Minimum-Time Planar Paths with up to Two Constant Acceleration
Inputs and L, Velocity and Acceleration Constraints

Victor M. Baez!, Haoran Zhao', Nihal Abdurahiman?, Nikhil V. Navkar?, Aaron T. Becker!

Abstract— Given starting and ending positions and velocities,
L2 bounds on the acceleration and velocity, and the restriction
to no more than two constant control inputs, this paper
provides routines to compute the minimal-time path. Closed
form solutions are provided for reaching a position in minimum
time with and without a velocity bound, and for stopping at the
goal position. A numeric solver is used to reach a goal position
and velocity with no more than two constant control inputs. If
a cruising phase at the terminal velocity is needed, this requires
solving a non-linear equation with a single parameter. Code is
provided on GitHub', extended paper version at [1].

I. INTRODUCTION AND RELATED WORK

This paper seeks the minimum-time path for a particle
with a restricted set of control inputs: the system can
apply no more than two constant thrust inputs, each for
a disjoint time. Moreover, this thrust is limited and there
is a constraint on the maximum velocity. A representative
solution is shown in Fig. 1. We were motivated by a desire
for simple optimal control parameterizations of hardware
systems with constraints on total maximum acceleration and
maximum velocity. Many of these problems are currently ap-
proximately solved using iterative numeric solvers. However,
when formulated using Lo bounds, this paper shows there are
several problems that provide closed-form solutions, or can
be formed as a minimization problem of a single variable.
The resulting Lo problem is interesting mathematically, and
the graphical techniques described in this paper enable an
intuitive understanding of the solution. This problem could
apply to a class of thrusters on a space vehicle such as an
astronaut take-me-home system [2], or to other low-friction
environments, such as a hovercraft with a single thruster.

While actuator constraints are often expressed using Lo
norms, payloads often specify acceleration limits in an Lo
sense, such as the 3-G limit on a space shuttle during launch
[3], or an acceleration bound in every direction for translating
a cup full of water [4]. Similarly, speed limits on highways
refer to an Lo speed and not an L, speed. A given Lo
acceleration constraint a,, generates a corresponding L.,
constraint a,, / /2. This conservative bound can reduce the
top acceleration and top speed by almost 30%.

This work was supported by National Priority Research Program (NPRP)
award (NPRP13S-0116-200084) from the Qatar National Research Fund
(a member of The Qatar Foundation), the Alexander von Humboldt
Foundation, and the National Science Foundation under CNS 1932572,
IIS 1849303, and IIS 2130793. All opinions, findings, conclusions or
recommendations expressed in this work are those of the authors and do
not necessarily reflect the views of our sponsors.

1 Department of Electrical Engineering, University of Houston, USA,
vmontanobaez@gmail.com, atbecker@uh.edu

2 Department of Surgery, Hamad Medical Corporation, Doha, Qatar.

1 https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints/

15 L, Profiles

po={-1.1]
pG=(0.75,-0.75),

1.3
vosi-1, -2,
057}
Lo V=1, 8m =1,
v =(-02-08)

RY y 0 1

liﬁe [s]

Fig. 1. Left: trajectory of a particle starting from p,, with initial velocity vo
and ending at p, with ending velocity vg under two constant acceleration
inputs u applied at directions 61 and 6o for durations ¢ and t2; the e
shapes show the switching points at ¢1, tc, and t2 along the path, where
tc is the duration the particle cruises at its maximum velocity vy,. Right:
Lo position, velocity, and acceleration profiles. « in blue, s
\/x2 + y?2 in purple. Bounds on velocity and acceleration are highlighted
in pink . The control switch times are shown on the position profile. See
video overview at https://youtu.be/2J-p6CDFAFE.

Restricting the number of control inputs can benefit sys-
tem performance and longevity, for example by avoiding
chatter in systems with high amounts of switching [5]—
[7]. From a hardware perspective, limiting the number of
control switches can improve lifespans. Repeated, alternating
stresses are a fundamental concern in mechanical design,
particularly when using fatigue-life methods to approximate
the lifespan of machine components [8]. Minimizing the
number of control switches can facilitate decreasing hard-
ware degradation alongside reducing aggressive actuation by
designing jerk profiles to smoothen trajectories [9], [10].

