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Abstract— We present a heuristic method to construct an
optimal communication network in an obstacle-dense environ-
ment. A set of immobile terminals must be connected by a
network of straight-line edges by adding agents to serve as
relays. Obstacles are represented by polygons, unaccessible by
the agents of the network or by the edges. The problem with
obstacles is reduced to a problem without obstacles by choosing
the nodes of the optimal network among the obstacles’ vertices
that are in mutual line of sight. A second heuristic method
is developed to solve the bicriteria optimization problem with
number of agents and length of the network as concurrent costs.

I. INTRODUCTION

Optimal network construction is a research topic with
applications in several areas of science and technology:
notable examples are the design of efficient phone networks
among cities, the development of urban sewer layouts, or
trace routing in Printed Circuit Board (PCB) design. In all
these instances, “optimality” is defined as the minimization
of a specific cost function, which depends on the type of
network considered and on the constraints imposed by the
problem.

The networks we consider are modeled by weighted
graphs. A weighted graph G = (V,E,w) is a collection of
nodes V logically interconnected by edges E that have costs
(or “weights”) w. If the network has a physical structure then
the edges might be the links connecting the physical nodes
(e.g., pipes and/or wires) and the weight of the edge might
be proportional to the price per unit length/surface/volume
of the material used. Conversely, if the nodes of the network
are connected by intangible links (e.g. radio links) then the
cost can be defined according to the specific technology used
for transmission.

Many problems concerning weighted graphs have been
presented. One of the most famous examples is the minimum
spanning tree [8] (MST), where given a graph (referred to
in the following as parent graph), find the shortest tree that
interconnects all its nodes. If only a subset T ⇢ V of the
nodes (referred to as terminals) of the parent graph requires
interconnection, the problem is called the Steiner tree prob-
lem for graphs (STPG) [10] Although conceptually similar,
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Fig. 1. Consider a set of terminals (green dots) and the vertices of a set
of obstacles (pink polygons). A weighted graph is constructed by drawing
edges (orange lines) between all pairs of nodes in line of sight, with their
Euclidean lengths as weights. From such a graph the Steiner tree is extracted
(solid blue lines) and the number of corners used provides an estimate of
the number of nodes (blue dots) needed.

the two problems have different computational overhead:
MST can be solved in polynomial time, while the STPG
is Non-deterministic Polynomial-time (NP)-hard. Variants of
this problem can be defined by a) embedding the terminals in
a 2- or 3-dimensional vector space, b) leaving the number and
position of additional non-terminal nodes to be determined
and c) weighting each edge with some metric. If the metric
chosen is the Euclidean distance then the problem is called
Euclidean Steiner tree problem (ESTP), while if the metric
is the L1 norm (or “taxicab distance”) then the problem
is denoted as the rectilinear Steiner tree problem (RSTP).
These problems, in the following referred to as xSTP, are
generalizations of the STPG therefore share with it the same
complexity class (NP-hard).

In their simplest formulation, ESTP and RSTP place
non-terminal nodes everywhere in the environment space.
If some regions of the space (polygons in 2D, polyhe-
drons in 3D) are forbidden then the problem takes the
name of obstacle-avoiding Euclidean/Rectilinear Steiner tree
(OAxSTP). Methods valid for xSTP in general will not solve
for OAxSTP and then the problem becomes increasingly
difficult with the number of obstacles and/or terminals.

We focus on OA Euclidean STP (OAESTP) where the
density of obstacles is much larger than the density of
terminals. The main assumption is that in this regime the
solution of the OAESTP is well approximated by the solution
of a specific STPG, where the parent graph is obtained by
connecting all terminals and all vertices of the obstacles
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which are in line of sight (LoS). Some strategies based on ad-
hoc heuristics are further introduced to improve the quality
of the solution.

A possible application of this scenario may correspond to
the construction of a communication network in a dense ur-
ban environment where buildings prevent line of sight (LoS)
communication between terminals, forcing the network to
adapt its shape around building walls. The nodes are assumed
capable of performing highly directional transmissions, as
studied by Egarguin et al. in [3], [4], [5], thus the commu-
nication links are graphically described by straight lines.

