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Abstract

Partially Observable Markov Decision Processes (POMDPs) can model complex sequen-
tial decision-making problems under stochastic and uncertain environments. A main
reason hindering their broad adoption in real-world applications is the unavailability
of a suitable POMDP model or a simulator thereof. Available solution algorithms, such
as Reinforcement Learning (RL), typically benefit from the knowledge of the transition
dynamics and the observation generating process, which are often unknown and non-trivial
to infer. In this work, we propose a combined framework for inference and robust solu-
tion of POMDPs via deep RL. First, all transition and observation model parameters are
jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model, which
is conditioned on actions, in order to recover full posterior distributions from the avail-
able data. The POMDP with uncertain parameters is then solved via deep RL techniques
with the parameter distributions incorporated into the solution via domain randomization,
in order to develop solutions that are robust to model uncertainty. As a further contribution,
we compare the use of Transformers and long short-term memory networks, which consti-
tute model-free RL solutions and work directly on the observation space, with an approach
termed the belief-input method, which works on the belief space by exploiting the learned
POMDP model for belief inference. We apply these methods to the real-world problem of
optimal maintenance planning for railway assets and compare the results with the current
real-life policy. We show that the RL policy learned by the belief-input method is able to
outperform the real-life policy by yielding significantly reduced life-cycle costs.
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1 Introduction

Partially Observable Markov Decision Processes (POMDPs) offer a mathematically sound
framework to model and solve complex sequential decision-making problems (Drake,
1962; Sondik, 1971; Cassandra, 1998). POMDPs account for the uncertainty associated
with observations in order to derive optimal policies, namely a sequence of optimal deci-
sions that minimize/maximize the total costs/rewards over a prescribed time horizon, under
stochastic and uncertain environments. Stochasticity can indeed be incorporated both in the
evolution of the hidden states over time, i.e., the transition dynamics, and in the process
that generates the observations, which reflect only a partial and/or noisy information of the
actual states.

POMDPs form a potent mathematical framework to model optimal maintenance plan-
ning for deteriorating engineered systems (Papakonstantinou & Shinozuka, 2014a). In such
problems, a perfect information of the system’s condition (state) is generally not available
or feasible to acquire, due to the problem’s scale, inherent noise of sensing instruments,
and associated costs limitations. By using sensors and inferred associated condition indica-
tors, Structural Health Monitoring (SHM) tools, as described by Farrar and Worden (2012)
and Straub et al. (2017), can provide estimates of the structural state. However, the pro-
vided observations are often incomplete and susceptible to noise, which limits their ability
to accurately determine the true state of the system. Consequently, decision-making must
occur in the face of uncertainty. Within a POMDP scheme, the decision maker (or agent)
receives an observation from the environment, which in these cases reflects a measurement
that is delivered by an SHM system, and uses this to form a belief about the current state
of the system. Based on this belief, the agent takes an action, which will impact the future
condition of the system. The POMDP objective is to find the optimal sequence of mainte-
nance actions that minimizes the expected total costs over the operating life-cycle.

POMDP modeling has repeatedly been applied in the context of optimal maintenance
planning. Madanat and Ben-Akiva (1994) model the highway pavement maintenance plan-
ning as a POMDP, where the deterioration level is discretized in 8 hidden states, accessed
through noisy observations that are delivered by different measurement possibilities. Ellis
et al. (1995) apply the framework to the problem of maintenance of highway bridges, where
5 deterioration levels are used, under availability of uncertain inspection information, and
4 maintenance actions. Memarzadeh et al. (2015) propose POMDP modeling of the wind
farm maintenance problem using 3 damage states of the turbine, 4 types of available noisy
observations and 3 available maintenance actions. In Schobi and Chatzi (2016) a deterio-
rating bridge maintenance planning problem is modeled as a POMDP using a continuous
space of deterioration levels, coupled with a discrete set of actions and observations that
are available from both monitoring and inspection. Papakonstantinou et al. (2018) illustrate
two different POMDP formulations on the problem of maintenance for deteriorating bridge
structures characterized by both stationary and non-stationary dynamics. In tackling non-
stationarity, they adopt a high dimensional vector of discrete hidden states, 4 possible dis-
crete observations, and 10 available actions, while combining inspection and maintenance
decisions into the actions space. Kivang et al. (2022) formulate and solve the maintenance
problem of a regenerative air heater system in a coal-based thermal power plant, composed
of 6 components, using a POMDP model with a factored structure, where each component
can assume between 2 or 3 different discrete hidden states and a set of 2 possible (mainte-
nance) actions is available per component.
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POMDP solutions assume knowledge of the transition dynamics and the observation
generating process. This implies strict prior assumptions on the POMDP model param-
eters that govern the deterioration, the effects of maintenance actions, and the relation of
observations to latent states and variables. When a POMDP model is available, the solu-
tion can be computed via Dynamic Programming (DP) (Bertsekas, 2012) and approximate
methods (Papakonstantinou & Shinozuka, 2014b) with optimality convergence guarantees,
when the complexity of the problem is not prohibitive, or via Reinforcement Learning
(RL) schemes (Sutton & Barto, 2018) through samples and trial and error learning. While
RL methods can relax some assumptions on the POMDP knowledge, a simulator that can
reliably describe the POMDP model is still necessary for inference and testing purposes,
particularly for engineering problems and in infrastructure asset management applications.

However, a full POMDP model of the problem is rarely available in real-world applica-
tions, and the inference of all POMDP parameters that form the transition dynamics and
the observation generating process of the problem can be quite challenging. The availabil-
ity of such a model is a key issue that prevents wide adoption of the POMDP framework
and its solution methods (including RL) for real-world applications. Available literature on
the theme of maintenance planning is focused on developing RL methods to solve complex
POMDP problems, as pioneered by the work of Andriotis and Papakonstantinou (2019,
2021), while assuming knowledge of the POMDP transition and observation models, i.e.,
by for example assuming that the POMDP inference has already been carried out. Only
few papers deal with the POMDP inference, which poses a challenge in itself, while best
practices are not generally available. Papakonstantinou and Shinozuka (2014a), Song et al.
(2022) and Wari et al. (2023) propose methods to estimate the state transition probability
matrix for deterioration processes, but without demonstrating inference on the transition
matrices associated with maintenance actions. Guo and Liang (2022) propose methods to
estimate both the transition and the observation models, but do not consider model uncer-
tainty and the implementation examples do not involve real-world data but only simulated
ones.

