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Abstract— We present strategies for placing a swarm of
mobile relays to provide a bi-directional wireless network that
connects fixed terminals. No terminals or relays are allowed to
transmit into disk-shaped no-transmission zones. We assume
a planar environment and that each transmission area is a
disk centered at the transmitter. We seek a strongly-connected
network between all terminals with minimal total cost, where
the cost is the sum area of the transmission disks.

Results for networks with increasing levels of complexity
are provided. The solutions for local networks containing low
numbers of relays and terminals are applied to larger networks.
For more complex networks, algorithms for a minimum-
spanning tree (MST) based procedure are used to reduce the
solution cost.

I. INTRODUCTION

The problem of providing a connected network, subject
to constraints, is closely related to the minimum range
assignment problem for radio networks. This is a non-
deterministic polynomial-time (NP) complete problem [5],
where the 2D positions of n terminals are given and the
goal is to assign a transmission radius (correlating to a
transmission power) to each terminal such that the resulting
network is strongly connected, while minimizing the sum of
the squared radii. When applied to aerial relays, the problem
is called constructing a Flying Ad-hoc Network (FANET)
with minimum transmission power [2].

Other related work includes the relay placement problem
which seeks to place the minimum number of relays to con-
nect a set of stationary terminals. Each terminal is assumed to
have a transmission radius of 1 and each relay a radius of r.
For this problem, a 3.11-approximation algorithm is given
along with a proof that no polynomial-time approximation
scheme exists [6].

A necessary condition for a network is that the union
of transmission disks must contain all terminals, similar to
minimum-cost coverage of point sets by disks [1], but this is
insufficient to generate a connected network.

A network is implied by minimum spanning tree (MST)
and Euclidean Steiner tree problems. The Steiner tree is
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Fig. 1. A network that strongly connects m = 4 fixed terminals (in green)

by placing n = 40 mobile relays (in blue) to establish a strongly-connected
mesh network that avoids broadcasting into ¢ = 5 no-transmission disks
(in red). The solution shown minimizes the sum of the terminal and relay
broadcast areas (the green and blue disks).

an undirected graph that connects a set of terminal nodes
and minimizes the total weight of its edges. It does this by
introducing additional internal nodes called Steiner points, if
this helps reduce the total weight of the edges. In general,
these Steiner points have three incident edges, arranged at
120° angles. The cost metric for the Steiner tree and the
MST is the Euclidean distance of the length of all links in
the network. The Steiner tree problem typically generates
a network with the minimum length, but for our broadcast
model, we use a cost function that increases with the square
of the link length. Up to a constant factor, the square link
metric is also considered in the Minimum Area Spanning Tree
(MAST) problem [8], where the area of a tree is given by /4
the sum of the squared edge lengths. However, a MAST does
not guarantee a strongly connected network and further de-
velopment is required to obtain the actual range assignment.
In Sec. I we mathematically formulate the problem and
describe its computational complexity. In Sec. III we provide
optimal strategies for two simple scenarios. These solutions
inspire the strategies developed in later sections. Section IV
defines two heuristic algorithms and applies them to the
general problem without and with obstacles, and presents
simulation results. Finally, Sec. V summarizes the paper and
outlines possible paths forward for this research.

II. PROBLEM DEFINITION

A directed graph is strongly connected if every node is
reachable from every other node in the graph. In this paper,
we assume a node at position A with transmission radius r 4
can communicate with a node at position B if the Euclidean
distance between A and B is not greater than r 4. A problem


http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1932572
https://nsf.gov/awardsearch/showAward?AWD_ID=2130793

instance has a set 7' of m fixed terminals in R2*™ a set of
¢ obstacles specified by disks with radii R in R® and centers
O in R?*?, and a set D of n mobile relays in R?*™. We then
search for a placement of the relays D and an assignment
of transmission radii in R™*™ under the constraints that
the directed communication graph is strongly connected
and none of transmission disks overlap the obstacles. Each
transmission radius defines a transmission disk centered at a
terminal or relay. See Fig. 1 for a sample solution.
The cost C(T, O, R, D) for a network is

m n
C(T,0,R,D)=> 17,4+ > rh;, (1)
j=1 j=1
if |Oi_1}|ZRi+TT,j ViE[l,Qﬂ,jE[o,m]
and |OZ'—Dj|ZRi+TD’j Vi€[1,¢],j6[0,n]
else C(T,0,R,D) = .

