
Minimum-Time Planar Paths with up to Two Constant Acceleration

Inputs and L2 Velocity and Acceleration Constraints

Victor M. Baez1, Haoran Zhao1, Nihal Abdurahiman2, Nikhil V. Navkar2, Aaron T. Becker1

Abstract— Given starting and ending positions and velocities,

L2 bounds on the acceleration and velocity, and the restriction

to no more than two constant control inputs, this paper

provides routines to compute the minimal-time path. Closed

form solutions are provided for reaching a position in minimum

time with and without a velocity bound, and for stopping at the

goal position. A numeric solver is used to reach a goal position

and velocity with no more than two constant control inputs. If

a cruising phase at the terminal velocity is needed, this requires

solving a non-linear equation with a single parameter. Code is

provided on GitHub
1
, extended paper version at [1].

I. INTRODUCTION AND RELATED WORK

This paper seeks the minimum-time path for a particle
with a restricted set of control inputs: the system can
apply no more than two constant thrust inputs, each for
a disjoint time. Moreover, this thrust is limited and there
is a constraint on the maximum velocity. A representative
solution is shown in Fig. 1. We were motivated by a desire
for simple optimal control parameterizations of hardware
systems with constraints on total maximum acceleration and
maximum velocity. Many of these problems are currently ap-
proximately solved using iterative numeric solvers. However,
when formulated using L2 bounds, this paper shows there are
several problems that provide closed-form solutions, or can
be formed as a minimization problem of a single variable.
The resulting L2 problem is interesting mathematically, and
the graphical techniques described in this paper enable an
intuitive understanding of the solution. This problem could
apply to a class of thrusters on a space vehicle such as an
astronaut take-me-home system [2], or to other low-friction
environments, such as a hovercraft with a single thruster.

While actuator constraints are often expressed using L1
norms, payloads often specify acceleration limits in an L2

sense, such as the 3-G limit on a space shuttle during launch
[3], or an acceleration bound in every direction for translating
a cup full of water [4]. Similarly, speed limits on highways
refer to an L2 speed and not an L1 speed. A given L2

acceleration constraint am generates a corresponding L1
constraint am/

p
2. This conservative bound can reduce the

top acceleration and top speed by almost 30%.
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Fig. 1. Left: trajectory of a particle starting from p0 with initial velocity v0
and ending at pg with ending velocity vg under two constant acceleration
inputs u applied at directions ✓1 and ✓2 for durations t1 and t2; the •
shapes show the switching points at t1, tc, and t2 along the path, where
tc is the duration the particle cruises at its maximum velocity vm. Right:
L2 position, velocity, and acceleration profiles. x in blue, y in orange,p

x2 + y2 in purple. Bounds on velocity and acceleration are highlighted
in pink ⌅. The control switch times are shown on the position profile. See
video overview at https://youtu.be/2J-p6CDF4FE.

Restricting the number of control inputs can benefit sys-
tem performance and longevity, for example by avoiding
chatter in systems with high amounts of switching [5]–
[7]. From a hardware perspective, limiting the number of
control switches can improve lifespans. Repeated, alternating
stresses are a fundamental concern in mechanical design,
particularly when using fatigue-life methods to approximate
the lifespan of machine components [8]. Minimizing the
number of control switches can facilitate decreasing hard-
ware degradation alongside reducing aggressive actuation by
designing jerk profiles to smoothen trajectories [9], [10].

Optimal paths are common in robotics. In 1957, Dubins
calculated the shortest planar path for a particle that moved at
constant velocity with a constraint on the minimum turning
radius [11], which has been widely used for planning for
mobile robots. Extending these constraints to acceleration is
natural. Carozza, Johnson, and Morgan derive the necessary
equations for reaching a goal location (and velocity) in
minimum time under an acceleration constraint in their
paper [12]. They show that the fastest C1,1 path from one
point to another in the plane, given initial velocity, final
velocity, and a bound on the magnitude of the acceleration
am, in velocity space is a catenary. They applied it to
the “Baserunner’s problem” to determine the sequence of
acceleration commands that enables a runner with bounded
acceleration to run to all four bases on a baseball field. Their
numeric process finds a local minimum. They iterate between
(a) using prescribed velocities at sequential base positions
and optimizing using a multidimensional Newton’s method
with finite difference boundary value methods to determine

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1932572
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the path and timing at each baseline, and (b) using a gradient
descent method to optimize the velocities at each base.

