Advances in Water Resources 193 (2024) 104836

Contents lists available at ScienceDirect

Advances
in Water
Resourceg

Advances in Water Resources

journal homepage: www.elsevier.com/locate/advwatres

L))

Check for

Computationally efficient and error aware surrogate construction for | el
numerical solutions of subsurface flow through porous media

Aleksei G. Sorokin »%*, Aleksandra Pachalieva ", Daniel O’Malley °, James M. Hyman ?,
Fred J. Hickernell ¢, Nicolas W. Hengartner ¢

a Center for Non-Linear Studies, Los Alamos National Laboratory, Los Alamos, 87545, NM, United States

b Energy and Natural Resources Security Group (EES-16), Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los
Alamos, 87545, NM, United States

¢ Theoretical Biology and Biophysics Group (T-6), Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, United States
d Tllinois Institute of Technology, Department of Applied Mathematics, 10 W 35th Street, Chicago, 60616, IL, United States

ARTICLE INFO ABSTRACT
Keywords: Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important
Partial differential equations goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure

Darcy’s equation

Random coefficients
Surrogate model

Gaussian process regression

is approximated by the solution of Darcy’s partial differential equation for a given permeability field. The
subsurface permeability is modeled as a random field since it is known only up to statistical properties. This
induces uncertainty in the computed pressure. Solving the partial differential equation for an ensemble of
random permeability simulations enables estimating a probability distribution for the pressure at the critical
location. These simulations are computationally expensive, and practitioners often need rapid online guidance
for real-time pressure management. An ensemble of numerical partial differential equation solutions is used
to construct a Gaussian process regression model that can quickly predict the pressure at the critical location
as a function of the extraction rate and permeability realization. The Gaussian process surrogate analyzes the
ensemble of numerical pressure solutions at the critical location as noisy observations of the true pressure
solution, enabling robust inference using the conditional Gaussian process distribution.

Our first novel contribution is to identify a sampling methodology for the random environment and
matching kernel technology for which fitting the Gaussian process regression model scales as O(nlog n) instead
of the typical O(»n*) rate in the number of samples n used to fit the surrogate. The surrogate model allows
almost instantaneous predictions for the pressure at the critical location as a function of the extraction rate
and permeability realization. Our second contribution is a novel algorithm to calibrate the uncertainty in the
surrogate model to the discrepancy between the true pressure solution of Darcy’s equation and the numerical
solution. Although our method is derived for building a surrogate for the solution of Darcy’s equation with a
random permeability field, the framework broadly applies to solutions of other partial differential equations
with random coefficients.

1. Introduction Chen and Pawar, 2019) and along abandoned wellbores (Pruess, 2008;
Watson and Bachu, 2009; Nordbotten et al., 2009; Carey et al., 2010;

Pressure management strategies are essential to prevent overpres- Huerta et al., 2013; Jordan et al., 2015; Harp et al., 2016; Yonkofski
surization in the subsurface caused by resource extraction/injection et al., 2019; Lackey et al., 2019; Mehana et al., 2022), and potential

such as wastewater injection and carbon sequestration (Viswanathan
et al.,, 2008; Benson and Cole, 2008; Birkholzer and Zhou, 2009;
Stauffer et al., 2011; Middleton et al., 2012; Gholami et al., 2021).
Failure to accomplish this goal can lead to induced seismicity (Majer . . . X i1
et al, 2007; Zoback, 2012; Keranen et al, 2014; McNamara et al., public trust, increase economic costs and financial risk, create obstacles

2015), leakage of sequestered resources (wastewater or CO,) (Buscheck to deployment of future proy?cts (B_lethl etal, ?016; Gholami et al,,
et al, 2011; Cihan et al., 2015; Harp et al., 2017; Chen et al., 2018; 2021), and can even result in project cancellation (Palmgren et al.,

contamination of water aquifers (Keating et al., 2010; Little and Jack-
son, 2010; Trautz et al., 2013; Navarre-Sitchler et al., 2013; Keating
et al., 2016; Bacon et al., 2016; Xiao et al., 2020). These events erode
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2004; Curry et al., 2005; Miller et al., 2007; Wilson et al., 2008; Court
et al., 2012; Tcvetkov et al., 2019; Whitmarsh et al., 2019). The key
to minimizing the risk of such events is to develop successful reservoir
pressure management strategies for choosing well-suited reservoir sites,
that are robust against failure and require minimal cost.

Reservoir management operators will benefit from computation-
ally efficient risk analysis and uncertainty quantification tools to sup-
port pressure management in heterogeneous subsurface flow fields.
To address these issues, complex physics models must be solved with
sufficient fidelity and enough realizations to reduce the inherent un-
certainties in the heterogeneous subsurface, as well as in the GCS
site characterization and operations (Ben-Haim, 2006; O’Malley and
Vesselinov, 2015; Chen et al., 2020; Vasylkivska et al., 2021).

Existing pressure management models are often costly to fit and do
not account for the discretization error in numerical simulations. To
overcome these challenges, our surrogate model for the pressure ex-
ploits strategically selected sampling locations and a matching covari-
ance kernel to enable fast model fitting and evaluation. Computations
that would typically cost O(n?) can be done in @(nlog n) using our tech-
nology of matching n samples to a nicely structured kernel. Moreover,
the discretization error in our numerical simulations is systematically
encoded into the model through noisy observations and noise variance
calibration. The modeled discretization error accounts for both the
error in the finite dimensional representation of the random permeabil-
ity field and the error in using a computational mesh. We emphasize
that while our method is applicable to the fine computational mesh
discretizations used in practical applications, the large errors incurred
by course discretizations are sufficient to build a surrogate with higher
uncertainty.

When modeling subsurface flow between injection and extraction
wells, there are scenarios where it is essential to ensure that the
pressure at a critical location is below a given threshold value. Critical
locations would be chosen based on geological, hydrogeological, and
operational considerations. For example, they might be chosen to be
near preexisting boreholes that could cause leakage or faults/fractures
that could cause induced seismicity. To simplify the presentation of our
results, we consider the situation where fluid is injected down a single
well at a fixed rate into a heterogeneous porous media which increases
subsurface pressure, pushing other fluids out at a single extraction well.
The method is applicable in more general settings where multiple criti-
cal locations are used, and in general the results will depend strongly on
the locations of the critical points. To calculate the subsurface pressure,
one must solve Darcy’s partial differential equation.