The construction of the network has two constraints: (a)
the length of the network and (b) the number of nodes it
involves. The length of the network provides information
on the average distance between nodes of the network
which corresponds to the cost of communication (see Friis
formula [6]). The larger the distance, the higher the power
required to transmit a signal within a given signal-to-noise
ratio at the receiver (at a fixed frequency/wavelength). Con-
versely, the number of nodes corresponds to the number of
agents required to constitute the network (the cost of the
fleet). These two costs are concurrent, since increasing the
number of agents and placing them in specific locations in
general lowers communication costs. Conversely, decreasing
the number of agents increases the average inter-drone dis-
tance, and with it the communication cost. The problem is
then defined as a multi-objective optimization scheme (a bi-
criteria optimization). We contribute a solution of a heuristic
optimization method that applies Yen’s algorithm [21] to the
STPG.

Section II reviews some of the existing results in network
design with and without obstacles. Section III introduces
the model and the methods used. Section IV compares the
performance of the procedure presented with existing meth-
ods. Section V defines the bicriteria optimization problem
and the method used to solve it. Section VI describes the
applications of the method to two different urban scenarios.
Finally, Sec. VII summarizes the results and outlines possible
paths forward for this research.

II. RELATED PUBLICATIONS
The origins of Steiner trees date back to the 17th cen-

tury [10] with the first studies on the Fermat-Torricelli point
in a triangle, which can be considered an instance of the
ESTP with three terminals. In the first half of the 20th

century this problem was generalized to a higher number
of terminals, and eventually named after Jakob Steiner, a
Swiss mathematician contemporary of Fermat and Torricelli.
Since then a vast amount of literature on the topic has been
produced and generalizations to higher-dimensional spaces
or manifolds have been presented. A recent review of the
state-of-the-art for exact and approximate solving methods
can be found in Ljubic [12].

Significantly less literature is available on Steiner trees
in the presence of obstacles. Heuristic algorithms, such as
that of Armillotta & Mummolo [1], were already known
in 1988 while in 1999 Rao [17] described some approxi-
mating techniques for Steiner trees introducing the “banyan”

structure, a structure which is assumed to be no longer than
(1+ ✏) of the exact Steiner tree length. In 1999 Zachariasen
and Winter [22] described the first exact algorithm for the
solution of the Euclidean Steiner tree in the presence of ob-
stacles. In 2007 Asadi [2] considered an OAESTP where the
terminals are contained inside a polygon. In 2010 Muller [13]
proposed an improvement in the computation speed of
Rao’s method [17] by suitably selecting a subset of the
obstacles’ vertices. In 2021 Parque [15] described a hybrid
approach combining hierarchical optimization with gradient-
free stochastic optimization. Also in 2021, Rosenberg [19]
proposed a genetic algorithm whose evolutionary operators
are capable of adapting to the structure of the specific ESTP
considered, but considers both solid (impenetrable) and soft
(penetrable at an additional cost) obstacles.

Aside from its theoretical interest, the obstacle avoiding
rectilinear Steiner tree problem (OARSTP) has several im-
portant practical applications. Hsie [9] defined and solved
an OARSTP to improve the layout of an urban sewer
network with respect to standard design techniques while
Tang [20] provided a comprehensive review of the most
recent advances in the routing problem in Very Large Scale
Integration (VLSI) design. Garrote [7] determined disaster-
aware networks, by assigning a “cost” to different regions of
the earth according to their natural disaster likelihood. Such
regions, considered as soft obstacles, are then connected by
solving an OAESTP which determines the network of mini-
mum risk. Finally, multi-objective communication networks
were studied by Levin [11] by means of a composite macro-
heuristic that starts with a spanning tree, clusters the nodes
of the network, determines a Steiner tree over the clusters,
and eventually optimizes that choice.

A search of the relevant literature showed examples of
OAxSTP where the number of terminals Nt was comparable
or extremely larger than the number of obstacles NO, while
the case NO � Nt was never explored. This work proposes
to fill this gap by systematically exploring the case where
the number of obstacles is arbitrarily high.