Here, r7 ; is the transmission radius of terminal j and 7p ;
is the transmission radius of relay j.

We want to minimize (1). We start by describing solutions
to problems with small numbers of terminals, where it is
possible to generate optimal solutions. For more complicated
instances, we start by computing the MST of the network
with squared Euclidean distances as weights to determine
the graph topology. To locally optimize the position of relay
i, we determine the network neighbors, then move D; to
minimize the required transmission power.

A. Problem Difficulty and Approximation

The range assignment problem of setting transmission
powers with fixed transmitters and no obstacles to provide
strong connectivity in R? is NP-hard [7, Thm 10] and ap-
proximating the range assignments in R? better than 1+1/50
is NP-hard [7, Thm 13].

In contrast, there exists a 2-approximation [9] which holds
also in 3D. First, compute an MST T where the weight of
each edge is given by the squared Euclidean distances. The
cost of 7 is a lower bound of the optimal solution for the
range assignment problem. Second, each terminal is assigned
a transmission range equal to the Euclidean length of the
longest incident edge of 7. This range assignment ensures
strong connectivity of the communication graph between the
terminals. As every edge of 7 is changed at most once for
each incident terminal, this yields a 2-approximation.

Moreover, the analysis is tight as instances of the type
shown in Fig. 2 illustrate; the MST solution results in a range
assignment where each terminal has radius 1 and, therefore,
a total cost of n. The optimal solution has cost (n/2+1) +
(n/2 —1)e2. For n — oo and € — 0, the ratio goes to 2.

B. Optimal Strategies and Heuristics

By restricting the number of terminals, relays, and ob-
stacles, we can construct problem classes with optimal
solutions. We describe two optimal placement cases in the
following section. Adding additional terminals and placing
obstacles makes the problem harder to compute; Section IV
describes heuristic solvers for this problem.
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Fig. 2. A 2-approximation using a MST for the range assignment problem.
The optimal assignment requires lower transmission power for the offset
nodes.

III. OPTIMAL STRATEGIES

A. Two terminals separated by unit radius obstacle

We begin with two terminals, ¢; at [—d,0] and ¢o at
[d,0], separated by a unit radius obstacle disk centered
t [0,0]. Given n mobile relays, what is the lowest cost
network according to (1)? Several sample solutions, solved
numerically, are shown in Fig. 3.
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Fig. 3. Building the lowest cost network between two terminals at [£d, 0]
(in green) separated by a unit radius obstacle (in red), using n relays (in
blue). Each of these subplots is shown by a marker in Fig. 4.

The numerical solver adjusts the positions of the n relays
and the transmission radii of the relays and the terminals.
The transmission radii are constrained to be positive, and
the distance from any transmitter to the obstacle must be no
less than 1 + the transmission radius. Clearly, an optimal
network connecting two terminals forms a single chain.

For a given n, there is a d that minimizes (1). This occurs
if all the transmission radii are equal sized and the relays
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Fig. 4. Building the lowest cost network between two terminals at [£d, 0]
separated by a unit radius obstacle, using n relays as shown in Fig. 7.
Increasing the number of relays n always decreases the cost and decreases
the minimum d that can be covered.

evenly distributed on a semicircle of radius

1

The relays have angular spacing 7. As shown in Fig. 4,
the plots of cost as a function of d have a minimum at the
optimal solution (2) (gray line). For smaller d values the
terminal transmission ranges must be less than the optimal
value, and the relays’ ranges need to be correspondingly
larger. For larger d values all the transmission ranges are
identical and the path of the relays forms two straight lines
that bend in a circular arc about the obstacle. Three or more
relays are required for a solution to exist (see Fig. 5).

These optimization problems are relatively easy because
we know the communication graph topology a priori. When
we do not know the communication graph topology before
the optimization, the solution must include it as part of
the optimization. Even without obstacles, the problem of
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Fig. 5. We require at least three relays to build networks around a unit-
radius obstacle with terminals d units on either side of the obstacle as
shown in Fig. 3. With two relays placed symmetrically at [d,0] + (d —
1)[— cos 0, sin 0] and [—d, 0] + (d — 1)[cos 0, sin 6], the transmission disk
must not overlap the obstacle disk (schematic b). Schematic a) plots 8 values
such that the relays communicate in light orange, and 6 values such that the
relays communicate with their nearest terminal in light blue. These regions
have no union, and converge as d — oo to 6 = 7 /3 (gray dashed line).

assigning the minimum area ranges to each terminal is NP-
complete [5]. For the simple case of three terminals and one
relay, we can find the optimal solution to the problem.