Optimal paths are common in robotics. In 1957, Dubins
calculated the shortest planar path for a particle that moved at
constant velocity with a constraint on the minimum turning
radius [11], which has been widely used for planning for
mobile robots. Extending these constraints to acceleration is
natural. Carozza, Johnson, and Morgan derive the necessary
equations for reaching a goal location (and velocity) in
minimum time under an acceleration constraint in their
paper [12]. They show that the fastest C''! path from one
point to another in the plane, given initial velocity, final
velocity, and a bound on the magnitude of the acceleration
am, in velocity space is a catenary. They applied it to
the “Baserunner’s problem” to determine the sequence of
acceleration commands that enables a runner with bounded
acceleration to run to all four bases on a baseball field. Their
numeric process finds a local minimum. They iterate between
(a) using prescribed velocities at sequential base positions
and optimizing using a multidimensional Newton’s method
with finite difference boundary value methods to determine

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1932572
https://nsf.gov/awardsearch/showAward?AWD_ID=1849303
https://nsf.gov/awardsearch/showAward?AWD_ID=2130793
https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints/
https://youtu.be/2J-p6CDF4FE

the path and timing at each baseline, and (b) using a gradient
descent method to optimize the velocities at each base.

In general, this is a problem of optimal control with a
rich history [13]. Numerous approximations have been used.
In [14], a path between two points with prescribed states
is found by generating a maximum allowed velocity profile
for a curve described by a spline between the points. They
find the extremes of their velocity profile using the extremes
in the curvature along the spline and hardware limitations
on acceleration. Afterwards, the spline’s control points are
optimized for time using parametric programming and a
lookup table containing pre-calculated paths. Similar work
on optimal drone trajectories also used an iterative numeric
solver [15]. Since we directly plan using a small set of
acceleration commands, our solution eliminates the need for
this iterative procedure.

A. Problem statement

Given scalar maximum velocity v,, and acceleration a,y,,
initial position pg = p(0) and velocity vo = p(0) both in
R2, and acceleration equal to the control input p(t) = u(t),
under the constraints that ||u(t)|2< a,, and |[|p(t)]|2< Vi,
design a u(t) with a restricted number of changes that brings
the system to pg = p(7) and vg = p(7T), both in R?, in
minimum time 7. For notational convenience, distances are
in m, velocities in m/s, and acceleration in m/s2.

B. The solution in 1D (Lo and Lo solutions are equivalent)

Expressions for time-optimal trajectories for joints of a
robot manipulator with velocity and acceleration constraints
are provided in [16]. This section uses results from [16] to
solve the problem in 1D and give context for the remaining
sections.

The trajectories vary depending on the initial and final
desired states, so velocity profiles are used in [16] to clas-
sify them as either critical, under-critical, or over-critical,
depending on whether the distance |p; — p,| allows for the
bound v,, to be reached. The critical profile is defined by
a critical displacement, Ap, that results in a linear velocity
profile from vy to vg.

2 2
%, where s, = Sign(vg —vg). (1)

Apc = Sy

Without a constraint on velocity, the peak velocity is

2 2
O)
L6 0

Up = \/sp(pG - pO)am 2 5 ()
where s, = Sign(pg —po — Apc), sp € {—1,0, 1}, accounts
for the direction of the initial acceleration.

The acceleration control input for the triangular and trape-
zoidal velocity profiles are

Splm 0<t<ty
_ 0 t1 <t<ty+t.
=Y s it te<t<tidtodty O
0 otherwise

If v, < vy, then the velocity profile will be triangular and

Uy — SpU0 Uy — SpUG
P P p P
t1=—"———, t.=0, fp=——""—.

