
this problem is also PSPACE-complete [2], [4]. Similar to
[27], the magnets on magnetic modular cubes preferentially
bond, enabling self-assembly. The assembled 2D shapes are
polyominoes [18]. By limiting the controls to only 90�

turns and assuming a uniform movement distance for all
structures per step, magnetic modular cubes follow rules
similar to the Tilt model. Following these limitations, a
simple discrete open-loop motion planner was developed,
that explores a finite configuration-space and lists all the
possible polyominoes that can be created from an initial
configuration [6].

This paper expands on Tilt motion planners [6], [8],
[19] by enabling robots to move at speeds determined by
their shape and handles arbitrary real-number positions and
orientations.
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Fig. 1: Top-down view of the two magnetic modular cube types with
outward pointing magnet poles illustrated as red and blue squares.
Right: magnetic modular cubes with 2.8 mm edges in a workspace.
See overview video at https://youtu.be/C7Bj3Hco_G4.

II. PRELIMINARIES

This section provides a basic understanding of the hard-
ware setup. Further technical details are available in [19].

a) Magnetic Modular Cubes: are cube-shaped bodies
embedded with permanent magnets on the four side faces.
The two cube types are shown in Fig. 1. Magnets ensure that
the cubes align with the global magnetic field and control
how they assemble. Each face is represented by a vector
e 2 { ~N, ~E, ~S, ~W} pointing in the cardinal direction of the
magnetic field. rC is defined as the cube radius.

b) Workspace: Magnetic modular cubes are maneu-
vered on planar workspaces surrounded by a time-varying
magnetic field with sufficient torque to lift one edge of the
cube assembly off the workspace. Due to space limitations,
this paper only considers bounded rectangular workspaces
without internal obstacles.

c) Configuration: The configuration for one cube is in
SE(2), consisting of the position in R2 and an orientation
S = [0, 2⇡) [14]. With n cubes, the configuration-space is
R2n ⇥ S1. We assume all cubes align with the external field
and consider cubes of the same color equivalent.

d) Polyominoes: are face-connected cubes on a 2D
grid. Two cube faces can connect if their magnets have
opposite polarities. Cubes can connect at north and south
faces. If cubes are different types they can also connect at
east and west faces. We consider fixed polyominoes, meaning
that two polyominoes are distinct if their shape or orientation
(with respect to the global magnetic field) differ [18].

e) Motion Modes: The local planner uses two motion
modes, rotating and pivot walking. Rotating the magnetic
field in the plane of the workspace spins each polyomino
about its center of mass.

When the magnetic field elevates the south pole, all
polyominoes will pivot on the bottom edges of their north-
ernmost cubes. Lifting the north pole pivots cubes on the
bottom edges of their southernmost cubes. Polyominoes
rotate around the center point of their pivot edge, called
the north or south pivot point as illustrated in Figure 2b.
After one pivot walking cycle, the polyomino has moved by

http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
https://nsf.gov/awardsearch/showAward?AWD_ID=1849303
https://nsf.gov/awardsearch/showAward?AWD_ID=2130793
%20https://youtu.be/C7Bj3Hco_G4
https://youtu.be/C7Bj3Hco_G4


pivot w
alking axis

north pivot edge/point

south pivot edge/point

distance
pi

vo
t w

al
ki

ng
 m

ot
io

n

initial 

phase 1,2 

phase 3,4 

phase 5,6 

-0.5α -0.5α

α

pi
vo

t w
al

ki
ng

 a
xi

s

a) b)

c)

Fig. 2: Pivot walking: a) six pivot walking phases for a red cube.
The compass depicts the magnetic field (bigger arrow indicates
elevation, in phase 1 the south pole is lifted). b) example polyomino
with pivot axis, edges and points. c) labeled pivot axis rotation.

a displacement vector ~d with length 2 · sin
�
↵
2

�
· k~ak. The

direction and length of ~d changes with the polyomino shape.
The movement is always perpendicular to the pivot walking
axis ~a. k~dk increases with the pivot walking angle ↵, but
large ↵ require more space. A polyomino can walk west or
east. We label the pivot walking direction ~w 2 { ~W, ~E}.