In general, this is a problem of optimal control with a
rich history [13]. Numerous approximations have been used.
In [14], a path between two points with prescribed states
is found by generating a maximum allowed velocity profile
for a curve described by a spline between the points. They
find the extremes of their velocity profile using the extremes
in the curvature along the spline and hardware limitations
on acceleration. Afterwards, the spline’s control points are
optimized for time using parametric programming and a
lookup table containing pre-calculated paths. Similar work
on optimal drone trajectories also used an iterative numeric
solver [15]. Since we directly plan using a small set of
acceleration commands, our solution eliminates the need for
this iterative procedure.

A. Problem statement

Given scalar maximum velocity vm and acceleration am,
initial position p0 = p(0) and velocity v0 = ṗ(0) both in
R2, and acceleration equal to the control input p̈(t) = u(t),
under the constraints that ku(t)k2 am and kṗ(t)k2 vm,
design a u(t) with a restricted number of changes that brings
the system to pG = p(T ) and vG = ṗ(T ), both in R2, in
minimum time T . For notational convenience, distances are
in m, velocities in m/s, and acceleration in m/s2.

B. The solution in 1D (L1 and L2 solutions are equivalent)

Expressions for time-optimal trajectories for joints of a
robot manipulator with velocity and acceleration constraints
are provided in [16]. This section uses results from [16] to
solve the problem in 1D and give context for the remaining
sections.

The trajectories vary depending on the initial and final
desired states, so velocity profiles are used in [16] to clas-
sify them as either critical, under-critical, or over-critical,
depending on whether the distance |pG � p0| allows for the
bound vm to be reached. The critical profile is defined by
a critical displacement, �pc that results in a linear velocity
profile from v0 to vG.

�pc = sv
v
2
G � v

2
0

2am
, where sv = Sign(vG � v0). (1)

Without a constraint on velocity, the peak velocity is

vp =

r
sp(pG � p0)am +

v2G + v20
2

, (2)

where sp = Sign(pG�p0��pc), sp 2 {�1, 0, 1}, accounts
for the direction of the initial acceleration.

The acceleration control input for the triangular and trape-
zoidal velocity profiles are

u(t) =

8
>><

>>:

spam 0  t < t1
0 t1  t < t1 + tc

�spam t1 + tc  t < t1 + tc + t2
0 otherwise

. (3)

If vp  vm, then the velocity profile will be triangular and

t1 =
vp � spv0

am
, tc = 0, t2 =

vp � spvG
am

. (4)

If vp > vm, then the velocity profile will be trapezoidal and

t1 =
vm � spv0

am
, (5)

tc =
2spam (pG � p0) + v20 + v2G � 2v2m

2amvm
, (6)

t2 =
vm � spvG

am
. (7)

The total time required is T = t1 + tc + t2. This
procedure must be modified with more than 1DOF, which is
more complicated because each DOF must reach the desired
position and velocity at the same time. Kroger and Wahl
give a L1 solution in [17] that first attempts to make each
DOF reach the goal velocity and position at the same time
as the slowest DOF. This is done by solving for a free
intermediate cruising speed, which is the root of a sextic
polynomial. Sometimes a solution in this time is impossible,
and a search is conducted to find the next smallest candidate
synchronization time.

Similar processes are used for L1 controllers with limits
on higher derivatives, see [18]–[22]. We used a related
procedure in [22] and provided open-source code to generate
smooth multi-DOF L1 trajectories with sinusoidal jerk
profiles under jerk, acceleration, and velocity constraints.

II. SOLVING FOR UNCONSTRAINED FINAL VELOCITY

What is the fastest way to reach a goal position with one,
constant, bounded acceleration input given a starting position
and velocity? This problem has two variations. Either the
goal position is far enough away that the robot reaches
maximum velocity and coasts to the goal, or the robot does
not reach maximum velocity and accelerates the entire time.

