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Abstract
Partially Observable Markov Decision Processes (POMDPs) can model complex sequen-
tial decision-making problems under stochastic and uncertain environments. A main 
reason hindering their broad adoption in real-world applications is the unavailability 
of a suitable POMDP model or a simulator thereof. Available solution algorithms, such 
as Reinforcement Learning (RL), typically benefit from the knowledge of the transition 
dynamics and the observation generating process, which are often unknown and non-trivial 
to infer. In this work, we propose a combined framework for inference and robust solu-
tion of POMDPs via deep RL. First, all transition and observation model parameters are 
jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model, which 
is conditioned on actions, in order to recover full posterior distributions from the avail-
able data. The POMDP with uncertain parameters is then solved via deep RL techniques 
with the parameter distributions incorporated into the solution via domain randomization, 
in order to develop solutions that are robust to model uncertainty. As a further contribution, 
we compare the use of Transformers and long short-term memory networks, which consti-
tute model-free RL solutions and work directly on the observation space, with an approach 
termed the belief-input method, which works on the belief space by exploiting the learned 
POMDP model for belief inference. We apply these methods to the real-world problem of 
optimal maintenance planning for railway assets and compare the results with the current 
real-life policy. We show that the RL policy learned by the belief-input method is able to 
outperform the real-life policy by yielding significantly reduced life-cycle costs.
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1  Introduction

Partially Observable Markov Decision Processes (POMDPs) offer a mathematically sound 
framework to model and solve complex sequential decision-making problems (Drake, 
1962; Sondik, 1971; Cassandra, 1998). POMDPs account for the uncertainty associated 
with observations in order to derive optimal policies, namely a sequence of optimal deci-
sions that minimize/maximize the total costs/rewards over a prescribed time horizon, under 
stochastic and uncertain environments. Stochasticity can indeed be incorporated both in the 
evolution of the hidden states over time, i.e., the transition dynamics, and in the process 
that generates the observations, which reflect only a partial and/or noisy information of the 
actual states.

POMDPs form a potent mathematical framework to model optimal maintenance plan-
ning for deteriorating engineered systems (Papakonstantinou & Shinozuka, 2014a). In such 
problems, a perfect information of the system’s condition (state) is generally not available 
or feasible to acquire, due to the problem’s scale, inherent noise of sensing instruments, 
and associated costs limitations. By using sensors and inferred associated condition indica-
tors, Structural Health Monitoring (SHM) tools, as described by Farrar and Worden (2012) 
and Straub et al. (2017), can provide estimates of the structural state. However, the pro-
vided observations are often incomplete and susceptible to noise, which limits their ability 
to accurately determine the true state of the system. Consequently, decision-making must 
occur in the face of uncertainty. Within a POMDP scheme, the decision maker (or agent) 
receives an observation from the environment, which in these cases reflects a measurement 
that is delivered by an SHM system, and uses this to form a belief about the current state 
of the system. Based on this belief, the agent takes an action, which will impact the future 
condition of the system. The POMDP objective is to find the optimal sequence of mainte-
nance actions that minimizes the expected total costs over the operating life-cycle.

POMDP modeling has repeatedly been applied in the context of optimal maintenance 
planning. Madanat and Ben-Akiva (1994) model the highway pavement maintenance plan-
ning as a POMDP, where the deterioration level is discretized in 8 hidden states, accessed 
through noisy observations that are delivered by different measurement possibilities. Ellis 
et al. (1995) apply the framework to the problem of maintenance of highway bridges, where 
5 deterioration levels are used, under availability of uncertain inspection information, and 
4 maintenance actions. Memarzadeh et al. (2015) propose POMDP modeling of the wind 
farm maintenance problem using 3 damage states of the turbine, 4 types of available noisy 
observations and 3 available maintenance actions. In Schöbi and Chatzi (2016) a deterio-
rating bridge maintenance planning problem is modeled as a POMDP using a continuous 
space of deterioration levels, coupled with a discrete set of actions and observations that 
are available from both monitoring and inspection. Papakonstantinou et al. (2018) illustrate 
two different POMDP formulations on the problem of maintenance for deteriorating bridge 
structures characterized by both stationary and non-stationary dynamics. In tackling non-
stationarity, they adopt a high dimensional vector of discrete hidden states, 4 possible dis-
crete observations, and 10 available actions, while combining inspection and maintenance 
decisions into the actions space. Kıvanç et al. (2022) formulate and solve the maintenance 
problem of a regenerative air heater system in a coal-based thermal power plant, composed 
of 6 components, using a POMDP model with a factored structure, where each component 
can assume between 2 or 3 different discrete hidden states and a set of 2 possible (mainte-
nance) actions is available per component.
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POMDP solutions assume knowledge of the transition dynamics and the observation 
generating process. This implies strict prior assumptions on the POMDP model param-
eters that govern the deterioration, the effects of maintenance actions, and the relation of 
observations to latent states and variables. When a POMDP model is available, the solu-
tion can be computed via Dynamic Programming (DP) (Bertsekas, 2012) and approximate 
methods (Papakonstantinou & Shinozuka, 2014b) with optimality convergence guarantees, 
when the complexity of the problem is not prohibitive, or via Reinforcement Learning 
(RL) schemes (Sutton & Barto, 2018) through samples and trial and error learning. While 
RL methods can relax some assumptions on the POMDP knowledge, a simulator that can 
reliably describe the POMDP model is still necessary for inference and testing purposes, 
particularly for engineering problems and in infrastructure asset management applications.

However, a full POMDP model of the problem is rarely available in real-world applica-
tions, and the inference of all POMDP parameters that form the transition dynamics and 
the observation generating process of the problem can be quite challenging. The availabil-
ity of such a model is a key issue that prevents wide adoption of the POMDP framework 
and its solution methods (including RL) for real-world applications. Available literature on 
the theme of maintenance planning is focused on developing RL methods to solve complex 
POMDP problems, as pioneered by the work of Andriotis and Papakonstantinou (2019, 
2021), while assuming knowledge of the POMDP transition and observation models, i.e., 
by for example assuming that the POMDP inference has already been carried out. Only 
few papers deal with the POMDP inference, which poses a challenge in itself, while best 
practices are not generally available. Papakonstantinou and Shinozuka (2014a), Song et al. 
(2022) and Wari et al. (2023) propose methods to estimate the state transition probability 
matrix for deterioration processes, but without demonstrating inference on the transition 
matrices associated with maintenance actions. Guo and Liang (2022) propose methods to 
estimate both the transition and the observation models, but do not consider model uncer-
tainty and the implementation examples do not involve real-world data but only simulated 
ones.