In Arcieri et al. (2023), we tackle this key inference issue by proposing a framework to
jointly infer all transition and observation model parameters entirely from available real-
world data, via Markov Chain Monte Carlo (MCMC) sampling of a Hidden Markov Model
(HMM), which is conditioned on actions. The framework, which can be practically imple-
mented and can be tailored to the problem at hand, estimates full posterior distributions of
POMDP model parameters. By considering these distributions in the POMDP evaluation,
optimal policies that are robust with respect to POMDP model uncertainties are obtained.

In this work, we combine the POMDP inference with a deep RL solution. Most previ-
ous works on deep RL methods focus on fully observable problems, with RL solutions
for POMDPs having received notably lower attention. Partial observability is usually over-
come with deep learning architectures that are able to infer hidden states through memory
and a history of past observations. Schmidhuber (1990) is one of first works that applied
Recurrent Neural Networks (RNNs) for RL problems. Subsequently, Long Short-Term
Memory (LSTM) networks have become the standard to handle partial observability (Dung
et al., 2008; Zhu et al., 2017; Meng et al., 2021). Recent works propose to replace LSTM
architectures with Transformers (GTrXL) (Parisotto et al., 2020). A third modeling option,
which constitutes a hybrid approach between a DP and a RL solution, exploits the POMDP
model to compute beliefs via Bayes’ theorem, which are then fed to the deep RL algorithm
as inputs to classical feed-forward Neural Networks (NNs) (Andriotis & Papakonstanti-
nou, 2019, 2021; Morato et al., 2023). Namely, the POMDP problem is converted into
the belief-MDP (Papakonstantinou & Shinozuka, 2014b; Andriotis et al., 2021) and then
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solved with deep RL techniques. We compare these three available solution methods and
propose a joint framework of inference and robust solution of POMDPs based on deep RL
techniques, by combining MCMC inference with domain randomization of the RL envi-
ronment in order to incorporate model uncertainty into the policy learning.

We showcase the applicability of these methods and of the proposed framework on the
real-world problem of optimal maintenance planning for railway infrastructure. The obser-
vations in this case are delivered as on-board railway monitoring data, namely the so-called
“fractal values” condition indicator, computed from field measurements and provided by
SBB (the Swiss Federal Railways). The fractal value indicator is currently used over the
Swiss railway network to detect track substructure damage and guide associated mainte-
nance action, e.g. minor repair (so-called “tamping”) or renewal. However, the indicator,
albeit useful, is an indirect and noisy observation and, thus, far from a perfect estimate of
the actual railway condition. As such, the problem of optimal maintenance planning for
railway assets, based on on-board monitoring data, can be naturally modeled as a POMDP.

The contributions of this work can be summarized as follows:

e We highlight two key issues that affect the implementation of RL solutions for real-
world problems, which often tend to only be partially observable, namely i) the lack of
availability of a POMDP model or simulator thereof, and ii) the lack of robustness of
the solution to model uncertainty over the environment parameters.

e We address the above issues through a combined framework of POMDP inference and
robust solution based on deep RL methods. The former is tackled by proposing a joint
inference of all transition and observation model parameters entirely from available
real-world data, via MCMC sampling of a HMM conditioned on actions. By recover-
ing posterior samples over the uncertain parameters, the inference technique allows the
incorporation of solutions methods that enhance the robustness over epistemic (envi-
ronment) uncertainty. To this end, we propose a domain randomization of the environ-
ment parameters through the inferred posterior samples, enabling the RL agent to learn
a policy optimized over all plausible parameters space.

e We demonstrate the efficacy of our approach by comparing this for three state-of-the-
art deep RL solution methods for POMDPs, namely the use of LSTMs and Transform-
ers directly on the observations space, and a third method, here termed the belief-input
method, which exploits a (learned or known) model of the environment to transform
the POMDP into a belief-MDP and works with classical feed-forward NNs on the
belief space. To the best of our knowledge, no other work experimentally compares the
performance of the latter method to the first two.

e Finally, the real-life railway application forms a salient contribution in itself, promoting
the use of POMDP modeling and RL solution methods for infrastructure maintenance
planning and demonstrating the applicability of the proposed methods starting from
real-world (measurement) data.

The remainder of this paper is organized as follows. Section 2 provides the necessary back-
ground on POMDPs and prior work. Section 3 describes the considered maintenance plan-
ning problem of railway assets and the monitoring data. Section 4 describes the POMDP
inference and its implementation to the problem here considered. Section 5 evaluates
the three available modeling options of deep RL solutions for POMDPs, namely LSTM,
GTrXL, and the belief-input case. Section 6 proposes our joint framework of POMDP
inference and robust solution via deep RL and domain randomization. Finally, Sect. 7
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concludes with a highlight and a discussion of the contributions, and outlines possible
future work.

2 Preliminaries
2.1 Partially observable Markov decision processes

A POMDRP can be considered as a generalization of a Markov Decision Process (MDP)
for modeling sequential decision-making problems within a stochastic control setting,
with uncertainty incorporated into the observations. A POMDP is defined by the tuple
(S,A,Z,R,T,0,by,H,y), where:

S is the finite set of hidden states that the environment can assume.

A is the finite set of available actions.

Z is the set of possible observations, generated by the hidden states and executed
actions, which provide partial and/or noisy information about the actual state of the
system.

e R :S5XA - Ris the reward function that assigns the reward r, = R(s,, a,) for assuming
an action q, at state s,.

o T :5XSxA—[0,1]is the transition dynamics model that describes the probability
p(s,y; | 5,,a,)to transition to state s, if action a, is taken at state s,.

e O:SXAXZ— R is the observation generating process that defines the emission
probability p(z, | s,,a,_,,z,_,), namely the likelihood to observe z, if the system is at
state s, and action a,_, was taken.
by is the initial belief on the system’s state s,

H is the considered horizon of the problem, which can be finite or infinite.
v is the discount factor that discounts future rewards to obtain the present value.