III. LOCAL PLANNER

Our local planner takes two cubes cA and cB from
polyominoes A and B and attempts to establish a connection
at a valid edge-pair (eA, eB). The local planner uses our sim-
ulator from section V in a closed-loop manner. The distance
between two cube centers is d(cA, cB) = kpcA � pcBk.

A. Aligning Cubes
To connect polyominoes A and B, the edges eA and eB

must be aligned. When A is rotated, each cube center rotates

not aligned
straight-align

offset-align (west)
offset-align (east)

a) b)

β

β

Fig. 3: Straight- and offset-aligning. The edges to be connected are
marked yellow. a) two unaligned polyominoes (top) and the result
of a straight-align (bottom). b) results of two options for offset-
aligning; cA aligned with its west edge (top) or east edge (bottom).

in a circle around the center of mass of its polyomino pA.
a) Straight-Aligning: we define a vector

�!AB = pcB �
pcA pointing from cA to cB. Alignment occurs when eA

points in the same direction as
�!AB, so \

⇣
eA,

�!AB
⌘

=

0. Figure 3a illustrates a straight-align for an east-west
connection.

b) Offset-Aligning: north-south connections must align
with an offset, so polyominoes can be moved together from
either the east or west. We define

�!AB = (doffset · eB + pcB)�
pcA , where offset doffset is added to pcB in the direction of
eB.

�!AB is now pointing from pcA to a position above or
below pcB . Instead of pointing eA in the same direction as�!AB, we now have two options: move A east by solving
\
⇣
~E,

�!AB
⌘
= 0 or west with \

⇣
~W,

�!AB
⌘
= 0. These two

options are shown in Figure 3b.

B. Moving Polyominoes Together

Pivot walking only allows the polyominoes to move east
or west. To connect an east face of polyomino A to a west
face of polyomino B, A must walk east towards B, or vice
versa. To connect A at a south face of B, A can walk east
or west towards B, or B could do the opposite. We call this
the slide-in direction ~m 2 { ~E, ~W}, which states that B is
positioned in direction ~m of A. Both slide-in directions can
be achieved in any configuration with offset-aligning.

Polyominoes move at different speeds depending on their
shape or obstacle interactions. We estimate the pivot walking
cycles necessary until cA has moved to the original position
of cB with #steps =

l
d(cA,cB)

k~dAk

m
. We then only walk

l
#steps

2

m

and re-align the cubes. When cA and cB are near enough for
magnetic forces to act, we wait to let magnetic attraction pull
eA and eB together. This automatically adjusts the alignment.
We also decrease the pivot walking angle ↵ when in close
proximity.

C. Plan and Failures

A plan is a sequence of actions A = a1, ..., ak that,
when applied to an initial configuration ginit, leads to a goal
configuration ggoal. Two plans can be concatenated when ggoal
of the first plan matches with ginit of the second. That way,
multiple local plans can be connected to form a global plan.

We compare and evaluate plans based on the rotational
cost of actions. We only consider longitude magnetic field
rotations, not latitude elevation. Let ai be a rotation of angle
� so cost(ai) = |�|. A pivot walking step cost is cost(ai) =
|2↵|. The plan cost is the sum of action costs.

A local plan is successful if ggoal contains a polyomino
with the desired connection of cA and cB at (eA, eB). The
plan state s describes if a plan is successful or not. There
are several failure cases used by the local planner: a blocked
slide-in direction, a connection is required in a cave of a
polyomino, polyominos get stuck in corners or along walls,
or the generation of an invalid polyomino. We also impose
a maximum movement distance that is sufficient to move a
robot along the length and breadth of the workspace.
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Fig. 4: Illustration of all local plans developed by the local planner
by executing different pivot walking directions ~w and slide-in di-
rections ~m. On the left side the initial configuration and connection
cubes/edges of A and B are shown. Choosing ~m = ~E results in
failure due to a wrong connection for both c) and d). For the two
successful plans, b) has 2.4 times the rotational cost of a), making
a) the plan returned by the local planner. Both cA (red) and cB
(blue) leave a trace when pivot walking.

D. Local Planning Algorithm
Before generating a local plan, all failure conditions that

can be pre-checked are evaluated, so that no simulation time
is wasted on a plan that is bound to fail from the beginning.
Next, the possible slide-in directions are determined and
simulated with each possible ~m for both pivot walking
directions ~w. This means that two plans are developed for
an east-west connection and two or four for a north-south
connection. Figure 4 shows an example for a north-south
connection where both slide-in directions are possible.