The method we use to build Steiner trees is a simpli-
fied version of the concepts expressed in [17] and [13]
that makes use only of obstacle vertices. The ✏ of the
(1 + ✏)�approximation is argued to be the ratio between
a characteristic “small distance” d and the length L of the
Steiner tree, possibly proportional to the number of Steiner
points (which itself is bounded by Nt).

We are inspired by urban scenarios, where two charac-
teristic distances can be naturally defined: (a) the average
street width dstr and (b) the average building side dbdg . The
urban map, minus the buildings, is then considered as an
intrinsic irregular grid obtained as the union of many “tiles”
corresponding to approximately rectangular crossroads and
alleys of areas:

Ac.r. = d2
str

, Aal = dstrdbdg . (1)

Assuming Ac.r. ⇠ Aal ⌘ A, then ✏ can be defined as

✏ ⌘

p
A

L
. (2)



If A can be assumed constant across a city, ✏ will decrease if
the number of terminals is kept constant but they are spread
over a larger portion of the urban map.

III. NETWORK CONSTRUCTION

The main difference between ESTP and STPG is that
ESTP is defined in a continuous space; even in its simplest
formulation without obstacles, the solution is found by
displacing one or more additional nodes in the ambient
space until a configuration of the network with minimum
length is found. On the contrary, the structure of a STPG
is fundamentally discrete and constrained to the terminals,
nodes, and edges that are given as input. Despite this large
difference, ultimately both the solutions of an ESTP and of
a STPG are a discrete tree. In other words, for the ESTP
the cardinality of the ambient space is not reflected in the
cardinality of the solutions.

The continuous character of the ESTP allows it to update
the list of its nodes and edges during the optimization
process. For this reason it will have better or equal solutions
than a STPG initialized with the same terminals and a parent
graph over which to calculate the Steiner tree. The condition
for the equality is that all nodes and edges contained in
the solution of the ESTP are a subset of the parent graph
of the STPG. This solution is not known a priori, thus an
uneducated guess of the parent graph of the STPG will, in
general, miss some crucial nodes or edges.
A. Distances

The solutions of a STPG and of an OAESTP can be com-
pared by means of suitably defined “distances”. Although
not distances in the mathematical sense, these functions give
quantitative information about how much two solutions differ
and can point to where improvement is needed. The main
requirement is that identical solutions have a distance of zero.

A first estimator can be the fraction of edges in common:
let S and S0 be two solutions

S = (V,E,w), S0 = (V 0, E0, w0)

D1(S, S
0) ⌘ 1�

|E \ E0
|

max{|E|, |E0|}
. (D.1)

If the two solutions share the terminals then let A2 be the
area enclosed between them and AG the area of the convex
hull of the graph. A second distance is defined as

D2(S, S) ⌘
A2

AG

. (D.2)

Finally, if the terminals are displaced between two solutions
but their number does not change then a third distance is
defined as the area A3 between the two solutions divided by
the area AGG0 of the convex hull of the two graphs G,G0

that generate the solutions:

D3(S, S
0) ⌘

A3

AGG0
. (D.3)

The main difference between A2 and A3 is that A2 is defined
using only edges already present in the solutions. Conversely,
the closed polygons of A3 are obtained introducing fictitious

-0.5 0 0.5 1 1.5 2

W-E [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
-S

[m
]

D1(S; S 0) = 0:600

T1 T2

T3

O1 O2

O3O4

P

e 1
2

e
0

1

e2 2 e0
2

e4

e3

e0
3

e0
4

e0
5

S
S 0

-0.5 0 0.5 1 1.5 2

W-E [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
-S

[m
]

D2(S; S 0) = 0:080

T1 T2

T3

O1 O2

O3

O4

P

S
S 0

Convex hull

-0.5 0 0.5 1 1.5 2

W-E [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
-S

[m
]

D3(S; S 0) = 0:149

T1'
T2'

T3'

O1 O2

O3

O4 P
T1

T2

T3
P 0

S
S 0

Convex hull

Fig. 2. Graphical representation of the distances of Sec. III-A. D1, D2:
The two solutions S (dashed) and S0 (solid) share terminals and two edges,
but depart from each other in proximity of the nd3 point. D3: S and S0

have the same number of terminals but they are displaced. In light blue the
area contained between the two solutions, and a dotted line demarcates the
convex hull of the points involved.

edges which connect pairs of corresponding terminals. Fig-
ure 2 shows a graphical example of the distances.