In Arcieri et al. (2023), we tackle this key inference issue by proposing a framework to 
jointly infer all transition and observation model parameters entirely from available real-
world data, via Markov Chain Monte Carlo (MCMC) sampling of a Hidden Markov Model 
(HMM), which is conditioned on actions. The framework, which can be practically imple-
mented and can be tailored to the problem at hand, estimates full posterior distributions of 
POMDP model parameters. By considering these distributions in the POMDP evaluation, 
optimal policies that are robust with respect to POMDP model uncertainties are obtained.

In this work, we combine the POMDP inference with a deep RL solution. Most previ-
ous works on deep RL methods focus on fully observable problems, with RL solutions 
for POMDPs having received notably lower attention. Partial observability is usually over-
come with deep learning architectures that are able to infer hidden states through memory 
and a history of past observations. Schmidhuber (1990) is one of first works that applied 
Recurrent Neural Networks (RNNs) for RL problems. Subsequently, Long Short-Term 
Memory (LSTM) networks have become the standard to handle partial observability (Dung 
et al., 2008; Zhu et al., 2017; Meng et al., 2021). Recent works propose to replace LSTM 
architectures with Transformers (GTrXL) (Parisotto et al., 2020). A third modeling option, 
which constitutes a hybrid approach between a DP and a RL solution, exploits the POMDP 
model to compute beliefs via Bayes’ theorem, which are then fed to the deep RL algorithm 
as inputs to classical feed-forward Neural Networks (NNs) (Andriotis & Papakonstanti-
nou, 2019, 2021; Morato et  al., 2023). Namely, the POMDP problem is converted into 
the belief-MDP (Papakonstantinou & Shinozuka, 2014b; Andriotis et al., 2021) and then 
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solved with deep RL techniques. We compare these three available solution methods and 
propose a joint framework of inference and robust solution of POMDPs based on deep RL 
techniques, by combining MCMC inference with domain randomization of the RL envi-
ronment in order to incorporate model uncertainty into the policy learning.

We showcase the applicability of these methods and of the proposed framework on the 
real-world problem of optimal maintenance planning for railway infrastructure. The obser-
vations in this case are delivered as on-board railway monitoring data, namely the so-called 
“fractal values” condition indicator, computed from field measurements and provided by 
SBB (the Swiss Federal Railways). The fractal value indicator is currently used over the 
Swiss railway network to detect track substructure damage and guide associated mainte-
nance action, e.g. minor repair (so-called “tamping”) or renewal. However, the indicator, 
albeit useful, is an indirect and noisy observation and, thus, far from a perfect estimate of 
the actual railway condition. As such, the problem of optimal maintenance planning for 
railway assets, based on on-board monitoring data, can be naturally modeled as a POMDP.

The contributions of this work can be summarized as follows:

•	 We highlight two key issues that affect the implementation of RL solutions for real-
world problems, which often tend to only be partially observable, namely i) the lack of 
availability of a POMDP model or simulator thereof, and ii) the lack of robustness of 
the solution to model uncertainty over the environment parameters.

•	 We address the above issues through a combined framework of POMDP inference and 
robust solution based on deep RL methods. The former is tackled by proposing a joint 
inference of all transition and observation model parameters entirely from available 
real-world data, via MCMC sampling of a HMM conditioned on actions. By recover-
ing posterior samples over the uncertain parameters, the inference technique allows the 
incorporation of solutions methods that enhance the robustness over epistemic (envi-
ronment) uncertainty. To this end, we propose a domain randomization of the environ-
ment parameters through the inferred posterior samples, enabling the RL agent to learn 
a policy optimized over all plausible parameters space.

•	 We demonstrate the efficacy of our approach by comparing this for three state-of-the-
art deep RL solution methods for POMDPs, namely the use of LSTMs and Transform-
ers directly on the observations space, and a third method, here termed the belief-input 
method, which exploits a (learned or known) model of the environment to transform 
the POMDP into a belief-MDP and works with classical feed-forward NNs on the 
belief space. To the best of our knowledge, no other work experimentally compares the 
performance of the latter method to the first two.

•	 Finally, the real-life railway application forms a salient contribution in itself, promoting 
the use of POMDP modeling and RL solution methods for infrastructure maintenance 
planning and demonstrating the applicability of the proposed methods starting from 
real-world (measurement) data.

The remainder of this paper is organized as follows. Section 2 provides the necessary back-
ground on POMDPs and prior work. Section 3 describes the considered maintenance plan-
ning problem of railway assets and the monitoring data. Section 4 describes the POMDP 
inference and its implementation to the problem here considered. Section  5 evaluates 
the three available modeling options of deep RL solutions for POMDPs, namely LSTM, 
GTrXL, and the belief-input case. Section  6 proposes our joint framework of POMDP 
inference and robust solution via deep RL and domain randomization. Finally, Sect.  7 
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concludes with a highlight and a discussion of the contributions, and outlines possible 
future work.

2 � Preliminaries

2.1 � Partially observable Markov decision processes

A POMDP can be considered as a generalization of a Markov Decision Process (MDP) 
for modeling sequential decision-making problems within a stochastic control setting, 
with uncertainty incorporated into the observations. A POMDP is defined by the tuple 
⟨S,A, Z,R,T ,O, b0,H, �⟩ , where:

•	 S is the finite set of hidden states that the environment can assume.
•	 A is the finite set of available actions.
•	 Z is the set of possible observations, generated by the hidden states and executed 

actions, which provide partial and/or noisy information about the actual state of the 
system.

•	 R ∶ S × A → ℝ is the reward function that assigns the reward rt = R(st, at) for assuming 
an action at at state st.

•	 T ∶ S × S × A → [0, 1] is the transition dynamics model that describes the probability 
p(st+1 ∣ st, at) to transition to state st+1 if action at is taken at state st.