In the POMDP setting, the agent can take a decision based on a formulated belief over the
system’s state. Such a belief is defined as a probability distribution over S, which maps the
discrete finite set of states into a continuous | S | —1 dimensional simplex (Papakonstanti-
nou & Shinozuka, 2014b). It is a sufficient statistics over the complete history of actions
and observations. Solving a POMDP is thus equivalent to solving a continuous state MDP
defined over the belief space, termed the belief-MDP (Papakonstantinou & Shinozuka,
2014b; Andriotis et al., 2021). The belief over the system’s state is updated according to
Bayes’ rule every time the agent receives a new observation:

PO LD S s sabis) o

b(s, ) =
+1 Pz | b, a,) =

where the denominator is the normalizing factor:

p(zt+1 | b’ LZ,) = Z p(zr+1 | Sz+1’at) ZP(SHI I St’az)b(sz) (2)

S €S 5,ES

The objective of the POMDP is to determine the optimal policy #* that maximizes the
expected sum of rewards:
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Fig. 1 Probabilistic graphical
model of a POMDP
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Algorithms based on DP (Bertsekas, 2012) can be used to compute the optimal policy.
These algorithms rely on two key functions: the value function V*, which calculates the
expected sum of rewards for a policy x starting from a given state until the end of the pre-
scribed horizon, and the Q-value function Q" (Sutton & Barto, 2018), which estimates the
expected value for assuming action g, in state s,, and then following policy 7.

Finally, a POMDP can be represented as a special case of influence diagrams (Mor-
ato et al., 2022; Luque & Straub, 2019), which form a class of probabilistic graphical
models. Figure 1 illustrates the influence diagram for the POMDP considered in this
work. Circles and rectangles correspond to random and decision variables, respectively,
while diamonds correspond to utility functions (Koller & Friedman, 2009). Shaded
shapes denote observed variables, while edges encode the dependence structure among
variables.

The graphical model in Fig. 1 as well as the POMDP mathematical definitions above
refer to a special POMDP case with a direct dependency among the observations, as
this is the formulation used in this work to model the problem at hand and the available
data (see Arcieri et al. (2023) for more details on why this direct dependency is neces-
sary). Nevertheless, it is possible to present this special POMDP case without loss of
generalization because the conditional probability p(z, | s,,a,_;,z,_;) simply reduces to
p, | s, a,_y) if z,_; does not provide further information directly (i.e., if there is not a
direct dependency) and the standard formulation is recovered.

2.2 Belief-MDPs

By converting the POMDP problem, originally defined over the observation space, into
a belief-MDP, the objective becomes to determine the optimal policy z* that maximizes
the expected sum of rewards defined over the belief space, essentially mapping beliefs
to actions:
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=0

H
7% = argmax E lz 7'R(s,, ﬂ(b,))] “)

It is, thus, possible to rewrite the value function V” from its original form into the new
belief-based form (Papakonstantinou & Shinozuka, 2014b):

V”* (bt) - r;}g} lz b(S,)R(s[, at) + 14 Z p(zt+1 | b? at)V”*(bz+1)‘| (5)

s,ES z,11€Z

Likewise, it is possible to rewrite other RL fundamentals and re-derive popular RL solu-
tion algorithms in terms of the belief variable. Andriotis and Papakonstantinou (2019)
first combine these known results from POMDP theory with deep RL solution methods,
in order to solve complex partially observable problems. The observation acquired at each
time-step is used to update the belief variable over all hidden states via Eq. 1, along with a
(learned or known) model of the environment. The updated belief is then passed as input
of classical feed-forward NNs, which learn the optimal policy via popular model-free RL
algorithms, though based on the belief variable, thus avoiding to carry a history of observa-
tions at each time-step and the use of more complex networks [e.g., LSTMs or Transform-
ers, for which the interested reader is referred to Zhu et al. (2017), Meng et al. (2021) and
Parisotto et al. (2020) for a detailed overview of these broadly adopted schemes] to handle
such input structures. This approach has been successfully applied in subsequent works
(Andriotis & Papakonstantinou, 2021; Morato et al., 2023) to solve complex POMDP
problems in the field of maintenance planning of engineered infrastructure.

The belief variable encodes information on the hidden states that is extracted from the
uncertain observations, conditioned on the learned/assumed model. This extracted infor-
mation is thus not required to be learned by, for instance, a NN (e.g., via LSTM cells,
which infer network hidden states from observations). The use of the belief variable allows
to ease the learning process and alleviate the curse of history in POMDP formulations. By
exploiting a more informative and compact representation of the observations, this meth-
odology is expected to lead to improvements with respect to directly applying model-free
RL algorithms over the observation space, as demonstrated in Sect. 5.

2.3 Bayesian decision making for robust solution

Arcieri et al. (2023) combine Bayesian decision making with the POMDP framework to
derive optimal solutions that are robust to the epistemic uncertainty over the POMDP envi-
ronment parameters. In Bayesian decision theory (Berger, 2013), the optimal action is the
one that maximizes the expected utility U(0, a) with respect to the entire problem param-
eter distribution p(0), namely:

a® = arg max Eopo) U0, a)] 6)
a€eA

Cast into the sequential decision-making scheme, the utility function U is replaced by the
objective function of the problem (or the objective function of the solution algorithm in the
case of approximate methods, as is the case in POMDP problems).

In Arcieri et al. (2023), this framework is devised for POMDP cases by utilizing the
Opp approximate solution method:

@ Springer



7974 Machine Learning (2024) 113:7967-7995

rail

sleeper

superstructure

track bed

substructure

Fig.2 Structure of the railway track. Figure reproduced from Profillidis (2016)

a;" = argerzlax [Ee~p(e) Z be(s,)Q’er* (s,a,1) 7
a

seS

The robust optimal action can be computed at each step by approximating the expectation
with an average over (e.g., MCMC) samples. In this work, we extend this framework to
deep RL approaches, which are more generally applicable to a larger variety of complex
problems. To this end, we propose a domain randomization (Tobin et al., 2017) of the envi-
ronment parameters over the inferred MCMC samples to train a policy that is robust over
the POMDP epistemic uncertainty, as presented in Sect. 6.