Distance (D.1) only counts edges which are perfectly
overlapping. Therefore even if S1 ! S2 continuously, then
D1 will reach 0 in finite steps with a discontinuous profile.
Conversely, distances (D.2) and (D.3) consider areas so tend
to 0 continuously if S1 ! S2 in the same manner.

Distance (D.1) will find application in Sec. IV where the
solutions obtained with different methods will be compared.
Distances (D.1) and (D.2) will be used to justify the assump-
tions of Sec. III-C. Finally, (D.3) is necessary to consider the
more general case where terminals are allowed to move, but
otherwise is outside of the scope that we are presenting.
B. Classification of nodes

The non-terminal nodes of the solution of an OAESTP
and of a STPG are of two types: a) nodes of degree 2 (in
the following nd2) obtained by bending around an obstacle
and b) Steiner points, i.e. nodes of degree 3 (nd3). Nodes
of degree higher than 3 are ruled out in the OAESTP by
the requirement that the edges connecting to a Steiner point
describe angles of exactly 120�. For the STPG this is not
true in general and nodes of higher degree cannot be ruled
out a priori. For this reason, a statistical analysis has been
performed considering the case of Nt = [4, 7] terminals
and randomly initializing their positions for 1000 trials with
the configuration of obstacles of Fig. 1. Only one solution
containing a nd4 was present for Nt = 4, 5, 2 for Nt = 6 and
7 for Nt = 7; no nodes of degree larger than 4 ever occurred.
A nd4 is never optimal in an ESTP thus its presence implies
a lack of additional vertices to form shorter networks with
nodes of lower degree and extremely fortuitous placements
of terminals. Following this reasoning it can be argued
that increasing the density of obstacles (and therefore, the
lattice of (2)) while keeping the terminal density low would
decrease the likelihood of nd4 or higher, leaving solutions of
STPG containing only nodes of degree up to three.
C. The regime

The method we present assumes a regime in which the
density of obstacles ⇢O is large compared to the density of
terminals ⇢t:

⇢t ⌘
Nt

A
, ⇢O ⌘

NO

A
, ⇢O � ⇢t , (3)

where A is the area of the region considered.
From the considerations of Sec. III-B, this choice de-

creases the likelihood of nd4 in the solutions of the STPG,
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Fig. 3. Solutions of the instances considered in [19] at 0th order of
optimization: Instance #7 (a), #10 (b), #20 (c). Green dots are terminals
and blue dots are nodes. The quality of the solutions is worse than those
of [19] by 1–3%, compatible with the estimate of (5).

rendering the type of nodes that can be encountered homo-
geneous with those of the OAESTP. Furthermore if terminals
are outnumbered by obstacles then their likelihood of hav-
ing mutual LoS will decrease. Thus, the number of edges
bending around obstacles (namely, nd2) increases. While the
number Ns of Steiner points in an OAESTP is bounded
by the number of terminals (Ns  Nt � 2), the number
of nd2 depends on the number of obstacles touched by
the solution, thus increasing NO while keeping Nt fixed
decreases the ratio Nnd3/Nnd2 . Finally, a continuous curve
may be approximated by a discrete grid up to the grid’s
step. A higher density of obstacles’ vertices constitutes an
effective (although irregular) grid which can be considered to
approximate the nodes of the Steiner tree up to the average
distance between nearest neighbors. In regime (3) the above
considerations support assuming the solutions of OAESTP
and STPG are close in the sense of (D.1) or (D.2). In
particular it is reasonable to expect that the nd2 will be
captured correctly and that the main differences will be
due to a misplacement of the exact Steiner points. This
misplacement becomes less and less relevant as the ratio
Nnd3/Nnd2 decreases. Let �Rj > 0 be the increase in the
length L of the network due to the jth misplaced nd3, then
assuming regime (3) is equivalent to assuming:

P
j
�Rj

L
'

�RjNnd3

(Nt +Nnd2 +Nnd3)hEi+ �RjNnd3

⌧ 1 ,

(4)
where hEi is the average length of an edge.