The successful plan with the lowest cost is returned. Plans
creating invalid polyominoes or polyominoes with caves are
omitted by the global planner. The plans are developed
in parallel. If one process finishes with a successful plan,
the execution of all other processes is canceled. This saves
computation time, but might not return the best plan, since
fastest computation does not imply lowest rotational cost.
Furthermore, the multiprocessing causes non-deterministic
behavior.

The algorithm runs in a loop until the plan state s changes
to success or one of the failure conditions. The failure and
success conditions are evaluated twice per iteration: after
aligning and at the end of the loop.

ggoal is updated by simulating the determined actions.
Actions are appended to A after simulation. We either
perform a straight or an offset-align, depending on eA and
eB. After aligning we walk the estimated amount of pivot
walking cycles in direction ~w, or we wait, if cA and cB are
in close proximity. If we waited in the previous iteration, we

walk in the current one and vice versa.
The stuck condition does not state failure immediately. If

polyominoes are stuck, we perform a straight-align and wait
as long as the cubes are moving.

IV. GLOBAL PLANNER

The global planner assembles a specified target polyomino
T given an initial configuration ginit. The configuration-space
is explored by executing local plans. This limits planning
to configurations where a connection between two cubes
was attempted. Determining how these configurations are
explored affects the run time considerably. Generating a local
plan in our simulation is intensive. Our global planner plans
the assembly of T with as few local plans as possible.

Our approach enumerates the ways to cut a polyomino
into two parts by generating a two-cut-sub-assembly graph.
This graph functions as a building instruction alongside the
exploration of the configuration-space. The algorithm limits
the number of cubes in the workspace to the size of T .

A. Two-Cutting Polyominoes
Schmidt et al. [24] used straight-line two-cuts to construct

polyominoes with more than trivial sub-assemblies. We de-
fine a two-cut as a continuous edge path through a poly-
omino that divides the polyomino into two sub-polyominoes.
Furthermore, we only consider monotone two-cuts, which
means that once the path goes in a direction, it can never
go in the opposite direction. Non-monotone two-cuts would
create sub-assemblies with caves or holes, which could not
be reassembled with our local planner. Due to the usage of
two-cuts there are subsets of shapes we can not assemble.

B. Two-Cut-Sub-Assembly (TCSA) Graph
For a target polyomino T , the TCSA graph is GTCSA(T ) =

{V,E}, represented by nodes V and edges E. The nodes of a
TCSA graph are polyomino sets. A polyomino set S(g) only
enumerates the polyomino types present in a configuration
g. If g contains multiple polyominoes of the same type,
S(g) stores the number of each polyomino type, but does
not distinguish between them.

Two nodes S1 and S0 are connected with an edge
{S1, tc, S0} if one polyomino contained in S0 can be two-
cut by an edge path tc, so that the resulting polyomino set
equals S1. This provides a perspective on the use of two-
cuts and the way GTCSA(T ) is built, starting with T . The
direction of {S1, tc, S0} always goes from S1 to S0 and tc

is stored as the weight. S1 and S0 can be connected by
multiple edges, if there are different connections that produce
the same outcome.

We built a TCSA graph by working through each newly
added node in V in a breadth-first-search manner. The first
node added to V is ST , a polyomino set only containing the
target polyomino.

New nodes and edges are determined by two-cutting every
polyomino type A in the current set Si by every possible
monotone two-cut of A. The cutting results in the two sub-
polyominoes A1 and A2.
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Fig. 5: TCSA graph for a four-cube L-shape. Ellipses show the
polyomino sets. If the polyominoes of a set are not numbered, there
is only one occurrence of this polyomino. The weights of edges
are illustrated as rectangular boxes containing the polyominoes that
need to be connected at specific edge paths, marked in yellow.

Snew contains the same polyominoes as Si with the excep-
tion that one occurrence of A is removed and replaced by one
occurrence of A1 and A2. If Snew is not already contained in
V , it can be added, which also queues it for future iterations
of the breadth-first-search.