•	 O ∶ S × A × Z → ℝ is the observation generating process that defines the emission 
probability p(zt ∣ st, at−1, zt−1) , namely the likelihood to observe zt if the system is at 
state st and action at−1 was taken.

•	 b0 is the initial belief on the system’s state s0.
•	 H is the considered horizon of the problem, which can be finite or infinite.
•	 � is the discount factor that discounts future rewards to obtain the present value.

In the POMDP setting, the agent can take a decision based on a formulated belief over the 
system’s state. Such a belief is defined as a probability distribution over S, which maps the 
discrete finite set of states into a continuous ∣ S ∣ −1 dimensional simplex (Papakonstanti-
nou & Shinozuka, 2014b). It is a sufficient statistics over the complete history of actions 
and observations. Solving a POMDP is thus equivalent to solving a continuous state MDP 
defined over the belief space, termed the belief-MDP (Papakonstantinou & Shinozuka, 
2014b; Andriotis et al., 2021). The belief over the system’s state is updated according to 
Bayes’ rule every time the agent receives a new observation:

where the denominator is the normalizing factor:

The objective of the POMDP is to determine the optimal policy �∗ that maximizes the 
expected sum of rewards:

(1)b(st+1) =
p(zt+1 ∣ st+1, at)

p(zt+1 ∣ b, at)

∑

st∈S

p(st+1 ∣ st, at)b(st)

(2)p(zt+1 ∣ b, at) =
∑

st+1∈S

p(zt+1 ∣ st+1, at)
∑

st∈S

p(st+1 ∣ st, at)b(st)
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Algorithms based on DP (Bertsekas, 2012) can be used to compute the optimal policy. 
These algorithms rely on two key functions: the value function V� , which calculates the 
expected sum of rewards for a policy � starting from a given state until the end of the pre-
scribed horizon, and the Q-value function Q� (Sutton & Barto, 2018), which estimates the 
expected value for assuming action at in state st , and then following policy �.

Finally, a POMDP can be represented as a special case of influence diagrams (Mor-
ato et al., 2022; Luque & Straub, 2019), which form a class of probabilistic graphical 
models. Figure  1 illustrates the influence diagram for the POMDP considered in this 
work. Circles and rectangles correspond to random and decision variables, respectively, 
while diamonds correspond to utility functions (Koller & Friedman, 2009). Shaded 
shapes denote observed variables, while edges encode the dependence structure among 
variables.

The graphical model in Fig. 1 as well as the POMDP mathematical definitions above 
refer to a special POMDP case with a direct dependency among the observations, as 
this is the formulation used in this work to model the problem at hand and the available 
data (see Arcieri et al. (2023) for more details on why this direct dependency is neces-
sary). Nevertheless, it is possible to present this special POMDP case without loss of 
generalization because the conditional probability p(zt ∣ st, at−1, zt−1) simply reduces to 
p(zt ∣ st, at−1) if zt−1 does not provide further information directly (i.e., if there is not a 
direct dependency) and the standard formulation is recovered.

2.2 � Belief‑MDPs

By converting the POMDP problem, originally defined over the observation space, into 
a belief-MDP, the objective becomes to determine the optimal policy �∗ that maximizes 
the expected sum of rewards defined over the belief space, essentially mapping beliefs 
to actions:

(3)�∗ = argmax
�

�

[
H∑

t=0

� trt

]

Fig. 1   Probabilistic graphical 
model of a POMDP
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It is, thus, possible to rewrite the value function V� from its original form into the new 
belief-based form (Papakonstantinou & Shinozuka, 2014b):

Likewise, it is possible to rewrite other RL fundamentals and re-derive popular RL solu-
tion algorithms in terms of the belief variable. Andriotis and Papakonstantinou (2019) 
first combine these known results from POMDP theory with deep RL solution methods, 
in order to solve complex partially observable problems. The observation acquired at each 
time-step is used to update the belief variable over all hidden states via Eq. 1, along with a 
(learned or known) model of the environment. The updated belief is then passed as input 
of classical feed-forward NNs, which learn the optimal policy via popular model-free RL 
algorithms, though based on the belief variable, thus avoiding to carry a history of observa-
tions at each time-step and the use of more complex networks [e.g., LSTMs or Transform-
ers, for which the interested reader is referred to Zhu et al. (2017), Meng et al. (2021) and 
Parisotto et al. (2020) for a detailed overview of these broadly adopted schemes] to handle 
such input structures. This approach has been successfully applied in subsequent works 
(Andriotis & Papakonstantinou, 2021; Morato et  al., 2023) to solve complex POMDP 
problems in the field of maintenance planning of engineered infrastructure.

The belief variable encodes information on the hidden states that is extracted from the 
uncertain observations, conditioned on the learned/assumed model. This extracted infor-
mation is thus not required to be learned by, for instance, a NN (e.g., via LSTM cells, 
which infer network hidden states from observations). The use of the belief variable allows 
to ease the learning process and alleviate the curse of history in POMDP formulations. By 
exploiting a more informative and compact representation of the observations, this meth-
odology is expected to lead to improvements with respect to directly applying model-free 
RL algorithms over the observation space, as demonstrated in Sect. 5.

2.3 � Bayesian decision making for robust solution

Arcieri et al. (2023) combine Bayesian decision making with the POMDP framework to 
derive optimal solutions that are robust to the epistemic uncertainty over the POMDP envi-
ronment parameters. In Bayesian decision theory (Berger, 2013), the optimal action is the 
one that maximizes the expected utility U(�, a) with respect to the entire problem param-
eter distribution p(�) , namely:

Cast into the sequential decision-making scheme, the utility function U is replaced by the 
objective function of the problem (or the objective function of the solution algorithm in the 
case of approximate methods, as is the case in POMDP problems).