It is easy to show that all positions are reachable under a
constant acceleration input by examining the reachable set.
At time t, the locus of positions reachable by the particle is a
circle centered at [p0x+v0xt, p0y+v0yt] with radius 1

2amt2.
The location of the particle on the circle is determined by
the angle of acceleration ✓1. The gray circles in Fig. 2 show
these circular loci at different times, and the initial velocity
is shown by a blue arrow.

The particle first achieves the goal position at time T . The
locus of positions the particle could be at time T (under all
constant accelerations) are drawn in dark red. The optimal
trajectory is in red, the optimal constant acceleration input in
light brown, and the final velocity on the optimal trajectory
is shown with a purple arrow.

The solution has two forms, depending on if the system
reaches terminal velocity vm or not. If it does not, the time
t1 can be directly solved and used to solve for ✓1. If the
system reaches terminal velocity, finding t1 requires solving
for the roots of a sextic equation. The next two sections
explain these approaches.
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Fig. 2. Two examples of accelerating a particle from a starting position
and velocity to a goal position as fast as possible with a bounded input. The
locus of reachable positions is a circle whose center moves with v0. 100
isochrones (gray circles �� ) are evenly spaced in squared time: t =

p
k for

k 2 [0, 100] to show these loci.

A. The system does not reach terminal velocity vm

Without loss of generality, we transform coordinates so
that pG is the origin. If we know the time t1 that the particle
reaches pG, we can solve for the angle of the acceleration:

✓1(t) = arctan

✓
�2(p0x + v0xt1)

t21
,
2(p0y + v0yt1)

t21

◆
. (8)

Since t1 > 0, we can simplify this expression to ✓1(t1) =
arctan (�(p0x + t1v0x), p0y + t1v0y). The time t1 is when
the distance from (p0 + v0t1) to pG is 1

2amt21. Since we
translated pG to the origin, this results in

✓
1

2
amt21

◆2

= (p0x � v0xt1)
2 + (p0y � v0yt1)

2, (9)

This is illustrated by the dark red isochrone in Fig. 2. If we
rotate the coordinate frame so v0y = 0, and scale velocity
and positions, p̃0 = p0/am, ṽ0 = v0/am, we remove two
constants. The smallest non-negative, real root t1 is optimal:

The speed of the system at time t1 isp
(v0x + am cos(✓1)t1)2 + (v0y + am sin(✓1)t1)2. If

this speed is greater than vm, the system must enter a
coasting phase at terminal velocity. The solution approach
is described in the following section.

B. The system reaches terminal velocity

If the ending configuration is sufficiently far from the ini-
tial configuration, the goal is reachable in minimum time by
a two-phase input which consists of a maximum acceleration
input in direction ✓1 for t1 seconds, followed by a coasting
phase for tc seconds.

At time t1 the system reaches velocity vm under a constant
acceleration am[cos(✓1), sin(✓1)]>:
q
(v0x+amcos(✓1)t1)2+(v0y+amsin(✓1)t1)2 = vm. (10)

This is a quadratic equation with two solutions for t1, but
only the positive value is relevant since we are planning
forward in time. We express t1 as a function of angle ✓1:

t1(✓1) =

q
v2m � v20x � v20y + (v0x cos(✓1) + v0y sin(✓1))2

am

� (v0x cos(✓1) + v0y sin(✓1))

am
. (11)
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Fig. 3. Locus of positions where the particle reaches vm = 1 in light blue
⌅. Top row shows four different starting velocities (blue). The velocity of
the particle due to thrust am = 1 in directions ✓ 2 k⇡/16, k 2 [0, 31]
is shown with pink arrows, all of length vm. These arrows point in every
direction. The bottom row shows v0 = [1/2, 1/2] for four values of am.