Am Am

4)

If v, > vy, then the velocity profile will be trapezoidal and

Um — Splo

hh= ———, 4)
am
25,0m (PG — po) + V& + v% — 202
L= pAm PG — Po 0 G m (6)
¢ 26U, ’
ty = o200,)
Am

The total time required is T = t; + t. + t2. This
procedure must be modified with more than 1DOF, which is
more complicated because each DOF must reach the desired
position and velocity at the same time. Kroger and Wahl
give a L, solution in [17] that first attempts to make each
DOF reach the goal velocity and position at the same time
as the slowest DOF. This is done by solving for a free
intermediate cruising speed, which is the root of a sextic
polynomial. Sometimes a solution in this time is impossible,
and a search is conducted to find the next smallest candidate
synchronization time.

Similar processes are used for L., controllers with limits
on higher derivatives, see [18]-[22]. We used a related
procedure in [22] and provided open-source code to generate
smooth multi-DOF L., trajectories with sinusoidal jerk
profiles under jerk, acceleration, and velocity constraints.

II. SOLVING FOR UNCONSTRAINED FINAL VELOCITY

What is the fastest way to reach a goal position with one,
constant, bounded acceleration input given a starting position
and velocity? This problem has two variations. Either the
goal position is far enough away that the robot reaches
maximum velocity and coasts to the goal, or the robot does
not reach maximum velocity and accelerates the entire time.

It is easy to show that all positions are reachable under a
constant acceleration input by examining the reachable set.
At time ¢, the locus of positions reachable by the particle is a
circle centered at [pos + Voxt, Poy + Voyt] With radius %amﬁ.
The location of the particle on the circle is determined by
the angle of acceleration 6;. The gray circles in Fig. 2 show
these circular loci at different times, and the initial velocity
is shown by a blue arrow.

The particle first achieves the goal position at time 7. The
locus of positions the particle could be at time 71" (under all
constant accelerations) are drawn in dark red. The optimal
trajectory is in red, the optimal constant acceleration input in
light brown, and the final velocity on the optimal trajectory
is shown with a purple arrow.

The solution has two forms, depending on if the system
reaches terminal velocity v,, or not. If it does not, the time
t; can be directly solved and used to solve for 6;. If the
system reaches terminal velocity, finding ¢; requires solving
for the roots of a sextic equation. The next two sections
explain these approaches.

/ an20.5m/s

witht 6;=-2.75 radians,

hes goal at T=4.6 s
2 4

am=0.5m/s 2
with 6,=0.94 radians,

v reaches goal at T=4.14/s

Fig. 2. Two examples of accelerating a particle from a starting position
and velocity to a goal position as fast as possible with a bounded input. The
locus of reachable positions is a circle whose center moves with vg. 100
isochrones (gray circles (©)) are evenly spaced in squared time: ¢t = Vk for
k € [0,100] to show these loci.

A. The system does not reach terminal velocity v,

Without loss of generality, we transform coordinates so
that pg is the origin. If we know the time ¢; that the particle
reaches pg, we can solve for the angle of the acceleration:

2 + t 2 + t

01(t) = arctan (— (Po. 2U0x 1), (Poy 2710y 1)> . (8)

t t

1 1
Since t; > 0, we can simplify this expression to 0 (¢;) =
arctan (—(poy + t1%0z), Poy + t1v0y). The time ¢1 is when
the distance from (p, + Vot1) to pg is %amt%. Since we
translated pg to the origin, this results in

2
1
<2amt%) = (pox — vozt1)* + (Poy — voyt1)?, (9)

This is illustrated by the dark red isochrone in Fig. 2. If we
rotate the coordinate frame so vg, = 0, and scale velocity
and positions, Pg = Po/am, Vo = Vo/am, We remove two
constants. The smallest non-negative, real root ¢; is optimal:

The speed of the system at time ¢; is
\/(’UOI + @, c0s(61)t1)? + (voy + am sin(6y)t1)2. If
this speed is greater than wv,,, the system must enter a
coasting phase at terminal velocity. The solution approach
is described in the following section.

B. The system reaches terminal velocity

If the ending configuration is sufficiently far from the ini-
tial configuration, the goal is reachable in minimum time by
a two-phase input which consists of a maximum acceleration
input in direction 0, for t; seconds, followed by a coasting
phase for t. seconds.