In Arcieri et  al. (2023), this framework is devised for POMDP cases by utilizing the 
QMDP approximate solution method:

(4)�∗ = argmax
�

�

[
H∑

t=0

� tR(st,�(bt))

]

(5)V�∗

(bt) = max
at∈A

[
∑

st∈S

b(st)R(st, at) + �
∑

zt+1∈Z

p(zt+1 ∣ b, at)V
�∗

(bt+1)

]

(6)a∗ = argmax
a∈A

�
�∼p(�)[U(�, a)]
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The robust optimal action can be computed at each step by approximating the expectation 
with an average over (e.g., MCMC) samples. In this work, we extend this framework to 
deep RL approaches, which are more generally applicable to a larger variety of complex 
problems. To this end, we propose a domain randomization (Tobin et al., 2017) of the envi-
ronment parameters over the inferred MCMC samples to train a policy that is robust over 
the POMDP epistemic uncertainty, as presented in Sect. 6.

3 � The railway maintenance problem

We apply and test the proposed methodology on the problem of optimal maintenance plan-
ning for railway infrastructure assets on the basis of availability of regularly acquired mon-
itoring data. The railway track comprises various components, as illustrated in Fig. 2, such 
as rails, sleepers, and ballast, which are exposed to harsh environments and high operat-
ing loads, leading to accelerated degradation. Among these infrastructure components, the 
substructure—in particular–is especially important in this degradation process. The sub-
structure undergoes repeated loading from the superstructure (tracks, sleepers and ballast), 
prevents soil particles from rising into the ballast, and facilitates water drainage. A weak-
ened substructure typically results in distortions of the track geometry. Tamping (Audley & 
Andrews, 2013), a maintenance procedure that uses machines to compact the ballast under-
neath the railway track, restoring its shape, stability and drainage system, is often applied 
when the substructure condition is considered moderately deteriorated. However, in case of 
poor substructure condition, such as intrusion of clay or mud or water clogging, tamping 
provides only a short-term remedy, and replacing the superstructure and substructure is the 
most appropriate long-term solution.

The optimization of maintenance decisions for these critical infrastructure components 
benefits from information that is additional to the practice of scheduled visual inspections, 
which are typically conducted on-site by experts. Such additional information can be deliv-
ered from monitoring data derived by diagnostic vehicles. In this work, we specifically exploit 
the fractal values, a substructure condition indicator extracted from the longitudinal level, 
which is measured by a laser-based system mounted on a diagnostic vehicle, to guide deci-
sions for substructure renewal. The longitudinal level represents the deviations of the rail from 

(7)a∗
t
= argmax

a∈A

�
�∼p(�)

[
∑

s∈S

b
�
(st)Q

�∗

�
(s, a, t)

]

3-5%

ballast
subballast

formation layer

base

track bed

substructure

superstructure

rail

sleeper

Fig. 2   Structure of the railway track. Figure reproduced from Profillidis (2016)
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a smoothed vertical position (Wang et al., 2021). On the basis of this measurement the fractal 
values can be computed, via appropriate filtering and processing steps. The fractal value indi-
cator describes the degree of “roughness" of the track at varying wavelength scales. For the 
interested reader, the detailed steps of the fractal value computation are reported in Landgraf 
and Hansmann (2019) and Arcieri et al. (2023). In particular, long-wave (25–70 m) fractal 
values, which are employed in this work, have shown a significant correlation to substructure 
damage (Hoelzl et al., 2021), and are used by railway authorities as an indicator which can 
instigate repair/maintenance actions, such as tamping.

In this work, we use actual track geometry measurements, carried out via a diagnostic vehi-
cle of the SBB between 2008 and 2018 across Switzerland’s railway network. The track geom-
etry measurements were collected twice a year for the investigated portion of track. The fractal 
values are computed every 2.5 m from the measured longitudinal level. The performed main-
tenance actions have been logged for the analyzed tracks over the same considered period. 
These logs contain information on the maintenance, repair, or renewal actions taken on a sec-
tion of the network at a specific date.

We model the railway track maintenance optimization with a POMDP scheme, relying on 
diagnostic vehicle measurements of long-wave fractal values. The true but unobserved railway 
condition is discretized in 4 hidden states, s0 , s1 , s2 , and s3 , reflecting various grades, from 
perfect to highly deteriorated state. This is chosen to coincide with the number of grade lev-
els assumed by the Swiss Federal Railways for classifying substructure condition. It should 
be noted, that in the POMDP inference setting, the number of hidden states is not fixed. To 
this end, we evaluated further possible dimensions of the hidden states vector, as part of the 
POMDP inference presented in the next section, and a dimension of four yielded improved 
convergence and better-defined distributions. The fractal values are assumed as the (uncertain) 
POMDP observations, which correlate with the actual state of the substructure, but offer only 
partial and noisy information thereof. Unlike classical POMDP modeling of optimal main-
tenance planning problems, where observations are usually discrete, fractal values comprise 
(negative) continuous values, rendering the considered POMDP inference and solution quite 
complex. The problem definition is supplemented with information on the available main-
tenance actions. Three possible actions are considered, corresponding to the real-world set-
ting, namely action a0 do-nothing, and the aforementioned tamping and replacement actions, 
denoted as a1 and a2 , which can be interpreted as a minor and a major repair, respectively. 
The fractal value indicators are derived via measurements of the diagnostic vehicle every 6 
months, which thus represents the time-step of the decision-making problem. Considering the 
almost 10 years of collected measurements, our real-world dataset is ultimately composed of 
time-series of 20 fractal values, per considered railway section, complete with information on 
respective maintenance actions (with “action” do-nothing included), i.e., (z0, a0,⋯ , a19, z20) . 
Finally, the (negative) rewards representing costs associated with actions and states have been 
elicited from SBB and are reported in Table 1 in general cost units.

4 � POMDP inference

To formulate the POMDP problem, the transition dynamics and the observation gener-
ating process must be inferred. In the RL context, the POMDP inference is necessary to 
generate samples for the policy learning, for inference of a belief over the hidden states, 
and/or for testing purposes. To tackle this key issue, we propose an MCMC inference of 
a HMM conditioned on actions, which jointly estimates parameter distributions of both 
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the POMDP transition and observation models based on available data. While we imple-
ment the proposed scheme on the problem of railway maintenance planning based on frac-
tal value observations, its applicability is general. Therefore, we further suggest possible 
extensions to help researchers and practitioners tailor the POMDP model inference to the 
problem at hand. In addition, we provide a complementary tutorial1 illustrating the code 
implementation on various simulated case-studies, in order to support exploitation for real-
world applications.