The position of the particle at time t1 is

px(t1) = p0x + v0xt1 +
am
2

cos(✓1)t
2
1

py(t1) = p0y + v0yt1 +
am
2

sin(✓1)t
2
1, (12)

and the velocity of the particle at time t1 is

vx(t1) = v0x + am cos(✓1)t1

vy(t1) = v0y + am sin(✓1)t1. (13)

Figure 3 shows eight variations of the locus of positions
at the terminal velocity from (12) in light blue, along with
arrows showing the velocities along this set from (13) in
pink. We want solutions for ✓1 that result in the velocity
pointing toward to the goal at time t1. We could check
directly that

arctan(vx(t1), vy(t1)) ⌘ arctan(�px(t1),�py(t1)), (14)

but this involves solving for inverse trigonometric functions.
Instead, we compare the slope of the velocity to the slope
of the position error:

vy(t1)

vx(t1)
⌘ �py(t1)

�px(t1)
. (15)

This results in two candidate solutions, but we can check
both using (14) and save the correct solution. We will also
have to check for zeros of the equation in the same way. The
resulting equation is

vx(t1)py(t1)� vy(t1)px(t1) ⌘ 0. (16)

Solving for sin(✓1) results in a sextic equation. This
equation is long, so it is shared in the Appendix [23]. We
solve for the six roots of a sextic equation in sin(✓1) = s, and
discard the complex roots. Each remaining root is a solution
for sin(✓1) and provides two possible ✓1 solutions since
✓1 = arctan(±

p
1� s2, s). We substitute each possible ✓1

solution into (11) to get at most 12 candidate t1 solutions.
The smallest, real, non-negative t1 that satisfies (14) is used.

Finding the root of a sextic equation can be efficiently
computed in many programming languages [24].
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Fig. 4. Solution with nonzero starting and zero ending velocity. The locus
of positions where the particle reaches vm = 1 from the initial position are
shown with a light blue set for p(t1), ⌅. The corresponding set backwards
from pG is a golden-colored circle with radius (20a), ⌅. The solution
trajectory is drawn in red. The positions where thrust 1 stops and thrust
2 starts are indicated by black dots. Top row shows four different initial
positions with v0 = [�0.5,�0.5] or [�1, 0] and am = 1/2. The system
never exceeds terminal velocity. Bottom row shows the same positions and
velocities, but with am = 1, so each requires a coasting phase.

III. SOLVING FOR ZERO FINAL VELOCITY

This section provides solutions to problems that stop at
the goal position pG. There are two cases depending on if
the solution requires coasting at the maximum velocity or
not. Both cases require finding the roots of a sixth order
polynomial. Sample solutions are shown in Fig. 4, which also
shows the set p(t1) that is calculated with (12), as well as the
corresponding set centered at pG. Because vG = [0, 0], this
set is a circle. For any goal state with zero velocity, we can
transform the coordinates so the goal position is at [0, 0]>.
We can then rotate the coordinate frame such that v0y = 0.

A. The solution is bang-bang

If the starting and ending position are sufficiently close
such that the velocity never exceeds vm, then the goal is
reachable in minimum time by a two-phase input which
consists of a maximum acceleration input in direction ✓1
for t1 seconds, followed by a maximum acceleration input
opposing the current velocity to bring the system to rest in
t2 = kv(t1)k /am seconds (tc = 0).

After applying the constant input am[cos(✓1), sin(✓1)]>

for t1 seconds, the position and velocity are

p(t1) =


p0x + v0xt1+

am
2 cos(✓1)t21

p0y + am
2 sin(✓1)t21

�

v(t1) =


v0x+ am cos(✓1)t1

am sin(✓1)t1

�
(17)

The deceleration command is in the opposite direction of
v(t1) so that ✓2 = arctan(�vx(t1),�vy(t1)), and lasts for
t2 = kv(t1)k /am seconds. At time t1 + t2, we want the
x and y positions to be zero and the final velocity to be
zero. The final position is entirely controlled by the initial
conditions and the selected ✓1 and ✓2:

t2 =
kv(t1)k
am

=

s✓
v0x
am

+ cos(✓1)t1

◆2

+ (sin(✓1)t1)2

0 = px(t1) + vx(t1)
t2
2
, 0 = py(t1) + vy(t1)

t2
2
. (18)