We demonstrate how the extraction rate can be controlled so there
is a high probability that pressure at a critical location in the subsurface
is below a given threshold. For this, we simulate an ensemble of
both porous media realizations and extraction rates at which we solve
Darcy’s equation numerically at several fidelities. These numerical so-
lutions are treated as noisy observations of the unknown analytic solu-
tions. Tens of thousands of simulations can be required to characterize
the distribution of solutions for the extraction rate and permeability
field inputs. Even though a single computer simulation might only
require a few minutes of computer time, an ensemble of thousands of
simulations can take hours or days. Because practitioners often need
rapid online guidance for real-time control of the injection-extraction
process, we use a database of past simulations to create a surrogate
model that can provide this guidance in a few seconds.

The application of Machine Learning (ML) models in geosciences
has seen increasing popularity in recent years. ML offers new opportu-
nities to learn from big data and fill knowledge gaps in geoscientific
models. Data-driven ML models such as deep neural networks have
been applied to a wide range of problems within the geosciences
such as subsurface characterization (Misra et al., 2019; Chang and
Zhang, 2019; Shi and Wang, 2022; Mishra et al., 2021), reservoir
modeling (Schuetter et al., 2018; Holdaway, 2014; Mohaghegh, 2017),
precipitation prediction (Pan et al., 2022; Shi et al., 2015), and water
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quality and groundwater levels (Lin et al., 2022; Varadharajan et al.,
2022), just to name a few. However, these methods, though useful, have
limitations such as the need for large amounts of data (often unavail-
able), model quality being strongly dependent on the data quality, and
model interpretability.

One way to overcome the lack of data and interpretability is by
adding physics to the ML models, which gave rise to Physics-Informed
Neural Networks (PINNs) (Cai et al., 2021). PINN methods have been
used to make predictions of unknown parameters and/or states in
the subsurface (Tartakovsky et al.,, 2020; He et al., 2020; Wu and
Qiao, 2021), reservoir management and production forecast by mon-
itoring the injection/extraction rates (Pachalieva et al., 2022; Harp
et al.,, 2021; Gross et al., 2021; Mudunuru et al., 2020), and CO,
storage predicting saturation and pressure (Shokouhi et al., 2021; Chu
et al., 2022), among numerous other applications. PINNs are usually
trained so the relationship between derivatives of the neural network
matches the governing equations of the PDE. Often PINNs are used
to model PDEs with deterministic coefficients (Tang et al., 2020), but
their application to PDEs with random coefficients has seen increased
interest in recent years (Pachalieva et al., 2022). For example, physics-
informed convolutional neural networks have been used for simulating
two-phase Darcy flows in heterogeneous media (Rabczuk et al., 2022).
Similarly, stochastic deep collocation methods that incorporates neural
architecture search and transfer learning for modeling flow in hetero-
geneous porous media (Zhang et al., 2023). A main limitation of neural
networks is their lack of prediction uncertainty.

One proposed method to overcome the lack of predictive uncer-
tainty suffered by neural networks is to use a polynomial chaos ex-
pansion (PCE) model. The PCE model has been studied in the context
of wave problems in El Mocayd et al. (2021) and for computational
hydraulics problems in Al-Ghosoun et al. (2021), Alghosoun et al.
(2022). These works also explore encoding the numerical discretization
error into the computational model. Following these papers, we use a
Karhunen-Loéve expansion, also called a proper orthogonal decompo-
sition, to efficiently reduce the dimension of the underlying random
field. However, we use a Gaussian process regression model instead
of a PCE model as the former may be fit more efficiently by pairing
quasi-random sampling locations with matching kernels. Specifically,
PCE costs O(n?) to fit to n samples, while Gaussian process regression
can be performed in O(nlog n) using efficiently computational pairings.

We have chosen Gaussian process regression (GPR) (Williams and
Rasmussen, 2006) to build a surrogate between the inputs of both
the extraction rate and permeability field and the output pressure
at the critical location. The primary motivation for choosing a GPR
model is the ability to encode the discretization error into the surro-
gate systematically. The discretization error in numerically solving the
PDE comes from both choosing a lower fidelity approximation of the
permeability field and using a numerical solver on a discrete mesh.
We treat the numerical PDE solutions at some target fidelity as noisy
observations of the analytical PDE solution. The resulting surrogate
approximates the analytic PDE solution based on these noisy numerical
solutions. Note that our GPR approach accounts for numerical error
but not measurement error. Here, we do not do data assimilation on
measurements, so this type of error is outside the scope of our work.

GPR models naturally support noisy observations where the noise
is assumed to be zero mean Gaussian with a common variance for
each observation. We automatically calibrate a well-adjusted noise
variance through hyperparameter optimization on a restricted domain.
A conservative starting value for this variance optimization is derived
from an approximate upper bound on the error between the analytic
PDE solution and the numerical PDE solution. This upper bound is ap-
proximated by tracking the decay of solution differences as the problem
fidelity increases. A lower bound for the noise variance optimization
is derived from the variance of the difference between high-fidelity
numerical PDE solves and those at the target fidelity used to fit the
GPR.
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Fig. 1. The expected confidence in maintaining pressure below a threshold as a function of extraction rate [m?/s]. Fig. 8 extends this plot to a continuum of thresholds.

GPR models enable robust uncertainty quantification in the output
predictions. Unlike most machine learning models, the GPR model pro-
vides a probability distribution over a broad class of possible analytic
PDE solutions. For example, while neural networks may provide pre-
dictions of equal quality, a Gaussian process provides confidence levels
associated with the predictions based on similarity to already seen
data. Specifically, GPR provides easily computed confidence intervals
for point predictions or credible intervals for linear functionals of the
GPR model. Such predictions under uncertainty are crucial for pres-
sure management systems and would allow operators at underground
reservoir sites to make informed decisions for the injection/extraction
rates to minimize the risk of overpressurization while maximizing the
amount of injected fluid (e.g. reservoir’s performance).

Another advantage is that GPR surrogates can be quickly fit when
one controls the design of experiments, as is the case here. Fitting a
standard GPR surrogate typically costs @(n®) where n is the number
of data points. By strategically matching sampling locations and co-
variance kernels, we reduced the cost to O(nlogn). This reduced cost
includes optimizing the noise variance among other hyperparameters,
which makes this computationally intensive heterogeneous subsurface
problem feasible.

Fig. 1 shows the GPR model prediction for the expected confidence
that the pressure at the critical location will be below a given threshold.
For example, suppose the threshold pressure is 2mmH,O (millimeters
of water). In this case, the extraction rate must be at least 0.01 m3/s
(cubic meters per second) to have 90% confidence that the pressure at
the critical location will be below the threshold. Notice the confidence
computed using the GPR surrogate increases in both the extraction rate
and threshold, which matches the physics of the simulation.