B. Optimal solution: three terminals, one relay

Given a triangle with vertices A, B, C, the relay location
D that minimizes the cost for a strongly connected network
has multiple candidate solutions, as shown in Figs. 6 and 7.

Theorem 1. For three terminals at points A, B, C forming
the triangle N(ABC), a relay is placed optimally on one of
the following three locations:

1) the midpoint of the second largest edge of N(ABC),

2) 1/4 along the perpendicular bisector of the longest
edge of AN(ABC),

3) the circumcenter of A(ABCQC).

Proof. Without loss of generality, we assume that A = [0, 0],
B = [1,0], C = [p,q]; otherwise we rotate and scale.
Let D = [z,y] denote the location of the relay. In an
optimal network, the relay is transmitting to two or all three
terminals; otherwise it brings no added value.

If D has two neighbors, then it is beneficial to transmit
via the shortest side (wlog AC') and place D on the second
shortest side (wlog AB). The resulting costs are

Lo = |AC]* +max({|AD|? |AC|?}) 3)
——
ro? ra?
+ |[BDJ* + max({|AD|*,|BD|?}).
——
T32 ’I“D2
If |AD| > |AC| then |AD|?> + |BDJ* as well as

max({|AD|?,|BD|?}) is minimized for |AD| = |BD|.
Otherwise, we have |AD| < |AC|. If |BD| > |AD|, then
decreasing |BD| and increasing |AD| improves; here we
either end in the situation that |AD| = |BD]| (claim) or
|AD| = |AC]| (case 1). Hence, we have |BD| < |AD| <
|AC|. In this case, |BD|? + max({|AD|?,|BD|*}) = 2 +
(1 — x)? is minimized for x = 1/2, i.e., |AD| = |BD|.
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Fig. 6. Given three terminals at A, B, C, there are three candidate solutions
for the optimal relay placement to minimize the cost of the network. The
solution depends on the shape of the triangle. In the above plots A = [0, 0],
B =10,1] and C = [z, y].
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With three terminals and one relay, there are three types of solutions for the relay position: a) on the midpoint of the second shortest side, b) on

the perpendicular bisector of the longest side 1/4 the height of the triangle, or ¢) at the circumcenter of the triangle.

Now, we consider the case of D having three neighbors.
The optimal solution D lies within A(ABC). The resulting
costs are

L3 =|AD|*+|BD|*+|CD|? (4)
N~ Y~ Y~
ra2 rg? rc?

+max({|AD|?,|BDJ?,|CD|*}).

rp?

We argue that the maximum is attained by two distances;
otherwise we may optimize. Suppose the maximum is at-
tained only for |AD|; this implies that z > 1/2 by |AD| >
|BD|. We consider the derivative with respect to x, namely
da+2(x—1)+2(x—p) = 8x—2(1+p). If it does not vanish,
we may slightly change = and hence improve the cost. If it
vanishes, then z = (1+p)/4 > 1/2 implying that p > 1 and
y < q/4 (as D lies in ABC). This yields a contradiction to
the fact that |AD| > |CD|:

16|AD[? = 16(2? + %) < (1 +p) + ¢*
<(1+p)°+¢" +8p(p—1) < (1-3p)* + (3¢)°
< 16(z — p)* + 16(y — q)*> = 16|CD|*.

Thus, we conclude that the maximum in eq. (4) is attained
by at least two distances. If it is attained by exactly two
distances, we may assume without loss of generality, that
|AD| = |BD|, i.e., D is placed on the perpendicular bisector.
Then the cost function simplifies to

3|AD| +|CD| = 3(2* +y*) + (z — p)* + (y — @)%,

and its derivative with respect to y reads as 6y + 2(y —
g) which vanishes exactly if y = ¢/4. If the maximum is
attained for all three distances, then |AD| = |BD| = |CD]
and D is the circumcenter of the triangle. O

IV. ALGORITHMS FOR MULTIPLE TERMINALS AND
MULTIPLE OBSTACLES

Solutions to the problem of placing movable relays to en-
able communications between fixed terminals are explored.
We begin by adding obstacles between two terminals and
finding a solution strategy. The problem’s complexity is
increased by adding additional terminals and obstacles.