In the context of discrete hidden states and actions, the transition dynamics are modeled 
via Dirichlet distributions:

where T0 are the parameters of the probability distribution of the initial state s0 , and �0 
and �T are the prior concentration parameters. T0 can be assigned a uniform flat prior �0 , 
unless some prior knowledge on the initial state distribution is available. By contrast, it is 
beneficial to regularize T with informative priors �T , which regularize the deterioration or 
the repairing process. For example, the transition matrix related to the action do-nothing, 
which describes the deterioration process of the system, can be regularized with higher 
prior probabilities on the diagonal and on the upper-right triangle, and near-zero on the 
lower-left triangle. Likewise, the transition matrices associated with maintenance actions 
would present higher prior probabilities on the left triangle and near-zero on the right trian-
gle, in order to inform the model that a repair action is expected to be followed by improve-
ments of the system.

The dimensionality of the Dirichlet distribution that models the transition dynamics T is 
S × S × A , namely one transition matrix per action. The extension to time-dependent transi-
tion dynamics is straightforward by enlarging the distribution by a further dimension repre-
senting time, i.e., S × S × A × H.

In the context of continuous observations, the observation generating process can dif-
fer on the basis of whether the observation follows a deterioration or a repairing process. 
In addition, similarly to the inference of the first hidden state according to T0 , an initial 
observation process can be necessary to model the first observation. Tailoring to the nature 
of the fractal value monitoring data, the initial, deterioration, and repairing processes are 
modeled via Truncated Student’s t processes, as follows:

(8)

T0 ∼ Dirichlet(�0)

s0 ∼ Categorical(T0)

T ∼ Dirichlet(�T )

st ∣ st−1, at−1 ∼ Categorical(T)

Table 1   Costs of the POMDP 
model

State condition s
0

s
1

s
2

s
3

Maintenance action
a
0

0 0 0 0
a
1

−50 −50 −50 −50

a
2

−2050 −2710 −3370 −4050

Condition cost −100 −200 −1000 −8000

1  Code available on GitHub.

https://github.com/giarcieri/Hidden-Markov-Models
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where ub stands for “upper bound”, and all parameters governing the processes are 
assigned priors described in Arcieri et al. (2023).

The use of Truncated Student’s t processes was tailored to the mathematical character-
istics of the fractal values, which (1) assume only negative values, (2) exhibit a negative 
trend in absence of repairing actions, (3) their values are dependent on the previous obser-
vations, and (4) the studied dataset, as is common in real-world measurements, presents 
outliers and measurement errors, modeled by the Student’s t fat tails. Naturally, other dis-
tributions can also be employed as part of the proposed framework in order to model the 
data at hand related to each application. For instance, in absence of the previous limiting 
characteristics, simpler (unbounded) Gaussian emissions could have been used, as further 
shown in the tutorial. In the case of discrete observations, the observation model would 
be represented by a probability matrix S × Z , which can be again modeled via a Dirichlet 
distribution. In the case of more than one possible inspection action or monitoring tool, as 
in Papakonstantinou et al. (2018), the Dirichlet distribution can be simply enlarged by a 
further dimension representing the number of possibilities. Finally, dependencies in multi-
component systems could be modeled via a Bayesian hierarchical model (Gelman et al., 
1995), enabling solutions as proposed in Andriotis and Papakonstantinou (2019, 2021) and 
Morato et al. (2023).

The graphical model of the entire HMM is reported in Fig. 3. The MCMC inference is 
run on a final dataset of 62 time-series with the No-U-Turn Sampler (NUTS) (Hoffman & 
Gelman, 2014). Four chains are run with 3000 samples collected per chain. The inference 
results, which present good post-inference diagnostic statistics, with no divergences and 
high homogeneity between and within chains, are reported in Figs. 9, 10, 11, 12, 13 and 14 
in Appendix A.

5 � RL for POMDP solution

POMDP problems have been tackled via deep RL with common methods augmented with 
LSTM architectures and a history of past observations (and possibly actions) as inputs 
(Zhu et al., 2017; Meng et al., 2021). More recently, motivated by the breakthrough suc-
cess of Transformers over LSTMs in natural language processing, Parisotto et al. (2020) 
designed a new Transformer architecture, namely GTrXL, which yielded significant 
improvements in terms of performance and robustness over LSTMs on a set of partially 
observable benchmarking tasks.

Both LSTM and GTrXL architectures compose fully model-free deep RL solutions to 
POMDPs. A third modeling option, which comprises a model-based/model-free hybrid 
solution, pertains to transformation of the POMDP problem into the belief-MDP by com-
puting beliefs via Bayes Theorem (Eq. 1). The belief-MDP is then solved via classical deep 
model-free RL methods with feed-forward NNs (Andriotis & Papakonstantinou, 2019; 
Morato et  al., 2023). We here compare the performance of the two model-free and the 
hybrid solution, referred to as “belief-input” case, on the real-world POMDP problem of 
railway maintenance planning that has been presented in Sect. 3, with parameter inference 

(9)

z0 ∼ TruncatedStudentT(�st0
, �st0

, �st0
, ub = 0)

zt − zt−1 ∼ TruncatedStudentT(�d∣st
, �d∣st , �d∣st , ub = −zt−1)

zt ∼ TruncatedStudentT(kr∣at−1 ∗ zt−1 + �r∣st
, �r∣st , �r∣st , ub = 0)
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described in Sect.  4. While Parisotto et  al. (2020) demonstrate the superiority of Trans-
formers over LSTMs on simulated tasks, our work offers a further comparison of the two 
methods, and confirms the superiority of the former, on a real-world, stochastic (both in 
the transition dynamics and in the observation generating process), partially observable 
problem.

For this comparison we set the POMDP parameters to the mean values of the distri-
butions reported in Appendix A, in order to evaluate the methods without model uncer-
tainty, with the latter case tackled in the next section. For all modeling options, the policy 
is learned via the Proximal Policy Optimization (PPO) algorithm with clipped surrogate 
objective (Schulman et  al., 2017). The overall evaluation algorithm is reported in pseu-
docode format in Algorithm 1. In addition, the code of the experiment is made available 
online2. We consider 50 time-steps, i.e., 25 years (1 time-step equals 6 months), as the 
decision horizon H of the problem, as discussed with our SBB partners.