Fig. 2 shows the workflow of our approach:

1. We sample the feasibility space by generating a uniform quasi-
random (low-discrepancy) sample for the extraction rates and
permeability fields. Then, for each extraction-permeability pair-
ing, we solve Darcy’s equation numerically at a sequence of in-
creasing fidelities using the DPFEHM software package
(O’Malley, 2023). DPFEHM supports a variety of solvers includ-
ing direct solvers and preconditioned iterative solvers. For this
work, we used the default solver, which is a conjugate gradient

iterative solver preconditioned with algebraic multigrid. The
simulation errors depend on the fidelity of the permeability
field and the fidelity of the finite volume numerical solver. The
decay of differences between simulations at increasing fidelities
informs an approximate upper bound on the noise variance. The
differences between simulations at the highest fidelity and the
target fidelity inform an approximate lower bound on the noise
variance. These bounds are used in the next step for optimizing
the noise variance. Once these bounds have been found, we may
choose to sample more at the target fidelity as these numerical
solutions will be used to build the GPR model.

2. With numerical solutions in hand, the observations at the target
fidelity are used to fit a fast GPR model. We emphasize that
the target fidelity is not necessarily the maximum among the
increasing sequence of fidelities at which we numerically solve
the PDE. The target fidelity is chosen based on budgetary restric-
tions and the GPR surrogate’s noise will adapt to this choice. The
GPR model may be fit quickly since the chosen quasi-random
sampling locations and matching kernel have induced a circulant
kernel matrix structure. This fast-fitting cost includes optimizing
hyperparameters such as the noise variance. The noise variance
optimization is initialized to the approximate upper bound and
restricted to be above the approximate lower bound derived in
the previous step.

3. The GPR surrogate fit to the target fidelity observations can then
be used to select an optimal extraction rate in real-time for any
pressure threshold. The key is that the GPR surrogate is much
faster to evaluate than the high-fidelity numerical PDE solver
and the GPR models the true analytic PDE solution, not the
numerical one. This enables rapid real-time analysis for a variety
of objectives from an error-aware model.

We emphasize that our proposed workflow readily generalizes from
the example we provide in this paper to other PDEs with random
coefficients. Our method makes the inclusive assumption that the PDE
of interest has a random coefficient which can be approximated at
a sequence of increasing fidelities. This paper explores random log-
normal permeability fields in two or three dimensions and uses the
classic Karhunen-Loéve expansion to get lower fidelity approximations.
Other random fields in more than three dimensions are also supported
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Fig. 2. Workflow diagram visualizing the three stages of our method. First, the possible extraction rate and permeability field realizations are sampled with a low-discrepancy
quasi-random uniform distribution. Each pair is input to the numerical partial differential equation solver, which returns an approximation for the pressure at a critical location.
Next, a GPR model is optimized to the data relating extraction rate and permeability to pressure at the critical location. The optimization for n samples is done at O(nlogn) cost
by exploiting structure in the Gram kernel matrix induced by using quasi-random samples and matching kernels. The trained GPR model can be quickly evaluated to identify the

lowest extraction rate, which rarely overpressurizes a critical location.

when nice parameterizations exist. Examples of methods in geophysics
which decouple a permeability field into a series of random vari-
ables include optimized principal component analysis methods (Liu,
2017), discrete cosine transforms (Wang et al., 2023), or probability
perturbation methods (Grana et al., 2012).

Moreover, numerical PDE solvers exist for more challenging prob-
lems including higher dimensional PDEs and those on more intricate
domains. These alternative solvers may be plugged into our method
without change. The simple two-dimensional Darcy flow we solve with
a finite volume method should be viewed as a proof of concept for our
generally applicable method.

Section 2 introduces the modeling equations, notation for the prob-
lem formulation, and the existing methods we build upon later in
the paper. This includes details on numerical solutions of Darcy’s
equation and an overview of GPR modeling. Our novel theoretical
contributions are detailed in Section 3 where we first discuss a method
for calibrating the GPR noise to the numerical PDE solution error and
then discuss details on fitting a fast Gaussian process at O(nlog n) cost.
Section 4 discusses details of our numerical simulations, exemplifies
the use of the trained GPR model for real-time pressure management,
and explores the efficacy of both the Gaussian noise assumption and
calibration routine. This section concludes by applying our method to
the Darcy problem with a three-dimensional subsurface, emphasizing
the generality of our algorithm. Finally, Section 5 ends with a brief
conclusion and discussion of future work.

2. Methods

This section describes the problem and the model equations of
interest. We start by formulating Darcy’s equation and describing our
quantity of interest: the confidence (probability) that the pressure at a
critical location stays below a given threshold. Using a Gaussian process
regression (GPR) surrogate gives a distribution over possible pressures
at the critical location leading to a random confidence. Next, we discuss
the numerical solution of Darcy’s equation including the permeability

field discretization using the Karhunen-Loéve expansion and the two-
point flux finite volume method. Finally, we describe how the GPR
surrogate views the numerical PDE solutions as noisy evaluations of
the true pressure solutions in order to fit a distribution over admissible
pressure solutions.

2.1. Problem formulation

Consider a pressure management problem of a single-phase fluid in
a heterogeneous permeability field. Darcy’s partial differential equation
can model the pressure throughout the subsurface

V- (G(x) - VH(x)) = f(x), @

when the subsurface permeability field is known. Darcy’s equation
describes the pressure head H(x) in the subsurface over a domain
D c R? with permeability field G(x) and external forcing function
f(x). The steady-state Darcy equation (1) allows us to evaluate the
long-term impact of the injection and extraction on the pressure head.
For pressure management, the forcing function f is composed of an
injection rate w > 0 at Xjpjection and an extraction rate —r < 0 at

Xextraction- Following Pachalieva et al. (2022), we write

W, X = Xinjection

fGr) i=9-r, X = Xextraction 2)
0, X € D\{Xinjection’ Xextraction }-

Throughout this paper, we treat the injection rate w as fixed and focus
on optimizing the extraction rate r, assuming r does not exceed w. Note
that in general, these could both be time-dependent. We treat that as a
constant because operators may be constrained by the maximum rates
at which they can inject/extract or permitting requirements. The use of
a constant also simplifies the design problem and gives an indication
of the long-term operation at the site that could be sustained.

The details of the permeability field G are rarely known in practice.
Instead, one is often given statistical properties of that field, such as
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Fig. 3. The left plot shows a realization of the log-permeability field log G(x)[m?] and the right plot shows the resulting pressure H(x;r,G) for some extraction rate r [m?/s]. The
fixed injection, extraction, and critical locations in our two-dimensional setup are also shown.

the mean permeability and spatial correlations of variations of the per-
meability around its mean. Given these descriptors, it is convenient to
model the permeability G as a random log-normal field. Solving Darcy’s
Eq. (1) using a stochastic permeability field G induces randomness in
the pressure H.