An estimate of the error can be obtained by considering
three nodes placed on the vertices of an equilateral triangle
of side 1. It is a well known fact that connecting the nodes
directly takes a network of length 2, while connecting each
node to the circumcenter of the triangle takes a network of
length

p
3, that is, a relative error �L/L ' 13%. For each

Steiner point approximated to a vertex, the solution obtained
by the STPG is expected to increase the network cost by

�Rj ' 0.13hEi . (5)

This also implies that for Nt terminals this error cannot be
larger than 0.13(Nt � 2)hEi.

D. Building the graph

With the same notation of Sec. III, let Ov be the set of
all obstacles’ vertices and T the set of all terminals. Then
G = (V,E,w) is obtained by defining

1) V as the set of all obstacles’ vertices and terminals:

V ⌘ Ov [ T . (6)

2) E as the set of all edges connecting pairs of elements
V without intersecting any obstacle.

3) w as the Euclidean lengths of each edge in E.
Path minimization problems involving obstacles usually con-
sider only edges tangent or bitangent to obstacles. Edges
that would pierce the obstacle if they were continued after
their endpoints, never belong to any shortest path between
two points unless the endpoints themselves belong to some
obstacle’s contour. However, for trees this is not necessarily
true and there may be instances where a piercing edge
improves the solution of the STPG (see Fig. 3b). For this
reason the method used in the following sections to solve the
STPG will build E considering all edges that connect vertices
in LoS and will be referred to as LoS-Vertices (LoSV).

IV. PERFORMANCE COMPARISON

Once a parent graph is defined, any solver capable of han-
dling STPG may be used to find the solution. We integrated
SCIP-Jack [18] in a custom MATLAB routine to solve the
various instances of the problem. As assumed in Sec. III, the
method is assumed to give its best results in the regime of
(3). To enable a direct comparison we use the same instances
with solid obstacles tested in [19] using the genetic algorithm
method developed therein (called StOBGA). In particular
we compare the instances numbered as #7, #10 and #20.
In these instances the density of terminals is comparable
to, or much larger than the density of obstacles, therefore
they do not represent regime (3) and are not a setup where
method LoSV is expected to outperform method StOBGA.
However, the comparison still teaches valuable lessons for
future developments, and can represent a lower bound for
LoSV’s performances.

TABLE I
RESULTS COMPARISON WITH STOBGA METHOD

[Instance #, # Terminals, # Obstacles]
Problem [7,8,4] [10,10,12] [20,20,2]

StOBGA 2.31m 2.4211m 2.80m

LoSV (0th) 2.34m
2.4704m (0th)
2.4240m (1st)
2.4212m (2nd)

2.87m

% 1.3%
2.0% (0th)
0.1% (1st)

< 0.005% (2nd)
2.5%

D1(SLo, SSt) 1� 13/21
1� 7/17 (0th)
1� 14/17 (1st)

0 (2nd)
1� 10/28

Figure 3 shows the results obtained by LoSV, while
Table I compares them to those of StOBGA. As expected, the
solutions obtained by LoSV have worse results than StOBGA
within 3%. However, LoSV’s solutions to the instances
with less terminals and more obstacles, #7 and #10, appear
to reproduce more accurately the structure of StOBGA’s
solutions, i.e. they are closer in terms of distance (D.1)
than the solutions of #20, which has 20 terminals and only
2 obstacles. Furthermore, all vertices present in StOBGA’s



solutions are also used by LoSV’s solutions, suggesting the
ability of LoSV to predict at least a superset of the nd3 of
the exact solution.