Fig. 3   A graphical model of the 
HMM inference. Arrows indicate 
dependencies, while shaded 
nodes indicate observed variables

Observation model
∼

TruncatedStudentT

Hidden states
∼

Categorical

Transition model
∼

Dirichlet

Actions

Observations
(Fractal values)

Model inference

2  Code available on GitHub.

https://github.com/giarcieri/Robust-optimal-maintenance-planning-through-reinforcement-learning-and-rllib
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Algorithm 1   Evaluation algorithm

1: Initialize policy network πφ

2: Initialize replay buffer D ← ∅
3: Set environment parameters θ̂ of T0, O0, T,O to the mean values of p(θ | D)
4: for training episode = 0 to N do
5: Sample initial s0 ∼ T0θ̂ and z0 ∼ O0θ̂
6: Initialize belief to initial state distribution b0 ← T0θ̂
7: for timestep t = 0 to H do
8: if belief-input case then
9: Input yt = bt

10: else if LSTM then
11: Input yt = (zt, at−1, · · · , zt−h+1) � h = 3
12: else if GTrXL then
13: Input yt = (zt, at−1, · · · , z0)
14: end if
15: at ∼ πφ(yt)
16: st+1 ∼ Tθ̂(st, at), zt+1 ∼ Oθ̂(st+1, at, zt)
17: Compute bt+1 via Equation 1
18: D ← D ∪ {(yt, at, R (st, at))}
19: end for
20: every K total timesteps do � K = 4, 000
21: Update πφ with PPO and replay buffer D
22: every 5 updates do
23: Run 500 policy evaluation episodes without exploration
24: end for

For all methods, the policy networks are updated every 4000 training time-steps. Every 
5 updates, 500 evaluation episodes are run with different random seeds in order to aver-
age the results over the stochasticity of the environment. In addition, the entire analysis is 
repeated over 10 different random seeds to further average the results over the stochasticity 
of the NN training. Grid-searches are performed over the hyperparameters for all methods 
and the selected values are reported in Table  4 in Appendix  B. The mean performance 
over 250 evaluation iterations (5 million training time-steps) is plotted in Fig.  4 along 
with the shaded regions representing one standard deviation over the 10 different random 
seeds. Along with the three evaluated methods, three additional benchmarking solutions 
are reported. The first option refers to the QMDP method (Littman et al., 1995), which con-
stitutes a POMDP solution based on DP, and which turns out to be an effective solution 
for the characteristics of this problem (Arcieri et al., 2023). The second option is the opti-
mal MDP solution, namely the optimal policy computed and evaluated on the underly-
ing MDP, i.e., when the hidden states are fully observable. The latter constitutes an upper 
bound to any POMDP solution, which cannot be exceeded, given the irreducible inherent 
uncertainty of the observations, and only serves as a benchmarking reference. Finally, the 
total cost achieved with the current maintenance policy implemented by the Swiss Federal 
Railways is also reported (dashed black line). This policy is based on optimized thresholds 
on the fractal values to guide tamping and renewal actions in real life. The costs of all three 
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reference policies ( QMDP , optimal MDP, current policy) are accurately estimated by averag-
ing 100,000 simulations.

The belief-input method outperforms the other two model-free RL solutions and 
already shows strong performance at the first evaluation iterations. The method matches 
the performance of the current real-life implemented policy in about 25 evaluation itera-
tions (500,000 training time-steps), outperforming it and converging to the best policy in 
about 50 evaluation iterations (1 million training time-steps), as shown in the zoomed-in 
view of the first 100 evaluation iterations reported in the lower right figure inset, converg-
ing close to the performance of the QMDP method. Because the number of training time-
steps evaluated may not be sufficient for convergence of the other two model-free RL 
methods, we continue training up to 2000 evaluation iterations (40 million training time-
steps). This could however negatively impact the performance of the belief-input method, 
which already converged and may begin to suffer from overfitting. The extended training is 
reported in Fig. 5, where a rolling average window of 5 steps is further applied for illustra-
tion purposes.

Fig. 4   Comparison of the performance of LSTM (green), GTrXL (orange), and the belief-input case (blue) 
over 250 evaluation iterations. At every iteration, 500 trial episodes are evaluated with different random 
seeds and the average results are returned. The entire training is repeated over 10 different random seeds. 
The plotted learning curves denote the mean performance, while the shaded regions represent one standard 
deviation over the 10 different random seeds. An evaluation iteration is run after 5 policy updates and a pol-
icy update is performed every 4000 training time-steps, for a total of 5 million time-steps. The performance 
is further benchmarked against the QMDP method (dashed red), the optimal MDP policy (dashed yellow), 
and the current real-life policy implemented by the Swiss Federal Railways (dashed black). On the right 
corner, a zoomed-in plot of the belief-input performance over the first 100 evaluation iterations is shown 
(Color figure online)

Fig. 5   Comparison of the performance of LSTM (green), GTrXL (orange), and the belief-input case (blue) 
over 2000 evaluation iterations, for a total of 40 million training time-steps. The performance is further 
plotted with an average rolling window of 5 steps for displaying purposes
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As expected, the performance of the belief-input method slightly decreases over time, 
yet it still stays above the current real-life policy. The GTrXL is proven to deliver a better 
architecture than the LSTM for POMDP applications, also for this particular case of appli-
cation on a real-world problem. The GTrXL, after the first iterations, is indeed less affected 
by variance and eventually converges to a better policy, albeit still far from current real-life 
policy and the best policy with the belief-input method.

Finally, for all three methods we saved the best models, as determined during training, 
and evaluated the learned policies over 100,000 trials. The results are reported in Table 2 
in terms of average performance (i.e., average total costs), Standard Error (SE), best (Max) 
and worst (Min) trial. In the table, the belief-input case average performance is close but 
slightly worse than the QMDP method. This is likely due to the fact that the best model was 
picked based on an average over 500 trials, which is still subject to a significant stand-
ard error. While we explained in Sect. 2.2 why the belief-input case is expected to deliver 
improved performance with respect to the two alternate schemes, we are not aware of other 
works that experimentally assess its superiority in solving POMDP problems against state-
of-the-art deep RL methods (LSTMs and Transformers) that operate directly on the obser-
vation space. In addition, the belief-input method is able to improve the current real-life 
policy by yielding significantly reduced costs.