At time ¢, the system reaches velocity v,, under a constant
acceleration a,, [cos(6;),sin(6;)]":

\/(vngramcos(Ql)tl)?+(voy+amsin(01)t1)2 = Upm. (10)

This is a quadratic equation with two solutions for ¢;, but
only the positive value is relevant since we are planning
forward in time. We express ¢; as a function of angle 6;:

\/Ugn — Vg, — Vg, + (Vo cos(61) + voy sin(6;))?
(61) =
am
~ (voz cos(6h) + voy sin(61))
am, '

(1)

Vo =0.01[1,1] Vo =0.25[1,1] Vo = 0.5[1,1] Vo =0.707(1,1]
2 2 2 2
i
1 A A
{ X
2 1 KJ 1 2 -2 1 1 2 -2 1 PN 2 -2 1 4 2

al -1t A 1

2 1 -2
au=04 au=05 au=1 au=2

Fig. 3. Locus of positions where the particle reaches v,, = 1 in light blue
M. Top row shows four different starting velocities (blue). The velocity of
the particle due to thrust a,, = 1 in directions 6 € k7 /16, k € [0,31]
is shown with pink arrows, all of length v,,. These arrows point in every
direction. The bottom row shows vo = [1/2,1/2] for four values of ap,.

The position of the particle at time ¢; is

a
px(t1) = pos + voats + =+ cos(01)]

Am .
py(t1) = poy +voyts + - sin(O), (12)
and the velocity of the particle at time #; is
vz (t1) = Vog + G cos(61)t1
vy (t1) = Voy + @, sin(01)t;. (13)

Figure 3 shows eight variations of the locus of positions
at the terminal velocity from (12) in light blue, along with
arrows showing the velocities along this set from (13) in
pink. We want solutions for 6 that result in the velocity
pointing toward to the goal at time ¢;. We could check
directly that

arctan(vg (t1),vy(t1)) = arctan(—p, (t1), —py(t1)), (14)

but this involves solving for inverse trigonometric functions.
Instead, we compare the slope of the velocity to the slope
of the position error:

vy(t1) _ —py(t1)

ve(ty) — —pa(t1)
This results in two candidate solutions, but we can check
both using (14) and save the correct solution. We will also
have to check for zeros of the equation in the same way. The
resulting equation is

vz (t1)py (1) — vy (t1)pa(t1) = 0.

Solving for sin(fy) results in a sextic equation. This
equation is long, so it is shared in the Appendix [23]. We
solve for the six roots of a sextic equation in sin(6;) = s, and
discard the complex roots. Each remaining root is a solution
for sin(f;) and provides two possible 6; solutions since
01 = arctan(+£v1 — s2, s). We substitute each possible 6,
solution into (11) to get at most 12 candidate ¢; solutions.
The smallest, real, non-negative ¢; that satisfies (14) is used.

Finding the root of a sextic equation can be efficiently
computed in many programming languages [24].

5)

(16)

Fig. 4. Solution with nonzero starting and zero ending velocity. The locus
of positions where the particle reaches v,, = 1 from the initial position are
shown with a light blue set for p(¢1), M. The corresponding set backwards
from pg is a golden-colored circle with radius (20a), M. The solution
trajectory is drawn in red. The positions where thrust 1 stops and thrust
2 starts are indicated by black dots. Top row shows four different initial
positions with vo = [—0.5, —0.5] or [—1,0] and a, = 1/2. The system
never exceeds terminal velocity. Bottom row shows the same positions and
velocities, but with a,, = 1, so each requires a coasting phase.

III. SOLVING FOR ZERO FINAL VELOCITY

This section provides solutions to problems that stop at
the goal position pg. There are two cases depending on if
the solution requires coasting at the maximum velocity or
not. Both cases require finding the roots of a sixth order
polynomial. Sample solutions are shown in Fig. 4, which also
shows the set p(¢7) that is calculated with (12), as well as the
corresponding set centered at pg. Because v = [0, 0], this
set is a circle. For any goal state with zero velocity, we can
transform the coordinates so the goal position is at [0,0] .
We can then rotate the coordinate frame such that vo, = 0.