A. Finding and optimizing the solution

The solution found with method LoSV can be considered
as a 0th order approximation of the OAESTP. Several heuris-
tic rules can be applied to the 0th order solution to improve
the result. The optimization rules depend on the complexity
of the structures that are formed during the optimization
of the STPG, which is loosely proportional to the number
of vertices of the polygon interested by the optimization
(triangle, quadrangles and so on). A first-order approximation
is obtained by the following actions:

1) 3-vertices: A three-point structure where one point is
connected to the other two may admit a Steiner point
of degree 3 if the angle between the two vertices is
less than 120�. Alternatively, a non-terminal nd3 can
be considered a 3-terminals proto-Steiner structure and
its position can be varied if this improves the cost of
the structure and the new location does not fall within
an obstacle.

2) 4-vertices: Four point structures without additional
Steiner points may be transformed into full Steiner
topologies if this improves the length of the network.
Alternatively, two nd3 directly connected form a 4-
terminals proto-Steiner structure and their position can
be varied.

3) 5- or more vertices: Similar considerations can be
put in practice for structures with higher number of
vertices, or equivalently, for direct interconnections of
more than two nd3.

An application of these concepts can be seen in Fig. 4:

• The 0th order solution, Fig. 4a, determines two proto-
Steiner structures, with one and with three nd3.

• A first round of optimization, Fig. 4b, determines the
optimal positions of the nodes of both structures assum-
ing no obstacles and if the result does not lie within
obstacles then adds them to the graph. The structure
might not be optimal yet, and the addition of new nodes
and edges can verify this situation. This is the case of
the structures with one nd3, while the other with three
nd3 cannot be optimized further.

• A second round of optimization, Fig. 4c, seeks for
improvement on the new structure with one nd3.

These optimization steps are performed using a standard
gradient descent procedure. The total gain for this specific
instance has been of ⇠2%, mostly due to the optimization of
the structure with three nd3. The likelihood of encountering
structures with higher number of vertices is expected to be
low in the regime of (3). The 0.0487m improvement is in
line with that predicted by (5) assuming an average edge of
hEi ' 0.1 and Ns = 4 Steiner points:

�L ' 0.13hEiNs = 0.52m . (7)
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Fig. 4. Application of the heuristics of Sec. IV-A to instance #10 of [19].
The 0th order solution, (a), shows a suboptimal 5-vertices and a 3-vertices
structure. In the 1st order solution, (b), these structures are optimized using
a gradient descent method. The 3-vertices structure requires addition of a
node; therefore it may need further optimization. The 5-vertices structure is
already optimal. In the 2nd order solution the 3-vertices structure becomes
optimal. The number of nodes required may vary between optimization
steps.

The number of nodes needs not be constant during optimiza-
tion; note that the 2nd order solution uses 8 nodes while the
0th order one uses only 7.

An important feature of the method is that once the map
of the obstacles is known then a preliminary parent graph
G0 can be built. In the regime (3) G0 makes up the most
part of the parent graph G, lacking only terminals and the
comparatively small set of edges which connect them to the
vertices within LoS. If the terminals move then it is sufficient
to remove those edges and recompute them with the new
positions while leaving G0 fixed. Furthermore, these rules
only depend on the nd3 and its nearest neighbors. Thus they
can be computed and applied independently by the node itself
in a context of distributed computation.

V. MULTIOBJECTIVE OPTIMIZATION

The key takeaway from the results of Sec. IV-A and IV
is that solutions of different length L have, in general, a
different number of nodes Nn. This implies the possibility
of manipulating the number of nodes of a network by altering
its length and viceversa.

Previously the term “solution” described a tree of mini-
mum length. From now on, the term “solution” will describe
a pair (L̃, Ñn), where L̃ is the minimum length attainable
within a given graph using exactly Ñn non-terminal nodes:

L̃ = min{L : network uses Ñn nodes} . (8)

A generic non-optimal network (L, Ñn) will have L � L̃
for a given Ñn.

Our main objective is to obtain control over the number
of nodes used to build a network. Practical applications
often require this type of control. For example: let obstacles
and terminals be static and let Nn(t) be the number the
number of nodes available at any time t. The question is:
can connectivity be ensured if Nn(t) < Nn(0)?

Conversely, let terminals or obstacles be dynamic, but let
Nn(t) = Nn(0) be constant. The solution of the STPG
in general will not have the same structure over time. In
particular, the number of nodes required can change. In this
case the question is if there exists at least one network
(L,Nn(0)) among which to pick that has minimum L.