A. Solving for two terminals, n relays with obstacles

Given two points A and B on a plane, the shortest path
that connects them is a straight segment. If the plane contains
obstacles, a shortest path that avoids the obstacles may have
a different shape.

1) Bitangents method: For simplicity, we assume the
obstacles are ¢ circles with centers éi and radii 7o ;, © €
{1,...,¢}, whose area is excluded from the set of possible
coordinates for the points of a path. In this case, the shortest
path between two points is given by an alternating sequence
of straight-line segments and arcs along the circumference
of obstacles [3]. We begin by finding the bitangents for each
pair of circles, and the tangents from the terminals A and B
to each individual circle. If two circles do not overlap, four
bitangents exist. These bitangent lines are tangent to both
circles. If two circles partially overlap, only bitangents that
touch the circles externally exist. However, if one circle is
contained inside the other, no bitangents of any kind exist.

Among all the bitangents and tangents determined through
this procedure, we keep only those whose line of sight (LoS)
is not obstructed by (i.e. do not cross) other obstacles. Next,
we add the circular arcs that connect bitangent points on each
circle. A pair of points on a circle is always connected by
two arcs, which will be different for non antipodal points.
If we add to the set of segments the set of all the shortest
arcs connecting pairs of points on the circles, we can cast
the present system as a graph (V, E, w):

« The terminals, the tangent, and the bitangent points are

the nodes V' of the graph;

« The tangents, the bitangent segments, and the arcs of

circle are the edges E;
o The lengths of each arc or segment are the weights w.

Once the graph is constructed, select a graph search al-
gorithm to determine the shortest path between A and B.
Repeating this procedure for every pair of A and B in the
accessible domain defines the generalized distance. Figure
8a shows in green the shortest path among A and B built
using the bitangent method.

2) k-optimal paths and Yen’s algorithm: Introducing ob-
stacles into a simply connected region of the plane generates
a connected region where nontrivial homotopy classes might
exist. Pairs of paths having endpoints in common are said
to be homotopic. If there exists a continuous transformation
that can bring one to the other or vice versa. Intuitively, if the
two paths enclose an obstacle, no such continuous function
can be defined and the two paths are not homotopic.

In our example of Fig. 8, the green paths in Fig. 8a
and Fig. 8b are homotopic, as they do not enclose any
obstacle. Conversely, the green paths in Fig. 8b and c are
not homotopic to each other or to those in Fig. 8a and b.
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Fig. 8.  Construction of Yen’s k-optimal paths (green) for a certain
configuration of terminals (A and B) and obstacles (red) with the bitangents
method. The 1% Yen’s path (Fig. 8a) corresponds to the absolute shortest
path, particularly, the shortest in its homotopy class. Fig. 8b is in the same
homotopy class of Fig. 8a, but it is not the shortest of its class. Fig. 8c and
d belong to different homotopy classes and are also not the shortest paths.
They are the shortest paths within their respective classes.

Given N obstacles, and assuming paths cannot loop
around obstacles, there are at most 2V classes as each
path can have an obstacle to the left or to the right. Paths
of different homotopy can be found by considering the
k—optimal paths between A and B, i.e. a set of paths ordered
by their length. Using Yen’s algorithm [11] applied to the
edges of the graph defined in Sec. IV-A.1, such a set can
be built. For k sufficiently large all the possible homotopy
classes will be visited.

3) 2-dimensional links: The paths found in Sec. IV-A.2
are 1-dimensional. Given two nodes, they are linked by either
segments or arcs. Now consider nodes that have circular
shape and have a variable transmission radius rp ;. Such
a radius defines the coverage region of the relay. Given n
relays, the problem is their optimal placement to minimize
the transmission cost between two points A and B .

The system is defined by the set of equations (1), with
m = 2. This constrains relays from transmitting into obstacle
regions. We consider the inter-node distances as a measure
of the cost of transmission for each pair and pursue the
goal of minimizing this cost. This is a nonlinear multi-
objective optimization problem with constraints. We consider
a scalarizing function [4] as in (1).