6 � Domain randomization for robust solution

Further to the challenge of POMDP inference, another key issue is the robustness of the 
deep RL solutions. RL methods generally learn an optimal policy by interacting with a 
simulator. When the trained RL agent is deployed to the real-world, the performance can 
deteriorate, or altogether fail, due to the “simulation-to-reality” gap (Zhao et al., 2020; Sal-
vato et al., 2021), if the solution is not robust to model uncertainty.

In Arcieri et al. (2023), we propose a framework in combination with the POMDP infer-
ence to enhance the robustness of DP solutions to model uncertainty. Namely, the POMDP 
parameter distributions inferred via MCMC sampling are incorporated into the solution 
by merging DP algorithms with Bayesian decision making, as mentioned in Sect. 2.3. In 
Arcieri et al. (2023) we incorporate DP methods into the Bayesian optimal action formula 
(Eqs. 6–7 in this work) to derive solutions that maximize the expected value with respect 
to the entire model parameter distributions, hence rendering the solution robust to model 
uncertainty.

Table 2   Performance of the best 
models, as inferred during the 
training process, evaluated over 
100,000 simulations

Method Avg. costs SE Max Min

Optimal MDP –13,315 27 –5000 –93,980
QMDP –14,374 35 –5050 –123,800
Belief-input –14,677 36 –5050 –121,950
Current policy –16,295 42 –5000 –161,650
GTrXL –17,196 46 –5700 –188,600
LSTM –18,167 42 –5100 –404,150
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In this work, we bring and extend this framework into the RL training scheme. The util-
ity function is represented by the RL algorithm objective function, e.g., the PPO clipped 
surrogate objective in this case. We propose the use of domain randomization (Tobin et al., 
2017) of the POMDP environment, which is enabled by our POMDP inference scheme 
through the recovery of parameter distributions, in order to enhance the robustness of the 
RL solution to model uncertainty. At every episode, a different POMDP configuration is 
sampled from the parameter distributions. The RL agent interacts with this POMDP con-
figuration until the end of the episode. Afterwards, a new configuration of the environment 
is sampled. At the end of the training, the RL agent will have optimized the learned policy 
over all possible problem parameters to derive a solution robust to model uncertainty. The 
expectation in Eq. 6 is thus implemented in practice via stochastic gradient ascent/descent 
steps over varying randomized problem parameters. It should be reminded that the (Bayes-
ian) robust optimal policy may be sub-optimal for a specific value � , while maximizing the 
expected value with respect to the entire model parameter distribution. The domain rand-
omization technique can thus be used in combination with the model inference proposed in 
Sect. 4 to establish a joint framework of POMDP inference and robust solution based on 
RL. The framework is depicted in the graphical model in Fig. 6.

We showcase the implementation of this framework with the belief-input method, but 
it is also applicable with the other methods reported in Table 2, given its general valid-
ity. The evaluation algorithm is similar to Algorithm 1, with the only difference that the 
POMDP parameters 𝜃̂ are sampled at every episode from the inferred posterior distribu-
tions p(� ∣ D) . The policy updates are again performed every 4000 training time-steps and 
an evaluation iteration is run every 5 policy updates. Similarly to Fig. 5, the performance 
during training is averaged at each evaluation iteration over 500 episodes with different 
random seeds. The training is then repeated 10 times with 10 different random seeds to 
also average over the stochasticity of the NN training. The resulting average performance 
is plotted in Fig. 7. Given the more challenging learning task, owing to model uncertainty, 
the average training performance decreases and demonstrates a higher variance than the 
belief-input performance without domain randomization, shown in Fig.  5. For this case, 
the hyper-parameter tuning was also restricted to a minimal grid-search. While the results 
are already satisfying, the RL agent performance can likely be further increased via a more 
thorough hyperparameter optimization.

Again, the best performing models shown in the evaluations during training are saved 
and the learned policy is evaluated over 100,000 simulations. The results are shown in 
Table 3 and compared against the robust QMDP policy described in detail in Arcieri et al. 

p(θ | D)
θ̂

Sample

Environment

Data collection

POMDP inference

Interactions

Policy learning
Domain randomization

Fig. 6   The POMDP inference and robust solution framework via domain randomization and deep reinforce-
ment learning
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(2023) and the upper bound optimal MDP policy evaluated with full observability, both 
assessed under model uncertainty. In addition, we report the result of the best model of 
the RL agent from the previous analysis, namely with the policy optimized without model 
uncertainty incorporated into the training (i.e., no domain randomization), evaluated now 
in the context of model uncertainty. This further analysis resembles a real-world deploy-
ment, where the environment parameters can differ from those inferred, inducing the afore-
mentioned simulation-to-reality gap. The performance of the agent trained with no domain 
randomization deteriorates, while the agent trained with domain randomization is able to 
learn and deliver a more robust policy in the context of model uncertainty. We also report 
the results of the current real-life policy evaluated under model uncertainty and demon-
strate that the policy learned by the belief-input RL agent is able to significantly improve 
the current policy by yielding substantially reduced costs also in this further context.

Finally, Fig.  8 shows two trials of the sequential maintenance actions planned by the 
belief-input model, which has been trained with domain randomization, over the consid-
ered problem horizon. The environment true states are reported in the second subplot from 
the top, which however are never accessed by the RL agent and are here reported only for 
comparison and interpretation. The hidden states indeed produce the observations (fractal 

Fig. 7   Performance of the belief-input method (blue) over 250 evaluation iterations with domain randomi-
zation, i.e., a different POMDP model is sampled at every episode, both for training and evaluation. At 
every iteration, 500 trial episodes are evaluated with different random seeds and the average results are 
returned. The entire training is repeated over 10 different random seeds. The plotted learning curve denotes 
the mean performance, while the shaded regions represent one standard deviation over the 10 different ran-
dom seed. An evaluation iteration is run after 5 policy updates and a policy update is performed every 4000 
training time-steps, for a total of 5 million time-steps. The performance is further benchmarked against the 
robust QMDP method (dashed red), the robust optimal MDP policy (dashed yellow), and the current real-life 
policy implemented by the Swiss Federal Railways (dashed black), all evaluated under model uncertainty, 
as in Arcieri et al. (2023) (Color figure online)