Our goal is to quickly estimate the probability that the pressure at
the critical location X ;.o remains below a desired threshold h as a func-
tion of the extraction rate r. This enables practitioners to implement
control policies to manage pressure at critical locations in real-time. Let
H(r,G) := H(Xcitical; I» G) denote the pressure at the critical location,
which is a function of the extraction rate, r, and permeability field, G.
For a fixed upper bound #, we seek to evaluate the confidence,

e(r) := PG(H (r,G) < h), 3)

where the probability P is taken over the distribution permeability
field G. Fig. 3 illustrates the described setup.

Although the confidence, ¢(r), cannot be computed explicitly, it can
be approximated for each fixed extraction rate r by numerically solving
for critical pressure H¢(r,G) in Darcy’s Eq. (1) for many realizations
of G. Unfortunately, this method is biased as the numerical critical
pressure is only approximated the critical pressure H¢(r,G). Also, the
associated cost of solving the PDE multiple times is impractical for
practitioners desiring fast online inference.

Our approach provides rapid solutions and error estimates for the
confidence c¢(r) by building a surrogate model for the critical pressure
H¢(r,G). This statistical approach treats the numerically computed
critical pressures as noisy observations of the analytic critical pressures.
GPR is a natural and efficient approach for this framework and can pro-
vide immediate online estimates for ¢(r) as a function of the extraction
rate.

Given n numerical critical pressure observations, the GPR surrogate
H:(r,G) estimates the critical pressure H(r, G). We plug this estimate
into (3) and get the conditional confidence

C,(r) := Po(H(r,G) < | H). ©)
The expected conditional confidence is a natural estimate for ¢(r) denoted
by

¢, (r) :=Epe [C,()] = PG pey(HL(r, G) < h). ©)
We approximate the unknown analytic solution ¢(r) by the compu-
tationally tractable c,(r), which only uses the surrogate model. Af-

ter interchanging expectations, the above equation can be efficiently
computed with (Quasi-)Monte Carlo.

2.2. Numerical solution of Darcy’s equation

To solve Darcy’s Eq. (1), we apply a standard two-point flux finite
volume method in the square domain D on a discrete mesh. A truncated
Karhunen-Loéve expansion represents the log of the log-normal perme-
ability field G over D. This enables us to draw samples of G, which can
be evaluated at a mesh grid of any fidelity.

We say the physical domain has discretization dimension d when
the finite volume mesh has d + 1 mesh points in each dimension of
D. The choice of d = 2" creates nested mesh grids. While there is no
restriction on the mesh grids with an equal number of points in each
dimension, this reduces the number of parameters we must consider
when approximating the numerical error later in this section.

The Karhunen-Loéve expansion (Karhunen, 1947) of the permeabil-
ity field may be used to find a good finite-dimensional approximation
of G. Specifically, we may write

log G = Y 1/4,9,07, ®)
j=1

where @, are deterministic and orthonormal and Z,, Z,, ... are inde-
pendent standard Gaussian random variables. Ordering 4; > 4, > 43 >
..., We approximate G by

loe () = 3\ [4,0,07, @
Jj=1

which optimally compacts the variance into earlier terms. Fig. 4 shows
different pairs of s and d for a common realization of Z,, Z,, ... . Notice
the greater detail in G* as s increases and the finer mesh over D as d
increases. We will often call the pair (s, d) the fidelity of the numerical
solution.

We let H{ (r,Z*) denote the numerical critical pressure computed
by solving the PDE (1) with domain discretization dimension d and
permeability discretization dimension s. Here Z° = (Z,,...,Z,) is a
vector of independent standard Gaussians, which uniquely determine
the approximate permeability field G°. In our implementation, we use
the GaussianRandomFields. j1 package (Robbe, 2023) to simu-
late permeability fields G° and solve the PDE numerically with the
DPFEHM. j1 (O’Malley, 2023).

2.3. A probabilistic GPR surrogate

We model the relationship between the inputs of extraction rate
r and permeability field G and the output critical pressure H¢(r,G).
The model is built on observed numerical critical pressures Y" :=
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Fig. 4. The same realization of the log-permeability field as in Fig. 3 but for various choices of permeability discretization dimension s and domain discretization dimension d.
In the left plot, a small s and d are chosen, corresponding to a lack of small-scale changes in the permeability realization and a coarse mesh grid over the domain, respectively.
Moving from the left to center plot maintains the same mesh grid while increasing s to yield more small-scale changes in the realization. Moving from the center to the right plot

keeps the same realization while increasing d to yield a finer mesh over D.

{H{ ,(r;, Z))}]_, at strategically chosen sampling locations (r;, G))_,.
Our GPR surrogate views Y” as noisy observations of H¢ with

Hid(’DZS): He(r,G)+ €. (8)

We model the noise ¢, ;, which encodes the discretization error, as a
random variable. That random variable is assumed to be independent
of the sampling location (r, Z*) but dependent on the fidelity (s, d). We
further assume that the errors are zero mean Gaussians with variance
Coas 1€

Esd ~ N(()’ Cs,d)' 9

Assuming homogeneous variances enables us to exploit numerical tricks
that lead to fast computations of the posterior expectations. In Sec-
tion 3.1 we discuss a method for approximating bounds on the noise
variance ¢, ;, which are then used during hyperparameter optimization.
GPR assumes H° is a Gaussian process, and therefore, the condi-
tional distribution of H¢ given Y” is also a Gaussian process (Williams
and Rasmussen, 2006). We use this conditional, or posterior, distri-
bution on H¢ as an error-aware surrogate. The conditional mean and
covariance functions determining the posterior Gaussian process are

(10)
(1)

m,(®) :==E [H @)Y
k,(t,1') := Cov [H (1), H°(t")|Y"]

and

respectively where ¢ := (r, Z*) is the 145 dimensional input to the GPR.
The conditional variance is written as

o2(t) = Var [H O|Y"| = k,(t,1). 12)

Building upon the above notation, we denote the posterior Gaussian
process by

H¢ := HC|Y, ~ GP(m,, k,). 13)

Fig. 5 illustrates an example posterior Gaussian process. While
the figure assumes 7 is one-dimensional, which is impossible for our
problem, GPR extends naturally to arbitrarily large dimensions. We em-
phasize that the posterior Gaussian process is a surrogate for the critical
pressure H¢, not the numerical critical pressure H{, whose evaluations
are used for fitting. Our GPR surrogate provides a distribution on H*¢
whose expectation can be taken as a point estimate for the analytic
critical pressure solution.