A. The solution is bang-bang

If the starting and ending position are sufficiently close
such that the velocity never exceeds v,,, then the goal is
reachable in minimum time by a two-phase input which
consists of a maximum acceleration input in direction 6
for t; seconds, followed by a maximum acceleration input
opposing the current velocity to bring the system to rest in
to = ||v(t1)]| /am seconds (¢. = 0).

After applying the constant input a,,[cos(6;),sin(6;)]"
for ¢; seconds, the position and velocity are

p(t)) = | Po + vozt1+ % cos(6)t]
! Doy + % sin(6;)t?
v(t1) = [

Vozt+ Om Cos(al)tl]
A, sin(67)ty

The deceleration command is in the opposite direction of
v(t1) so that 0 = arctan(—v,(t1), —vy(¢1)), and lasts for
to = ||[v(t1)|| /am seconds. At time t; + to, we want the
z and y positions to be zero and the final velocity to be
zero. The final position is entirely controlled by the initial
conditions and the selected 6; and 05:

2
= V@)l = \/(M + coS(ol)ﬁ) + (sin(61)t1)?

am am

A7)

to

t
0 =py,(t1) +vy(t1)=. (18)

t
Ozpz(t1)+vm(t1> 2

2
2 b

We then scale the starting position and velocity by dividing
each by a,, and remove the term a,, from the calculation:
Do = Po/@m, Vo = Vo/a,. We apply a change of variables
to eliminate the two trigonometric functions: cos(f;) = c,
and sin(f1) = ++v/1 — ¢2. The resulting position constraints
simplify to:

0 = 2P0z + 200xt1+ ct? + (Vog+ct1) /02, +2c0aty +13

0 = 21303/ + \V4 1 — Cztl(@%x + 2C@Ort1 —‘rt% +t1> . (19)

This set of equations can be solved for ¢ as a function of ¢;.
The calculations are long, and are shared in Appendix [23]
(see also the code implementation).

We solve for the roots of this sextic equation in ¢; to
get six candidate ¢; values. We substitute each non-negative,
real value into a closed-form equation to compute candidate
¢ = cos(6y) from t;. Since #; = arctan(c, £v/1 — ¢2), this
provides at most 12 candidate #; values. We test each 6,
value in (18) and select the solution with zero position error
that minimizes the total time.

Figure 4, top row shows four solutions. In each, the
solution trajectory is entirely contained within the union
of the p(¢1) locus and a maximum braking radius circle
centered at pg.

B. The solution requires a cruising phase

If the solution from Section III-A requires a velocity larger
than v,,, we must have a cruising phase at the maximum
velocity. The goal is reachable by a three-phase input.
This control consists of a maximum acceleration input in
direction 6, for ¢; seconds, followed by a cruising phase
for t. seconds, followed by a maximum acceleration input
opposing the current velocity to bring the system to rest in
to seconds.

We first find the two-phase solution from Sec. II-B to reach
the goal position pg by accelerating in direction ¢, for ¢;
seconds. Rather than cruising from time ¢; to the goal, we
need to start braking ¢ seconds away from the goal.

2

m

2a.m,
distance from p(¢1) to goal:

r= braking radius. (20a)

_ am [cos(61)]
d= Pc — <p0 + Votl + 7 |:Sin(91) tl (20b)
d—r .. . Um . .
te = cruising time, to = — braking time. (20c)
m am
braking direction: (20d)
0y = —arctan (voz + am cos(01)t1, voy + arm, sin(61)t1) .

The thrust time ¢; is a function of 6; as given in (11), and
s0 (20) are all functions of only #;. The bottom row of Fig. 4
shows four representative solutions.

IV. SOLVING FOR NON-ZERO FINAL VELOCITY

Solving for a non-zero final velocity v¢ is harder, but is
necessary for smoothly traversing through waypoints [25].

Fig. 5. Solution with nonzero starting and ending velocity. The locus of
positions where the particle reaches v,, = 1 from the initial position are
shown with a light blue set for p(¢1). A similar set constructed starting from
the goal position using —v¢ is shown in orange. The solution trajectory
is drawn in red. The positions where thrust 1 stops and thrust 2 starts are
indicated by black dots. Top row shows four different initial positions with
vo = [-0.5,—-0.5], vg = [-0.5,0] and am, = 1/2 (the right differs
to ensure v, is not reached). The system never reaches terminal velocity.
Bottom row shows the same positions and velocities, but with a,, = 1.
The system reaches terminal velocity vy, in each case.