3 The railway maintenance problem

We apply and test the proposed methodology on the problem of optimal maintenance plan-
ning for railway infrastructure assets on the basis of availability of regularly acquired mon-
itoring data. The railway track comprises various components, as illustrated in Fig. 2, such
as rails, sleepers, and ballast, which are exposed to harsh environments and high operat-
ing loads, leading to accelerated degradation. Among these infrastructure components, the
substructure—in particular—is especially important in this degradation process. The sub-
structure undergoes repeated loading from the superstructure (tracks, sleepers and ballast),
prevents soil particles from rising into the ballast, and facilitates water drainage. A weak-
ened substructure typically results in distortions of the track geometry. Tamping (Audley &
Andrews, 2013), a maintenance procedure that uses machines to compact the ballast under-
neath the railway track, restoring its shape, stability and drainage system, is often applied
when the substructure condition is considered moderately deteriorated. However, in case of
poor substructure condition, such as intrusion of clay or mud or water clogging, tamping
provides only a short-term remedy, and replacing the superstructure and substructure is the
most appropriate long-term solution.

The optimization of maintenance decisions for these critical infrastructure components
benefits from information that is additional to the practice of scheduled visual inspections,
which are typically conducted on-site by experts. Such additional information can be deliv-
ered from monitoring data derived by diagnostic vehicles. In this work, we specifically exploit
the fractal values, a substructure condition indicator extracted from the longitudinal level,
which is measured by a laser-based system mounted on a diagnostic vehicle, to guide deci-
sions for substructure renewal. The longitudinal level represents the deviations of the rail from
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a smoothed vertical position (Wang et al., 2021). On the basis of this measurement the fractal
values can be computed, via appropriate filtering and processing steps. The fractal value indi-
cator describes the degree of “roughness" of the track at varying wavelength scales. For the
interested reader, the detailed steps of the fractal value computation are reported in Landgraf
and Hansmann (2019) and Arcieri et al. (2023). In particular, long-wave (25-70 m) fractal
values, which are employed in this work, have shown a significant correlation to substructure
damage (Hoelzl et al., 2021), and are used by railway authorities as an indicator which can
instigate repair/maintenance actions, such as tamping.

In this work, we use actual track geometry measurements, carried out via a diagnostic vehi-
cle of the SBB between 2008 and 2018 across Switzerland’s railway network. The track geom-
etry measurements were collected twice a year for the investigated portion of track. The fractal
values are computed every 2.5 m from the measured longitudinal level. The performed main-
tenance actions have been logged for the analyzed tracks over the same considered period.
These logs contain information on the maintenance, repair, or renewal actions taken on a sec-
tion of the network at a specific date.

We model the railway track maintenance optimization with a POMDP scheme, relying on
diagnostic vehicle measurements of long-wave fractal values. The true but unobserved railway
condition is discretized in 4 hidden states, s, 5}, 5, and s, reflecting various grades, from
perfect to highly deteriorated state. This is chosen to coincide with the number of grade lev-
els assumed by the Swiss Federal Railways for classifying substructure condition. It should
be noted, that in the POMDP inference setting, the number of hidden states is not fixed. To
this end, we evaluated further possible dimensions of the hidden states vector, as part of the
POMDP inference presented in the next section, and a dimension of four yielded improved
convergence and better-defined distributions. The fractal values are assumed as the (uncertain)
POMDP observations, which correlate with the actual state of the substructure, but offer only
partial and noisy information thereof. Unlike classical POMDP modeling of optimal main-
tenance planning problems, where observations are usually discrete, fractal values comprise
(negative) continuous values, rendering the considered POMDP inference and solution quite
complex. The problem definition is supplemented with information on the available main-
tenance actions. Three possible actions are considered, corresponding to the real-world set-
ting, namely action g, do-nothing, and the aforementioned tamping and replacement actions,
denoted as a, and a,, which can be interpreted as a minor and a major repair, respectively.
The fractal value indicators are derived via measurements of the diagnostic vehicle every 6
months, which thus represents the time-step of the decision-making problem. Considering the
almost 10 years of collected measurements, our real-world dataset is ultimately composed of
time-series of 20 fractal values, per considered railway section, complete with information on
respective maintenance actions (with “action” do-nothing included), i.e., (zy, gy, ** , a9, Zp9)-
Finally, the (negative) rewards representing costs associated with actions and states have been
elicited from SBB and are reported in Table 1 in general cost units.

4 POMDP inference

To formulate the POMDP problem, the transition dynamics and the observation gener-
ating process must be inferred. In the RL context, the POMDP inference is necessary to
generate samples for the policy learning, for inference of a belief over the hidden states,
and/or for testing purposes. To tackle this key issue, we propose an MCMC inference of
a HMM conditioned on actions, which jointly estimates parameter distributions of both
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Table 1 Costs of the POMDP

State condition S, s K K
model 0 ! 2 3

Maintenance action

a 0 0 0 0

a, =50 =50 =50 =50
a, —2050 -2710 -3370 —4050
Condition cost —100 —200 —1000 —8000

the POMDP transition and observation models based on available data. While we imple-
ment the proposed scheme on the problem of railway maintenance planning based on frac-
tal value observations, its applicability is general. Therefore, we further suggest possible
extensions to help researchers and practitioners tailor the POMDP model inference to the
problem at hand. In addition, we provide a complementary tutorial' illustrating the code
implementation on various simulated case-studies, in order to support exploitation for real-
world applications.