Table 3   Performance of the 
best models, as inferred during 
training, evaluated over 100,000 
simulations in the context of 
model uncertainty with domain 
randomization. In particular, 
we report on the evaluation of 
the belief-input agent trained 
with (DR) and without Domain 
Randomization (no DR). The 
former achieves a significantly 
improved and more robust policy

Method Avg. costs SE Max Min

Optimal MDP –13,374 33 –5000 –190,450
QMDP –14,526 39 –5050 –197,050
Belief-input DR –14,648 38 –5050 –168,600
Belief-input no DR –14,901 39 –5050 –205,100
Current policy –16,259 44 –5000 –201,850
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values), reported in the bottom subplot. These are used to compute the beliefs (third sub-
plot) via Bayes’ formula, which are fed to the policy networks. Based on these beliefs, the 
RL agent plans the maintenance actions, reported in the top subplot. While some higher 
uncertainty is present in the formed belief in some specific time-steps of the trials (e.g, 
time-step 25 in the left plot and time-step 9 in the right plot), which lead to non-optimal 
maintenance actions, these are explained by the observations that generated these beliefs, 
which indeed allow outliers/measurement errors in the simulations. Besides these isolated 
cases, it is possible to appreciate how the beliefs are generally accurate compared to the 
true hidden states, although these are never accessed for their computation, and effectively 
lead to optimal actions. To explain the plots further, one can notice, for example, how the 
maintenance action a2 at time-step 30 on the left plot significantly improves the ground 
truth hidden state and also the inferred belief, yielding a substantially increase in the obser-
vation as well. Likewise for the maintenance actions at time-steps 7–9 in the right plot.

7 � Conclusion

This work tackles two key issues related to adoption of RL in real-world partially observ-
able planning problems. First, an environment (POMDP) model, which enables the RL 
training via simulations, is often unknown and generally non-trivial to infer, with unified 
best practices not available in the literature. This constitutes a main obstacle against broad 
adoption of the POMDP scheme and its solution methods for real-world applications. Sec-
ond, RL solutions often lack robustness to model uncertainty and suffer from the simula-
tion-to-reality gap.

In this work, we tackle both issues via a combined framework for inference and robust 
solution of POMDPs based on deep RL algorithms. The POMDP inference is carried out 
via MCMC sampling of a HMM conditioned on actions, which jointly estimates the full 

Fig. 8   Two trials of the maintenance actions planned by the belief-input model trained with domain rand-
omization. From bottom to top: the observations (fractal values); the beliefs, namely a probability distribu-
tion over hidden states, computed via Bayes’ formula and fed to the policy networks; the true hidden states, 
which are not accessed by the agent and/or the model; the actions planned by the RL agent
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distributions of plausible values of the transition and observation model parameters. Then, 
the parameter distributions are incorporated into the solution via domain randomization of 
the environment, enabling the RL agent to learn a policy, which is optimized over the space 
of plausible problem parameters and is, thus, robust to model uncertainty. We compare 
three common RL modeling options, namely a Transformer and an LSTM-based approach, 
which constitute model-free RL solutions, and a hybrid belief-input case. We implement 
our methods for optimal maintenance planning of railway tracks based on real-world moni-
toring data. While the Transformer delivers generally better performance than the LSTM, 
both methods are significantly outperformed by the hybrid belief-input case. In addition, 
the latter method outperforms the current real-life policy implemented by the Swiss Fed-
eral Railways by yielding significantly reduced costs. Ultimately, we demonstrate on the 
belief-input method that an RL agent trained with domain randomization is able to learn 
an improved policy, which is robust to model uncertainty, than an RL agent trained without 
domain randomization.

A possible limitation of this work is that, while our methods allow for incorporation 
of rather complex extensions, e.g., time-dependent dynamics and hierarchical compo-
nents, and are here demonstrated on the quite difficult case of continuous observations, 
the POMDP inference under continuous multi-dimensional states and actions is still to be 
investigated. Future work will focus on the development of methods that can scale to these 
cases, e.g., via coupling with deep model-based RL methods (Arcieri et al., 2021).

Appendix A: Inference results

Transition model parameters

See Figs. 9, 10, and 11.
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Fig. 9   Transition matrix related to action do-nothing a
0
 . The distribution at row i and column j is associated 

with the probability to transition from state i to j when action a
0
 is taken. Consistent with what is expected 

in deterioration processes the highest probabilities are assigned to the state remaining invariant (diagonal 
entries), lower probabilities exist for deterioration transitions (upper right triangle), and almost zero prob-
ability is assigned to improvements of the system (lower left triangle)
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Fig. 10   Transition matrix related to action a
1
 (tamping). The distribution at row i and column j is associated 

with the probability to transition from state i to j when action a
1
 is taken. Deterioration of the system (upper 

right triangle) reflects an almost zero probability, while it appears most probable to remain in the same con-
dition or improve by a maximum of one state, which reflects the reduced influence of this action
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Fig. 11   Transition matrix related to action a
2
 (renewal plus tamping). The distribution at row i and column j 

is associated with the probability to transition from state i to j when action a
2
 is taken. Transition to the best 

possible state s
0
 is consistently assigned the highest probability, regardless of the starting state, reflecting 

the higher repairing effect of this maintenance action
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Observation model parameters

See Figs. 12, 13 and 14.   

Fig. 12   Posterior distributions of observation model parameters (deterioration process)
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Fig. 13   Posterior distributions of observation model parameters (repair process)
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Appendix B: Hyperparameters

See Table 4.

Fig. 14   Posterior distributions of observation model parameters (initial observation)

Table 4   Best hyperparameters from the grid-search optimization

Hyperparmeter Belief (no DR) Belief (DR) GTrXL LSTM

Hidden layers 3 3 2 × GTrXL 1 × LSTM + 2 ×MLP

Hidden size 100 100 – 100
Learning rate 0.0001 0.0001 0.001 0.001
Heads – – 8 –
Head dimension – – 32 –
Max seq. length – – 50 3
Memory – – 50 –
Use prev. actions – – Yes Yes
Clip parameter 0.01 0.01 0.3 0.3
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