3. Theory

This section describes in detail the novel theoretical contributions
of this work. First, we approximate upper and lower bounds on the
variance of the error between the numerical PDE solutions used to fit
the GPR and the true PDE solutions. When optimizing the GPR noise
variance {; 4, the approximate upper bound is used as a starting value
and the optimization is restricted to search above the approximate
lower bound. Second, we discuss how the fitting of the GPR model
to n data points can be accelerated from O(1n®) to O(nlogn) using
an intelligent design of experiments and matching GPR kernel. This
speedup technology is more generally applicable to surrogate modeling
when one has control over the design of experiments.

3.1. Approximate bounds on GPR noise variance

Recall the GPR model with zero mean Gaussian noise assumes the
numerical solution is unbiased for the analytic solution. Therefore,
the noise variance ¢, is the Mean Squared Error (MSE) between the
analytic PDE solution and the numerical PDE solutions. This section de-
rives approximate upper and lower bounds on the Root Mean Squared
Error (RMSE) \/m. The upper bound is used as a starting point to
calibrate {; , when performing hyperparameter optimization of the GPR
model. This bound is derived by tracking the decay in average solution
differences as the problem fidelity is increased. The lower bound is used
to restrict the search domain for this hyperparameter optimization. This
heuristic lower bound is derived by looking at the MSE of differences
between solutions at the maximum and target fidelities.

We start by approximating an upper bound on {; ;. First, notice the
assumption of zero mean Gaussian noise in (9) implies that the standard
deviation of the GPR noise may be written as the RMSE

@: |#er.6) - HE (R, Z%)

2
- \/E(R,Zx) [#e(R.G) - ¢ (R, 29)]
=: RMSE, ,.

14

Here the extraction rate R is assume to be uniformly distributed be-
tween 0 and w, i.e. R ~ U’[0,w]. Moreover, the extraction rate is
assumed to be independent of Z°.

Following ideas from Multi-level Monte Carlo (Giles, 2008; Robbe
et al.,, 2017), we choose strictly increasing sequences (s;);»o and (d;) ;5o
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Extraction Rate [m®/s] and Permeability Ficld Cocfficients

= = Analytic PDE Solution

® Numerical PDE Solutions === GP Approximation

GP Uncertainty

Fig. 5. Cartoon Gaussian process model. Suppose we are interested in recovering the analytic PDE solution H¢ from numerical PDE solutions, which we treat as noisy observations
of H¢. The posterior Gaussian process (GP) for H¢ is visualized through its posterior mean approximation and 99% confidence interval uncertainty at each point. While the cartoon
shows a one-dimensional input, our actual model takes a 1+ s dimensional input: 1 for the extraction rate and s for the random coefficients in the Karhunen-Loéve expansion of

the permeability field.

with s = s and d = d; and rewrite (14) as the telescoping sum
o0
RMSE, ;= Y, [AS/ (R, Z*) + 4y (R, Z“f)] 5)
j=T+1
where
Afj+1 (R, Z%i+") = Hfm,d] (R, Zi+1) — Hfj’d/(R, zZY),

Ay, (R.Z°r) = H{

Sjp1.d;

+1 (R, Z%) H;;+1vd/ (R, Z%+1).

Here T > 0 is the index of the target fidelity whose observations will
be used to fit the GPR model. Let us assume that

4, (R, Z*1)|| =2%s and |4, (R, Z*)|| = 2"d}. (16)

The parameters (a,, b,) and (a,, b,) will be fit using linear regression in
the log-log domain. Let s; = 0,2/ and d; = v,2/ where v, and v, are
the respective initial values chosen by the user. Applying the triangle
inequality to (15) gives

o
RMSEST,dT < z [zb: U?S (2% )j + 2ba UZd (UZd )l]
J=T+1
_ by 2T+Da; g T+ Dag a7
S 1 =29 4 1-2%
=: RMSE,_,,

using the expression for the sum of a geometric series.

Fig. 6 illustrates the above idea for both a two dimensional subsur-
face (above plot) and three dimensional subsurface (below plot). First,
we pick an M > T so that (s,,,d,,) is the maximum fidelity at which
we will numerically solve the PDE and (sy,d;) is the target fidelity
whose numerical solutions will be used to fit the GPR surrogate. We
emphasize that M > T since we do not require the GPR surrogate
to be built on maximum fidelity solves. Now, at every fidelity (s;.d;)
with 1 < j < M we solve the PDE at the same (R;, Z f’” )L, points to

get {Hsc,d,(Ristj)}L« Here ij is the first s; element of Z;™. For
1<j< /M/ we make the approximations

3=
.Ms

A2 (R, Z%),
J

14 (R, Z°D)]| =
i \ “

(18)
42 (R;, Z%)

J

3=

144, (R, Z°)|| ~ \
J

corresponding to the plotted red dots and blue squares, respectively.
The slope intercept pairings (ay, b,) and (a,, b,) from (16) are fit to the
values in (18) with lines in the respective colors. The upper bounds
mw from (17) are visualized by the purple stars. Notice that the
model will find RMSE,_, for any target fidelity (sy,dr) we choose.
As dp increases, the mesh size shrinks, and the PDE becomes more
expensive to solve numerically. As s; increases, the input dimension
to the GPR model grows, and more PDE solves are required to build
an accurate model. Notice that the RMSE is dominated by the error in
the permeability field discretization rather than the error in the domain
discretization.

We now approximate a lower bound on {;,; = {;, 4. Recall that
{sp.dp 1s MSE between analytic solutions and the numerical solutions
at target fidelity (sp,dp). Practically speaking, we expect this to be at
least as large as the MSE between the solutions at the maximum fidelity
(spr.dyy) and target fidelity (sp, dyp) i.e.

V srar = \/E(R,Zw) [HC(R, G)-H{ , (R ZM )]2

2
\/E(R,zw) [HSCM’dM (R, Z°M)—H{ , (R, ZT )]
: RMSE,

12a%

Jdr
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Fig. 6. The Karhunen-Loéve expansion of the permeability field is approximated by the sum of the first s; terms. The physical domain D is discretized into a grid with mesh
width 1/d; in each dimension. The RMSE of the difference between numerical critical pressures with discretizations (s;,d;/2) and (s;/2,d;/2) is scatter plotted as ||Av/ ||l. The RMSE
of the difference between numerical critical pressures with discretizations (s;,d;) and (s;,d;/2) is scatter plotted as HAHJ ||. Simple regression models are fit to these two scatter
trends where a and b are the slope and intercept, respectively, of the plotted lines. These models are extrapolated through an infinite telescoping sum to derive the approximate
upper bound on the RMSE of the difference between the numerical critical pressure with discretization (s;,d;) and the target critical pressure.