No matter if Snew is contained in V or not, an edge going
from Snew to Si with tc as the weight is added to the edges
E. This allows multiple edges, and multiple outgoing edges
to different nodes, which can be observed in Figure 5, where
different connections in S4 lead to S1 or S2.

Each two-cut applied to a polyomino set increases its
amount of polyominoes by one. Let n be the size of T ,
then n�1 two-cuts applied to ST will produce a polyomino
set Strivial containing n trivial polyominoes (single cubes),
as shown for S7 in Figure 5. This implies that no matter
which edges are chosen along the way, n � 1 edges need
to be traversed to get from Strivial to ST . We describe this
attribute by giving the TCSA graph a depth of n.

Our TCSA graph implementation stores nodes in a hash-
table, making it efficient to access nodes and connected
edges, or check if a polyomino set is contained in GTCSA(T ).

C. Connection Options
In each configuration g that the global planner encounters,

GTCSA(T ) will be used to determine the next connection that
the local planner should try to establish. Outgoing edges of
S(g) will be retrieved from the hash-table of GTCSA(T ). If
S(g) /2 GTCSA(T ), g cannot be used to assemble T . This
allows the global planner to state failure immediately when
an initial configuration already contains sub-assemblies that
are not usable for assembling T . Except for ST , all nodes
have outgoing edges in a TCSA graph. All outgoing edges
of S(g) provide connections for the local planner that bring
the global planner closer to assembling T .

For instance, if S(g) = S7 in Figure 5, three outgoing
edges provide three connections to choose from. Multiple
polyominoes of the same type produce even more options to
consider. Assume the global planner decides to connect a red
cube at the west edge of a blue cube to make configuration
g2 with S(g2) = S4. Since S7 contains two red and two
blue cubes, there are four ways to achieve this. Figure 6
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Fig. 6: All connection options when connecting a red cube at
the west edge of a blue cube to get from S7 to S4. Developing
local plans for different polyomino pairs leads to different goal
configurations. (A1,B1) and (A2,B1) lead to configurations with
the desired polyomino set S4, but (A2,B2) leads directly to S2.
All these sets can be found in the TCSA graph of Figure 5. The
goal configuration of (A1,B2) holds the set Sx, which cannot be
found in Figure 5, so it cannot be used for further global planning.

illustrates the four connection options for this example case.
For all four connection options, the local planner ended in
different goal configurations.

Let LA and LB be collections of the physically distinct
polyominoes for polyomino types A and B. When A and B
are to be connected as the weight of a TCSA edge dictates,
there are |LA|⇥ |LB| polyomino pairs to choose from.

With multiple edges and various polyomino pairs per edge,
many options emerge for the global planner to consider. We
examined three option sorting strategies.

a) Minimal Distance: sorts connection options based
on the distance between the connection-cubes cA and cB. A
smaller distance often requires less movement to establish a
connection, which means shorter simulation time and lower
plan cost. Due to sliding on walls and different pivot walking
distances, this is not true in general. Less movement can
prevent unwanted sub-assemblies.

b) Grow Largest Component: sorts options by max-
imum polyomino size n̂ of the resulting polyomino set.
TCSA edges leading to sets with the biggest polyominoes are
preferred, since larger polyominoes generally move faster.
When the options for S4 in Figure 5 are sorted, the one
leading to S1 is preferred over the one leading to S2, because
S1 contains a polyomino of size 3. Options within each class
are sorted by minimal distance.

c) Grow Smallest Component: sorts by the smallest
maximum size of polyominoes in polyomino sets. This
avoids working with large polyominoes, which translate
faster, but need more simulation time to perform rotations.

D. Use of Local Planner

The local planner develops plans for connections chosen
from the different connection options. For that, it needs only
one edge-pair out of the connections stored in the weight
of a TCSA edge. Whenever a path consists of both north-



south and east-west connections, a north-south connection is
preferred to perform offset-aligning.

When the local planner successfully connects the desired
polyominoes, other connections could occur. This can be
seen in Figure 6, when A2 and B2 are connected. The
resulting polyomino set matches S2 instead of S4 in Figure 5.