A final velocity adds two parameters to the equations.
Currently, we use a numeric solver to find a bang-bang
solution to get to the goal with no velocity limit. If this
solution results in a maximum velocity greater than v,, at
the switching point of the bang-bang controller, we call a
second function to solve for a cruising phase.

Sample solutions are shown in Fig. 5, which also shows
the set p(¢1) that is calculated with (12). The corresponding
set centered at p¢ is generated using the same process, but
with —vg as input.

A. No cruising phase, non-zero final velocity

The bang-bang controller is described by the following
inputs, which apply maximum thrust in direction ¢, for ¢;
seconds, and then maximum thrust in direction 05 for ¢ sec-
onds. There is no cruising phase, so t. = 0. Here, p(¢;) and
v(t1) are the same as in (12) and (13). Define the position
and velocity generated by starting at pg with velocity vg
and applying acceleration in direction 8y backwards in time
for to seconds as [p-t,, Vot,).

a7n
p(tr) = pae = vaats + 5 cos(62)t3 =pu,. (2la)
a .
py(tl) =DPGy — UGth + 77” Sln(92)t§ = Do,y (21b)
V(1) = vGa — am cos(02)ta =V, (2lc)
vy (t1) = vay — am Sin(f2)ts =04,y (21d)

Solving this nonlinear set of constraints requires a good
starting estimate. We run the solver multiple times, using a
set of candidate guesses for the unknowns [0, t1, 62, t2]. To
generate good candidate guesses, we first wrap the procedure
in Section III-A into the function

(01,t1) = stopAtGoalNoCoast[pg, Vo, PGs @m, Um], (22)

that returns the necessary thrust direction and time for a given
initial position and velocity, a desired stopping position pg,

and acceleration and velocity constraints. Next, we generate
a set of positions pts:

1
pts = {po, P1, = (P1 +P4), P4, Pg}, Where (23)

2
[[voll
20y,

Here p; is reached by maximum braking starting from pg
with velocity vg, and p4 is reached by maximum braking
from p¢g and initial velocity —v. We use candidate starting
values

_ el
4 =PG — 5 —-

= +
P1 = Po %,

Vo, (24)

stopAtGoalNoCoast[pg, Vo, pts[k], am, vm], k € {3,4,5}
stopAtGoalNoCoast[pg, —va, pts[il, am, vm], 7 € {1,2,3}

Of all solutions that reach the goal, we select the solution that
minimizes the total time. The fastest velocity occurs at the
switching time. If ||v¢, || > vy, a cruising phase is required.

B. Cruising phase, non-zero final velocity

If the solution from Sec. IV-A requires a velocity greater
than v,,, we must have a cruising phase at the maximum
velocity. Solving with a cruising phase is conceptually easier.
We know that the solution trajectory reaches terminal veloc-
ity, and thus ¢; is determined by 6; and ¢y by 69, both by
using (11). We merely need to find a 6; and a 6, that solve
the problem. The velocities while cruising and the scaled
difference in position are all equal, along vector ¢:

_ _ P-t, = Pt; _ Ccos (¢):|
Vi, =V =Upy 77— = Uny . . 25
CT T M b, —pul| [sm @]
Given a ¢, we can solve for 61 and 05:
61 = arctan(v,y, cos (¢) — Voz, U sin (¢) — voy) (26)
0y = arctan(vgy — Uy, €08 (@), vay — Uy sin (@) (27)

Then we must solve for the parameter ¢:
¢ =arctan(p.t,o — Ptyzs P-tay — Pryy), let
o :\/(vox — Uy, €08(9))2 + (voy — Ui, SIn(@))?,
ra :\/(ma — Uy c08(9))? + (vGy — Um sin(¢))?, then

@ = arctan(2a.m (Pow+PGx) —vm (ro+ra) cos(¢) —rovos —TG VUG,

(28)

—2am (Poy —Pay) —vm (To+7a) sin(p) —rovoy —TGvay)-

This equation is nonlinear, but ¢ is the only variable. We
use a Van der Corput sequence with base 2 in the range
[—7, 7] to sample ¢ evenly with increasing refinement. We
perform root finding on ¢, initializing our guess with an
element from the Van der Corput sequence, and iterate until
lpa — p(D)|| + [[ve — v(T)]| is less than eyiy.