In the context of discrete hidden states and actions, the transition dynamics are modeled
via Dirichlet distributions:

T, ~ Dirichlet(a)
5o ~ Categorical(7}))
T ~ Dirichlet(ay)

s, | 8,_1,a,_, ~ Categorical(T)

®)

where T, are the parameters of the probability distribution of the initial state s, and
and a; are the prior concentration parameters. 7, can be assigned a uniform flat prior «,
unless some prior knowledge on the initial state distribution is available. By contrast, it is
beneficial to regularize T with informative priors @, which regularize the deterioration or
the repairing process. For example, the transition matrix related to the action do-nothing,
which describes the deterioration process of the system, can be regularized with higher
prior probabilities on the diagonal and on the upper-right triangle, and near-zero on the
lower-left triangle. Likewise, the transition matrices associated with maintenance actions
would present higher prior probabilities on the left triangle and near-zero on the right trian-
gle, in order to inform the model that a repair action is expected to be followed by improve-
ments of the system.

The dimensionality of the Dirichlet distribution that models the transition dynamics 7 is
S X § X A, namely one transition matrix per action. The extension to time-dependent transi-
tion dynamics is straightforward by enlarging the distribution by a further dimension repre-
senting time, i.e., SX S XA X H.

In the context of continuous observations, the observation generating process can dif-
fer on the basis of whether the observation follows a deterioration or a repairing process.
In addition, similarly to the inference of the first hidden state according to Tj, an initial
observation process can be necessary to model the first observation. Tailoring to the nature
of the fractal value monitoring data, the initial, deterioration, and repairing processes are
modeled via Truncated Student’s ¢ processes, as follows:

' Code available on GitHub.
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Zp~ TruncatedStudentT(y% 5O s Vo ub = 0)
z; — Z—y ~ TruncatedStudentT(uy; , 04, > Vays,» Ub = —2,_1) )

z, ~ TruncatedStudentT(k,, 2,y + My, Oy, Vi, ub = 0)

where ub stands for “upper bound”, and all parameters governing the processes are
assigned priors described in Arcieri et al. (2023).

The use of Truncated Student’s ¢ processes was tailored to the mathematical character-
istics of the fractal values, which (1) assume only negative values, (2) exhibit a negative
trend in absence of repairing actions, (3) their values are dependent on the previous obser-
vations, and (4) the studied dataset, as is common in real-world measurements, presents
outliers and measurement errors, modeled by the Student’s ¢ fat tails. Naturally, other dis-
tributions can also be employed as part of the proposed framework in order to model the
data at hand related to each application. For instance, in absence of the previous limiting
characteristics, simpler (unbounded) Gaussian emissions could have been used, as further
shown in the tutorial. In the case of discrete observations, the observation model would
be represented by a probability matrix S X Z, which can be again modeled via a Dirichlet
distribution. In the case of more than one possible inspection action or monitoring tool, as
in Papakonstantinou et al. (2018), the Dirichlet distribution can be simply enlarged by a
further dimension representing the number of possibilities. Finally, dependencies in multi-
component systems could be modeled via a Bayesian hierarchical model (Gelman et al.,
1995), enabling solutions as proposed in Andriotis and Papakonstantinou (2019, 2021) and
Morato et al. (2023).

The graphical model of the entire HMM is reported in Fig. 3. The MCMC inference is
run on a final dataset of 62 time-series with the No-U-Turn Sampler (NUTS) (Hoffman &
Gelman, 2014). Four chains are run with 3000 samples collected per chain. The inference
results, which present good post-inference diagnostic statistics, with no divergences and
high homogeneity between and within chains, are reported in Figs. 9, 10, 11, 12, 13 and 14
in Appendix A.

5 RL for POMDP solution

POMDP problems have been tackled via deep RL with common methods augmented with
LSTM architectures and a history of past observations (and possibly actions) as inputs
(Zhu et al., 2017; Meng et al., 2021). More recently, motivated by the breakthrough suc-
cess of Transformers over LSTMs in natural language processing, Parisotto et al. (2020)
designed a new Transformer architecture, namely GTrXL, which yielded significant
improvements in terms of performance and robustness over LSTMs on a set of partially
observable benchmarking tasks.

Both LSTM and GTrXL architectures compose fully model-free deep RL solutions to
POMDPs. A third modeling option, which comprises a model-based/model-free hybrid
solution, pertains to transformation of the POMDP problem into the belief-MDP by com-
puting beliefs via Bayes Theorem (Eq. 1). The belief-MDP is then solved via classical deep
model-free RL methods with feed-forward NNs (Andriotis & Papakonstantinou, 2019;
Morato et al., 2023). We here compare the performance of the two model-free and the
hybrid solution, referred to as “belief-input” case, on the real-world POMDP problem of
railway maintenance planning that has been presented in Sect. 3, with parameter inference
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Fig.3 A graphical model of the
HMM inference. Arrows indicate
dependencies, while shaded
nodes indicate observed variables

Transition model

Dirichlet

Hidden states

Categorical

Observation model

Observations
(Fractal values)

TruncatedStudentT

Model inference

described in Sect. 4. While Parisotto et al. (2020) demonstrate the superiority of Trans-
formers over LSTMs on simulated tasks, our work offers a further comparison of the two
methods, and confirms the superiority of the former, on a real-world, stochastic (both in
the transition dynamics and in the observation generating process), partially observable
problem.

For this comparison we set the POMDP parameters to the mean values of the distri-
butions reported in Appendix A, in order to evaluate the methods without model uncer-
tainty, with the latter case tackled in the next section. For all modeling options, the policy
is learned via the Proximal Policy Optimization (PPO) algorithm with clipped surrogate
objective (Schulman et al., 2017). The overall evaluation algorithm is reported in pseu-
docode format in Algorithm 1. In addition, the code of the experiment is made available
online?. We consider 50 time-steps, i.e., 25 years (1 time-step equals 6 months), as the
decision horizon H of the problem, as discussed with our SBB partners.