If the resulting polyomino set is not contained in
GTCSA(T ), it is not possible to assemble the target from
that configuration. This occurs in Figure 6 when connecting
A1 and B2. For global use, we add a failure condition to
the local planner, which checks if the polyomino set of the
configuration in the workspace is contained in GTCSA(T ). If
not, the local planner immediately states failure.

E. Global Planning Algorithm
The global planner returns the state of the global plan

s and a plan stack P as outputs. For a successful plan,
P contains the local plans leading to the assembly of T .
Because the local plans were created using a TCSA graph,
|P | < n holds true. The algorithm explores the configuration-
space along GTCSA(T ) in depth-first-search manner. The
algorithm starts with ginit as the current configuration g and
builds the TCSA graph for T .

Each iteration first determines the connection options O

for g. O only needs to be sorted the first time a configuration
is encountered. Whenever a connection option is popped
from O, the option will never be considered again for this
configuration.

Options are stored per configuration g, not for the poly-
omino set S(g). Nodes in GTCSA(T ) can be encountered
multiple times and will never be eliminated from planning.

The algorithm works through O in the order determined
by the option sorting that was applied in advance. This is
done until a valid local plan is found, or no options are left.

If a valid local plan is found, pnew is pushed onto P and g

is set to the goal configuration of pnew. When a configuration
containing T is reached, the global plan is successful and
the algorithm returns. If no valid option for g can be found,
the algorithm falls back to the last visited configuration. For
that, the top local plan ppre on P is popped and its initial
configuration becomes the new g. If P is empty, the current
configuration is ginit. This means that there is no previously
visited configuration the algorithm can fall back to. In that
case the algorithm states failure for assembling T .

V. SIMULATOR

Our simulator modeling the behavior of magnetic modular
cubes uses the 2D physics library Pymunk1. It is light-weight
and capable of running headless, but also offers an interface
for Pygame2, which we use to visualize developed motion
plans and to allow user controls. This 2D simulator can
only approximate 3D movement, in particular pivot walking.
This trades simulation accuracy for faster simulation time,
enabling global planning in a reasonable time.

Random polyominoes and initial configurations are created
with a seed-based pseudorandom number generator. The

1 Pymunk: www.pymunk.org 2 Pygame: www.pygame.org

option sorting strategies are applied to the same set of seeds
to make the results comparable. When an initial configuration
is randomly generated, the number of red and blue cubes
matches with the target polyomino. Sub-assemblies in the
initial configuration can occur. The global planner states a
timeout failure after a planning time of 600 seconds. We do
not timeout during the simulation of local plans, so instances
can exceed 600 seconds and still be successful if the last local
plan assembles the target polyomino. The experiments were
conducted on multiple computers with the same hardware
specification (AMD Ryzen 7 5800X @ 8x3.8 GHz (-4.7

GHz), 128 GB RAM) running Ubuntu 22.04.2 LTS.

VI. RESULTS

All experiments are available in the thesis [13].

A. Assembly for Polyomino Size

These experiments were conducted with randomly gen-
erated initial configurations and randomly generated poly-
ominoes of specific size n. To maximize the variety of
possible polyomino shapes, the number of red cubes was
set to nred = bn

2 c as indicated in [18]. The workspace is of
size 50rC ⇥50rC and for each target size 150 samples were
taken.

Figure 7a shows the distribution of planning time and
Figure 7b shows the fraction of timed-out instances. The
construction of target polyominoes with sizes 5 to 7 can
be planned in under 30 seconds with just a few outliers
exceeding this time. No instances timed out. For target sizes
above 7, timeout failures first appear with roughly 5% for
n = 8, and increasing to 20% for n = 12. The planning
time for n = 12 increases to 150 seconds on average with a
median of 100 seconds. When increasing n, a wider spread of
planning time can be observed. Outliers can reach planning
times close to the timeout of 600 seconds.

The option sorting strategies make no noticeable difference
in planning time. By fraction of timeouts, growing the largest
component often exceeds the other two strategies, clearly

(a) Planning time in seconds. Plans that time out are omitted.

(b) Fraction of plans that timed out.

Fig. 7: Planning time and fraction of timeouts. All option sorting
strategies are compared with 150 samples each.

www.pymunk.org
www.pygame.org


(a) Planning time in seconds. Plans that time out are omitted.

(b) Fraction of plans that timed out (over 600 s).