Similar to (18), we approximate this heuristic lower bound by the
sample RMSE:

m

1 P
RMSE,_, ~|+ Z} B (19)
=
where
Bygi=H , (R.ZM) ~H{ , (R.Z]"). (20)
3.2. Fast GPR

Gaussian processes regression models are defined with a positive-
definite covariance kernel k, which assumes Cov[H(t), H¢(t)] = k(t,1").

The posterior mean m, and posterior covariance k, given the noisy
data Y" requires solving the linear system Ka = b for a € R" given
b e R" where K = K + ¢, 41, is the n X n noisy kernel matrix. Here K =
(Ic(t,-,tj)),f”j:1 is the kernel matrix of pairwise evaluations at sampling
locations (t,)/_, and [, is the n X n identity matrix. The cost of solving
the system Ka = b for a is ©O(n*) in the general case where K is dense
and unstructured. This computational cost limits the sample size used
to build the surrogate.

For some structured K, the linear system can be solved in O(nlog n).
For example, when K is circulant or block Toeplitz (Gray et al., 2006)
the same structure is induced in K and the linear system can be
solved using fast Fourier transforms. We can induce such structure in
K by strategically choosing the sampling locations (#;)!_, and matching
covariance kernel k. Two available flavors are:
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Table 1

Comparison of construction and evaluation costs between the unstructured and
structured Gaussian processes in terms of the number of samples n used to fit the
Gaussian process. Construction costs include hyperparameter optimization (tuning) and
computing constants for evaluating the posterior mean and covariance.

Construction Evaluation

Tuning Constants Mean Covariance
Unstructured GP On?) On?) O(n) O(n?)
Structured GP O(nlogn) O(nlogn) O(n) O(nlogn)

+ Lattice sequence (#)?_, and periodic shift invariant k produce
circulant K.

+ Digital sequence (¢,)7_, and digitally shift invariant k produce
block Toeplitz K.

These methods for inducing circulant and block Toeplitz structure
in K were previously used for Bayesian cubature in Jagadeeswaran
and Hickernell (2019) and Jagadeeswaran and Hickernell (2022) re-
spectively with a unifying thesis on fast Bayesian cubature available
in Rathinavel (2019). Parallel developments for kernel interpolation
in reproducing kernel Hilbert space are described in Kaarnioja et al.
(2022, 2023), Kuo et al. (2023). This paper differs from the methods in
these references in two ways. First, our confidence quantity of interest
is a non-linear functional of the GPR surrogate as opposed to the linear
mean studied in the cubature context. Second, we add support for noisy
observations, including methods to optimize the noise variance ¢; ;.

Fig. 7 plots lattice and digital sequences (¢,)!_, alongside matching
kernels and the induced kernel matrices. Notice that lattice and digital
sequences lie in the unit cube and have low discrepancy with the
standard uniform distribution (Owen, 2013, Chapters 15 and 16). The
periodicity in the lattice sequence kernels and discontinuities in the
digital sequence kernels induce the same features in the posterior mean.
For example, Fig. 5 showed a GPR surrogate with lattice sampling
locations and matching kernel.

Table 1 compares construction and evaluation costs between the
unstructured and structured Gaussian processes described in this sec-
tion. The construction costs include the tuning parameters to maximize
the marginal likelihood of the Gaussian process and the computing
constants to be used during evaluation. Evaluation costs for both the
posterior mean and covariance occur after construction.

Recall that the noise variance {; ; encodes the approximation error
and acts as a regularization of the posterior Gaussian processes, which
honors observations Y” less as ¢, grows. We choose ¢, ; to optimize
the marginal likelihood of the Gaussian process. The upper bound in
(17) is used as a conservative initial guess for the noise variance ¢; ,
while the optimization is constrained to search above the lower bound
in (19).

4. Numerical experiments

This section discusses the numerical experiments used to test our
method. We stress that the experiments are meant to be a proof of con-
cepts which is easily generalized to more realistic problems rather than
an exhaustive real-life application. This section begins by describing
implementation specifics such as transformations required to make the
fast GPR framework compatible with Darcy’s problem and estimation
techniques for the expected conditional confidence. We then describe
two numerical experiments used to evaluate our method. The first is
a straightforward application of our trained GPR model for real-time
analysis of the relationship between extraction rate and confidence
in maintaining a low enough pressure at the critical location. The
second experiment visualizes the calibration procedure for the GPR
noise variance and explores the requisite assumption of Gaussian noise.
Finally, we emphasize the generality of our algorithm by applying it to
the same Darcy problem but with a three-dimensional subsurface.
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4.1. Implementation considerations

To enable the reproducibility of our results, we describe the specifics
for approximating the confidence c(r) in (3) by the expected conditional
confidence ¢,(r) in (5). Recall from Section 2.3 that lattice sequences
are defined in the unit cube [0, 1]'**. Moreover, the posterior mean of
a GPR surrogate fit with lattice sampling locations, and a matching
covariance kernel has a periodic posterior mean. We first transform
the extraction rate r and independent Gaussians Z*, which defines the
permeability field G*, to the unit cube domain. We then periodize the
critical pressure using the baker transform.

To transform our problem to the unit cube [0,1]'*, recall the
assumption that the extraction rate no larger than the injection rate
i.e. r € [0,w]. Let @~! denote the inverse distribution function of a
standard Gaussian random variable. For any r, € [0, 1] and u;,u,, ... €
(0,1) we may use (6) to write

ME(r,,uj,uy,...) := H¢ (wru,exp <Z \/A—j(pj(x)cﬁl(u/-)>> . 21)

izl

For independent standard uniform random variables U;, U,, ... i v0,1]
we have

PG(H (r,G) < h) = P(Ul,Uz,,,,)(MC("/W, U, U,,...) < h).

To periodize M“(r,,u;,u,,...), define the baker transform (Owen,
2013, Chapter 16)

b(u)=1—zu_l':{2"’ 0<u<1/2 .
: 20-w) 1/2<u<]1

so that

Mty s ) = M), bly): b)), (23)

Since b(U) ~ U'[0, 1] when U ~ V[0, 1], we have
c(r) = Py, v,..) (M¢(r/w,U},U,,...) < h)

. ] 24)
= Py, vy, (M(r/Quw), U, Uy, ...) < h).
Let 1\31; (r iy ... u;) denote the posterior Gaussian process for M (r,,uy, s, ...
Substituting M’ o(rysuy, ... ug) into (24) and taking the expectation gives
&(r) 1= Pygge g,y (M(r/Qu), Uy, ... .U S h)
h— i, (r, Uy, ..., U (25)
1l &, U, ... Uy

Eq. (24) motivates us approximating c(r) by é,(r). Here the final in-
equality follows from Fubini’s theorem (Fubini, 1907) and m, and 6,
are the posterior mean and standard deviation of M,f when plugged
into (10) and (12) respectively.