We then scale the starting position and velocity by dividing
each by am and remove the term am from the calculation:
p̃0 = p0/am, ṽ0 = v0/am. We apply a change of variables
to eliminate the two trigonometric functions: cos(✓1) = c,
and sin(✓1) = ±

p
1� c2. The resulting position constraints

simplify to:

0 = 2p̃0x + 2ṽ0xt1+ ct21 + (ṽ0x+ct1)
q
ṽ20x+2cṽ0xt1 +t21

0 = 2p̃0y +
p
1� c2t1

✓q
ṽ20x + 2cṽ0xt1 +t21 +t1

◆
. (19)

This set of equations can be solved for c as a function of t1.
The calculations are long, and are shared in Appendix [23]
(see also the code implementation).

We solve for the roots of this sextic equation in t1 to
get six candidate t1 values. We substitute each non-negative,
real value into a closed-form equation to compute candidate
c = cos(✓1) from t1. Since ✓1 = arctan(c,±

p
1� c2), this

provides at most 12 candidate ✓1 values. We test each ✓1
value in (18) and select the solution with zero position error
that minimizes the total time.

Figure 4, top row shows four solutions. In each, the
solution trajectory is entirely contained within the union
of the p(t1) locus and a maximum braking radius circle
centered at pG.

B. The solution requires a cruising phase

If the solution from Section III-A requires a velocity larger
than vm, we must have a cruising phase at the maximum
velocity. The goal is reachable by a three-phase input.
This control consists of a maximum acceleration input in
direction ✓1 for t1 seconds, followed by a cruising phase
for tc seconds, followed by a maximum acceleration input
opposing the current velocity to bring the system to rest in
t2 seconds.

We first find the two-phase solution from Sec. II-B to reach
the goal position pG by accelerating in direction ✓1 for t1
seconds. Rather than cruising from time t1 to the goal, we
need to start braking t2 seconds away from the goal.

r =
v2m
2am

braking radius. (20a)

distance from p(t1) to goal:

d =

����pG �
✓
p0 + v0t1 +

am
2


cos(✓1)
sin(✓1)

�
t21

◆���� (20b)

tc =
d� r

vm
cruising time, t2 =

vm
am

braking time. (20c)

braking direction: (20d)
✓2 = � arctan (v0x + am cos(✓1)t1, v0y + am sin(✓1)t1) .

The thrust time t1 is a function of ✓1 as given in (11), and
so (20) are all functions of only ✓1. The bottom row of Fig. 4
shows four representative solutions.

IV. SOLVING FOR NON-ZERO FINAL VELOCITY

Solving for a non-zero final velocity vG is harder, but is
necessary for smoothly traversing through waypoints [25].
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Fig. 5. Solution with nonzero starting and ending velocity. The locus of
positions where the particle reaches vm = 1 from the initial position are
shown with a light blue set for p(t1). A similar set constructed starting from
the goal position using �vG is shown in orange. The solution trajectory
is drawn in red. The positions where thrust 1 stops and thrust 2 starts are
indicated by black dots. Top row shows four different initial positions with
v0 = [�0.5,�0.5], vG = [�0.5, 0] and am = 1/2 (the right differs
to ensure vm is not reached). The system never reaches terminal velocity.
Bottom row shows the same positions and velocities, but with am = 1.
The system reaches terminal velocity vm in each case.

A final velocity adds two parameters to the equations.
Currently, we use a numeric solver to find a bang-bang
solution to get to the goal with no velocity limit. If this
solution results in a maximum velocity greater than vm at
the switching point of the bang-bang controller, we call a
second function to solve for a cruising phase.

Sample solutions are shown in Fig. 5, which also shows
the set p(t1) that is calculated with (12). The corresponding
set centered at pG is generated using the same process, but
with �vG as input.