Given an initial number of relays and an initial guess on
their positions, the MATLAB function fmincon attempts
solving the optimization problem while respecting the con-
straints. Fig. 9 shows the results of the optimization:

o Fig. 9a shows the shortest paths of each homotopy
class found in Sec. IV-A.2, where 20 relays have been
placed evenly along each class. This is not an acceptable
solution of the new problem, as the coverage regions
of the relays overlap the obstacles, and so violate the
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Fig. 9. Homotopy classes (a) for a given configuration of terminals

(green) and obstacles (red). Homotopy classes are found by applying Yen’s
algorithm. A uniform coverage is provided as initial condition using n = 20
nodes (blue). A multi-objective optimization (b-d) removes the overlaps
between nodes and obstacles seen in a).

constraints.

o Fig. 9b-d represent the solutions found by fmincon, by
moving the relays with overlapping discs away from the
obstacles, and adjusting the coverage radii to establish
the optimal link between each pair of relays.

The existence of a solution depends on the initial number of
mobile relays n: if n is too small, the relays will not be able
to link the two terminals without overlapping the obstacles.
Let ng be the initial number of available relays, and L the
length of one of the paths in Fig. 9a. Then an average radius
R4yg can be defined as

L
ng + 1 )
If the solution passes through obstacles separated by a
distance larger than R4, (5) is a close estimate of the
actual radii of the relays (Fig. 9c-d). Conversely, corridors
narrower than R,,, result in regions of larger or smaller
local densities of relays (Fig. 9b). A new path of length L'
may then be covered only if the sum of relays required to
cover the different regions is still smaller or equal to ny.

The minimum cost path in Fig. 9c does not belong to the
same homotopy class as the shortest path in Fig. 8. This is
due to the choice of (1) as the scalarization function and the
additional constraints.

Ravg = (5)

B. Solving for m terminals, n relays, no obstacles

When using more terminals the primary goal remains to
connect them through a network at a minimum cost. As in the
1D case, the addition of more relays n affects the nature of
the problem: the case n = 0 and n > 0 generalize the MST
and the Steiner tree problem, but with the non-Euclidean cost
function (1). This also explains why the solutions need not



Algorithm 1 MST-BAsEp NETWORK OPTIMIZATION

1: while TRUE do
2: Compute MST on set of terminals and relays.

3 for relay in relays do

4 if relay in a leaf branch of MST then

5: ‘ Steer relay to parent node with degree > 2.
6: else

7 \ Steer relay to average position of neighbors.
8 end if

9 end for

10: end while

Algorithm 2 ApvaNcED NETWORK OPTIMIZATION

1: for node in network do

2: Find degree of node.

3: if node == terminal and degree == 2 then
4: if star improves cost then
5: | Create star.

6: else

7: | Equilibrate radii.

8: end if

9: else if degree == 3 then

10: | Equilibrate radii.

11: end if

12: end for

share the properties of the 1D counterparts (e.g. the 120°
rule, as shown in Sec. III-B).

With m terminals, the network is a collection of branches
{B} interconnecting nodes. A branch is defined as a path
whose ends are either terminals, or nodes of degree > 2.

The iterative algorithm described in Alg. 1 attempts to
solve this problem.

However, this procedure involves local optimization of the
cost, and is prone to produce local minima. For example the
local rules of the algorithm produce branches with locally
uniform densities, but as they do not allow relays to move
from a denser branch to a less dense one, densities may not
be uniform globally.

To mitigate this issue, assume the system is in a local
minimum, and that the radii of the nodes involved in each
branch are uniform and equal to R = L/(N + 1), where L
is the length of the branch and N the number of its nodes
excluding the endpoints. Let Byy and By, be two neighboring
branches (i.e. with one endpoint in common) with higher and
lower density of relays and thus smaller and larger radii.

Then, we move one relay from the branch with the smaller
R (Rgm) to the branch with the larger R ([?yy), halfway
between the branches’ common endpoint and the first relay.
On the former denser branch the common endpoint is now
distant R’ = 2Ry, from its nearest neighbor, while on the
former less dense side it is distant R’ = Ry, /2, both different
from their branch average. After the algorithm reaches a new
equilibrium the branches will have lengths L’ and one more
or one less relay:
L/

/ sml

sml — (NRsml + 1) — 17 Irg

! Lllrg
=———"2 " (6)
(Nrig +1) +1

The cost of each branch is given by C' = (N + 1)R? =
L?/(N + 1), therefore, the cost change AC' = ' — C' is:

L2 Ly L? Litg

sml sml

AC = - - ,
Nlrg 4+2  Nrgm +1 Nerg +1

= @)
NRsml

Step 1 - Cost 329.92km? Step 20 - Cost 139.75km?
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20
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Fig. 10. From an initial random placement of n = 40 relays (Fig. a),
Algs. 1-2 develop a network interconnecting m = 5 terminals. Alg. 2
transforms terminals of degree 2 (Fig. b, circled) into star structures (Fig. c,
circled) whenever appropriate, and equilibrates radii across branches. The
pseudo-Steiner points (Fig. d, circled) have link angles of ~120°.