The answer to both questions lies in the solution of the
bicriteria optimization problem defined in Sec. I, which



provides all possible best solutions (L̃, Ñn) at a given time,
also referred to as the Pareto front. A solution belongs to the
Pareto front if no solution with better L̃ and Ñn exists, and
if that is the case then the solution is said to be non-Pareto-
dominated. If the Pareto front contains a solution with Ñn

equal to the desired one, then the problem is solvable.
A. Yen’s algorithm

Let L̄ be the solution of the STPG for a given parent
graph G. By definition no other network can be shorter than
L̄ although the number of nodes N̄n it involves needs not be
the minimum possible. So let (L̄, N̄n) be the corresponding
pair in the bicriteria optimization problem.

From a Pareto domination perspective, only consider so-
lutions with Nn < N

n,L̃
as otherwise any network (L,Nn)

would have
L � L̃, Nn � N

n,L̃
, (9)

and would be Pareto-dominated by (L̄, N̄n). Therefore, the
Pareto front of the problem is determined by the set of all
networks (L̃Nn , Nn) such that Nn < N̄n. In other words, the
Pareto front is a subset of the set of all suboptimal networks,
regardless of the number of nodes used. For what concerns
the minimum value of Nn for a STPG without obstacles,
it would be 0 as all terminals are in line of sight, whereas
in presence of obstacles it will depends on their placement
relative to the terminals.

If the network only has two terminals, therefore a path,
then there exists a systematic method to determine all the
suboptimal paths that connect the terminals within the parent
graph G up to the ksth order (ks is a positive integer and
ks = 1 corresponds to the optimal path). This method is
called Yen’s algorithm.

B. The LoSV-Yen method

Although a version of Yen’s algorithm is not known to
exist for trees, it is possible to craft a heuristic version that
suits our needs. Since it is a combination of LoSV and Yen’s
algorithm the method will be referred to as method LoSV-
Yen. The first step of LoSV-Yen is to divide the original
network (L̄, N̄n) in branches. A branch is defined as a path
on a graph whose endpoints are either terminals or nd3.
The second step is to define the list of operations that can
be performed on the original network (L̄, N̄n) or on the
individual branches:

1) Apply Yen’s algorithm to one of the branches up to
the kth order.

2) Displace one of the nd3 from its current vertex to
another vertex.

3) Modify the topology of the network by removing or
adding nd3 and/or edges.

Each application of 1) will generate k different branches
while each application of 2) will produce just one different
network. Therefore applying 1) to a network with p branches
together with q displacements of nd3 will give rise to qkp

new networks.
The effect of 3) is harder to predict. However, if the

solutions are required to be close in the sense of the distance
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Fig. 5. Application of method LoSV-Yen to an instance with three terminals
and 6 obstacles: the original network (a) has three branches and one nd3,
and can be altered either applying Yen’s algorithm to the branches (b) or by
displacing the nd3 (c-d). Branches connected to T1 and T2 are not varied
as they have less than two nodes, so Yen’s algorithm has been applied to
the branch connecting to T1 using k = 30.

defined in (D.2) then this operation can be ruled out as well
as large branch alterations/node displacements. The closeness
requirement may arise if a third optimization criterion is
introduced such as the cost of displacing a node. Under this
assumption the operations on the network we analyzed will
be limited to just 1) and 2).

Among the new networks created by applying LoSV-Yen,
all those with Nn � N̄n will be discarded. Among the
remaining, those with minimum length will constitute the
approximate Pareto front.

For a finite k and a finite number of displacements only a
fraction of all possible configurations will be explored, thus
the Pareto front obtained in this manner can only be partial.
However, increasing k and displacing the nd3 far from their
initial points generates networks which are larger and will
likely have a larger number of nodes, therefore they would
not contribute to the Pareto front anyway.

A small configuration with Nt = 3 terminals and NO = 6
obstacles is considered in Fig. 5. The solution determined
by the solver for the STPG (a) can be decomposed in three
branches with 5 nodes of which one is a nd3. Branches with
0 or 1 nodes cannot improve the number of nodes without
displacing one of the endpoints and thus are not varied.