Fig. 8: Planning time and fraction of timeouts for rectangular
polyominoes. Sorting strategies compared with 100 samples each.

visible for n = 11, where growing the largest component is
at 20% and the others are under 10% of plans timed out.

B. Assembly of Custom Polyominoes

In these experiments manually designed polyominoes were
assembled from multiple randomly generated initial configu-
rations. 100 samples were taken for each custom polyomino
with a workspace size of 50rC ⇥ 50rC .

1) Width/Height and Cube Pattern: This focuses on how
rectangular polyominoes with varying width/height ratios
influence planning time. Furthermore, we experiment with
two patterns of red and blue cubes for each polyomino.
The switching-column pattern switches between red and blue
cubes column-wise and the checkerboard pattern creates a
checkerboard of single red and blue cubes.

The checkerboard pattern requires the longer planning
time for all types of rectangular polyominoes (Figure 8a).
The “3x3” polyomino takes on average 50 seconds, but the
“3x3 cb” polyomino takes 75 seconds planning time with a
wider spread and worse outliers.

Polyomino shapes with more height than width are faster
to assemble. “10x1” is the best followed by “5x2”, “3x3” and
“2x5”. The same order persists for the checkerboard pattern.
Surprisingly, the “1x10” polyomino breaks out of this order.
Its planning time lays between the “5x2” and the “3x3”.

The “2x5” performs significantly worse than all other
rectangular polyominoes. While most instances for all other
shapes can be solved in under 100 seconds, the “2x5”
exceeds this time with a spread reaching up to 600 seconds.
The “2x5” is the only shape with 5% to 25% timeouts
(Figure 8b). All other shapes experience nearly no timeouts.

2) Special Polyomino Shapes: This examines the assem-
bly of special polyomino shapes. The polyominoes “C”, “S”,
“A” and “O” contain caves and/or holes of different sizes,
but are thin shapes with fewer connections. They more or
less consist of a one-cube-thick line. The polyominoes “I”,

(a) Planning time in seconds. Plans that time out are omitted.

(b) Fraction of plans that timed out (over 600 s).

Fig. 9: Planning time and fraction of timeouts for special polyomi-
noes. Sorting strategies are compared with 100 samples each.

“H” and “Plus” are thick shapes with many connections,
but still contain caves or are at least not rectangular. All
of these polyominoes are built with the checkerboard pattern
to achieve equal amounts of red and blue cubes. The size of
all these polyominoes, except for “C”, is n = 12.

The planning time and fraction of timeouts are evaluated in
Figure 9. Assembling the thin shapes “C”, “S”, “A” and “O”
is comparable in terms of planning time with 100 seconds on
average, which is below the average of randomly generated
polyominoes of size 12, already examined in Figure 7a. The
fraction of timeouts is mostly under 5%, much less than the
25% for the random polyominoes evaluated in Figure 7b.
Shape “O” (4 wide) has the worst performance of the four.

The three thick shapes perform much worse with an
average of 200 seconds planning time for “I” and “H”, and
250 seconds for the “Plus” shape. The instances have a wide
spread in distribution of planning time. Timeouts reach 20%
for “I” and “H”, and even 30% to 50% for the “Plus” shape.
The “Plus” polyomino holds the worst performance out of
all custom and random polyominoes evaluated.

Caves and holes do not impact the performance of the
global planner. The option sorting strategies do not show a
pattern, but have strong differences. Growing the smallest
component, while assembling the “Plus” shape, reduces the
fraction of timeouts by half.

VII. CONCLUSION

We presented a heuristic motion planner to assemble
polyominoes from magnetic modular cubes [6] in SE(2). The
video3, planner and simulator4, and thesis [13] are available.

Designing a local planner that is able to navigate around
obstacles could be a interesting direction for future work. In
hardware experiments, the simulator could be replaced by
a computer vision-based feedback and control system of the
workspace, like the one currently developed by Lu et al. [19].

3
https://youtu.be/C7Bj3Hco_G4

4 https://github.com/RoboticSwarmControl/2024MagneticCubes

https://youtu.be/C7Bj3Hco_G4
https://youtu.be/C7Bj3Hco_G4
https://github.com/RoboticSwarmControl/2024MagneticCubes
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