2 Code available on GitHub.

@ Springer


https://github.com/giarcieri/Robust-optimal-maintenance-planning-through-reinforcement-learning-and-rllib

Machine Learning (2024) 113:7967-7995 7979

Algorithm 1 Evaluation algorithm

1: Initialize policy network g

2: Initialize replay buffer D « ()

3. Set environment parameters 6 of Ty, Og, T, O to the mean values of p(6 | D)
4: for training episode = 0 to N do

5: Sample initial so ~ Tp, and zo ~ Oy,

6: Initialize belief to initial state distribution by < To,

7: for timestep t = 0 to H do

8: if belief-input case then

9: Input y; = b,

10: else if LSTM then

11: Input y¢ = (2¢,a4—1, ", Zt—h+1) >h=3
12: else if GTrXL then

13: Input y: = (2¢,at—1," - , 20)

14: end if

15: a; ~ 7y(Yt)

16: St+1 ™~ Té(st, (lt), Zt41 Oé<8t+1, ag, Zt)

17: Compute b;11 via Equation 1

18; D —DU{(ys,as, R(st,a¢))}

19: end for

20: every K total timesteps do > K =4,000
21: Update 7y with PPO and replay buffer D

22: every 5 updates do

23: Run 500 policy evaluation episodes without exploration

24: end for

For all methods, the policy networks are updated every 4000 training time-steps. Every
5 updates, 500 evaluation episodes are run with different random seeds in order to aver-
age the results over the stochasticity of the environment. In addition, the entire analysis is
repeated over 10 different random seeds to further average the results over the stochasticity
of the NN training. Grid-searches are performed over the hyperparameters for all methods
and the selected values are reported in Table 4 in Appendix B. The mean performance
over 250 evaluation iterations (5 million training time-steps) is plotted in Fig. 4 along
with the shaded regions representing one standard deviation over the 10 different random
seeds. Along with the three evaluated methods, three additional benchmarking solutions
are reported. The first option refers to the Q,,,p method (Littman et al., 1995), which con-
stitutes a POMDP solution based on DP, and which turns out to be an effective solution
for the characteristics of this problem (Arcieri et al., 2023). The second option is the opti-
mal MDP solution, namely the optimal policy computed and evaluated on the underly-
ing MDP, i.e., when the hidden states are fully observable. The latter constitutes an upper
bound to any POMDP solution, which cannot be exceeded, given the irreducible inherent
uncertainty of the observations, and only serves as a benchmarking reference. Finally, the
total cost achieved with the current maintenance policy implemented by the Swiss Federal
Railways is also reported (dashed black line). This policy is based on optimized thresholds
on the fractal values to guide tamping and renewal actions in real life. The costs of all three
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Fig. 4 Comparison of the performance of LSTM (green), GTrXL (orange), and the belief-input case (blue)
over 250 evaluation iterations. At every iteration, 500 trial episodes are evaluated with different random
seeds and the average results are returned. The entire training is repeated over 10 different random seeds.
The plotted learning curves denote the mean performance, while the shaded regions represent one standard
deviation over the 10 different random seeds. An evaluation iteration is run after 5 policy updates and a pol-
icy update is performed every 4000 training time-steps, for a total of 5 million time-steps. The performance
is further benchmarked against the Q,,,,» method (dashed red), the optimal MDP policy (dashed yellow),
and the current real-life policy implemented by the Swiss Federal Railways (dashed black). On the right
corner, a zoomed-in plot of the belief-input performance over the first 100 evaluation iterations is shown
(Color figure online)

reference policies (Q,,p, optimal MDP, current policy) are accurately estimated by averag-
ing 100,000 simulations.

The belief-input method outperforms the other two model-free RL solutions and
already shows strong performance at the first evaluation iterations. The method matches
the performance of the current real-life implemented policy in about 25 evaluation itera-
tions (500,000 training time-steps), outperforming it and converging to the best policy in
about 50 evaluation iterations (1 million training time-steps), as shown in the zoomed-in
view of the first 100 evaluation iterations reported in the lower right figure inset, converg-
ing close to the performance of the Q,,,p method. Because the number of training time-
steps evaluated may not be sufficient for convergence of the other two model-free RL
methods, we continue training up to 2000 evaluation iterations (40 million training time-
steps). This could however negatively impact the performance of the belief-input method,
which already converged and may begin to suffer from overfitting. The extended training is
reported in Fig. 5, where a rolling average window of 5 steps is further applied for illustra-
tion purposes.

3 Siz3zizaasisazizasis 533333555333583542 optimal MDP
‘ch} —20000 " B R o e e oV Y QMDP
s (e current policy
E —40000 —— belief-input
S GTrXL

— LSTM
—60000
0 500 1000 1500 2000

Evaluation iteration
Fig.5 Comparison of the performance of LSTM (green), GTrXL (orange), and the belief-input case (blue)

over 2000 evaluation iterations, for a total of 40 million training time-steps. The performance is further
plotted with an average rolling window of 5 steps for displaying purposes
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Table 2 PeFformance of the best Method Avg. costs SE Max Min

models, as inferred during the

training process, evaluated over . _ B B

100,000 simulations Optimal MDP 13,315 27 5000 93,980
Qupp -14,374 35 -5050 123,800
Belief-input -14,677 36 -5050 -121,950
Current policy -16,295 42 -5000 -161,650
GTrXL -17,196 46 -5700 —188,600
LSTM -18,167 42 -5100 -404,150

As expected, the performance of the belief-input method slightly decreases over time,
yet it still stays above the current real-life policy. The GTrXL is proven to deliver a better
architecture than the LSTM for POMDP applications, also for this particular case of appli-
cation on a real-world problem. The GTrXL, after the first iterations, is indeed less affected
by variance and eventually converges to a better policy, albeit still far from current real-life
policy and the best policy with the belief-input method.

Finally, for all three methods we saved the best models, as determined during training,
and evaluated the learned policies over 100,000 trials. The results are reported in Table 2
in terms of average performance (i.e., average total costs), Standard Error (SE), best (Max)
and worst (Min) trial. In the table, the belief-input case average performance is close but
slightly worse than the Q,,,,p method. This is likely due to the fact that the best model was
picked based on an average over 500 trials, which is still subject to a significant stand-
ard error. While we explained in Sect. 2.2 why the belief-input case is expected to deliver
improved performance with respect to the two alternate schemes, we are not aware of other
works that experimentally assess its superiority in solving POMDP problems against state-
of-the-art deep RL methods (LSTMs and Transformers) that operate directly on the obser-
vation space. In addition, the belief-input method is able to improve the current real-life
policy by yielding significantly reduced costs.