To test this algorithm, we randomly generated initial and
final positions (pg, pe) within a circle of radius r = 2,
and velocities (vg,vg) in a radius » = 1 until we had
10,000 initial conditions that required a cruising phase for
am = 1,0, = 1. We used emin = 10712, Of these, 9562
converged within ep,;, using the first sequence value, 9712
in the first two values, and 9911 in the first 5 values. The
average number of values needed was 1.17, and the largest

Po=I1, 1 Po=-1, =11, Ivo| =1/ﬁ, ve =[0.0]

50 =
— L,
»
2 L
8 45¢ i,
23 Lo, L, bounds
~
£
E 40t 05 .
-1\0-0.5. 0.51.0
-0.5
350 N .
0 50 100 150 200 250 300 350
Direction vy (Degrees)
Fig. 6. Comparing the finishing times for Lo and Lo, solutions with
bounds Lo : am = 1,vm = 1 and Lo : am = 1/v2,vm = 1/V/2,

which are shown in the inset graphic in the lower left. Because of these
bounds the Lo, solution is in general longer than the Lo solution.

was 87. Solving 10,000 queries required 26.5 seconds on a
3.3 GHz i7 laptop.

V. TRAJECTORY EXAMPLES AND ANALYSIS

This section showcases several examples and contrasts
our minimum-time trajectory solutions modeled using Lo
bounds to those modeled with L., bounds. The time-optimal
trajectories modeled with L., bounds were calculated using
methods in [16], and the two DOF’s were synchronized using
Kroger and Wahl’s search technique from [17].

Using a controller designed using Ly bounds results in a
controller that is never slower than a control that uses the
L, bounds that obey the L, bounds. The times are only
the same if the solution trajectory lies entirely along a slope
of +1. This is illustrated in Fig. 6 for p, = [1,1], p; =
[—1, —1]; finishing times for Ly and L., are only equal for
v angular directions of 45° and 225°. At these v directions,
the problem is effectively 1D (identical = and y velocities).

For all these solutions there are several advantages of
the Lo solution. The path requires less time is often a
shorter distance. The path also requires less control changes.
Additionally, the L, acceleration and velocity profiles spend
more time at their bounds.

VI. CONCLUSION

This work found control expressions for position and
velocity control in 2D with Lo constraints on acceleration
and velocity. Future work should extend this to 3D, which is
promising for cases with high symmetry such as when the
final velocity is zero. Extending the work of [12] to quickly
derive the optimum solution and to incorporate velocity
constraints is another exciting direction for future work.

REFERENCES

[1] V.M. Baez, H. Zhao, N. Abdurahiman, N. V. Navkar, and A. T. Becker,
“Minimum-time planar paths with up to two constant acceleration
inputs and l2 velocity and acceleration constraints,” 2024.

[2] K. R. Duda, R. W. Loffi, and P. M. Handley, “System and method
for assisted extravehicular activity self-return,” May 2018, US Patent
9,977,427.

[3]
[4]

[5]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

V. Evans, “Newton’s laws, g-forces and the impact on the brain,” The
Australasian journal of neuroscience, vol. 30, no. 1, pp. 24-29, 2020.
M. Laux and A. Zell, “Robot arm motion planning based on
geodesics,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2021, pp. 7585-7591.

A. De Marchi, “On the mixed-integer linear-quadratic optimal control
with switching cost,” IEEE Control Syst. Lett., vol. 3, no. 4, pp. 990—
995, 2019.

F. Bestehorn, C. Hansknecht, C. Kirches, and P. Manns, “Mixed-
integer optimal control problems with switching costs: a shortest path
approach,” Math. Program., vol. 188, no. 2, pp. 621-652, 2021.