VI. APPLICATIONS

In this section method LoSV is applied to instances with
a larger number of obstacles. A large database of data to test
the algorithm is provided by geomapping companies. The
data used in the present work was retrieved from the website
OpenStreetMap [14] and manipulated with the geomapping
software QGIS® [16] to prepare it for use within MATLAB®.
The plots shown in Fig. 6 represent a portion of downtown
Houston, Texas along with the networks generated by method
LoSV-Yen for the case of Nt = 5 terminals.

The simulations showed that a plain application of Yen’s



algorithm to larger graphs (⇠400 obstacles, ⇠2000 nodes
and ⇠28000 edges) is slow in providing results that differ
significantly from the initial ones. The reason is that with
more nodes there are more paths with comparable lengths
that can be built in a neighborhood of the original path. Paths
with less nodes, but a significantly larger length, may be
never visited by the algorithm if the k(i,j)s chosen for the ith

branch and for the jth node displacement is not high enough.
This obviously increases the computation time.

However, most of the variations found by Yen’s algorithm
have a larger number of nodes and are discarded, and the
procedure did not yield any meaningful new configuration
(Nn < N̄n) even for

P
j

Q
i
k(i,j)s ⇠ 109.

To overcome the problem and obtain meaningful answers
in a shorter time, a slight customization of Yen’s algorithm
has been applied. At each iteration of Yen’s algorithm the
first edge of the path is completely removed from the
graph. This results in subsequent paths being pushed to
perform more significant changes to their initial direction.
This modification yielded 102 results with Nn < N̄n within
a number of iterations

P
j

Q
i
k(i,j)s ⇠ 107 and the outcome

is shown in Fig. 6. The networks have the same structure as
only operations 1) and 2) from Sec. V-A were applied.

VII. CONCLUSIONS AND PATH FORWARD

The first part of our work focused on the OAESTP in
presence of an arbitrarily large density of obstacles and a
correspondingly lower density of terminals. Method LoSV
was proposed which approximates the solution through a
STPG using only obstacles’ vertices. The error obtained by
this solution is estimated to depend on the number of nd3 of
the exact solution and therefore bounded by the number of
terminals Nt. Such error can be tolerated if comparable with
or lower than other intrinsic errors of the chosen application
or can be mitigated by applying heuristic rules to specific
subsets of the solution of the STPG. Such heuristic rules
depend on local properties of the graph and are suitable for
a context of distributed computation.

The second part of our work deals with the bicriteria
optimization problem of a network where length and number
of nodes are concurrent costs. An approximate Pareto front of
solutions (L̃, Ñn) is determined by applying method LoSV-
Yen, a customized version of Yen’s algorithm specialized
to trees, to the shortest solution (L̄, N̄n). We represent the
first attempt to apply Yen’s algorithm to Steiner trees and
hopefully this will stimulate more formal approaches to the
problem in the community.

Future paths forward of this research include allowing
terminals to move and nodes to be placed over obstacles
at an additional cost (soft obstacles). As the largest part
of the computation is represented by the construction of
the preliminary parent graph G0, further effort will be
directed to the construction of efficient algorithms to test
LoS between pairs of vertices. As geomapping companies
provide a virtually unlimited pool of data, it is of interest
to test the method with different urban morphologies and to
create a common database of instances to compare the results

with other methods. Finally, as mentioned in Sec. V-A, the
problem can be expanded to a three-criteria optimization by
introducing the cost of moving nodes among configurations
determined by LoSV-Yen.
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Fig. 6. Application of method LoSV-Yen to a setup with a large number of obstacles. The solution of the STPG yields a network with optimal length
but with a number of nodes that needs not be the minimum. By means of branch alteration and nd3 displacement it is possible to lower the number of
nodes, at the expense of the length of the network.


	Introduction
	Related publications
	Network construction
	Distances
	Classification of nodes
	The regime
	Building the graph

	Performance comparison
	Finding and optimizing the solution

	Multiobjective optimization
	Yen's algorithm 
	The LoSV-Yen method

	Applications
	Conclusions and path forward
	References