6 Domain randomization for robust solution

Further to the challenge of POMDP inference, another key issue is the robustness of the
deep RL solutions. RL methods generally learn an optimal policy by interacting with a
simulator. When the trained RL agent is deployed to the real-world, the performance can
deteriorate, or altogether fail, due to the “simulation-to-reality” gap (Zhao et al., 2020; Sal-
vato et al., 2021), if the solution is not robust to model uncertainty.

In Arcieri et al. (2023), we propose a framework in combination with the POMDP infer-
ence to enhance the robustness of DP solutions to model uncertainty. Namely, the POMDP
parameter distributions inferred via MCMC sampling are incorporated into the solution
by merging DP algorithms with Bayesian decision making, as mentioned in Sect. 2.3. In
Arcieri et al. (2023) we incorporate DP methods into the Bayesian optimal action formula
(Egs. 67 in this work) to derive solutions that maximize the expected value with respect
to the entire model parameter distributions, hence rendering the solution robust to model
uncertainty.
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Fig.6 The POMDP inference and robust solution framework via domain randomization and deep reinforce-
ment learning

In this work, we bring and extend this framework into the RL training scheme. The util-
ity function is represented by the RL algorithm objective function, e.g., the PPO clipped
surrogate objective in this case. We propose the use of domain randomization (Tobin et al.,
2017) of the POMDP environment, which is enabled by our POMDP inference scheme
through the recovery of parameter distributions, in order to enhance the robustness of the
RL solution to model uncertainty. At every episode, a different POMDP configuration is
sampled from the parameter distributions. The RL agent interacts with this POMDP con-
figuration until the end of the episode. Afterwards, a new configuration of the environment
is sampled. At the end of the training, the RL agent will have optimized the learned policy
over all possible problem parameters to derive a solution robust to model uncertainty. The
expectation in Eq. 6 is thus implemented in practice via stochastic gradient ascent/descent
steps over varying randomized problem parameters. It should be reminded that the (Bayes-
ian) robust optimal policy may be sub-optimal for a specific value 0, while maximizing the
expected value with respect to the entire model parameter distribution. The domain rand-
omization technique can thus be used in combination with the model inference proposed in
Sect. 4 to establish a joint framework of POMDP inference and robust solution based on
RL. The framework is depicted in the graphical model in Fig. 6.

We showcase the implementation of this framework with the belief-input method, but
it is also applicable with the other methods reported in Table 2, given its general valid-
ity. The evaluation algorithm is similar to Algorithm 1, with the only difference that the
POMDP parameters 6 are sampled at every episode from the inferred posterior distribu-
tions p(@ | D). The policy updates are again performed every 4000 training time-steps and
an evaluation iteration is run every 5 policy updates. Similarly to Fig. 5, the performance
during training is averaged at each evaluation iteration over 500 episodes with different
random seeds. The training is then repeated 10 times with 10 different random seeds to
also average over the stochasticity of the NN training. The resulting average performance
is plotted in Fig. 7. Given the more challenging learning task, owing to model uncertainty,
the average training performance decreases and demonstrates a higher variance than the
belief-input performance without domain randomization, shown in Fig. 5. For this case,
the hyper-parameter tuning was also restricted to a minimal grid-search. While the results
are already satisfying, the RL agent performance can likely be further increased via a more
thorough hyperparameter optimization.

Again, the best performing models shown in the evaluations during training are saved
and the learned policy is evaluated over 100,000 simulations. The results are shown in
Table 3 and compared against the robust Q,,,p policy described in detail in Arcieri et al.
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Fig. 7 Performance of the belief-input method (blue) over 250 evaluation iterations with domain randomi-
zation, i.e., a different POMDP model is sampled at every episode, both for training and evaluation. At
every iteration, 500 trial episodes are evaluated with different random seeds and the average results are
returned. The entire training is repeated over 10 different random seeds. The plotted learning curve denotes
the mean performance, while the shaded regions represent one standard deviation over the 10 different ran-
dom seed. An evaluation iteration is run after 5 policy updates and a policy update is performed every 4000
training time-steps, for a total of 5 million time-steps. The performance is further benchmarked against the
robust Q,,,» method (dashed red), the robust optimal MDP policy (dashed yellow), and the current real-life
policy implemented by the Swiss Federal Railways (dashed black), all evaluated under model uncertainty,
as in Arcieri et al. (2023) (Color figure online)

(2023) and the upper bound optimal MDP policy evaluated with full observability, both
assessed under model uncertainty. In addition, we report the result of the best model of
the RL agent from the previous analysis, namely with the policy optimized without model
uncertainty incorporated into the training (i.e., no domain randomization), evaluated now
in the context of model uncertainty. This further analysis resembles a real-world deploy-
ment, where the environment parameters can differ from those inferred, inducing the afore-
mentioned simulation-to-reality gap. The performance of the agent trained with no domain
randomization deteriorates, while the agent trained with domain randomization is able to
learn and deliver a more robust policy in the context of model uncertainty. We also report
the results of the current real-life policy evaluated under model uncertainty and demon-
strate that the policy learned by the belief-input RL agent is able to significantly improve
the current policy by yielding substantially reduced costs also in this further context.
Finally, Fig. 8 shows two trials of the sequential maintenance actions planned by the
belief-input model, which has been trained with domain randomization, over the consid-
ered problem horizon. The environment true states are reported in the second subplot from
the top, which however are never accessed by the RL agent and are here reported only for
comparison and interpretation. The hidden states indeed produce the observations (fractal