Assuming L; ~ L/ (reasonable for large IV;) and L1 = Lo,
we have

AC = a1l + Nrirg — Nrsm1) < 0, ®)

where « is a positive quantity and the inequality holds for
Nrsml 2> Nrirg + 1. This happens if the difference between
Rgm and erg is such that [Llrg/erg~| < [Lsml/Rsml—‘-
Therefore locally equilibrating radii may result in a cost
improvement as long as the density imbalance between two
branches is significant and they have comparable length.

Fig. 10 presents the outcome of the optimization under the
combined action of Algs. 1-2 at various steps. In particular,
Fig. 10d represents the optimal configuration and resembles
a full Steiner topology with m = 5 terminals and n = 3
Steiner points. Due to the high likelihood of local minima,
employing only Alg. 1 does not guarantee the result of
Fig. 10d. A round of simulations was performed employing
only Alg. 1 with m = 5 terminals and N = 100 different
initial placements of n = 40 relays: although 66% of the
cases had the right topology none of them was optimal. The
remaining 44% presented one to three terminals of degree 2
which for this instance are not optimal.

A second round of simulations employed also Alg. 2 and
it resulted in 100% of optimal results, up to a rotation of
72°: the terminals are the vertices of a regular pentagon.
Figure 10d shows one of the possible solutions while Fig. 11a
presents the trends and distributions of costs.

C. Solving for m terminals, n relays, and ¢ obstacles

By combining the concepts introduced in the previous
subsections, in particular the heuristics of Algs. 1-2 with
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Fig. 11. Cost trend of the 100 simulations of Fig. 10 (a, no obstacles)

and Fig. 12 (b, obstacles) using Algs. 1-2. In the case with no obstacles
all simulations converged to the optimal configuration of Fig. 10d, up to a
rotation of 72° (the terminals are the vertices of a regular pentagon). In the
case with obstacles, 53% of the instances obtained the optimal solution of
Fig. 12a, whereas the rest either converged to a sub-optimal configuration
(21%) similar to those of Fig. 12b-d, or did not converge at all (26%).

constraint (1), it is possible to ensure that the relays never
overlap the obstacle regions.

100 simulations with random initial conditions were per-
formed: the optimal topology was found in only 53% of
the cases, while in 21% of the cases the simulation yielded
sub-optimal configurations and in 26% of the cases it did
not converge at all. Figure 11b presents the trends and
distributions of costs for the case with obstacles. Figure 12a
shows the optimal configuration while Fig. 12b-d show some
of the sub-optimal configurations obtained by the algorithm.

This behavior is imputable to a limitation of the greedy
heuristics of Algs. 1-2, which can only overcome local
minima related to local features, such as density imbalances
across adjacent branches. Conversely, obstacles introduce
local minima of topological nature which, due also to the no-
overlap constraint (1), can only be overcome by significant
changes in the network structure, incompatible with the
greedy heuristics.

Moreover Algs. 1-2 tend to form uniform branches and
thus cannot handle narrow passages like those obtained by
fmincon in Fig. 9b. Fortunately, generating a connection
through a narrow passage is expensive, and often cheaper
solutions can be found by uniform distributions that route
around the obstacles. Nevertheless, these results show that
solutions are characterizable by their homotopy classes, i.e.
the way they unravel around a given configuration of obsta-
cles. This suggests that the same solutions could be obtained
by finding representative networks for each homotopy class
and then uniformly placing the relays along them. Thanks to
(1) evolution through Algs. 1-2 usually yields a solution in
the same homotopy class.

The results of Sec. IV-A.1 can be extended to an arbitrary
number of terminals m > 2. First, the graph built using ter-
minals and tangents/bitangents is extended to include edges
among each pair of nodes in LoS. Then, this graph is used to
set up and solve a Steiner tree problem for graphs (STPG),
obtaining a solution with shortest length. This solution will
be the shortest representative of its homotopy class. To obtain
representatives of other homotopy classes the graph is altered
by removing edges and recomputing the solution.