C. Kirches, E. Kostina, A. Meyer, M. Schloder, and S. PN, “Numerical
solution of optimal control problems with switches, switching costs
and jumps,” Optimization Online, vol. 6888, 2018.

R. G. Budynas, Shigley’s mechanical engineering design, 10th ed.,
ser. McGraw-Hill series in mechanical engineering. New York, NY:
McGraw-Hill Education, 2015.

S. Lu, J. Zhao, L. Jiang, and H. Liu, “Solving the time-jerk optimal
trajectory planning problem of a robot using augmented lagrange
constrained particle swarm optimization,” Mathematical Problems in
Engineering, vol. 2017, 2017.

R. Zhao and D. Sidobre, “Trajectory smoothing using jerk bounded
shortcuts for service manipulator robots,” in IEEE/RSJ IROS. 1EEE,
2015, pp. 4929-4934.

L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” Am. J. Math., vol. 79, no. 3, pp. 497-516, 1957.

D. Carozza, S. Johnson, and F. Morgan, “Baserunner’s optimal path,”
The Mathematical Intelligencer, vol. 32, no. 1, pp. 10-15, 2010.

H. J. Sussmann and J. C. Willems, “300 years of optimal control:
from the brachystochrone to the maximum principle,” IEEE Control
Systems Magazine, vol. 17, no. 3, pp. 32—44, 1997.

M. Lepeti¢, G. Klancar, 1. gkrjanc, D. Matko, and B. Poto¢nik, “Time
optimal path planning considering acceleration limits,” Robotics and
Autonomous Systems, vol. 45, no. 3, pp. 199-210, 2003.

M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of
quadrotor systems using time-optimal control,” Autonomous Robots,
vol. 33, no. 1-2, pp. 69-88, 2012.

F. Ramos, M. Gajamohan, N. Huebel, and R. D’Andrea, “Time-
optimal online trajectory generator for robotic manipulators,” Eid-
genossische Technische Hochschule Ziirich, Institute for Dynamic
Systems, Tech. Rep., 2013.

T. Kroger and F. M. Wahl, “Online trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 94-111, 2010.

H. Liu, X. Lai, and W. Wu, “Time-optimal and jerk-continuous
trajectory planning for robot manipulators with kinematic constraints,”
Robot. Comput.-Integr. Manuf., vol. 29, no. 2, pp. 309-317, 2013.
A. A. Ata, “Optimal trajectory planning of manipulators: a review,”
Int. J. Eng. Sci. Technol., vol. 2, no. 1, pp. 32-54, 2007.

S. A. Bazaz and B. Tondu, “Minimum time on-line joint trajectory
generator based on low order spline method for industrial manipula-
tors,” Robot. Auton. Syst., vol. 29, no. 4, pp. 257-268, 1999.

D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex opti-
mization approach,” IEEE Trans. Autom. Control, vol. 54, no. 10, pp.
2318-2327, 2009.

H. Zhao, N. Abdurahiman, N. Navkar, J. Leclerc, and A. T. Becker,
“Jerk-continuous online trajectory generation for robot manipulator
with arbitrary initial state and kinematic constraints,” in IEEE/RSJ
IROS. IEEE, 2022, pp. 5730-5736.

V. M. Baez and A. T. Becker, “Appendix: Equations for
minimum-time planar paths with 12 velocity and acceleration
constraints and a limited number of constant acceleration inputs,”
University of Houston, Tech. Rep., 2024. [Online]. Available:
https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007.

J. Lin, N. Somani, B. Hu, M. Rickert, and A. Knoll, “An efficient
and time-optimal trajectory generation approach for waypoints under
kinematic constraints and error bounds,” in IEEE/RSJ IROS. 1EEE,
2018, pp. 5869-5876.

https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints

	Introduction and Related Work
	Problem statement
	The solution in 1D

	Solving for Unconstrained Final Velocity
	The system does not reach terminal velocity
	The system reaches terminal velocity

	Solving for Zero Final Velocity
	The solution is bang-bang
	The solution requires a cruising phase

	Solving for Non-Zero Final Velocity
	No cruising phase, non-zero final velocity
	Cruising phase, non-zero final velocity

	Trajectory Examples and Analysis
	Conclusion
	References