A. No cruising phase, non-zero final velocity

The bang-bang controller is described by the following
inputs, which apply maximum thrust in direction ✓1 for t1
seconds, and then maximum thrust in direction ✓2 for t2 sec-
onds. There is no cruising phase, so tc = 0. Here, p(t1) and
v(t1) are the same as in (12) and (13). Define the position
and velocity generated by starting at pG with velocity vG

and applying acceleration in direction ✓2 backwards in time

for t2 seconds as [p-t2 ,v-t2 ].

px(t1) ⌘ pGx � vGxt2 +
am
2

cos(✓2)t
2
2 = p-t2,x (21a)

py(t1) ⌘ pGy � vGyt2 +
am
2

sin(✓2)t
2
2 = p-t2,y (21b)

vx(t1) ⌘ vGx � am cos(✓2)t2 = v-t2,x (21c)
vy(t1) ⌘ vGy � am sin(✓2)t2 = v-t2,y (21d)

Solving this nonlinear set of constraints requires a good
starting estimate. We run the solver multiple times, using a
set of candidate guesses for the unknowns [✓1, t1, ✓2, t2]. To
generate good candidate guesses, we first wrap the procedure
in Section III-A into the function

(✓1, t1) = stopAtGoalNoCoast[p0,v0,pG, am, vm], (22)

that returns the necessary thrust direction and time for a given
initial position and velocity, a desired stopping position pG,

and acceleration and velocity constraints. Next, we generate
a set of positions pts:

pts = {p0, p1,
1

2
(p1 + p4) , p4, pG}, where (23)

p1 = p0 +
kv0k
2am

v0, p4 = pG � kvGk
2am

. (24)

Here p1 is reached by maximum braking starting from p0

with velocity v0, and p4 is reached by maximum braking
from pG and initial velocity �vG. We use candidate starting
values

stopAtGoalNoCoast[p0,v0, pts[k], am, vm], k 2 {3, 4, 5}
stopAtGoalNoCoast[pG,�vG, pts[j], am, vm], j 2 {1, 2, 3}

Of all solutions that reach the goal, we select the solution that
minimizes the total time. The fastest velocity occurs at the
switching time. If kvt1k > vm a cruising phase is required.

B. Cruising phase, non-zero final velocity

If the solution from Sec. IV-A requires a velocity greater
than vm, we must have a cruising phase at the maximum
velocity. Solving with a cruising phase is conceptually easier.
We know that the solution trajectory reaches terminal veloc-
ity, and thus t1 is determined by ✓1 and t2 by ✓2, both by
using (11). We merely need to find a ✓1 and a ✓2 that solve
the problem. The velocities while cruising and the scaled
difference in position are all equal, along vector �:

vt1 ⌘ v-t2 ⌘ vm
p-t2 � pt1

kp-t2 � pt1k
⌘ vm


cos (�)
sin (�)

�
. (25)

Given a �, we can solve for ✓1 and ✓2:

✓1 = arctan(vm cos (�)� v0x, vm sin (�)� v0y) (26)
✓2 = arctan(vGx � vm cos (�), vGy � vm sin (�)) (27)

Then we must solve for the parameter �:

� ⌘ arctan(p-t2x � pt1x,p-t2y � pt1y), let

r0 =
q
(v0x � vm cos(�))2 + (v0y � vm sin(�))2,

rG =
q
(vGx � vm cos(�))2 + (vGy � vm sin(�))2, then

� ⌘ arctan(2am(p0x+pGx)�vm(r0+rG) cos(�)�r0v0x�rGvGx,

�2am(p0y�pGy)�vm(r0+rG) sin(�)�r0v0y�rGvGy). (28)

This equation is nonlinear, but � is the only variable. We
use a Van der Corput sequence with base 2 in the range
[�⇡,⇡] to sample � evenly with increasing refinement. We
perform root finding on �, initializing our guess with an
element from the Van der Corput sequence, and iterate until
kpG � p(T )k+ kvG � v(T )k is less than emin.

To test this algorithm, we randomly generated initial and
final positions (p0,pG) within a circle of radius r = 2,
and velocities (v0,vG) in a radius r = 1 until we had
10,000 initial conditions that required a cruising phase for
am = 1, vm = 1. We used emin = 10�12. Of these, 9562
converged within emin using the first sequence value, 9712
in the first two values, and 9911 in the first 5 values. The
average number of values needed was 1.17, and the largest
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Fig. 6. Comparing the finishing times for L2 and L1 solutions with
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which are shown in the inset graphic in the lower left. Because of these
bounds the L1 solution is in general longer than the L2 solution.

was 87. Solving 10,000 queries required 26.5 seconds on a
3.3 GHz i7 laptop.