We use QMCGenerators.jl (Sorokin, 2023) to generate lattice (or
digital) sequences. The lattice or digital sequences can also efficiently
approximate (25) using Quasi-Monte Carlo (Niederreiter, 1992; Owen,
2013). Specifically, we use the Quasi-Monte Carlo estimate

N 7 o
o 1 h_mn(ranlw--yU,‘s))
(N~ — <1>< - (26)

where (U4, ..., U,-S)ifi , are low-discrepancy points e.g. the first N' points
of a lattice or digital sequence.

4.2. Two-dimensional experiments and analysis

The domain of our subsurface is square with side lengths of 200 m
with the injection well, extraction well, and critical location shown
in Fig. 3. We set the injection rate to 0.031688m3/s (equivalent to
1 million metric tons per year [MMT/y]) and test extraction rates
between —0.031688 m? /s and 0.0 m?/s. We use a zero mean log-normal

).
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Fig. 7. The first column shows the first n points of a lattice sequence and some matching periodic kernels that yield circulant kernel matrices. The second column shows the first
n points of a digital sequence and some matching step function kernels that yield block Toeplitz kernel matrices. Features of the kernel functions are induced in the prediction
function. For instance, using the lattice sequence and matching kernels will yield a periodic prediction, while using digital sequences and matching kernels will yield a discontinuous

step-function prediction.

permeability field with a Matérn covariance kernel having a correlation
length 50 m.

Our GPR surrogate is fit to numerical experiments with fidelity
(s,d) = (64,128) i.e. 64 were terms kept in the KL expansion and the
mesh width for the finite volume solver was 1/128 in both dimensions.
The sequence of fidelities used to find upper and lower bounds for
noise variance tuning were (sj)in 0 = (4,8,16,32,64,128,256,512) and

10

(dj)j]‘i0 = (8,16,32,64,128,256,512,1024) as shown in Fig. 6 for the
two dimensional subsurface. At each fidelity, the PDE was solved
numerically at m = 128 extraction-permeability pairings, and n = 1024
solves at fidelity (sy, d) = (64, 128) were used to fit the GPR. The Quasi-
Monte Carlo approximation in (26) was performed using N = 1024
randomly shifted lattice points. The CPU time required for each step
of experimentation are given in Table 2. The condition number of the
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Table 2

Advances in Water Resources 193 (2024) 104836

CPU time for different stages of the proposed method on the Darcy problem in two and three dimensions. First, the KL expansion is performed on a fine grid.
Then the finite volume method from DPFEHM (O’Malley, 2023) is used solve Darcy’s equation on common permeability realizations at different fidelities. The
Gaussian process regression (GPR) model is then fit at the target fidelity, and GPR inference may be performed at a fraction of the cost compared to the a
traditional solver. Note that GPR fitting includes FV The fidelity parameters are the number of samples m, the number of KL terms/number of input dimensions
to the GPR s, and the domain discretization fidelity d. For the two dimensional Darcy problem, the fidelity d indicates a d X d computational mesh while for
the three dimensional Darcy problem the fidelity d indicates a d x d x 9 computational mesh. Note that the cost of KL is independent of the number of samples,

so these entries are left blank.

Step Darcy 2D Darcy 3D
CPU time [sec] m s d CPU time [sec] m s d
KL on fine grid 229 512 1024 2578 512 1024
47 128 4 8 320 128 4 8
76 128 8 8 341 128 8 8
82 128 8 16 340 128 8 16
137 128 16 16 384 128 16 16
220 128 16 32 383 128 16 32
FV solves 7857 263 128 32 32 46657 468 128 32 32
317 128 32 64 532 128 32 64
336 128 64 64 663 128 64 64
340 128 64 128 745 128 64 128
375 128 128 128 1077 128 128 128
389 128 128 256 1645 128 128 256
464 128 256 256 2309 128 256 256
527 128 256 512 5502 128 256 512
671 128 512 512 6849 128 512 512
908 128 512 1024 19182 128 512 1024
2704 1024 64 128 5916 1024 64 128
GPR fitting 3.5 1024 64 128 2.0 1024 64 128
GPR inference 3.0 1024 64 128 2.8 1024 64 128
2 Dimensional Subsurface 3 Dimensional Subsurface
1.0
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Fig. 8. Approximate expected posterior confidence from (26) by extraction rate r and pressure threshold h.

noisy circulant kernel matrix is 387. As the condition number is the ratio
between the largest and smallest eigenvalues, one may decrease the
condition number by raising the lower bound on the GP noise variance.

In Fig. 8 for the two dimensional subsurface, we plot the approxi-
mate expected conditional confidence in (26) for a range of extraction
rates r and pressure thresholds . While the surrogate is not constrained
to be monotonically increasing in both extraction rate r and threshold
h, the expected confidence appears to have this qualitative behavior.
This reassures us that our surrogate captures the physics in the model.
Fig. 1 may be viewed as slices of the left plot of Fig. 8 at fixed pressure
threshold h. For a fixed pressure threshold h, numerous methods exist
to use the GPR model to find an extraction rate which yields a desired
confidence. We emphasize this can all be done in real-time using only
evaluations of the GPR surrogate.

We now analyze our assumption of Gaussian noise for the GPR
model and our method of optimization. Fig. 9 illustrates the critical
distributions considered for noise variance fitting. A frequency plot
of the errors between the maximum and target fidelities is plotted
i.e. a frequency plot of 4,7, from (20). The sample MSE of these
errors is used an approximate lower bound on the noise variance for
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optimization. The initial noise variance for optimization was set to the
upper bound approximated the decay of differences in numerical solves
at a sequence of increasing fidelities, see (17). Section 3.1 contains
details on both these approximate bounds.

For the two dimensional subsurface, Fig. 9 shows the fitted GPR
noise variance essentially matches the lower bound. In fact, if we do
not lower bound the noise variance, our optimization to maximize the
marginal likelihood will choose an optimal noise variance orders of
magnitude smaller than the lower bound. In practice, we observed the
GPR based confidence estimate is robust to the choice of observation
noise.

It may also be observed in the left plot of Fig. 9 that the distribution
of errors between the target and maximum fidelity numerical solutions
does not appear Gaussian but instead appears to have heavier tails. The
distribution of these errors should be close to the distribution of errors
between the target fidelity numerical solutions and analytic solutions.
This later error is what is modeled by our GPR noise. The use of a GPR
necessitates the assumption of Gaussian noise, but our results suggest
this assumption may not hold in practice.
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Fig. 9. Analysis of optimization for GPR noise. The histogram shows frequency of errors between target and maximum fidelity observations i.e. frequency of 4,,; from (20).
The mean square error of these 4, is used as a lower bound when optimizing the Gaussian process’s noise variance. The initial noise variance for optimization, corresponding
to the blue curve, is set to an upper bound approximated from differences in numerically solves of the PDE at a sequence of increasing fidelities, see (17). The noise distribution

after optimization is the red curve, which is indistinguishable from the lower bound distribution (not plotted). Our use of GPR modeling necessitates the assumption of Gaussian

noise which prohibits a better fit.