An application of these concepts is shown in Fig. 13a. To
solve the STPG we implemented SCIP-Jack [10] into custom
MATLAB routines. The solution of the STPG (Fig. 13b) is
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Fig. 12. Converged solutions of four topologies for the same problem set
with m = 4 terminals, ¢ = 5 obstacles, and n = 40 nodes. The solution
that resembles a full Steiner topology has the least cost.

then used as an educated guess for the initial uniform place-
ment of the relays (Fig. 13c). Although optimal according to
the Euclidean norm, this choice requires the relays to pass
through corridors much smaller than the average radius of
the network (Fig. 13d). This will likely result in higher costs
if a solver like fmincon is used, or a failure if the rules
of Algs. 1-2 are applied, so it is discarded and the edges
passing through the obstacles are removed. A new solution
is determined (Fig. 13d) and the same procedure is used to
position the relays (Fig. 13e). Finally Algs. 1-2 are applied
and the a feasible configuration is obtained (Fig. 13f).

This result generalizes the conclusions of Sec. IV-A.3. The
shortest tree and the optimal range assignment solutions in
the presence of obstacles can belong to different homotopy
classes. This approach is a heuristic extension of Yen’s
algorithm, valid for paths, to trees.

D. Estimating convergence likelihood

Given n relays, the convergence likelihood for an initial
configuration under Algs. 1-2 can be estimated as follows:
let L be the length of the solution of the STPG, then a
preliminary placement of n relays along its branches would
give an average radius Ry.x ~ L/n, analogous to (5). If
the solution passes between pairs of obstacles whose inter-
obstacle distance

Door =0 -0'|| - Ro — Ror , 9

is smaller than Ry, then the solution is likely to either
be suboptimal or not converge under Algs. 1-2. A similar
argument holds also for terminal-obstacle distances:

Dro=||T-0| - Ro . (10)

The solution of Fig. 13b has L = 50.59 km and n = 40 so
R, ~ 1.26km while the smallest inter-obstacle distances
are D34 = 0.07km and Dos = 0.63km, both smaller
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Fig. 13. An STPG can be paired with Algs. 1-2 to determine a better

initial condition for the relays. The parent graph is obtained by connecting
all vertices in LoS (a). The solution of the STPG is obtained (b). Relays
are placed uniformly along the solution, but evolution may not converge if
narrow passages between obstacles are involved (c). Sub-optimal solutions
which avoid narrow passages are found in a different homotopy class
(d). Relays are placed uniformly along the solution (e). The system is
evolved with Algs. 1-2 until equilibrium (f). Configurations c) and e) are
intermediate states that violate the no-overlap constraint (1).

than R,,,. As expected, the simulation did not converge.
Removing graph edges that enable passage between obstacles
3-4 and 2-5, the solver may now determine sub-optimal
networks such as Fig. 13d. This network passes through
obstacles 1-3 and 1-5 which have Dy3 = 7.69km and
D5 = 6.34km, both larger than Ry« and, as expected,
the simulation converged.

V. CONCLUSIONS AND PATHS FORWARD

This paper describes a framework to solve the minimum
range assignment problem amidst obstacles, assigning to
nodes of the network radii equal to the largest incident
edge, and assuming a cost function quadratic in these radii.
The network is optimized with the constraint that network
nodes and obstacles, both modeled as disks, do not overlap.
The heuristics defined in Algs. 1-2 were first tested with-
out obstacles, where they proved to be independent from

initial conditions and yielded the optimal result in 100% of
the trials for a specific configuration. Introducing obstacles
spoiled this independence: trials converged to several stable
configurations, but only found the optimal configuration in
53% of the trials. These configurations are topological local
minima which cannot be overcome by the heuristic rules of
Algs. 1-2. A procedure was devised to systematically explore
homotopically different networks and use them as guidance
for initial relay placement. Evolution under Algs. 1-2 can
then be biased to produce solutions of the range assignment
problem in the same homotopy class of the initial placement.
The optimal Euclidean length solution and the optimal range
assignment solution are not necessarily in the same homo-
topy class. This underscores the relevance of homotopy class
in the m > 2 case and suggests the usefulness of a formal
extension of Yen’s algorithm from paths to trees.

Extending these results to three dimensions with spherical
obstacles, and to non-convex terminal geometries are avenues
for future research. Natural applications of these ideas are
in distributed networks communicating via line of sight
(1D) or coverage (2D) methods: for example, a network
might be composed of unmanned aerial vehicles (UAVs),
ground/underwater remotely operated vehicles (ROVs), sen-
sors, or satellites.
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