Table3 Performance of the. Method Avg. costs SE Max Min

best models, as inferred during

training, evaluated over 100,000 ;10 MpDP _13,374 33 25000 190,450
simulations in the context of

model uncertainty with domain Oupr —14,526 39 -5050 -197,050
randomization. In particular, Belief-input DR -14,648 38 -5050 -168,600
V}Vle Lepl9r; on the evaluation gf Belief-inputno DR~ —14,901 39 5050  —205,100
the befiel-input agent traine Current policy 16,259 44 5000 —201,850

with (DR) and without Domain
Randomization (no DR). The
former achieves a significantly
improved and more robust policy
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Fig.8 Two trials of the maintenance actions planned by the belief-input model trained with domain rand-
omization. From bottom to top: the observations (fractal values); the beliefs, namely a probability distribu-
tion over hidden states, computed via Bayes’ formula and fed to the policy networks; the true hidden states,
which are not accessed by the agent and/or the model; the actions planned by the RL agent

values), reported in the bottom subplot. These are used to compute the beliefs (third sub-
plot) via Bayes’ formula, which are fed to the policy networks. Based on these beliefs, the
RL agent plans the maintenance actions, reported in the top subplot. While some higher
uncertainty is present in the formed belief in some specific time-steps of the trials (e.g,
time-step 25 in the left plot and time-step 9 in the right plot), which lead to non-optimal
maintenance actions, these are explained by the observations that generated these beliefs,
which indeed allow outliers/measurement errors in the simulations. Besides these isolated
cases, it is possible to appreciate how the beliefs are generally accurate compared to the
true hidden states, although these are never accessed for their computation, and effectively
lead to optimal actions. To explain the plots further, one can notice, for example, how the
maintenance action a, at time-step 30 on the left plot significantly improves the ground
truth hidden state and also the inferred belief, yielding a substantially increase in the obser-
vation as well. Likewise for the maintenance actions at time-steps 7-9 in the right plot.

7 Conclusion

This work tackles two key issues related to adoption of RL in real-world partially observ-
able planning problems. First, an environment (POMDP) model, which enables the RL
training via simulations, is often unknown and generally non-trivial to infer, with unified
best practices not available in the literature. This constitutes a main obstacle against broad
adoption of the POMDP scheme and its solution methods for real-world applications. Sec-
ond, RL solutions often lack robustness to model uncertainty and suffer from the simula-
tion-to-reality gap.

In this work, we tackle both issues via a combined framework for inference and robust
solution of POMDPs based on deep RL algorithms. The POMDP inference is carried out
via MCMC sampling of a HMM conditioned on actions, which jointly estimates the full
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distributions of plausible values of the transition and observation model parameters. Then,
the parameter distributions are incorporated into the solution via domain randomization of
the environment, enabling the RL agent to learn a policy, which is optimized over the space
of plausible problem parameters and is, thus, robust to model uncertainty. We compare
three common RL modeling options, namely a Transformer and an LSTM-based approach,
which constitute model-free RL solutions, and a hybrid belief-input case. We implement
our methods for optimal maintenance planning of railway tracks based on real-world moni-
toring data. While the Transformer delivers generally better performance than the LSTM,
both methods are significantly outperformed by the hybrid belief-input case. In addition,
the latter method outperforms the current real-life policy implemented by the Swiss Fed-
eral Railways by yielding significantly reduced costs. Ultimately, we demonstrate on the
belief-input method that an RL agent trained with domain randomization is able to learn
an improved policy, which is robust to model uncertainty, than an RL agent trained without
domain randomization.

A possible limitation of this work is that, while our methods allow for incorporation
of rather complex extensions, e.g., time-dependent dynamics and hierarchical compo-
nents, and are here demonstrated on the quite difficult case of continuous observations,
the POMDP inference under continuous multi-dimensional states and actions is still to be
investigated. Future work will focus on the development of methods that can scale to these
cases, e.g., via coupling with deep model-based RL methods (Arcieri et al., 2021).

Appendix A: Inference results
Transition model parameters

See Figs. 9, 10, and 11.
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Fig.9 Transition matrix related to action do-nothing a,,. The distribution at row i and column j is associated
with the probability to transition from state i to j when action g is taken. Consistent with what is expected
in deterioration processes the highest probabilities are assigned to the state remaining invariant (diagonal
entries), lower probabilities exist for deterioration transitions (upper right triangle), and almost zero prob-
ability is assigned to improvements of the system (lower left triangle)
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Fig. 10 Transition matrix related to action a; (tamping). The distribution at row i and column j is associated
with the probability to transition from state i to j when action a, is taken. Deterioration of the system (upper
right triangle) reflects an almost zero probability, while it appears most probable to remain in the same con-
dition or improve by a maximum of one state, which reflects the reduced influence of this action
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Fig. 11 Transition matrix related to action a, (renewal plus tamping). The distribution at row i and column j
is associated with the probability to transition from state i to j when action a, is taken. Transition to the best
possible state s, is consistently assigned the highest probability, regardless of the starting state, reflecting
the higher repairing effect of this maintenance action
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Observation model parameters
See Figs. 12, 13 and 14.

Hd|s, H|s,

meang=-.0085 mean=-.028

-0.009 0071

~0.0100 —0.0075 —0.0050 —0.03 002 —0.12 —0.10 —0.08 —0.4 —0.2
(a) Posterior distributions of state-dependent parameters pg)s, -

Tdls, Tdls, Tdlsy Tdls,

mear meay mea, mepnt=0.2

0.0075  0.0100 0.025 0030 0035 004 006  0.08 0.2 0.4
(b) Posterior distributions of state-dependent parameters oy, .

V(l\.s-(, V(I[.s'l V(l\s;;

o

2

10 5 10 25 50 75 25 5.0

=1

oy

(c) Posterior distributions of state-dependent parameters vy, .

Fig. 12 Posterior distributions of observation model parameters (deterioration process)
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Fig. 13 Posterior distributions of observation model parameters (repair process)
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Fig. 14 Posterior distributions of observation model parameters (initial observation)

Appendix B: Hyperparameters

See Table 4.

Table 4 Best hyperparameters from the grid-search optimization

Hyperparmeter Belief (no DR)  Belief (DR) GTrXL LSTM

Hidden layers 3 3 2 x GTrXL 1 X LSTM + 2 x MLP
Hidden size 100 100 - 100

Learning rate 0.0001 0.0001 0.001 0.001

Heads - - 8 -

Head dimension - - 32 -

Max seq. length - - 50 3

Memory - - 50 -

Use prev. actions - - Yes Yes

Clip parameter 0.01 0.01 0.3 0.3
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