4.3. Three-dimensional experiments and analysis

To emphasize the generality of our method, we applied our algo-
rithm to the Darcy flow problem to a three-dimensional domain. The
experimental setup is the same as in the two-dimensional case, except
now we set the subsurface to have a depth of 20 m while the injection,
extraction, and critical locations are all set at a depth of 10m. Also,
the mesh grid for the finite volume solver had (d; + 1) x (d; + 1) X 9
mesh points in each dimension so the mesh width in each dimension
at fidelity j is 1/d;,1/d;,1/8. The CPU time required for each step of
experimentation are given in Table 2. The condition number of the
noisy circulant kernel matrix is 613.

Fig. 6 shows the convergence of telescoping sums used to derive an
upper bound on the noise variance for the three dimensional subsur-
face. The coefficients of determination are 0.81 and 0.83 for the s and
d trends respectively. These are lower than the 0.98 and 0.99 respective
values for Darcy’s problem with a two-dimensional subsurface, but still
large enough to justify the linear fits.

Fig. 8 shows, for the three dimensional subsurface, the confidence in
maintaining a low enough pressure at the critical location as a function
of both pressure threshold and extraction rate. The pressure at the
critical location is generally much lower in this three-dimensional setup
than in the two-dimensional one. For instance, at an extraction rate of
0m3/s the two-dimensional setup gives a confidence of around 25%
that the pressure at the critical location is below 1 mmH,0O, while the
three-dimensional setup has almost a 100% confidence for the same
extraction rate and threshold. Again, the monotonicity in both extrac-
tion rate and pressure threshold computed from the surrogate match
our physical intuition for this three-dimensional subsurface problem.

Finally, 9 shows the noise calibration process for the three di-
mensional subsurface, specifically the initial upper bound and final
optimized bound. We again observe the heavier tails in the distribution
of differences between target and maximum fidelities when compared
to the assumed Gaussian distribution. There also appears to be a slight
skew to the right in the distribution of these differences, indicating a
potential bias in low-fidelity approximation. Again, we defer remedies
to future work but discuss ideas in the next section.

5. Discussion and conclusions

We fit a GPR surrogate model to a subsurface pressure management
problem with a random log-normal permeability field. We solve the
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Darcy single-phase steady-state equation that examines the long-term
impact of the injection/extraction on the reservoir. We consider that
the pressure at the critical location is influenced strongly by the random
permeability field during injection/extraction. Our GPR model predicts
the pressure at a fixed critical location in the subsurface from an
extraction rate and (truncated) permeability field realization. After we
train the GPR surrogate model offline, it is used online to quickly
determine the smallest extraction rate required to preserve a pressure
at the critical location below a threshold with high probability.

Two discretizations must be made to solve the problem. First, we
truncate the Karhunen-Loéve expansion of the log-permeability field to
a finite sum. The random coefficients in this sum determining the (trun-
cated) permeability field are inputs to the GPR model alongside the
extraction rate. Second, the domain must be meshed in order to apply
a finite volume method to solve the PDE numerically. Each of these
discretizations induces a numerical error, and these errors are often
neglected in subsurface flow problems. By contrast, our GPR modeling
approach accounts for these errors in the uncertainty analysis.

Our novel contributions are as follows. First, we use ideas in multi-
level Monte Carlo to derive an approximate upper bound on the root
mean squared error between the discretized numerical solution and
the analytic PDE solution. Then, this upper bound is used as an initial
guess for the noise variance in our GPR model before hyperparameter
optimization. A lower bound for optimization is also derived based on
the differences in numerical PDE solves at our maximum tested fidelity
and the target fidelity used to fit the GPR model. Finally, we use a
quasi-random design of experiments and matching covariance kernel
to accelerate GPR model fitting and hyperparameter optimization from
the classic O(n) rate to @(nlog n).

These ideas enable error-aware GPR modeling that can scale to tens
or even hundreds of thousands of observations for an accurate fit in
high dimensions. Moreover, the GPR predictions come with a notion of
uncertainty. In fact, the GPR surrogate is a distribution over possible
functions mapping the extraction rate and permeability field to pressure
at the critical location.

In conclusion, we would like to summarize our findings:

» The GPR fitting and optimization scales like O(nlogn) in the
number of numerical PDE pressure solutions.

» The GPR model is error-aware by calibrating surrogate noise to
numerical errors in solving the subsurface flow problem.
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» The surrogate model quantifies the uncertainties in the predicted
pressures by providing a probability distribution over a broad
class of possible solutions.

 In addition to subsurface flow problems, our approach can be
directly applied to a variety of other problems that consider PDEs
with random coefficients.

There is a delicate trade-off to consider when selecting good values
for s and d. Recall that s is the fidelity of the permeability field;
specifically s is the number of terms to keep in the KL expansion and
1+s is the number of input dimensions to the GPR surrogate. Increasing
s has the drawback of increasing the dimension of the GPR surrogate
and making it harder to fit by the curse of dimensionality. So if s
is increased one should also increase the number of numerical PDE
solves to attain a surrogate of equal quality. Moreover, d determines
the fidelity of the PDE solver; specifically, the mesh width is 1/d
in each dimension for the finite volume method. Increasing d has
the drawback of making each numerical PDE solve more expensive.
Therefore, increasing s and d necessitates more numerical PDE solves,
each of which is more expensive. The advantage of our method is the
ability to accommodate smaller values for s and d by simply encoding
a larger error into the model. Valuable future work should explore
the trade-offs in increasing s and d while taking advantage of our
error-aware modeling methodology.

Future work may also look into more accurate models for the
noise. Fig. 9 suggest the true noise distributions have heavier tails
than a Gaussian for these problems. While this is not immediately
accommodated by our GPR modeling framework, alternative models
and methods may utilize a more accurate distribution for the noise in
order to attain a better fit.

Our primary focus here is solving problems in the context of pres-
sure management to prevent overpressurization in the subsurface due
to climate mitigation operations such as injecting wastewater or CO,
sequestration. To allow for CO, sequestration applications, a more
complex multiphase flow model would be needed, but the process for
applying the GPR would remain the same. The key common ground is
the existence of PDEs with random coefficients, which is very common
in subsurface applications where the random coefficients are used
to represent subsurface heterogeneity, e.g., in permeability fields in
subsurface flow or velocity fields in seismic problems.
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