V. TRAJECTORY EXAMPLES AND ANALYSIS

This section showcases several examples and contrasts
our minimum-time trajectory solutions modeled using L2

bounds to those modeled with L1 bounds. The time-optimal
trajectories modeled with L1 bounds were calculated using
methods in [16], and the two DOF’s were synchronized using
Kroger and Wahl’s search technique from [17].

Using a controller designed using L2 bounds results in a
controller that is never slower than a control that uses the
L1 bounds that obey the L2 bounds. The times are only
the same if the solution trajectory lies entirely along a slope
of ±1. This is illustrated in Fig. 6 for p0 = [1, 1], pG =
[�1,�1]; finishing times for L2 and L1 are only equal for
v0 angular directions of 45° and 225°. At these v0 directions,
the problem is effectively 1D (identical x and y velocities).

For all these solutions there are several advantages of
the L2 solution. The path requires less time is often a
shorter distance. The path also requires less control changes.
Additionally, the L2 acceleration and velocity profiles spend
more time at their bounds.

VI. CONCLUSION

This work found control expressions for position and
velocity control in 2D with L2 constraints on acceleration
and velocity. Future work should extend this to 3D, which is
promising for cases with high symmetry such as when the
final velocity is zero. Extending the work of [12] to quickly
derive the optimum solution and to incorporate velocity
constraints is another exciting direction for future work.
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[17] T. Kröger and F. M. Wahl, “Online trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE

Transactions on Robotics, vol. 26, no. 1, pp. 94–111, 2010.
[18] H. Liu, X. Lai, and W. Wu, “Time-optimal and jerk-continuous

trajectory planning for robot manipulators with kinematic constraints,”
Robot. Comput.-Integr. Manuf., vol. 29, no. 2, pp. 309–317, 2013.

[19] A. A. Ata, “Optimal trajectory planning of manipulators: a review,”
Int. J. Eng. Sci. Technol., vol. 2, no. 1, pp. 32–54, 2007.

[20] S. A. Bazaz and B. Tondu, “Minimum time on-line joint trajectory
generator based on low order spline method for industrial manipula-
tors,” Robot. Auton. Syst., vol. 29, no. 4, pp. 257–268, 1999.

[21] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex opti-
mization approach,” IEEE Trans. Autom. Control, vol. 54, no. 10, pp.
2318–2327, 2009.

[22] H. Zhao, N. Abdurahiman, N. Navkar, J. Leclerc, and A. T. Becker,
“Jerk-continuous online trajectory generation for robot manipulator
with arbitrary initial state and kinematic constraints,” in IEEE/RSJ

IROS. IEEE, 2022, pp. 5730–5736.
[23] V. M. Baez and A. T. Becker, “Appendix: Equations for

minimum-time planar paths with l2 velocity and acceleration
constraints and a limited number of constant acceleration inputs,”
University of Houston, Tech. Rep., 2024. [Online]. Available:
https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007.

[25] J. Lin, N. Somani, B. Hu, M. Rickert, and A. Knoll, “An efficient
and time-optimal trajectory generation approach for waypoints under
kinematic constraints and error bounds,” in IEEE/RSJ IROS. IEEE,
2018, pp. 5869–5876.

https://github.com/RoboticSwarmControl/MinTimeL2pathsConstraints

	Introduction and Related Work
	Problem statement
	The solution in 1D 

	Solving for Unconstrained Final Velocity
	The system does not reach terminal velocity
	The system reaches terminal velocity

	Solving for Zero Final Velocity
	The solution is bang-bang
	The solution requires a cruising phase

	Solving for Non-Zero Final Velocity
	No cruising phase, non-zero final velocity
	Cruising phase, non-zero final velocity

	Trajectory Examples and Analysis
	Conclusion
	References

